101
|
Wooten J, Mavingire N, Damar K, Loaiza-Perez A, Brantley E. Triumphs and challenges in exploiting poly(ADP-ribose) polymerase inhibition to combat triple-negative breast cancer. J Cell Physiol 2023; 238:1625-1640. [PMID: 37042191 DOI: 10.1002/jcp.31015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) regulates a myriad of DNA repair mechanisms to preserve genomic integrity following DNA damage. PARP inhibitors (PARPi) confer synthetic lethality in malignancies with a deficiency in the homologous recombination (HR) pathway. Patients with triple-negative breast cancer (TNBC) fail to respond to most targeted therapies because their tumors lack expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Certain patients with TNBC harbor mutations in HR mediators such as breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2), enabling them to respond to PARPi. PARPi exploits the synthetic lethality of BRCA-mutant cells. However, de novo and acquired PARPi resistance frequently ensue. In this review, we discuss the roles of PARP in mediating DNA repair processes in breast epithelial cells, mechanisms of PARPi resistance in TNBC, and recent advances in the development of agents designed to overcome PARPi resistance in TNBC.
Collapse
Affiliation(s)
- Jonathan Wooten
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Nicole Mavingire
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Katherine Damar
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eileen Brantley
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| |
Collapse
|
102
|
Bryan NW, Ali A, Niedzialkowska E, Mayne L, Stukenberg PT, Black BE. Structural Basis for the Phase Separation of the Chromosome Passenger Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541822. [PMID: 37292983 PMCID: PMC10245869 DOI: 10.1101/2023.05.22.541822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physical basis of phase separation is thought to consist of the same types of bonds that specify conventional macromolecular interactions yet is unsatisfyingly often referred to as 'fuzzy'. Gaining clarity on the biogenesis of membraneless cellular compartments is one of the most demanding challenges in biology. Here, we focus on the chromosome passenger complex (CPC), that forms a chromatin body that regulates chromosome segregation in mitosis. Within the three regulatory subunits of the CPC implicated in phase separation - a heterotrimer of INCENP, Survivin, and Borealin - we identify the contact regions formed upon droplet formation using hydrogen/deuterium-exchange mass spectrometry (HXMS). These contact regions correspond to some of the interfaces seen between individual heterotrimers within the crystal lattice they form. A major contribution comes from specific electrostatic interactions that can be broken and reversed through initial and compensatory mutagenesis, respectively. Our findings reveal structural insight for interactions driving liquid-liquid demixing of the CPC. Moreover, we establish HXMS as an approach to define the structural basis for phase separation.
Collapse
Affiliation(s)
- Nikaela W. Bryan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
- Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Aamir Ali
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22904
| | - Ewa Niedzialkowska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22904
| | - Leland Mayne
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
| | - P. Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22904
| | - Ben E. Black
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
- Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, 19104
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
103
|
Agarwal N, Azad AA, Carles J, Fay AP, Matsubara N, Heinrich D, Szczylik C, De Giorgi U, Young Joung J, Fong PCC, Voog E, Jones RJ, Shore ND, Dunshee C, Zschäbitz S, Oldenburg J, Lin X, Healy CG, Di Santo N, Zohren F, Fizazi K. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): a randomised, placebo-controlled, phase 3 trial. Lancet 2023; 402:291-303. [PMID: 37285865 DOI: 10.1016/s0140-6736(23)01055-3] [Citation(s) in RCA: 239] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Co-inhibition of poly(ADP-ribose) polymerase (PARP) and androgen receptor activity might result in antitumour efficacy irrespective of alterations in DNA damage repair genes involved in homologous recombination repair (HRR). We aimed to compare the efficacy and safety of talazoparib (a PARP inhibitor) plus enzalutamide (an androgen receptor blocker) versus enzalutamide alone in patients with metastatic castration-resistant prostate cancer (mCRPC). METHODS TALAPRO-2 is a randomised, double-blind, phase 3 trial of talazoparib plus enzalutamide versus placebo plus enzalutamide as first-line therapy in men (age ≥18 years [≥20 years in Japan]) with asymptomatic or mildly symptomatic mCRPC receiving ongoing androgen deprivation therapy. Patients were enrolled from 223 hospitals, cancer centres, and medical centres in 26 countries in North America, Europe, Israel, South America, South Africa, and the Asia-Pacific region. Patients were prospectively assessed for HRR gene alterations in tumour tissue and randomly assigned (1:1) to talazoparib 0·5 mg or placebo, plus enzalutamide 160 mg, administered orally once daily. Randomisation was stratified by HRR gene alteration status (deficient vs non-deficient or unknown) and previous treatment with life-prolonging therapy (docetaxel or abiraterone, or both: yes vs no) in the castration-sensitive setting. The sponsor, patients, and investigators were masked to talazoparib or placebo, while enzalutamide was open-label. The primary endpoint was radiographic progression-free survival (rPFS) by blinded independent central review, evaluated in the intention-to-treat population. Safety was evaluated in all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT03395197) and is ongoing. FINDINGS Between Jan 7, 2019, and Sept 17, 2020, 805 patients were enrolled and randomly assigned (402 to the talazoparib group and 403 to the placebo group). Median follow-up for rPFS was 24·9 months (IQR 21·9-30·2) for the talazoparib group and 24·6 months (14·4-30·2) for the placebo group. At the planned primary analysis, median rPFS was not reached (95% CI 27·5 months-not reached) for talazoparib plus enzalutamide and 21·9 months (16·6-25·1) for placebo plus enzalutamide (hazard ratio 0·63; 95% CI 0·51-0·78; p<0·0001). In the talazoparib group, the most common treatment-emergent adverse events were anaemia, neutropenia, and fatigue; the most common grade 3-4 event was anaemia (185 [46%] of 398 patients), which improved after dose reduction, and only 33 (8%) of 398 patients discontinued talazoparib due to anaemia. Treatment-related deaths occurred in no patients in the talazoparib group and two patients (<1%) in the placebo group. INTERPRETATION Talazoparib plus enzalutamide resulted in clinically meaningful and statistically significant improvement in rPFS versus standard of care enzalutamide as first-line treatment for patients with mCRPC. Final overall survival data and additional long-term safety follow-up will further clarify the clinical benefit of the treatment combination in patients with and without tumour HRR gene alterations. FUNDING Pfizer.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute (NCI-CCC), University of Utah, Salt Lake City, UT, USA.
| | - Arun A Azad
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Joan Carles
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Andre P Fay
- PUCRS School of Medicine, Porto Alegre, Brazil
| | | | | | - Cezary Szczylik
- Department of Oncology, European Health Center, Otwock, Poland; Postgraduate Medical Education Center, Warsaw, Poland
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | | | - Peter C C Fong
- Auckland City Hospital, Auckland, New Zealand; University of Auckland, Auckland, New Zealand
| | - Eric Voog
- Clinique Victor Hugo Centre Jean Bernard, Le Mans, France
| | - Robert J Jones
- School of Cancer Sciences, University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | | | - Stefanie Zschäbitz
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Oldenburg
- Akershus University Hospital (Ahus), Lørenskog, Norway
| | | | | | | | | | - Karim Fizazi
- Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France.
| |
Collapse
|
104
|
Rose AM, Goncalves T, Cunniffe S, Geiller HEB, Kent T, Shepherd S, Ratnaweera M, O’Sullivan R, Gibbons R, Clynes D. Induction of the alternative lengthening of telomeres pathway by trapping of proteins on DNA. Nucleic Acids Res 2023; 51:6509-6527. [PMID: 36940725 PMCID: PMC10359465 DOI: 10.1093/nar/gkad150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
Telomere maintenance is a hallmark of malignant cells and allows cancers to divide indefinitely. In some cancers, this is achieved through the alternative lengthening of telomeres (ALT) pathway. Whilst loss of ATRX is a near universal feature of ALT-cancers, it is insufficient in isolation. As such, other cellular events must be necessary - but the exact nature of the secondary events has remained elusive. Here, we report that trapping of proteins (such as TOP1, TOP2A and PARP1) on DNA leads to ALT induction in cells lacking ATRX. We demonstrate that protein-trapping chemotherapeutic agents, such as etoposide, camptothecin and talazoparib, induce ALT markers specifically in ATRX-null cells. Further, we show that treatment with G4-stabilising drugs cause an increase in trapped TOP2A levels which leads to ALT induction in ATRX-null cells. This process is MUS81-endonuclease and break-induced replication dependent, suggesting that protein trapping leads to replication fork stalling, with these forks being aberrantly processed in the absence of ATRX. Finally, we show ALT-positive cells harbour a higher load of genome-wide trapped proteins, such as TOP1, and knockdown of TOP1 reduced ALT activity. Taken together, these findings suggest that protein trapping is a fundamental driving force behind ALT-biology in ATRX-deficient malignancies.
Collapse
Affiliation(s)
- Anna M Rose
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Tomas Goncalves
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Siobhan Cunniffe
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Thomas Kent
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sam Shepherd
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Roderick J O’Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - David Clynes
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
105
|
Hoffman SLV, Mixdorf JC, Kwon O, Johnson TR, Makvandi M, Lee H, Aluicio-Sarduy E, Barnhart TE, Jeffery JJ, Patankar MS, Engle JW, Bednarz BP, Ellison PA. Preclinical studies of a PARP targeted, Meitner-Auger emitting, theranostic radiopharmaceutical for metastatic ovarian cancer. Nucl Med Biol 2023; 122-123:108368. [PMID: 37490805 PMCID: PMC10529069 DOI: 10.1016/j.nucmedbio.2023.108368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Advanced ovarian cancer currently has few therapeutic options. Poly(ADP-ribose) polymerase (PARP) inhibitors bind to nuclear PARP and trap the protein-inhibitor complex to DNA. This work investigates a theranostic PARP inhibitor for targeted radiopharmaceutical therapy of ovarian cancer in vitro and PET imaging of healthy mice in vivo. METHODS [77Br]RD1 was synthesized and assessed for pharmacokinetics and cytotoxicity in human and murine ovarian cancer cell lines. [76Br]RD1 biodistribution and organ uptake in healthy mice were quantified through longitudinal PET/CT imaging and ex vivo radioactivity measurements. Organ-level dosimetry following [76/77Br]RD1 administration was calculated using RAPID, an in-house platform for absorbed dose in mice, and OLINDA for equivalent and effective dose in human. RESULTS The maximum specific binding (Bmax), equilibrium dissociation constant (Kd), and nonspecific binding slope (NS) were calculated for each cell line. These values were used to calculate the cell specific activity uptake for cell viability studies. The half maximal effective concentration (EC50) was measured as 0.17 (95 % CI: 0.13-0.24) nM and 0.46 (0.13-0.24) nM for PARP(+) and PARP(-) expressing cell lines, respectively. The EC50 was 0.27 (0.21-0.36) nM and 0.30 (0.22-0.41) nM for BRCA1(-) and BRCA1(+) expressing cell lines, respectively. When measuring the EC50 as a function of cellular activity uptake and nuclear dose, the EC50 ranges from 0.020 to 0.039 Bq/cell and 3.3-9.2 Gy, respectively. Excretion through the hepatobiliary and renal pathways were observed in mice, with liver uptake of 2.3 ± 0.4 %ID/g after 48 h, contributing to estimated absorbed dose values in mice of 19.3 ± 0.3 mGy/MBq and 290 ± 10 mGy/MBq for [77Br]RD1 and [76Br]RD1, respectively. CONCLUSION [77Br]RD1 cytotoxicity was dependent on PARP expression and independent of BRCA1 status. The in vitro results suggest that [77Br]RD1 cytotoxicity is driven by the targeted Meitner-Auger electron (MAe) radiotherapeutic effect of the agent. Further studies investigating the theranostic potential, organ dose, and tumor uptake of [76/77Br]RD1 are warranted.
Collapse
Affiliation(s)
- S L V Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J C Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - O Kwon
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - T R Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - M Makvandi
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - H Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - T E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J J Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - M S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J W Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - B P Bednarz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - P A Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
106
|
Wang X, Liu W, Li K, Chen K, He S, Zhang J, Gu B, Xu X, Song S. PET imaging of PARP expression using 68Ga-labelled inhibitors. Eur J Nucl Med Mol Imaging 2023; 50:2606-2620. [PMID: 37145164 PMCID: PMC10317875 DOI: 10.1007/s00259-023-06249-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Imaging the PARP expression using 18F probes has been approved in clinical trials. Nevertheless, hepatobiliary clearance of both 18F probes hindered their application in monitoring abdominal lesions. Our novel 68Ga-labelled probes aim for fewer abdominal signals while ensuring PARP targeting by optimizing the pharmacokinetic properties of radioactive probes. METHODS Three radioactive probes targeted PARP were designed, synthesized, and evaluated based on the PARP inhibitor Olaparib. These 68Ga-labelled radiotracers were assessed in vitro and in vivo. RESULTS Precursors that did not lose binding affinity for PARP were designed, synthesized, and then labelled with 68Ga in high radiochemical purity (> 97%). The 68Ga-labelled radiotracers were stable. Due to the increased expression of PARP-1 in SK-OV-3 cells, the uptake of the three radiotracers by SK-OV-3 cells was significantly greater than that by A549 cells. PET/CT imaging of the SK-OV-3 models indicated that the tumor uptake of 68Ga-DOTA-Olaparib (0.5 h: 2.83 ± 0.55%ID/g; 1 h: 2.37 ± 0.64%ID/g) was significantly higher than that of the other 68Ga-labelled radiotracers. There was a significant difference in the T/M (tumor-to-muscle) ratios between the unblocked and blocked groups as calculated from the PET/CT images (4.07 ± 1.01 vs. 1.79 ± 0.45, P = 0.0238 < 0.05). Tumor autoradiography revealed high accumulation in tumor tissues, further confirming the above data. PARP-1 expression in the tumor was confirmed by immunochemistry. CONCLUSION As the first 68Ga-labelled PARP inhibitor, 68Ga-DOTA-Olaparib displayed high stability and quick PARP imaging in a tumor model. This compound is thus a promising imaging agent that can be used in a personalized PARP inhibitor treatment regimen.
Collapse
Affiliation(s)
- Xiangwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Wei Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Ke Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Kaiwen Chen
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| |
Collapse
|
107
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
108
|
Zhao ML, Stefanick DF, Nadalutti CA, Beard WA, Wilson SH, Horton JK. Temporal recruitment of base excision DNA repair factors in living cells in response to different micro-irradiation DNA damage protocols. DNA Repair (Amst) 2023; 126:103486. [PMID: 37028218 PMCID: PMC10133186 DOI: 10.1016/j.dnarep.2023.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Laser micro-irradiation across the nucleus rapidly generates localized chromatin-associated DNA lesions permitting analysis of repair protein recruitment in living cells. Recruitment of three fluorescently-tagged base excision repair factors [DNA polymerase β (pol β), XRCC1 and PARP1], known to interact with one another, was compared in gene-deleted mouse embryonic fibroblasts and in those expressing the endogenous factor. A low energy micro-irradiation (LEMI) forming direct single-strand breaks and a moderate energy (MEMI) protocol that additionally creates oxidized bases were compared. Quantitative characterization of repair factor recruitment and sensitivity to clinical PARP inhibitors (PARPi) was dependent on the micro-irradiation protocol. PARP1 recruitment was biphasic and generally occurred prior to pol β and XRCC1. After LEMI, but not after MEMI, pol β and XRCC1 recruitment was abolished by the PARPi veliparib. Consistent with this, pol β and XRCC1 recruitment following LEMI was considerably slower in PARP1-deficient cells. Surprisingly, the recruitment half-times and amplitudes for pol β were less affected by PARPi than were XRCC1 after MEMI suggesting there is a XRCC1-independent component for pol β recruitment. After LEMI, but not MEMI, pol β dissociation was more rapid than that of XRCC1. Unexpectedly, PARP1 dissociation was slowed in the absence of XRCC1 as well with a PARPi after LEMI but not MEMI, suggesting that XRCC1 facilitates PARP1 dissociation from specific DNA lesions. XRCC1-deficient cells showed pronounced hypersensitivity to the PARPi talazoparib correlating with its known cytotoxic PARP1 trapping activity. In contrast to DNA methylating agents, PARPi only minimally sensitized pol β and XRCC1-deficient cells to oxidative DNA damage suggesting differential binding of PARP1 to alternate repair intermediates. In summary, pol β, XRCC1, and PARP1 display recruitment kinetics that exhibit correlated and unique properties that depend on the DNA lesion and PARP activity revealing that there are multiple avenues utilized in the repair of chromatin-associated DNA.
Collapse
Affiliation(s)
- Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cristina A Nadalutti
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
109
|
Zhang J, Zhang J, Li H, Chen L, Yao D. Dual-target inhibitors of PARP1 in cancer therapy: a drug discovery perspective. Drug Discov Today 2023; 28:103607. [PMID: 37146962 DOI: 10.1016/j.drudis.2023.103607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1), a key enzyme in DNA repair, has emerged as a promising anticancer druggable target. An increasing number of PARP1 inhibitors have been discovered to treat cancer, most notably those characterized by BRCA1/2 mutations. Although PARP1 inhibitors have achieved great clinical success, their cytotoxicity, development of drug resistance, and restriction of indication have weakened their clinical therapeutic effects. To address these issues, dual PARP1 inhibitors have been documented as a promising strategy. Here, we review recent progress in the development of dual PARP1 inhibitors, summarize the different designs of dual-target inhibitors, and introduce their antitumor pharmacology, shedding light on the discovery of dual PARP1 inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Jiahui Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; These authors contributed equally to this work
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China; These authors contributed equally to this work
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
110
|
Zamalloa LG, Pruitt MM, Hermance NM, Gali H, Flynn RL, Manning AL. RB loss sensitizes cells to replication-associated DNA damage by PARP inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.532215. [PMID: 36993348 PMCID: PMC10055402 DOI: 10.1101/2023.03.25.532215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The retinoblastoma tumor suppressor protein (RB) interacts physically and functionally with a number of epigenetic modifying enzymes to control transcriptional regulation, respond to replication stress, promote DNA damage response and repair pathways, and regulate genome stability. To better understand how disruption of RB function impacts epigenetic regulation of genome stability and determine whether such changes may represent exploitable weaknesses of RB-deficient cancer cells, we performed an imaging-based screen to identify epigenetic inhibitors that promote DNA damage and compromise viability of RB-deficient cells. We found that loss of RB alone leads to high levels of replication-dependent poly-ADP ribosylation (PARylation) and that preventing PARylation through inhibition of PARP enzymes enables RB-deficient cells to progress to mitosis with unresolved replication stress and under-replicated DNA. These defects contribute to high levels of DNA damage, decreased proliferation, and compromised cell viability. We demonstrate this sensitivity is conserved across a panel of inhibitors that target both PARP1 and PARP2 and can be suppressed by re-expression of the RB protein. Together, these data indicate that inhibitors of PARP1 and PARP2 may be clinically relevant for RB-deficient cancers.
Collapse
|
111
|
Langelier MF, Lin X, Zha S, Pascal JM. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. SCIENCE ADVANCES 2023; 9:eadf7175. [PMID: 36961901 PMCID: PMC10038340 DOI: 10.1126/sciadv.adf7175] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
PARP1 and PARP2 detect DNA breaks, which activates their catalytic production of poly(ADP-ribose) that recruits repair factors and contributes to PARP1/2 release from DNA. PARP inhibitors (PARPi) are used in cancer treatment and target PARP1/2 catalytic activity, interfering with repair and increasing PARP1/2 persistence on DNA damage. In addition, certain PARPi exert allosteric effects that increase PARP1 retention on DNA. However, no clinical PARPi exhibit this allosteric behavior toward PARP1. In contrast, we show that certain clinical PARPi exhibit an allosteric effect that retains PARP2 on DNA breaks in a manner that depends on communication between the catalytic and DNA binding regions. Using a PARP2 mutant that mimics an allosteric inhibitor effect, we observed increased PARP2 retention at cellular damage sites. The PARPi AZD5305 also exhibited a clear reverse allosteric effect on PARP2. Our results can help explain the toxicity of clinical PARPi and suggest ways to improve PARPi moving forward.
Collapse
Affiliation(s)
- Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
112
|
Laspata N, Kaur P, Mersaoui S, Muoio D, Liu Z, Bannister MH, Nguyen H, Curry C, Pascal J, Poirier G, Wang H, Masson JY, Fouquerel E. PARP1 associates with R-loops to promote their resolution and genome stability. Nucleic Acids Res 2023; 51:2215-2237. [PMID: 36794853 PMCID: PMC10018367 DOI: 10.1093/nar/gkad066] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
PARP1 is a DNA-dependent ADP-Ribose transferase with ADP-ribosylation activity that is triggered by DNA breaks and non-B DNA structures to mediate their resolution. PARP1 was also recently identified as a component of the R-loop-associated protein-protein interaction network, suggesting a potential role for PARP1 in resolving this structure. R-loops are three-stranded nucleic acid structures that consist of a RNA-DNA hybrid and a displaced non-template DNA strand. R-loops are involved in crucial physiological processes but can also be a source of genome instability if persistently unresolved. In this study, we demonstrate that PARP1 binds R-loops in vitro and associates with R-loop formation sites in cells which activates its ADP-ribosylation activity. Conversely, PARP1 inhibition or genetic depletion causes an accumulation of unresolved R-loops which promotes genomic instability. Our study reveals that PARP1 is a novel sensor for R-loops and highlights that PARP1 is a suppressor of R-loop-associated genomic instability.
Collapse
Affiliation(s)
- Natalie Laspata
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15213, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Parminder Kaur
- Physics Department, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, Raleigh, NC 27695, USA
| | - Sofiane Yacine Mersaoui
- CHU de Québec Research Centre, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, McMahon, Québec City, Québec G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
| | - Daniela Muoio
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15213, USA
| | - Zhiyan Silvia Liu
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maxwell Henry Bannister
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hai Dang Nguyen
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caroline Curry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
- CHU de Québec Research Centre, CHUL Pavilion, Oncology Division, Quebec, Canada
| | - Hong Wang
- Physics Department, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Jean-Yves Masson
- CHU de Québec Research Centre, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, McMahon, Québec City, Québec G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15213, USA
| |
Collapse
|
113
|
Veneziani AC, Scott C, Wakefield MJ, Tinker AV, Lheureux S. Fighting resistance: post-PARP inhibitor treatment strategies in ovarian cancer. Ther Adv Med Oncol 2023; 15:17588359231157644. [PMID: 36872947 PMCID: PMC9983116 DOI: 10.1177/17588359231157644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a therapeutic milestone in the management of epithelial ovarian cancer. The concept of 'synthetic lethality' is exploited by PARPi in tumors with defects in DNA repair pathways, particularly homologous recombination deficiency. The use of PARPis has been increasing since its approval as maintenance therapy, particularly in the first-line setting. Therefore, resistance to PARPi is an emerging issue in clinical practice. It brings an urgent need to elucidate and identify the mechanisms of PARPi resistance. Ongoing studies address this challenge and investigate potential therapeutic strategies to prevent, overcome, or re-sensitize tumor cells to PARPi. This review aims to summarize the mechanisms of resistance to PARPi, discuss emerging strategies to treat patients post-PARPi progression, and discuss potential biomarkers of resistance.
Collapse
Affiliation(s)
- Ana C. Veneziani
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical
Research, Parkville, VIC, Australia
- Department of Medical Biology, University of
Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC,
Australia
- Sir Peter MacCallum Department of Oncology,
Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | - Stephanie Lheureux
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5B 2M9,
Canada
| |
Collapse
|
114
|
Onclercq-Delic R, Buhagiar-Labarchède G, Leboucher S, Larcher T, Ledevin M, Machon C, Guitton J, Amor-Guéret M. Cytidine deaminase deficiency in mice enhances genetic instability but limits the number of chemically induced colon tumors. Cancer Lett 2023; 555:216030. [PMID: 36496104 DOI: 10.1016/j.canlet.2022.216030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Cytidine deaminase (CDA) catalyzes the deamination of cytidine (C) and deoxycytidine (dC) to uridine and deoxyuridine, respectively. We recently showed that CDA deficiency leads to genomic instability, a hallmark of cancers. We therefore investigated whether constitutive CDA inactivation conferred a predisposition to cancer development. We developed a novel mouse model of Cda deficiency by generating Cda-knockout mice. Cda+/+ and Cda-/- mice did not differ in lifetime phenotypic or behavioral characteristics, or in the frequency or type of spontaneous cancers. However, the frequency of chemically induced tumors in the colon was significantly lower in Cda-/- mice. An analysis of primary kidney cells from Cda-/- mice revealed an excess of C and dC associated with significantly higher frequencies of sister chromatid exchange and ultrafine anaphase bridges and lower Parp-1 activity than in Cda+/+ cells. Our results suggest that, despite inducing genetic instability, an absence of Cda limits the number of chemically induced tumors. These results raise questions about whether a decrease in basal Parp-1 activity can protect against inflammation-driven tumorigenesis; we discuss our findings in light of published data for the Parp-1-deficient mouse model.
Collapse
Affiliation(s)
- Rosine Onclercq-Delic
- Institut Curie, PSL Research University, UMR 3348, 91405, Orsay, France; CNRS UMR 3348, Centre Universitaire, 91405, Orsay, France; Université Paris-Saclay, Centre Universitaire, UMR 3348, 91405, Orsay, France
| | - Géraldine Buhagiar-Labarchède
- Institut Curie, PSL Research University, UMR 3348, 91405, Orsay, France; CNRS UMR 3348, Centre Universitaire, 91405, Orsay, France; Université Paris-Saclay, Centre Universitaire, UMR 3348, 91405, Orsay, France
| | - Sophie Leboucher
- Institut Curie, PSL Research University, UMR 3348, 91405, Orsay, France; CNRS UMR 3348, Centre Universitaire, 91405, Orsay, France; Université Paris-Saclay, Centre Universitaire, UMR 3348, 91405, Orsay, France
| | | | | | - Christelle Machon
- Laboratoire de Biochimie et Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Laboratoire de Chimie Analytique, ISPB, Faculté de Pharmacie, Université Lyon 1, Université de Lyon, Lyon, France
| | - Jérôme Guitton
- Laboratoire de Biochimie et Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Laboratoire de Toxicologie, ISPB, Faculté de Pharmacie, Université Lyon 1, Université de Lyon, Lyon, France
| | - Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, 91405, Orsay, France; CNRS UMR 3348, Centre Universitaire, 91405, Orsay, France; Université Paris-Saclay, Centre Universitaire, UMR 3348, 91405, Orsay, France.
| |
Collapse
|
115
|
Nguyen TP, Fang M, Kim J, Wang B, Lin E, Khivansara V, Barrows N, Rivera-Cancel G, Goralski M, Cervantes CL, Xie S, Peterson JM, Povedano JM, Antczak MI, Posner BA, McFadden DG, Ready JM, De Brabander JK, Nijhawan D. Inducible mismatch repair streamlines forward genetic approaches to target identification of cytotoxic small molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529401. [PMID: 36865268 PMCID: PMC9980046 DOI: 10.1101/2023.02.21.529401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Orphan cytotoxins are small molecules for which the mechanism of action (MoA) is either unknown or ambiguous. Unveiling the mechanism of these compounds may lead to useful tools for biological investigation and in some cases, new therapeutic leads. In select cases, the DNA mismatch repair-deficient colorectal cancer cell line, HCT116, has been used as a tool in forward genetic screens to identify compound-resistant mutations, which have ultimately led to target identification. To expand the utility of this approach, we engineered cancer cell lines with inducible mismatch repair deficits, thus providing temporal control over mutagenesis. By screening for compound resistance phenotypes in cells with low or high rates of mutagenesis, we increased both the specificity and sensitivity of identifying resistance mutations. Using this inducible mutagenesis system, we implicate targets for multiple orphan cytotoxins, including a natural product and compounds emerging from a high-throughput screen, thus providing a robust tool for future MoA studies.
Collapse
|
116
|
Radiotherapy, PARP Inhibition, and Immune-Checkpoint Blockade: A Triad to Overcome the Double-Edged Effects of Each Single Player. Cancers (Basel) 2023; 15:cancers15041093. [PMID: 36831435 PMCID: PMC9954050 DOI: 10.3390/cancers15041093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Radiotherapy and, more recently, PARP inhibitors (PARPis) and immune-checkpoint inhibitors represent effective tools in cancer therapy. Radiotherapy exerts its effects not only by damaging DNA and inducing tumor cell death, but also stimulating anti-tumor immune responses. PARPis are known to exert their therapeutic effects by inhibiting DNA repair, and they may be used in combination with radiotherapy. Both radiotherapy and PARPis modulate inflammatory signals and stimulate type I IFN (IFN-I)-dependent immune activation. However, they can also support the development of an immunosuppressive tumor environment and upregulate PD-L1 expression on tumor cells. When provided as monotherapy, immune-checkpoint inhibitors (mainly antibodies to CTLA-4 and the PD-1/PD-L1 axis) result particularly effective only in immunogenic tumors. Combinations of immunotherapy with therapies that favor priming of the immune response to tumor-associated antigens are, therefore, suitable strategies. The widely explored association of radiotherapy and immunotherapy has confirmed this benefit for several cancers. Association with PARPis has also been investigated in clinical trials. Immunotherapy counteracts the immunosuppressive effects of radiotherapy and/or PARPis and synergies with their immunological effects, promoting and unleashing immune responses toward primary and metastatic lesions (abscopal effect). Here, we discuss the beneficial and counterproductive effects of each therapy and how they can synergize to overcome single-therapy limitations.
Collapse
|
117
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 368] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
118
|
Zheng J, Li Z, Min W. Current status and future promise of next-generation poly (ADP-Ribose) polymerase 1-selective inhibitor AZD5305. Front Pharmacol 2023; 13:979873. [PMID: 36756144 PMCID: PMC9899804 DOI: 10.3389/fphar.2022.979873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023] Open
Abstract
The family of poly (ADP-ribose) polymerases (PARPs) consists of 17 members, which have been demonstrated as having effects on a series of cellular processes, including DNA replication and repair. PARP inhibitors (PARPi) suppress DNA repair through "PARP trapping", thus, constitute an important treatment option for cancer nowadays. In addition, PARP inhibition and homologous recombination repair (HRR) defects are synthetically lethal, giving a promising therapeutic for homologous recombination repair deficient (HRD) tumors including BRCA mutation. However, overlapping hematologic toxicity causes PARPi to fail in combination with some first-line chemotherapies. Furthermore, recent literature has demonstrated that PARP1 inhibition and PARP1-DNA trapping are key for antitumor activity in HRD cancer models. Currently approved PARPi have shown varying levels of selectivity for the entire 17-member PARP family, hence contribute to toxicity. Together, these findings above have provided the necessity and feasibility of developing next-generation PARPi with improved selectivity for PARP1, expanding significant clinical values and wide application prospects both in monotherapy and combination with other anticancer agents. In this review, we summery the latest research of current approved PARPi, discuss the current status and future promise of next-generation PARP1-selective inhibitor AZD5305, including its reported progress up to now and anticipated impact on clinical.
Collapse
Affiliation(s)
- Jingcao Zheng
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China,*Correspondence: Zhengyu Li, ; Wenjiao Min,
| | - Wenjiao Min
- Psychosomatic Department, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China,*Correspondence: Zhengyu Li, ; Wenjiao Min,
| |
Collapse
|
119
|
El Hage K, Babault N, Maciejak O, Desforges B, Craveur P, Steiner E, Rengifo-Gonzalez JC, Henrie H, Clement MJ, Joshi V, Bouhss A, Wang L, Bauvais C, Pastré D. Targeting RNA:protein interactions with an integrative approach leads to the identification of potent YBX1 inhibitors. eLife 2023; 12:e80387. [PMID: 36651723 PMCID: PMC9928419 DOI: 10.7554/elife.80387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
RNA-protein interactions (RPIs) are promising targets for developing new molecules of therapeutic interest. Nevertheless, challenges arise from the lack of methods and feedback between computational and experimental techniques during the drug discovery process. Here, we tackle these challenges by developing a drug screening approach that integrates chemical, structural and cellular data from both advanced computational techniques and a method to score RPIs in cells for the development of small RPI inhibitors; and we demonstrate its robustness by targeting Y-box binding protein 1 (YB-1), a messenger RNA-binding protein involved in cancer progression and resistance to chemotherapy. This approach led to the identification of 22 hits validated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) spectroscopy of which 11 were found to significantly interfere with the binding of messenger RNA (mRNA) to YB-1 in cells. One of our leads is an FDA-approved poly(ADP-ribose) polymerase 1 (PARP-1) inhibitor. This work shows the potential of our integrative approach and paves the way for the rational development of RPI inhibitors.
Collapse
Affiliation(s)
- Krystel El Hage
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | | | - Olek Maciejak
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Bénédicte Desforges
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | | | - Emilie Steiner
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Juan Carlos Rengifo-Gonzalez
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Hélène Henrie
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Marie-Jeanne Clement
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Vandana Joshi
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Liya Wang
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | | | - David Pastré
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| |
Collapse
|
120
|
Castedo M, Lafarge A, Kroemer G. Poly(ADP-ribose) polymerase-1 and its ambiguous role in cellular life and death. Cell Stress 2023; 7:1-6. [PMID: 36743979 PMCID: PMC9877585 DOI: 10.15698/cst2023.01.275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
The deletion of the gene coding for poly(ADP-ribose) polymerase-1 (PARP1) or its pharmacological inhibition protects mice against cerebral ischemia and Parkinson's disease. In sharp contrast, PARP1 inhibitors are in clinical use for the eradication of vulnerable cancer cells. It appears that excessive PARP1 activation is involved in a specific cell death pathway called parthanatos, while inhibition of PARP1 in cancer cells amplifies DNA damage to a lethal level. Hence, PARP1 plays a context-dependent role in cell fate decisions. In addition, it appears that PARP1 plays an ambiguous role in organismal aging.
Collapse
Affiliation(s)
- Maria Castedo
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France.
,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
,* Corresponding Author: Maria Castedo, Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Tel: +33 1 44 27 76 61; Fax: +33 1 44 27 76 74; E-mail:
| | - Antoine Lafarge
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France.
,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
,Faculté de médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France.
,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
,* Corresponding Author: Guido Kroemer, Equipe 11 labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Tel: +33 1 44 27 76 67; Fax: +33 1 44 27 76 74; E-mail:
| |
Collapse
|
121
|
Tang B, Wu M, Zhang L, Jian S, Lv S, Lin T, Zhu S, Liu L, Wang Y, Yi Z, Jiang F. Combined treatment of disulfiram with PARP inhibitors suppresses ovarian cancer. Front Oncol 2023; 13:1154073. [PMID: 37143950 PMCID: PMC10151711 DOI: 10.3389/fonc.2023.1154073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Due to the difficulty of early diagnosis, nearly 70% of ovarian cancer patients are first diagnosed at an advanced stage. Thus, improving current treatment strategies is of great significance for ovarian cancer patients. Fast-developing poly (ADP-ribose) polymerases inhibitors (PARPis) have been beneficial in the treatment of ovarian cancer at different stages of the disease, but PARPis have serious side effects and can result in drug resistance. Using PARPis in combination with other drug therapies could improve the efficacy of PRAPis.In this study, we identified Disulfiram as a potential therapeutic candidate through drug screening and tested its use in combination with PARPis. Methods Cytotoxicity tests and colony formation experiments showed that the combination of Disulfiram and PARPis decreased the viability of ovarian cancer cells. Results The combination of PARPis with Disulfiram also significantly increased the expression of DNA damage index gH2AX and induced more PARP cleavage. In addition, Disulfiram inhibited the expression of genes associated with the DNA damage repair pathway, indicating that Disulfiram functions through the DNA repair pathway. Discussion Based on these findings, we propose that Disulfiram reinforces PARPis activity in ovarian cancer cells by improving drug sensitivity. The combined use of Disulfiram and PARPis provides a novel treatment strategy for patients with ovarian cancer.
Collapse
Affiliation(s)
- Bin Tang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People’s Hospital of Wuhu City), Wuhu, China
| | - Min Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuyi Jian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shiyi Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tongyuan Lin
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People’s Hospital of Wuhu City), Wuhu, China
| | - Shuangshuang Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Layang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yixue Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Feiyun Jiang, ; Zhengfang Yi,
| | - Feiyun Jiang
- Department of Gynecology, East China Normal University Wuhu Affiliated Hospital (The Second People’s Hospital of Wuhu City), Wuhu, China
- *Correspondence: Feiyun Jiang, ; Zhengfang Yi,
| |
Collapse
|
122
|
Arnold MR, Langelier MF, Gartrell J, Kirby IT, Sanderson DJ, Bejan DS, Šileikytė J, Sundalam SK, Nagarajan S, Marimuthu P, Duell AK, Shelat AA, Pascal JM, Cohen MS. Allosteric regulation of DNA binding and target residence time drive the cytotoxicity of phthalazinone-based PARP-1 inhibitors. Cell Chem Biol 2022; 29:1694-1708.e10. [PMID: 36493759 DOI: 10.1016/j.chembiol.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
Allosteric coupling between the DNA binding site to the NAD+-binding pocket drives PARP-1 activation. This allosteric communication occurs in the reverse direction such that NAD+ mimetics can enhance PARP-1's affinity for DNA, referred to as type I inhibition. The cellular effects of type I inhibition are unknown, largely because of the lack of potent, membrane-permeable type I inhibitors. Here we identify the phthalazinone inhibitor AZ0108 as a type I inhibitor. Unlike the structurally related inhibitor olaparib, AZ0108 induces replication stress in tumorigenic cells. Synthesis of analogs of AZ0108 revealed features of AZ0108 that are required for type I inhibition. One analog, Pip6, showed similar type I inhibition of PARP-1 but was ∼90-fold more cytotoxic than AZ0108. Washout experiments suggest that the enhanced cytotoxicity of Pip6 compared with AZ0108 is due to prolonged target residence time on PARP-1. Pip6 represents a new class of PARP-1 inhibitors that may have unique anticancer properties.
Collapse
Affiliation(s)
- Moriah R Arnold
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jessica Gartrell
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ilsa T Kirby
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Daniel J Sanderson
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Daniel S Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Justina Šileikytė
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Sunil K Sundalam
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Shanthi Nagarajan
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, OR 97210, USA
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory, Åbo Akademi University, Faculty of Science and Engineering, 20520 Turku, Finland
| | - Anna K Duell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97210, USA.
| |
Collapse
|
123
|
Mahadevan J, Jha A, Rudolph J, Bowerman S, Narducci D, Hansen AS, Luger K. Dynamics of endogenous PARP1 and PARP2 during DNA damage revealed by live-cell single-molecule imaging. iScience 2022; 26:105779. [PMID: 36594010 PMCID: PMC9804145 DOI: 10.1016/j.isci.2022.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/16/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
PARP1 contributes to genome architecture and DNA damage repair through its dynamic association with chromatin. PARP1 and PARP2 (PARP1/2) recognize damaged DNA and recruit the DNA repair machinery. Using single-molecule microscopy in live cells, we monitored the movement of PARP1/2 on undamaged and damaged chromatin. We identify two classes of freely diffusing PARP1/2 and two classes of bound PARP1/2. The majority (>60%) of PARP1/2 diffuse freely in both undamaged and damaged nuclei and in the presence of inhibitors of PARP1/2 used for cancer therapy (PARPi). Laser-induced DNA damage results in a small fraction of slowly diffusing PARP1 and PARP2 to become transiently bound. Treatment of cells with PARPi in the presence of DNA damage causes subtle changes in the dynamics of bound PARP1/2, but not the high levels of PARP1/2 trapping seen previously. Our results imply that next-generation PARPi could specifically target the small fraction of DNA-bound PARP1/2.
Collapse
Affiliation(s)
- Jyothi Mahadevan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Asmita Jha
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Domenic Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA,Corresponding author
| |
Collapse
|
124
|
Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 2022; 9:1073797. [PMID: 36533080 PMCID: PMC9751342 DOI: 10.3389/fmolb.2022.1073797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.
Collapse
Affiliation(s)
- Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Gawalski
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
125
|
Sefer A, Kallis E, Eilert T, Röcker C, Kolesnikova O, Neuhaus D, Eustermann S, Michaelis J. Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level. Nat Commun 2022; 13:6569. [PMID: 36323657 PMCID: PMC9630430 DOI: 10.1038/s41467-022-34148-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Single-stranded breaks (SSBs) are the most frequent DNA lesions threatening genomic integrity. A highly kinked DNA structure in complex with human PARP-1 domains led to the proposal that SSB sensing in Eukaryotes relies on dynamics of both the broken DNA double helix and PARP-1's multi-domain organization. Here, we directly probe this process at the single-molecule level. Quantitative smFRET and structural ensemble calculations reveal how PARP-1's N-terminal zinc fingers convert DNA SSBs from a largely unperturbed conformation, via an intermediate state into the highly kinked DNA conformation. Our data suggest an induced fit mechanism via a multi-domain assembly cascade that drives SSB sensing and stimulates an interplay with the scaffold protein XRCC1 orchestrating subsequent DNA repair events. Interestingly, a clinically used PARP-1 inhibitor Niraparib shifts the equilibrium towards the unkinked DNA conformation, whereas the inhibitor EB47 stabilizes the kinked state.
Collapse
Affiliation(s)
- Anna Sefer
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Eleni Kallis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tobias Eilert
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Boehringer Ingelheim, CoC CMC Statistics & Data Science, Birkendorfer Str. 65, 88400, Biberach, Germany
| | - Carlheinz Röcker
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Olga Kolesnikova
- European Molecular Biology Laboratory (EMBL), Heidelberg Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Sebastian Eustermann
- European Molecular Biology Laboratory (EMBL), Heidelberg Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
126
|
Gueble SE, Vasquez JC, Bindra RS. The Role of PARP Inhibitors in Patients with Primary Malignant Central Nervous System Tumors. Curr Treat Options Oncol 2022; 23:1566-1589. [PMID: 36242713 DOI: 10.1007/s11864-022-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Primary malignant central nervous (CNS) tumors are a devastating group of diseases with urgent need for improved treatment options. Surgery, radiation, and cytotoxic chemotherapy remain the primary standard treatment modalities, with molecularly targeted therapies having proven efficacy in only small subsets of cases. Poly(ADP-ribose) polymerase (PARP) inhibitors, which have had immense success in the treatment of extracranial cancers with homologous recombination deficiency (HRD), are emerging as a potential targeted treatment for various CNS tumors. Although few primary CNS tumors display canonical BRCA gene defects, preclinical evidence suggests that PARP inhibitors may benefit certain CNS tumors with functional HRD or elevated replication stress. In addition, other preclinical studies indicate that PARP inhibitors may synergize with standard therapies used for CNS tumors including radiation and alkylating agents and may prevent or overcome drug resistance. Thus far, initial clinical trials with early-generation PARP inhibitors, typically as monotherapy or in the absence of selective biomarkers, have shown limited efficacy. However, the scientific rationale remains promising, and many clinical trials are ongoing, including investigations of more CNS penetrant or more potent inhibitors and of combination therapy with immune checkpoint inhibitors. Early phase trials are also critically focusing on determining active drug CNS penetration and identifying biomarkers of therapy response. In this review, we will discuss the preclinical evidence supporting use of PARP inhibitors in primary CNS tumors and clinical trial results to date, highlighting ongoing trials and future directions in the field that may yield important findings and potentially impact the treatment of these devastating malignancies in the coming years.
Collapse
Affiliation(s)
- Susan E Gueble
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, HRT 134, New Haven, CT, 06520-8040, USA
| | - Juan C Vasquez
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, HRT 134, New Haven, CT, 06520-8040, USA. .,Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
127
|
Coelho R, Tozzi A, Disler M, Lombardo F, Fedier A, López MN, Freuler F, Jacob F, Heinzelmann-Schwarz V. Overlapping gene dependencies for PARP inhibitors and carboplatin response identified by functional CRISPR-Cas9 screening in ovarian cancer. Cell Death Dis 2022; 13:909. [PMID: 36307400 PMCID: PMC9616819 DOI: 10.1038/s41419-022-05347-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
Abstract
PARP inhibitors (PARPi) have revolutionized the therapeutic landscape of epithelial ovarian cancer (EOC) treatment with outstanding benefits in regard to progression-free survival, especially in patients either carrying BRCA1/2 mutations or harboring defects in the homologous recombination repair system. Yet, it remains uncertain which PARPi to apply and how to predict responders when platinum sensitivity is unknown. To shed light on the predictive power of genes previously suggested to be associated with PARPi response, we systematically reviewed the literature and identified 79 publications investigating a total of 93 genes. The top candidate genes were further tested using a comprehensive CRISPR-Cas9 mutagenesis screening in combination with olaparib treatment. Therefore, we generated six constitutive Cas9+ EOC cell lines and profiled 33 genes in a CRISPR-Cas9 cell competition assay using non-essential (AAVS1) and essential (RPA3 and PCNA) genes for cell fitness as negative and positive controls, respectively. We identified only ATM, MUS81, NBN, BRCA2, and RAD51B as predictive markers for olaparib response. As the major survival benefit of PARPi treatment was reported in platinum-sensitive tumors, we next assessed nine top candidate genes in combination with three PARPi and carboplatin. Interestingly, we observed similar dropout rates in a gene and compound independent manner, supporting the strong correlation of cancer cell response to compounds that rely on DNA repair for their effectiveness. In addition, we report on CDK12 as a common vulnerability for EOC cell survival and proliferation without altering the olaparib response, highlighting its potential as a therapeutic target in EOC.
Collapse
Affiliation(s)
- Ricardo Coelho
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandra Tozzi
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland ,grid.410567.1Hospital for Women, University Hospital Basel, Basel, Switzerland
| | - Muriel Disler
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Flavio Lombardo
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mónica Núñez López
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Florian Freuler
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francis Jacob
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland ,grid.410567.1Hospital for Women, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
128
|
Shi D, Pang Q, Qin Q, Yao X, Yao X, Yu Y. Discovery of novel anti-tumor compounds targeting PARP-1 with induction of autophagy through in silico and in vitro screening. Front Pharmacol 2022; 13:1026306. [PMID: 36353483 PMCID: PMC9638114 DOI: 10.3389/fphar.2022.1026306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP-1) is a critical enzyme involved in DNA damage repair and recombination, and shows great potential for drug development in the treatment of cancers with defective DNA repair. The anti-tumor activities of PARP-1 inhibitors are regulated by both inhibition activities and allosteric mechanisms of PARP-1, and may also be involved in an autophagy-mediated process. Screening PARP-1 inhibitors with potential allosteric mechanisms and induced autophagy process could achieve elevated potency toward cancer cell killing. In this study, we tried to discover novel anti-tumor compounds targeting PARP-1 by computer simulations and in vitro screening. In order to filter PARP-1 inhibitors that could affect the folding state of the helix domain (HD) on PARP-1, the free energy contribution of key residues on HD were systematically analyzed using the ligand-binding crystal structures and integrated into in silico screening workflow for the selection of 20 pick-up compounds. Four compounds (Chemdiv codes: 8012-0567, 8018-6529, 8018-7168, 8018-7603) were proved with above 40% inhibitory ratio targeting PARP-1 under 20 μM, and further performed binding mode prediction and dynamic effect evaluation by molecular dynamics simulation. Further in vitro assays showed that compounds 8018-6529 and 8018-7168 could inhibit the growth of the human colorectal cancer cell (HCT-116) with IC50 values of 4.30 and 9.29 μM and were accompanied with an induced autophagy process. Taken together, we discover two novel anti-tumor compounds that target PARP-1 with an induced autophagy process and provide potential hit compounds for the anti-cancer drug development.
Collapse
Affiliation(s)
- Danfeng Shi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Yang Yu, ; Danfeng Shi,
| | - Qianqian Pang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qianyu Qin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xinsheng Yao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yang Yu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Yang Yu, ; Danfeng Shi,
| |
Collapse
|
129
|
Maluchenko N, Koshkina D, Korovina A, Studitsky V, Feofanov A. Interactions of PARP1 Inhibitors with PARP1-Nucleosome Complexes. Cells 2022; 11:cells11213343. [PMID: 36359739 PMCID: PMC9658683 DOI: 10.3390/cells11213343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
Inhibitors (PARPi) of poly(ADP-ribose-)polymerase-1 (PARP1) are used in antitumor therapy; their cytotoxicity correlates with the efficiency of PARP1 trapping in cell chromatin. Previous studies have demonstrated the PARPi-induced trapping of PARP1 on DNA, although details of the mechanism remain controversial. Here, the interactions of PARP1-nucleosome complexes with PARPi, olaparib (Ola), talazoparib (Tala), and veliparib (Veli) were studied. PARPi trap PARP1 on nucleosomes without affecting the structure of PARP1-nucleosome complexes. The efficiency of PARP1 trapping on nucleosomes increases in the order of Tala>Ola>>Veli, recapitulating the relative trapping efficiencies of PARPi in cells, but different from the relative potency of PARPi to inhibit the catalytic activity of PARP1. The efficiency of PARP1 trapping on nucleosomes correlates with the level of inhibition of auto-PARylation, which otherwise promotes the dissociation of PARP1-nucleosome complexes. The trapping efficiencies of Tala and Ola (but not Veli) are additionally modulated by the enhanced PARP1 binding to nucleosomes. The dissociation of PARP1-nucleosome complexes occurs without a loss of histones and leads to the restoration of the intact structure of nucleosomal DNA. The data suggest that the chromatin structure can considerably affect the efficiency of the PARPi action.
Collapse
Affiliation(s)
- Natalya Maluchenko
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: (N.M.); (A.F.)
| | - Darya Koshkina
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
- Institute of Gene Biology RAS, 34/5 Vavilov Str., 119334 Moscow, Russia
| | - Anna Korovina
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexey Feofanov
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
- Institute of Gene Biology RAS, 34/5 Vavilov Str., 119334 Moscow, Russia
- Correspondence: (N.M.); (A.F.)
| |
Collapse
|
130
|
Li S, Wang L, Wang Y, Zhang C, Hong Z, Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J Hematol Oncol 2022; 15:147. [PMID: 36253861 PMCID: PMC9578258 DOI: 10.1186/s13045-022-01360-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through “synthetic lethality” mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Collapse
Affiliation(s)
- Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
131
|
Kloeber JA, Lou Z. Critical DNA damaging pathways in tumorigenesis. Semin Cancer Biol 2022; 85:164-184. [PMID: 33905873 PMCID: PMC8542061 DOI: 10.1016/j.semcancer.2021.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
The acquisition of DNA damage is an early driving event in tumorigenesis. Premalignant lesions show activated DNA damage responses and inactivation of DNA damage checkpoints promotes malignant transformation. However, DNA damage is also a targetable vulnerability in cancer cells. This requires a detailed understanding of the cellular and molecular mechanisms governing DNA integrity. Here, we review current work on DNA damage in tumorigenesis. We discuss DNA double strand break repair, how repair pathways contribute to tumorigenesis, and how double strand breaks are linked to the tumor microenvironment. Next, we discuss the role of oncogenes in promoting DNA damage through replication stress. Finally, we discuss our current understanding on DNA damage in micronuclei and discuss therapies targeting these DNA damage pathways.
Collapse
Affiliation(s)
- Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
132
|
Mehra N, Fizazi K, de Bono JS, Barthélémy P, Dorff T, Stirling A, Machiels JP, Bimbatti D, Kilari D, Dumez H, Buttigliero C, van Oort IM, Castro E, Chen HC, Di Santo N, DeAnnuntis L, Healy CG, Scagliotti GV. Talazoparib, a Poly(ADP-ribose) Polymerase Inhibitor, for Metastatic Castration-resistant Prostate Cancer and DNA Damage Response Alterations: TALAPRO-1 Safety Analyses. Oncologist 2022; 27:e783-e795. [PMID: 36124924 PMCID: PMC9526483 DOI: 10.1093/oncolo/oyac172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The phase II TALAPRO-1 study (NCT03148795) demonstrated durable antitumor activity in men with heavily pretreated metastatic castration-resistant prostate cancer (mCRPC). Here, we detail the safety profile of talazoparib. PATIENTS AND METHODS Men received talazoparib 1 mg/day (moderate renal impairment 0.75 mg/day) orally until radiographic progression, unacceptable toxicity, investigator decision, consent withdrawal, or death. Adverse events (AEs) were evaluated: incidence, severity, timing, duration, potential overlap of selected AEs, dose modifications/discontinuations due to AEs, and new clinically significant changes in laboratory values and vital signs. RESULTS In the safety population (N = 127; median age 69.0 years), 95.3% (121/127) experienced all-cause treatment-emergent adverse events (TEAEs). Most common were anemia (48.8% [62/127]), nausea (33.1% [42/127]), decreased appetite (28.3% [36/127]), and asthenia (23.6% [30/127]). Nonhematologic TEAEs were generally grades 1 and 2. No grade 5 TEAEs or deaths were treatment-related. Hematologic TEAEs typically occurred during the first 4-5 months of treatment. The median duration of grade 3-4 anemia, neutropenia, and thrombocytopenia was limited to 7-12 days. No grade 4 events of anemia or neutropenia occurred. Neither BRCA status nor alteration origin significantly impacted the safety profile. The median (range) treatment duration was 6.1 (0.4-24.9) months; treatment duration did not impact the incidence of anemia. Only 3 of the 15 (11.8% [15/127]) permanent treatment discontinuations were due to hematologic TEAEs (thrombocytopenia 1.6% [2/127]; leukopenia 0.8% [1/127]). CONCLUSION Common TEAEs associated with talazoparib could be managed through dose modifications/supportive care. Demonstrated efficacy and a manageable safety profile support continued evaluation of talazoparib in mCRPC. CLINICALTRIALS.GOV IDENTIFIER NCT03148795.
Collapse
Affiliation(s)
- Niven Mehra
- Corresponding author: Niven Mehra, MD, Department of Medical Oncology, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen (HP452), Geert Grooteplein Zuid 8 (route 452), The Netherlands. Tel: +31 24 3610354; Fax: +31 24 3615025;
| | - Karim Fizazi
- Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France
| | - Johann S de Bono
- The Institute of Cancer Research and The Royal Marsden Hospital, London, UK
| | - Philippe Barthélémy
- Medical Oncology, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Tanya Dorff
- Medical Oncology & Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Jean-Pascal Machiels
- Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Medical Oncology, Université catholique de Louvain (UCLouvain), Belgium
| | - Davide Bimbatti
- Medical Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Deepak Kilari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Herlinde Dumez
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, and Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Castro
- Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | | | | | | | | | - Giorgio V Scagliotti
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| |
Collapse
|
133
|
Ivasechko I, Yushyn I, Roszczenko P, Senkiv J, Finiuk N, Lesyk D, Holota S, Czarnomysy R, Klyuchivska O, Khyluk D, Kashchak N, Gzella A, Bielawski K, Bielawska A, Stoika R, Lesyk R. Development of Novel Pyridine-Thiazole Hybrid Molecules as Potential Anticancer Agents. Molecules 2022; 27:molecules27196219. [PMID: 36234755 PMCID: PMC9570594 DOI: 10.3390/molecules27196219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Novel pyridine-thiazole hybrid molecules were synthesized and subjected to physico-chemical characterization and screening of their cytotoxic action towards a panel of cell lines derived from different types of tumors (carcinomas of colon, breast, and lung, glioblastoma and leukemia), and normal human keratinocytes, for comparison. High antiproliferative activity of the 3-(2-fluorophenyl)-1-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-propenone 3 and 4-(2-{1-(2-fluorophenyl)-3-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-3-oxopropylsulfanyl}-acetylamino)-benzoic acid ethyl ester 4 was revealed. The IC50 of the compound 3 in HL-60 cells of the acute human promyelocytic leukemia was 0.57 µM, while in the pseudo-normal human cell lines, the IC50 of this compound was >50 µM, which suggests that the compounds 3 and 4 might be perspective anticancer agents. The detected selectivity of the derivatives 3 and 4 for cancer cell lines inspired us to study the mechanisms of their cytotoxic action. It was shown that preincubation of tumor cells with Fluzaparib (inhibitor of PARP1) reduced the cytotoxic activity of the derivatives 3 and 4 by more than twice. The ability of these compounds to affect DNA nativity and cause changes in nucleus morphology allows for the suggestion that the mechanism of action of the novel pyridine-thiazole derivatives might be related to inducing the genetic instability in tumor cells.
Collapse
Affiliation(s)
- Iryna Ivasechko
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Ihor Yushyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Piotr Roszczenko
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Julia Senkiv
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Nataliya Finiuk
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Danylo Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Olga Klyuchivska
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Dmytro Khyluk
- Department of Organic Chemistry, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Nataliya Kashchak
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Rostyslav Stoika
- Institute of Cell Biology of National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
- Correspondence: ; Tel.: +380-677038010
| |
Collapse
|
134
|
Xue H, Bhardwaj A, Yin Y, Fijen C, Ephstein A, Zhang L, Ding X, Pascal JM, VanArsdale TL, Rothenberg E. A two-step mechanism governing PARP1-DNA retention by PARP inhibitors. SCIENCE ADVANCES 2022; 8:eabq0414. [PMID: 36070389 PMCID: PMC9451145 DOI: 10.1126/sciadv.abq0414] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PARP inhibitors (PARPi) have emerged as promising cancer therapeutics capable of targeting specific DNA repair pathways, but their mechanism of action with respect to PARP1-DNA retention remains unclear. Here, we developed single-molecule assays to directly monitor the retention of PARP1 on DNA lesions in real time. Our study reveals a two-step mechanism by which PARPi modulate the retention of PARP1 on DNA lesions, consisting of a primary step of catalytic inhibition via binding competition with NAD+ followed by an allosteric modulation of bound PARPi. While clinically relevant PARPi exhibit distinct allosteric modulation activities that can either increase retention of PARP1 on DNA or induce its release, their retention potencies are predominantly determined by their ability to outcompete NAD+ binding. These findings provide a mechanistic basis for improved PARPi selection according to their characteristic activities and enable further development of more potent inhibitors.
Collapse
Affiliation(s)
- Huijun Xue
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Amit Bhardwaj
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carel Fijen
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anastasiya Ephstein
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lianglin Zhang
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Xia Ding
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - John M. Pascal
- Département de Biochimie and Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal QC H3C 3J7, Canada
| | - Todd L. VanArsdale
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
- Corresponding author. (T.V.); (E.R.)
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Corresponding author. (T.V.); (E.R.)
| |
Collapse
|
135
|
Bound NT, Vandenberg CJ, Kartikasari AER, Plebanski M, Scott CL. Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system. Front Genet 2022; 13:886170. [PMID: 36159999 PMCID: PMC9505691 DOI: 10.3389/fgene.2022.886170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable malignancy responsible for over 70% of all deaths due to ovarian cancer. With roughly 50% of all HGSOC harboring defects in the homologous recombination (HR) DNA repair pathway (e.g., BRCA1/2 mutations), the introduction of poly ADP-ribose polymerase inhibitors (PARPi) has dramatically improved outcomes for women with HR defective HGSOC. By blocking the repair of single-stranded DNA damage in cancer cells already lacking high-fidelity HR pathways, PARPi causes the accumulation of double-stranded DNA breaks, leading to cell death. Thus, this synthetic lethality results in PARPi selectively targeting cancer cells, resulting in impressive efficacy. Despite this, resistance to PARPi commonly develops through diverse mechanisms, such as the acquisition of secondary BRCA1/2 mutations. Perhaps less well documented is that PARPi can impact both the tumour microenvironment and the immune response, through upregulation of the stimulator of interferon genes (STING) pathway, upregulation of immune checkpoints such as PD-L1, and by stimulating the production of pro-inflammatory cytokines. Whilst targeted immunotherapies have not yet found their place in the clinic for HGSOC, the evidence above, as well as ongoing studies exploring the synergistic effects of PARPi with immune agents, including immune checkpoint inhibitors, suggests potential for targeting the immune response in HGSOC. Additionally, combining PARPi with epigenetic-modulating drugs may improve PARPi efficacy, by inducing a BRCA-defective phenotype to sensitise resistant cancer cells to PARPi. Finally, invigorating an immune response during PARPi therapy may engage anti-cancer immune responses that potentiate efficacy and mitigate the development of PARPi resistance. Here, we will review the emerging PARPi literature with a focus on PARPi effects on the immune response in HGSOC, as well as the potential of epigenetic combination therapies. We highlight the potential of transforming HGSOC from a lethal to a chronic disease and increasing the likelihood of cure.
Collapse
Affiliation(s)
- Nirashaa T. Bound
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cassandra J. Vandenberg
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Apriliana E. R. Kartikasari
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Clare L. Scott
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
| |
Collapse
|
136
|
PARP inhibitors in small cell lung cancer: The underlying mechanisms and clinical implications. Biomed Pharmacother 2022; 153:113458. [DOI: 10.1016/j.biopha.2022.113458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
|
137
|
Mandal P, Eswara K, Yerkesh Z, Kharchenko V, Zandarashvili L, Szczepski K, Bensaddek D, Jaremko Ł, Black BE, Fischle W. Molecular basis of hUHRF1 allosteric activation for synergistic histone modification binding by PI5P. SCIENCE ADVANCES 2022; 8:eabl9461. [PMID: 36001657 PMCID: PMC9401617 DOI: 10.1126/sciadv.abl9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Chromatin marks are recognized by distinct binding modules, many of which are embedded in multidomain proteins. How the different functionalities of such complex chromatin modulators are regulated is often unclear. Here, we delineated the interplay of the H3 amino terminus- and K9me-binding activities of the multidomain hUHRF1 protein. We show that the phosphoinositide PI5P interacts simultaneously with two distant flexible linker regions connecting distinct domains of hUHRF1. The binding is dependent on both, the polar head group, and the acyl part of the phospholipid and induces a conformational rearrangement juxtaposing the H3 amino terminus and K9me3 recognition modules of the protein. In consequence, the two features of the H3 tail are bound in a multivalent, synergistic manner. Our work highlights a previously unidentified molecular function for PI5P outside of the context of lipid mono- or bilayers and establishes a molecular paradigm for the allosteric regulation of complex, multidomain chromatin modulators by small cellular molecules.
Collapse
Affiliation(s)
- Papita Mandal
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Karthik Eswara
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Zhadyra Yerkesh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Vladlena Kharchenko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Levani Zandarashvili
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kacper Szczepski
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Fischle
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
138
|
Rouleau-Turcotte É, Krastev DB, Pettitt SJ, Lord CJ, Pascal JM. Captured snapshots of PARP1 in the active state reveal the mechanics of PARP1 allostery. Mol Cell 2022; 82:2939-2951.e5. [PMID: 35793673 PMCID: PMC9391306 DOI: 10.1016/j.molcel.2022.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/29/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023]
Abstract
PARP1 rapidly detects DNA strand break damage and allosterically signals break detection to the PARP1 catalytic domain to activate poly(ADP-ribose) production from NAD+. PARP1 activation is characterized by dynamic changes in the structure of a regulatory helical domain (HD); yet, there are limited insights into the specific contributions that the HD makes to PARP1 allostery. Here, we have determined crystal structures of PARP1 in isolated active states that display specific HD conformations. These captured snapshots and biochemical analysis illustrate HD contributions to PARP1 multi-domain and high-affinity interaction with DNA damage, provide novel insights into the mechanics of PARP1 allostery, and indicate how HD active conformations correspond to alterations in the catalytic region that reveal the active site to NAD+. Our work deepens the understanding of PARP1 catalytic activation, the dynamics of the binding site of PARP inhibitor compounds, and the mechanisms regulating PARP1 retention on DNA damage.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Dragomir B Krastev
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Stephen J Pettitt
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Christopher J Lord
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
139
|
The disruption of the CCDC6 – PP4 axis induces a BRCAness like phenotype and sensitivity to PARP inhibitors in high-grade serous ovarian carcinoma. J Exp Clin Cancer Res 2022; 41:245. [PMID: 35964058 PMCID: PMC9375931 DOI: 10.1186/s13046-022-02459-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Treatment with PARP inhibitors (PARPi) is primarily effective against high-grade serous ovarian cancers (HGSOC) with BRCA1/2 mutations or other deficiencies in homologous recombination (HR) repair mechanisms. However, resistance to PARPi frequently develops, mostly as a result of BRCA1/2 reversion mutations. The tumour suppressor CCDC6 is involved in HR repair by regulating the PP4c phosphatase activity on γH2AX. In this work, we reported that in ovarian cancer cells, a physical or functional loss of CCDC6 results synthetic lethal with the PARP-inhibitors drugs, by affecting the HR repair. We also unravelled a role for CCDC6 as predictive marker of PARPi sensitivity in ovarian cancer, and the impact of CCDC6 downregulation in overcoming PARPi resistance in these tumours. Methods A panel of HGSOC cell lines (either BRCA-wild type or mutant) were treated with PARPi after CCDC6 was attenuated by silencing or by inhibiting USP7, a CCDC6-deubiquitinating enzyme, and the effects on cell survival were assessed. At the cellular and molecular levels, the processes underlying the CCDC6-dependent modification of drugs’ sensitivity were examined. Patient-derived xenografts (PDXs) were immunostained for CCDC6, and the expression of the protein was analysed statistically after digital or visual means. Results HGSOC cells acquired PARPi sensitivity after CCDC6 depletion. Notably, CCDC6 downregulation restored the PARPi sensitivity in newly generated or spontaneously resistant cells containing either wild type- or mutant-BRCA2. When in an un-phosphorylated state, the CCDC6 residue threonine 427 is crucial for effective CCDC6-PP4 complex formation and PP4 sequestration, which maintains high γH2AX levels and effective HR. Remarkably, the PP4-dependent control of HR repair is influenced by the CCDC6 constitutively phosphorylated mutant T427D or by the CCDC6 loss, favouring PARPi sensitivity. As a result, the PP4 regulatory component PP4R3α showed to be essential for both the activity of the PP4 complex and the CCDC6 dependent PARPi sensitivity. It's interesting to note that immunohistochemistry revealed an intense CCDC6 protein staining in olaparib-resistant HGSOC cells and PDXs. Conclusions Our findings suggest that the physical loss or the functional impairment of CCDC6 enhances the PP4c complex activity, which causes BRCAness and PARPi sensitivity in HGSOC cells. Moreover, CCDC6 downregulation might overcome PARPi resistance in HGSOCs, thus supporting the potential of targeting CCDC6 by USP7 inhibitors to tackle PARPi resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02459-2.
Collapse
|
140
|
Ruigrok EAM, Verkaik NS, de Blois E, de Ridder C, Stuurman D, Roobol SJ, Van Gent DC, de Jong M, Van Weerden WM, Nonnekens J. Preclinical Assessment of the Combination of PSMA-Targeting Radionuclide Therapy with PARP Inhibitors for Prostate Cancer Treatment. Int J Mol Sci 2022; 23:ijms23148037. [PMID: 35887398 PMCID: PMC9316488 DOI: 10.3390/ijms23148037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023] Open
Abstract
Prostate specific membrane antigen targeted radionuclide therapy (PSMA-TRT) is a promising novel treatment for prostate cancer (PCa) patients. However, PSMA-TRT cannot be used for curative intent yet, thus additional research on how to improve the therapeutic efficacy is warranted. A potential way of achieving this, is combining TRT with poly ADP-ribosylation inhibitors (PARPi), which has shown promising results for TRT of neuroendocrine tumor cells. Currently, several clinical trials have been initiated for this combination for PCa, however so far, no evidence of synergism is available for PCa. Therefore, we evaluated the combination of PSMA-TRT with three classes of PARPi in preclinical PCa models. In vitro viability and survival assays were performed using PSMA-expressing PCa cell lines PC3-PIP and LNCaP to assess the effect of increasing concentrations of PARPi veliparib, olaparib or talazoparib in combination with PSMA-TRT compared to single PARPi treatment. Next, DNA damage analyses were performed by quantifying the number of DNA breaks by immunofluorescent stainings. Lastly, the potential of the combination treatments was studied in vivo in mice bearing PC3-PIP xenografts. Our results show that combining PSMA-TRT with PARPi did not synergistically affect the in vitro clonogenic survival or cell viability. DNA-damage analysis revealed only a significant increase in DNA breaks when combining PSMA-TRT with veliparib and not in the other combination treatments. Moreover, PSMA-TRT with PARPi treatment did not improve tumor control compared to PSMA-TRT monotherapy. Overall, the data presented do not support the assumption that combining PSMA-TRT with PARPi leads to a synergistic antitumor effect in PCa. These results underline that extensive preclinical research using various PCa models is imperative to validate the applicability of the combination strategy for PCa, as it is for other cancer types.
Collapse
Affiliation(s)
- Eline A. M. Ruigrok
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (E.A.M.R.); (E.d.B.); (C.d.R.); (D.S.); (S.J.R.); (M.d.J.)
- Department of Experimental Urology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Nicole S. Verkaik
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (N.S.V.); (D.C.V.G.)
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (E.A.M.R.); (E.d.B.); (C.d.R.); (D.S.); (S.J.R.); (M.d.J.)
| | - Corrina de Ridder
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (E.A.M.R.); (E.d.B.); (C.d.R.); (D.S.); (S.J.R.); (M.d.J.)
- Department of Experimental Urology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Debra Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (E.A.M.R.); (E.d.B.); (C.d.R.); (D.S.); (S.J.R.); (M.d.J.)
- Department of Experimental Urology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Stefan J. Roobol
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (E.A.M.R.); (E.d.B.); (C.d.R.); (D.S.); (S.J.R.); (M.d.J.)
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (N.S.V.); (D.C.V.G.)
| | - Dik C. Van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (N.S.V.); (D.C.V.G.)
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (E.A.M.R.); (E.d.B.); (C.d.R.); (D.S.); (S.J.R.); (M.d.J.)
| | - Wytske M. Van Weerden
- Department of Experimental Urology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (E.A.M.R.); (E.d.B.); (C.d.R.); (D.S.); (S.J.R.); (M.d.J.)
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (N.S.V.); (D.C.V.G.)
- Correspondence:
| |
Collapse
|
141
|
Wicks AJ, Krastev DB, Pettitt SJ, Tutt ANJ, Lord CJ. Opinion: PARP inhibitors in cancer-what do we still need to know? Open Biol 2022; 12:220118. [PMID: 35892198 PMCID: PMC9326299 DOI: 10.1098/rsob.220118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
PARP inhibitors (PARPi) have been demonstrated to exhibit profound anti-tumour activity in individuals whose cancers have a defect in the homologous recombination DNA repair pathway. Here, we describe the current consensus as to how PARPi work and how drug resistance to these agents emerges. We discuss the need to refine the current repertoire of clinical-grade companion biomarkers to be used with PARPi, so that patient stratification can be improved, the early emergence of drug resistance can be detected and dose-limiting toxicity can be predicted. We also highlight current thoughts about how PARPi resistance might be treated.
Collapse
Affiliation(s)
- Andrew J. Wicks
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Dragomir B. Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Andrew N. J. Tutt
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
142
|
Longarini EJ, Matic I. The fast-growing business of Serine ADP-ribosylation. DNA Repair (Amst) 2022; 118:103382. [DOI: 10.1016/j.dnarep.2022.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
|
143
|
Onji H, Murai J. Reconsidering the mechanisms of action of PARP inhibitors based on clinical outcomes. Cancer Sci 2022; 113:2943-2951. [PMID: 35766436 PMCID: PMC9459283 DOI: 10.1111/cas.15477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
PARP inhibitors (PARPis) were initially developed as DNA repair inhibitors that inhibit the catalytic activity of PARP1 and PARP2 and are expected to induce synthetic lethality in BRCA‐ or homologous recombination (HR)‐deficient tumors. However, the clinical indications for PARPis are not necessarily limited to BRCA mutations or HR deficiency; BRCA wild‐type and HR‐proficient cancers can also derive some benefit from PARPis. These facts are interpretable by an additional primary antitumor mechanism of PARPis named PARP trapping, resulting from the stabilization of PARP‐DNA complexes. Favorable response to platinum derivatives (cisplatin and carboplatin) in preceding treatment is used as a clinical biomarker for some PARPis, implying that sensitivity factors for platinum derivatives and PARPis are mainly common. Such common sensitivity factors include not only HR defects (HRD) but also additional factors. One of them is Schlafen 11 (SLFN11), a putative DNA/RNA helicase, that sensitizes cancer cells to a broad type of DNA‐damaging agents, including platinum and topoisomerase inhibitors. Mechanistically, SLFN11 induces a lethal replication block in response to replication stress (ie, DNA damage). As SLFN11 acts upon replication stress, trapping PARPis can activate SLFN11. Preclinical models show the importance of SLFN11 in PARPi sensitivity. However, the relevance of SLFN11 in PARPi response is less evident in clinical data compared with the significance of SLFN11 for platinum sensitivity. In this review, we consider the reasons for variable indications of PARPis resulting from clinical outcomes and review the mechanisms of action for PARPis as anticancer agents.
Collapse
Affiliation(s)
- Hiroshi Onji
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Japan
| | - Junko Murai
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| |
Collapse
|
144
|
Han T, Tong J, Wang M, Gan Y, Gao B, Chen J, Liu Y, Hao Q, Zhou X. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol 2022; 12:821366. [PMID: 35719981 PMCID: PMC9204002 DOI: 10.3389/fonc.2022.821366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
The poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) Olaparib is a widely used targeted therapy for a variety of solid tumors with homologous recombination deficiency (HRD) caused by mutation of BRCA1/2 or other DNA repair genes. The anti-tumor activity of Olaparib has been largely attributed to its ability to inhibit PARP enzymes and block DNA single-strand break (SSB) repair, which eventually leads to the most detrimental DNA damage, double-strand breaks (DSB), in HRD cells. Although PARPi was found to induce p53-dependent cell death, the underlying molecular mechanism remains incompletely understood. Here, we report that Olaparib treatment leads to p53 stabilization and activation of its downstream target genes in a dose- and time-dependent manner. Mechanistically, Olaparib triggers nucleolar stress by inhibiting biosynthesis of the precursor of ribosomal RNAs (pre-rRNA), resulting in enhanced interaction between ribosomal proteins (RPs), RPL5 and RPL11, and MDM2. Consistently, knockdown of RPL5 and RPL11 prevents Olaparib-induced p53 activation. More importantly, Olaparib efficiently suppresses breast and colorectal cancer cell survival and proliferation through activation of p53. Altogether, our study demonstrates that Olaparib activates the nucleolar stress-RPs-p53 pathway, suggesting rRNA biogenesis as a novel target for PARPi.
Collapse
Affiliation(s)
- Tao Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jing Tong
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengxin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yu Gan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Bo Gao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
145
|
Hu J, Liang P, Jin D, Fan R, Xie X, Liu C, Jiang Q, Gao L. Poly (ADP-ribose) polymerase inhibitors (PARPi) for advanced malignancies with multiple DNA-repair genetic aberrations. Expert Rev Anticancer Ther 2022; 22:717-723. [PMID: 35679134 DOI: 10.1080/14737140.2022.2088513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Poly (ADP-ribose) polymerase inhibitors (PARPi) have been approved for the treatment of advanced tumors with defects in genes involved in homologous recombination repair (HRR), including cancers of the prostate, pancreas, breast, and ovary. In these advanced tumors, PARPi afford 'synthetic lethality' by blocking the PARP-associated repair pathway in cancer cells with HRR genetic mutations, resulting in chromosome instability and cellular apoptosis. According to the synthetic lethality theory, patients with a greater burden of genetic alterations, in proportion (relative quantity) or category, would have more satisfactory outcomes after PARPi administration. However, this issue remains obscure based on the existing sporadic evidence. AREAS COVERED We summarize the therapeutic effects of PARPi in advanced tumors with multiple HRR genetic mutations, and attempted to compare these results with those obtained for cancers with a single mutation. EXPERT OPINION Limited evidence has provided a possibly encouraging response to PARPi among patients carrying multiple HRR genetic mutations compared with those with a single mutation (although the treatment effect was negative in some patients). Further research is needed to understand the role of PARPi in tumor cells with multiple HRR genetic mutations.
Collapse
Affiliation(s)
- Jian Hu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chong Qing, China
| | - Peihe Liang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chong Qing, China
| | - Dachun Jin
- Department of Urology, Daping Hospital/Army Medical Center of PLA, Army Medical University
| | - Runze Fan
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chong Qing, China
| | - Xiaodu Xie
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chong Qing, China
| | - Chuan Liu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chong Qing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chong Qing, China
| | - Liang Gao
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chong Qing, China
| |
Collapse
|
146
|
Nakai H, Matsumura N. Individualization in the first-line treatment of advanced ovarian cancer based on the mechanism of action of molecularly targeted drugs. Int J Clin Oncol 2022; 27:1001-1012. [PMID: 35416600 PMCID: PMC9006498 DOI: 10.1007/s10147-022-02163-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/20/2022]
Abstract
With the development of poly(ADP-ribose) polymerase inhibitors, the treatment of advanced ovarian cancer is changing dramatically. The purpose of this narrative review is to provide a direction for the individualization of advanced ovarian cancer treatment based on the mechanism of action of molecularly targeted drugs currently used in Japan. The PAOLA-1 study showed very good progression-free survival in patients with homologous recombination deficiency tumors who underwent complete surgery with primary debulking surgery and who received olaparib plus bevacizumab. Niraparib has high intratumor penetration, and in a subgroup analysis of the PRIMA study, it was most effective in patients with residual tumors after interval debulking surgery. These data suggest the importance of achieving complete surgery and aiming for cure in the treatment of ovarian cancer and how the use of bevacizumab, olaparib, and niraparib should be individualized.
Collapse
Affiliation(s)
- Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, 377-2, Ohnohigashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, 377-2, Ohnohigashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| |
Collapse
|
147
|
Park H, Kam TI, Peng H, Chou SC, Mehrabani-Tabari AA, Song JJ, Yin X, Karuppagounder SS, Umanah GK, Rao AVS, Choi Y, Aggarwal A, Chang S, Kim H, Byun J, Liu JO, Dawson TM, Dawson VL. PAAN/MIF nuclease inhibition prevents neurodegeneration in Parkinson's disease. Cell 2022; 185:1943-1959.e21. [PMID: 35545089 DOI: 10.1016/j.cell.2022.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity. Genetic depletion of PAAN/MIF and a mutant lacking nuclease activity prevent the loss of dopaminergic neurons and behavioral deficits in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Compound screening led to the identification of PAANIB-1, a brain-penetrant PAAN/MIF nuclease inhibitor that prevents neurodegeneration induced by α-syn PFF, AAV-α-syn overexpression, or MPTP intoxication in vivo. Our findings could have broad relevance in human pathologies where parthanatos plays a role in the development of cell death inhibitors targeting the druggable PAAN/MIF nuclease.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Hanjing Peng
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amir A Mehrabani-Tabari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jae-Jin Song
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George K Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - A V Subba Rao
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - YuRee Choi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akanksha Aggarwal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sohyun Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyunhee Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiyoung Byun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
148
|
Kyo S, Kanno K, Takakura M, Yamashita H, Ishikawa M, Ishibashi T, Sato S, Nakayama K. Clinical Landscape of PARP Inhibitors in Ovarian Cancer: Molecular Mechanisms and Clues to Overcome Resistance. Cancers (Basel) 2022; 14:2504. [PMID: 35626108 PMCID: PMC9139943 DOI: 10.3390/cancers14102504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The survival of patients with advanced or recurrent ovarian cancer has improved tremendously in the past decade, mainly due to the establishment of maintenance therapy with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) after conservative chemotherapies. Despite their superior efficacy, resistance to PARPis has been reported, and patients with resistance have a much worse prognosis. Therefore, the development of novel treatment strategies to overcome PARPi resistance is urgently needed. The present review article focuses on the molecular mechanisms of how PARPis exert cytotoxic effects on cancer cells through DNA repair processes, especially the genetic background and tumor microenvironment favored by PARPis. Furthermore, currently available information on PARPi resistance mechanisms is introduced and discussed to develop a novel therapeutic approach against them.
Collapse
Affiliation(s)
- Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Kosuke Kanno
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Masahiro Takakura
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Kanazawa 920-0293, Japan;
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Seiya Sato
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| |
Collapse
|
149
|
Xie B, Luo A. Nucleic Acid Sensing Pathways in DNA Repair Targeted Cancer Therapy. Front Cell Dev Biol 2022; 10:903781. [PMID: 35557952 PMCID: PMC9089908 DOI: 10.3389/fcell.2022.903781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
The repair of DNA damage is a complex process, which helps to maintain genome fidelity, and the ability of cancer cells to repair therapeutically DNA damage induced by clinical treatments will affect the therapeutic efficacy. In the past decade, great success has been achieved by targeting the DNA repair network in tumors. Recent studies suggest that DNA damage impacts cellular innate and adaptive immune responses through nucleic acid-sensing pathways, which play essential roles in the efficacy of DNA repair targeted therapy. In this review, we summarize the current understanding of the molecular mechanism of innate immune response triggered by DNA damage through nucleic acid-sensing pathways, including DNA sensing via the cyclic GMP-AMP synthase (cGAS), Toll-like receptor 9 (TLR9), absent in melanoma 2 (AIM2), DNA-dependent protein kinase (DNA-PK), and Mre11-Rad50-Nbs1 complex (MRN) complex, and RNA sensing via the TLR3/7/8 and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Furthermore, we will focus on the recent developments in the impacts of nucleic acid-sensing pathways on the DNA damage response (DDR). Elucidating the DDR-immune response interplay will be critical to harness immunomodulatory effects to improve the efficacy of antitumor immunity therapeutic strategies and build future therapeutic approaches.
Collapse
Affiliation(s)
- Bingteng Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| |
Collapse
|
150
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|