101
|
Long MJC, Urul DA, Aye Y. REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins. Methods Enzymol 2019; 633:203-230. [PMID: 32046846 PMCID: PMC7027669 DOI: 10.1016/bs.mie.2019.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is now clear that some cysteines on some proteins are highly tuned to react with electrophiles. Based on numerous studies, it is also established that electrophile sensing underpins rewiring of several critical signaling processes. These electrophile-sensing proteins, or privileged first responders (PFRs), are likely critically relevant for drug design. However, identifying PFRs remains a challenging and unsolved problem, despite the development of several high-throughput methods to ID proteins that react with electrophiles. More importantly, we remain unable to rank how different PFRs identified under different conditions relate to one another, in terms of sensing or signaling capacity. Here we evaluate different methods to assay sensing functions of proteins and discuss these methods in the context of developing a "ranking scheme." Based on theoretical and experimental evidence, we propose that T-REX-the only targeted-electrophile delivery tool presently available-is a reliable method to rank PFRs. Finally, we address to what extent electrophile sensing and downstream signaling are correlated. Based on our current data, we observe that such behaviors are indeed correlated. It is our hope that through this manuscript researchers from various arms of the stress signaling fields will focus on developing a quantitative understanding of precision electrophile labeling.
Collapse
Affiliation(s)
| | - Daniel A Urul
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Yimon Aye
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
102
|
Gregson A, Thompson K, Tsirka SE, Selwood DL. Emerging small-molecule treatments for multiple sclerosis: focus on B cells. F1000Res 2019; 8:F1000 Faculty Rev-245. [PMID: 30863536 PMCID: PMC6402079 DOI: 10.12688/f1000research.16495.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a major cause of disability in young adults. Following an unknown trigger (or triggers), the immune system attacks the myelin sheath surrounding axons, leading to progressive nerve cell death. Antibodies and small-molecule drugs directed against B cells have demonstrated good efficacy in slowing progression of the disease. This review focusses on small-molecule drugs that can affect B-cell biology and may have utility in disease management. The risk genes for MS are examined from the drug target perspective. Existing small-molecule therapies for MS with B-cell actions together with new drugs in development are described. The potential for experimental molecules with B-cell effects is also considered. Small molecules can have diverse actions on B cells and be cytotoxic, anti-inflammatory and anti-viral. The current B cell-directed therapies often kill B-cell subsets, which can be effective but lead to side effects and toxicity. A deeper understanding of B-cell biology and the effect on MS disease should lead to new drugs with better selectivity, efficacy, and an improved safety profile. Small-molecule drugs, once the patent term has expired, provide a uniquely sustainable form of healthcare.
Collapse
Affiliation(s)
- Aaron Gregson
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kaitlyn Thompson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, 11794, USA
| | - David L Selwood
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
103
|
Piroli GG, Manuel AM, Patel T, Walla MD, Shi L, Lanci SA, Wang J, Galloway A, Ortinski PI, Smith DS, Frizzell N. Identification of Novel Protein Targets of Dimethyl Fumarate Modification in Neurons and Astrocytes Reveals Actions Independent of Nrf2 Stabilization. Mol Cell Proteomics 2019; 18:504-519. [PMID: 30587509 PMCID: PMC6398201 DOI: 10.1074/mcp.ra118.000922] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/01/2018] [Indexed: 12/15/2022] Open
Abstract
The fumarate ester dimethyl fumarate (DMF) has been introduced recently as a treatment for relapsing remitting multiple sclerosis (RRMS), a chronic inflammatory condition that results in neuronal demyelination and axonal loss. DMF is known to act by depleting intracellular glutathione and modifying thiols on Keap1 protein, resulting in the stabilization of the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. We have previously shown that DMF reacts with a wide range of protein thiols, suggesting that the complete mechanisms of action of DMF are unknown. Here, we investigated other intracellular thiol residues that may also be irreversibly modified by DMF in neurons and astrocytes. Using mass spectrometry, we identified 24 novel proteins that were modified by DMF in neurons and astrocytes, including cofilin-1, tubulin and collapsin response mediator protein 2 (CRMP2). Using an in vitro functional assay, we demonstrated that DMF-modified cofilin-1 loses its activity and generates less monomeric actin, potentially inhibiting its cytoskeletal remodeling activity, which could be beneficial in the modulation of myelination during RRMS. DMF modification of tubulin did not significantly impact axonal lysosomal trafficking. We found that the oxygen consumption rate of N1E-115 neurons and the levels of proteins related to mitochondrial energy production were only slightly affected by the highest doses of DMF, confirming that DMF treatment does not impair cellular respiratory function. In summary, our work provides new insights into the mechanisms supporting the neuroprotective and remyelination benefits associated with DMF treatment in addition to the antioxidant response by Nrf2.
Collapse
Affiliation(s)
- Gerardo G Piroli
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Allison M Manuel
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Tulsi Patel
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Michael D Walla
- §Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29205
| | - Liang Shi
- ¶Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29205
| | - Scott A Lanci
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Jingtian Wang
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Ashley Galloway
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Pavel I Ortinski
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Deanna S Smith
- ¶Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29205
| | - Norma Frizzell
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209;
| |
Collapse
|
104
|
Yadav SK, Soin D, Ito K, Dhib-Jalbut S. Insight into the mechanism of action of dimethyl fumarate in multiple sclerosis. J Mol Med (Berl) 2019; 97:463-472. [PMID: 30820593 DOI: 10.1007/s00109-019-01761-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022]
Abstract
Dimethyl fumarate (DMF) is an oral, disease-modifying agent for the treatment of relapsing-remitting multiple sclerosis (RRMS). However, details regarding its mode of action are still emerging. It is believed that the mode of action of DMF involves both nuclear factor erythroid-derived 2-related factor (Nrf2)-dependent and independent pathways, which lead to an anti-inflammatory immune response due to type II myeloid cell and Th2 cell differentiation and neuroprotection. In this review, we will focus on the molecular and signaling effects of DMF that lead to changes in peripheral immune cell composition and function, alteration in CNS cell-specific functions, and effect on the blood-brain barrier.
Collapse
Affiliation(s)
- Sudhir Kumar Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Devika Soin
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
105
|
Kulkarni RA, Bak DW, Wei D, Bergholtz SE, Briney CA, Shrimp JH, Alpsoy A, Thorpe AL, Bavari AE, Crooks DR, Levy M, Florens L, Washburn MP, Frizzell N, Dykhuizen EC, Weerapana E, Linehan WM, Meier JL. A chemoproteomic portrait of the oncometabolite fumarate. Nat Chem Biol 2019; 15:391-400. [PMID: 30718813 PMCID: PMC6430658 DOI: 10.1038/s41589-018-0217-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023]
Abstract
Hereditary cancer disorders often provide an important window into novel mechanisms supporting tumor growth. Understanding these mechanisms thus represents a vital goal. Toward this goal, here we report a chemoproteomic map of fumarate, a covalent oncometabolite whose accumulation marks the genetic cancer syndrome hereditary leiomyomatosis and renal cell carcinoma (HLRCC). We applied a fumarate-competitive chemoproteomic probe in concert with LC-MS/MS to discover new cysteines sensitive to fumarate hydratase (FH) mutation in HLRCC cell models. Analysis of this dataset revealed an unexpected influence of local environment and pH on fumarate reactivity, and enabled the characterization of a novel FH-regulated cysteine residue that lies at a key protein-protein interface in the SWI-SNF tumor-suppressor complex. Our studies provide a powerful resource for understanding the covalent imprint of fumarate on the proteome and lay the foundation for future efforts to exploit this distinct aspect of oncometabolism for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Rhushikesh A Kulkarni
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MA, USA
| | - Sarah E Bergholtz
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Chloe A Briney
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Jonathan H Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Abigail L Thorpe
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Arissa E Bavari
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MA, USA
| | - Michaella Levy
- Stowers Institute for Medical Research, Kansas City, MI, USA
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MI, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KA, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | | | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MA, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MA, USA.
| |
Collapse
|
106
|
Kulkarni RA, Briney CA, Crooks DR, Bergholtz SE, Mushti C, Lockett SJ, Lane AN, Fan TWM, Swenson RE, Linehan WM, Meier JL. Photoinducible Oncometabolite Detection. Chembiochem 2019; 20:360-365. [PMID: 30358041 PMCID: PMC8141106 DOI: 10.1002/cbic.201800651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Dysregulated metabolism can fuel cancer by altering the production of bioenergetic building blocks and directly stimulating oncogenic gene-expression programs. However, relatively few optical methods for the direct study of metabolites in cells exist. To address this need and facilitate new approaches to cancer treatment and diagnosis, herein we report an optimized chemical approach to detect the oncometabolite fumarate. Our strategy employs diaryl tetrazoles as cell-permeable photoinducible precursors to nitrileimines. Uncaging these species in cells and cell extracts enables them to undergo 1,3-dipolar cycloadditions with endogenous dipolarophile metabolites such as fumarate to form pyrazoline cycloadducts that can be readily detected by their intrinsic fluorescence. The ability to photolytically uncage diaryl tetrazoles provides greatly improved sensitivity relative to previous methods, and enables the facile detection of dysregulated fumarate metabolism through biochemical activity assays, intracellular imaging, and flow cytometry. Our studies showcase an intersection of bioorthogonal chemistry and metabolite reactivity that can be applied for biological profiling, imaging, and diagnostics.
Collapse
Affiliation(s)
| | - Chloe A. Briney
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| | - Daniel R. Crooks
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, 20817, USA
| | - Sarah E. Bergholtz
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| | - Chandrasekhar Mushti
- Imaging Probe Development Center, National Heart Lung and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Rolf E. Swenson
- Imaging Probe Development Center, National Heart Lung and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, 20817, USA
| | - Jordan L. Meier
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| |
Collapse
|
107
|
Gehringer M, Laufer SA. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J Med Chem 2019; 62:5673-5724. [PMID: 30565923 DOI: 10.1021/acs.jmedchem.8b01153] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| |
Collapse
|
108
|
Rosa AC, Benetti E, Gallicchio M, Boscaro V, Cangemi L, Dianzani C, Miglio G. Analyzing Cysteine Site Neighbors in Proteins to Reveal Dimethyl Fumarate Targets. Proteomics 2019; 19:e1800301. [DOI: 10.1002/pmic.201800301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Arianna Carolina Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco; Università degli Studi di Torino; Turin 10125 Italy
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco; Università degli Studi di Torino; Turin 10125 Italy
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco; Università degli Studi di Torino; Turin 10125 Italy
| | - Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco; Università degli Studi di Torino; Turin 10125 Italy
| | - Luigi Cangemi
- Dipartimento di Scienza e Tecnologia del Farmaco; Università degli Studi di Torino; Turin 10125 Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco; Università degli Studi di Torino; Turin 10125 Italy
| | - Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco; Università degli Studi di Torino; Turin 10125 Italy
- Centro di Competenza sul Calcolo Scientifico C S; Università degli Studi di Torino; Turin 10125 Italy
| |
Collapse
|
109
|
Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O'Neill LA, Mills EL. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab 2019; 1:16-33. [PMID: 31032474 PMCID: PMC6485344 DOI: 10.1038/s42255-018-0014-7] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming has become a key focus for both immunologists and cancer biologists, with exciting advances providing new insights into underlying mechanisms of disease. Metabolites traditionally associated with bioenergetics or biosynthesis have been implicated in immunity and malignancy in transformed cells, with a particular focus on intermediates of the mitochondrial pathway known as the Krebs cycle. Among these, the intermediates succinate, fumarate, itaconate, 2-hydroxyglutarate isomers (D-2-hydroxyglutarate and L-2-hydroxyglutarate) and acetyl-CoA now have extensive evidence for "non-metabolic" signalling functions in both physiological immune contexts and in disease contexts, such as the initiation of carcinogenesis. This review will describe how metabolic reprogramming, with emphasis placed on these metabolites, leads to altered immune cell and transformed cell function. The latest findings are informative for new therapeutic approaches which could be transformative for a range of diseases.
Collapse
Affiliation(s)
- Dylan G Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
110
|
Browne CM, Jiang B, Ficarro SB, Doctor ZM, Johnson JL, Card JD, Sivakumaren SC, Alexander WM, Yaron TM, Murphy CJ, Kwiatkowski NP, Zhang T, Cantley LC, Gray NS, Marto JA. A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. J Am Chem Soc 2018; 141:191-203. [PMID: 30518210 DOI: 10.1021/jacs.8b07911] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite recent clinical successes for irreversible drugs, potential toxicities mediated by unpredictable modification of off-target cysteines represents a major hurdle for expansion of covalent drug programs. Understanding the proteome-wide binding profile of covalent inhibitors can significantly accelerate their development; however, current mass spectrometry strategies typically do not provide a direct, amino acid level readout of covalent activity for complex, selective inhibitors. Here we report the development of CITe-Id, a novel chemoproteomic approach that employs covalent pharmacologic inhibitors as enrichment reagents in combination with an optimized proteomic platform to directly quantify dose-dependent binding at cysteine-thiols across the proteome. CITe-Id analysis of our irreversible CDK inhibitor THZ1 identified dose-dependent covalent modification of several unexpected kinases, including a previously unannotated cysteine (C840) on the understudied kinase PKN3. These data streamlined our development of JZ128 as a new selective covalent inhibitor of PKN3. Using JZ128 as a probe compound, we identified novel potential PKN3 substrates, thus offering an initial molecular view of PKN3 cellular activity. CITe-Id provides a powerful complement to current chemoproteomic platforms to characterize the selectivity of covalent inhibitors, identify new, pharmacologically addressable cysteine-thiols, and inform structure-based drug design programs.
Collapse
Affiliation(s)
- Christopher M Browne
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Baishan Jiang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Scott B Ficarro
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Zainab M Doctor
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jared L Johnson
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Joseph D Card
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Sindhu Carmen Sivakumaren
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - William M Alexander
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Tomer M Yaron
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Charles J Murphy
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Whitehead Institute for Biomedical Research , Cambridge , Massachusetts 02142 , United States
| | - Tinghu Zhang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Lewis C Cantley
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nathanael S Gray
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jarrod A Marto
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Pathology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
111
|
Hosseini A, Masjedi A, Baradaran B, Hojjat‐Farsangi M, Ghalamfarsa G, Anvari E, Jadidi‐Niaragh F. Dimethyl fumarate: Regulatory effects on the immune system in the treatment of multiple sclerosis. J Cell Physiol 2018; 234:9943-9955. [DOI: 10.1002/jcp.27930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Arezoo Hosseini
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hojjat‐Farsangi
- Immune and Gene therapy Lab Department of Oncology‐Pathology Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute Stockholm Sweden
- Department of Immunology School of Medicine, Bushehr University of Medical Sciences Bushehr Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences Yasuj Iran
| | - Enayat Anvari
- Department of Physiology Faculty of Medicine, Ilam University of Medical Sciences Ilam Iran
| | - Farhad Jadidi‐Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
112
|
Fragoso YD, Adoni T, Brooks JBB, Finkelsztejn A, da Gama PD, Grzesiuk AK, Marques VD, Parolin MFK, Sato HK, Varela DL, Vasconcelos CCF. Practical Evidence-Based Recommendations for Patients with Multiple Sclerosis Who Want to Have Children. Neurol Ther 2018; 7:207-232. [PMID: 30167914 PMCID: PMC6283793 DOI: 10.1007/s40120-018-0110-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) management presently aims to reach a state of no (or minimal) evidence of disease activity. The development and commercialization of new drugs has led to a renewed interest in family planning, since patients with MS may face a future with reduced (or no) disease-related neurological disability. The advice of neurologists is often sought by patients who want to have children and need to know more about disease control at conception and during pregnancy and the puerperium. When MS is well controlled, the simple withdrawal of drugs for patients who intend to conceive is not an option. On the other hand, not all treatments presently recommended for MS are considered safe during conception, pregnancy and/or breastfeeding. The objective of the present study was to summarize the practical and evidence-based recommendations for family planning when our patients (women and men) have MS.Funding TEVA Pharmaceutical Brazil.
Collapse
Affiliation(s)
| | - Tarso Adoni
- Hospital Sirio-Libanes de Sao Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | - Henry K Sato
- Instituto de Neurologia de Curitiba, Curitiba, PR, Brazil
| | | | | |
Collapse
|
113
|
Montes Diaz G, Hupperts R, Fraussen J, Somers V. Dimethyl fumarate treatment in multiple sclerosis: Recent advances in clinical and immunological studies. Autoimmun Rev 2018; 17:1240-1250. [DOI: 10.1016/j.autrev.2018.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
|
114
|
Perturbation-Based Proteomic Correlation Profiling as a Target Deconvolution Methodology. Cell Chem Biol 2018; 26:137-143.e8. [PMID: 30449674 DOI: 10.1016/j.chembiol.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/13/2018] [Accepted: 10/08/2018] [Indexed: 01/10/2023]
Abstract
Molecular target identification of small molecules, so-called target deconvolution, is a major obstacle to phenotype-based drug discovery. Here, we developed an approach called perturbation-based proteomic correlation profiling (PPCP) utilizing the correlation between protein quantity and binding activity of compounds under cellular perturbation by gene silencing and successfully identified lanosterol synthase as a molecular target of TGF-β pathway inhibitor. This PPCP concept was extended to the use of a cell line panel and provides a new option for target deconvolution.
Collapse
|
115
|
Bhargava P, Fitzgerald KC, Venkata SLV, Smith MD, Kornberg MD, Mowry EM, Haughey NJ, Calabresi PA. Dimethyl fumarate treatment induces lipid metabolism alterations that are linked to immunological changes. Ann Clin Transl Neurol 2018; 6:33-45. [PMID: 30656182 PMCID: PMC6331509 DOI: 10.1002/acn3.676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
Objective Identify metabolic changes produced by dimethyl fumarate (DMF) treatment and link them to immunological effects. Methods We enrolled 18 MS patients and obtained blood prior to DMF and 6 months postinitiation. We also enrolled 18 healthy controls for comparison. We performed global metabolomics on plasma and used weighted correlation network analysis (WGCNA) to identify modules of correlated metabolites. We identified modules that changed with treatment, followed by targeted metabolomics to corroborate changes identified in global analyses. We correlated changes in metabolite modules and individual metabolites with changes in immunological parameters. Results We identified alterations in lipid metabolism after DMF treatment – increases in two modules (phospholipids, lysophospholipids and plasmalogens) and reduction in one module (saturated and poly‐unsaturated fatty acids) eigen‐metabolite values (all P < 0.05). Change in the fatty acid module was greater in participants who developed lymphopenia and was strongly associated with both reduction in absolute lymphocyte counts (r = 0.65; P = 0.005) and change in CD8+ T cell subsets. We also noted significant correlation of change in lymphocyte counts with multiple fatty acid levels (measured by targeted or untargeted methods). Interpretation This study demonstrates that DMF treatment alters lipid metabolism and that changes in fatty acid levels are related to DMF‐induced immunological changes.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
| | - Kathryn C Fitzgerald
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
| | - Swarajya L V Venkata
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
| | - Matthew D Smith
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
| | - Michael D Kornberg
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
| | - Ellen M Mowry
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
| | - Norman J Haughey
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
| | - Peter A Calabresi
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
| |
Collapse
|
116
|
Proteomics and Beyond: Cell Decision-Making Shaped by Reactive Electrophiles. Trends Biochem Sci 2018; 44:75-89. [PMID: 30327250 DOI: 10.1016/j.tibs.2018.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Revolutionary proteomic strategies have enabled rapid profiling of the cellular targets of electrophilic small molecules. However, precise means to directly interrogate how these individual electrophilic modifications at low occupancy functionally reshape signaling networks have until recently been largely limited. We highlight here new methods that transcend proteomic platforms to forge a quantitative link between protein target-selective engagement and downstream signaling. We focus on recent progress in the study of non-enzyme-assisted signaling mechanisms and crosstalk choreographed by native reactive electrophilic species (RES). Using this as a model, we offer a long-term vision of how these toolsets together with fundamental biochemical knowledge of precision electrophile signaling may be harnessed to assist covalent ligand-target matching and ultimately amend disease-specific signaling dysfunction.
Collapse
|
117
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
118
|
Elisi GM, Santucci M, D'Arca D, Lauriola A, Marverti G, Losi L, Scalvini L, Bolognesi ML, Mor M, Costi MP. Repurposing of Drugs Targeting YAP-TEAD Functions. Cancers (Basel) 2018; 10:cancers10090329. [PMID: 30223434 PMCID: PMC6162436 DOI: 10.3390/cancers10090329] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway's terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be relevant to obtain new molecular tools and potential therapeutic assets. In this review, we discuss the main mechanisms of action of the best-known compounds, clinically approved or investigational drugs, able to cross-talk and modulate the Hippo pathway, as an attractive strategy for the discovery of new potential lead compounds.
Collapse
Affiliation(s)
- Gian Marco Elisi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Angela Lauriola
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Unit of Pathology, 41124 Modena, Italy.
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
119
|
Lian G, Gnanaprakasam JNR, Wang T, Wu R, Chen X, Liu L, Shen Y, Yang M, Yang J, Chen Y, Vasiliou V, Cassel TA, Green DR, Liu Y, Fan TWM, Wang R. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. eLife 2018; 7:e36158. [PMID: 30198844 PMCID: PMC6152796 DOI: 10.7554/elife.36158] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
Upon antigen stimulation, T lymphocytes undergo dramatic changes in metabolism to fulfill the bioenergetic, biosynthetic and redox demands of proliferation and differentiation. Glutathione (GSH) plays an essential role in controlling redox balance and cell fate. While GSH can be recycled from Glutathione disulfide (GSSG), the inhibition of this recycling pathway does not impact GSH content and murine T cell fate. By contrast, the inhibition of the de novo synthesis of GSH, by deleting either the catalytic (Gclc) or the modifier (Gclm) subunit of glutamate-cysteine ligase (Gcl), dampens intracellular GSH, increases ROS, and impact T cell differentiation. Moreover, the inhibition of GSH de novo synthesis dampened the pathological progression of experimental autoimmune encephalomyelitis (EAE). We further reveal that glutamine provides essential precursors for GSH biosynthesis. Our findings suggest that glutamine catabolism fuels de novo synthesis of GSH and directs the lineage choice in T cells.
Collapse
Affiliation(s)
- Gaojian Lian
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
- Medical Research CenterUniversity of South ChinaHengyang, Hunan ProvinceChina
| | - JN Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Tingting Wang
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Ruohan Wu
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Lingling Liu
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Yuqing Shen
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| | - Mao Yang
- Department of ImmunologySt. Jude Children’s Research HospitalMemphisUnited States
| | - Jun Yang
- Department of SurgerySt. Jude Children’s Research HospitalMemphisUnited States
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public HealthYale UniversityNew HavenUnited States
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public HealthYale UniversityNew HavenUnited States
| | - Teresa A Cassel
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
| | - Douglas R Green
- Department of ImmunologySt. Jude Children’s Research HospitalMemphisUnited States
| | - Yusen Liu
- Center for Perinatal ResearchThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusOhio, United States
| | - Teresa WM Fan
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology, Oncology and BMThe Research Institute at Nationwide Children's Hospital, Ohio State UniversityColumbusUnited States
| |
Collapse
|
120
|
Wijdeven RH, van Luijn MM, Wierenga-Wolf AF, Akkermans JJ, van den Elsen PJ, Hintzen RQ, Neefjes J. Chemical and genetic control of IFNγ-induced MHCII expression. EMBO Rep 2018; 19:embr.201745553. [PMID: 30021835 DOI: 10.15252/embr.201745553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 01/05/2023] Open
Abstract
The cytokine interferon-γ (IFNγ) can induce expression of MHC class II (MHCII) on many different cell types, leading to antigen presentation to CD4+ T cells and immune activation. This has also been linked to anti-tumour immunity and graft-versus-host disease. The extent of MHCII upregulation by IFNγ is cell type-dependent and under extensive control of epigenetic regulators and signalling pathways. Here, we identify novel genetic and chemical factors that control this form of MHCII expression. Loss of the oxidative stress sensor Keap1, autophagy adaptor p62/SQSTM1, ubiquitin E3-ligase Cullin-3 and chromatin remodeller BPTF impair IFNγ-mediated MHCII expression. A similar phenotype is observed for arsenite, an oxidative stressor. Effects of the latter can be reversed by the inhibition of HDAC1/2, linking oxidative stress conditions to epigenetic control of MHCII expression. Furthermore, dimethyl fumarate, an antioxidant used for the treatment of several autoimmune diseases, impairs the IFNγ response by manipulating transcriptional control of MHCII We describe novel pathways and drugs related to oxidative conditions in cells impacting on IFNγ-mediated MHCII expression, which provide a molecular basis for the understanding of MHCII-associated diseases.
Collapse
Affiliation(s)
- Ruud H Wijdeven
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jimmy J Akkermans
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | | | - Rogier Q Hintzen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| |
Collapse
|
121
|
Dimethyl fumarate induces a persistent change in the composition of the innate and adaptive immune system in multiple sclerosis patients. Sci Rep 2018; 8:8194. [PMID: 29844361 PMCID: PMC5974280 DOI: 10.1038/s41598-018-26519-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022] Open
Abstract
The effects of dimethyl fumarate (DMF) on the immune system in multiple sclerosis (MS) are not completely elucidated. In this study, an extensive immunophenotypic analysis of innate and adaptive immune cells of DMF-treated MS patients was performed. Peripheral blood immune cell phenotypes were determined using flow cytometry in a follow-up study of 12 MS patients before, after 3 and 12 months of DMF treatment and a cross-sectional study of 25 untreated and 64 DMF-treated MS patients. Direct effects of DMF on B cells were analyzed in vitro. After 12 months of DMF treatment, percentages of monocytes, natural killer cells, naive T and B cells and transitional B cells increased. Percentages of (effector) memory T cells, (non) class-switched memory B cells and double negative B cells decreased together with CD4+ T cells expressing interferon-γ (IFN-γ), granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-17 (IL-17). DMF treatment was fully effective as of 6 months and directly induced apoptosis and decreased expression of costimulatory CD40, antigen presentation molecule MHCII and B cell activating factor receptor (BAFFR) on B cells. DMF induced a persistent change of the immune system of MS patients, directly induced apoptosis and reduced expression of functional markers on B cells.
Collapse
|
122
|
Hoch DG, Abegg D, Adibekian A. Cysteine-reactive probes and their use in chemical proteomics. Chem Commun (Camb) 2018; 54:4501-4512. [PMID: 29645055 DOI: 10.1039/c8cc01485j] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteomic profiling using bioorthogonal chemical probes that selectively react with certain amino acids is now a widely used method in life sciences to investigate enzymatic activities, study posttranslational modifications and discover novel covalent inhibitors. Over the past two decades, researchers have developed selective probes for several different amino acids, including lysine, serine, cysteine, threonine, tyrosine, aspartate and glutamate. Among these amino acids, cysteines are particularly interesting due to their highly diverse and complex biochemical role in our cells. In this feature article, we focus on the chemical probes and methods used to study cysteines in complex proteomes.
Collapse
Affiliation(s)
- Dominic G Hoch
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | | | |
Collapse
|
123
|
Affiliation(s)
- Mai Matsushita
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward J. Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
124
|
Dimethyl fumarate downregulates the immune response through the HCA 2/GPR109A pathway: Implications for the treatment of multiple sclerosis. Mult Scler Relat Disord 2018; 23:46-50. [PMID: 29763776 DOI: 10.1016/j.msard.2018.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mechanisms of action of dimethyl fumarate (DMF), and its metabolite, monomethyl fumarate (MMF), for the treatment of multiple sclerosis are not completely elucidated. OBJECTIVES To discuss the role of DMF/MMF-induced hydroxycarboxylic acid receptor 2 (HCA2/GPR109A) pathway activation in the immune response and treatment of MS. METHODS A narrative (traditional) review of the current literature. RESULTS Studies have shown that binding of DMF/MMF to HCA2 on dendritic cells inhibits the production of pro-inflammatory cytokines in vitro and in MS murine models. Evidence suggests that activation of HCA2 expressed in immune cells and gut epithelial cells by DMF/MMF, may induce anti-inflammatory responses in the intestinal mucosa. CONCLUSION Although the DMF/MMF mechanism of action remains unclear, evidence suggests that the activation of HCA2/GPR109A pathway downregulates the immune response and may activate anti-inflammatory response in the intestinal mucosa, possibly leading to reduction in CNS tissue damage in MS patients.
Collapse
|
125
|
Ferrándiz ML, Nacher-Juan J, Alcaraz MJ. Nrf2 as a therapeutic target for rheumatic diseases. Biochem Pharmacol 2018; 152:338-346. [PMID: 29660314 DOI: 10.1016/j.bcp.2018.04.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of cellular protective processes. Rheumatic diseases are chronic conditions characterized by inflammation, pain, tissue damage and limitations in function. Main examples are rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis and osteoporosis. Their high prevalence constitutes a major health problem with an important social and economic impact. A wide range of evidence indicates that Nrf2 may control different mechanisms involved in the physiopathology of rheumatic conditions. Therefore, the appropriate expression and balance of Nrf2 is necessary for regulation of oxidative stress, inflammation, immune responses, and cartilage and bone metabolism. Numerous studies have demonstrated that Nrf2 deficiency aggravates the disease in experimental models while Nrf2 activation results in immunoregulatory and anti-inflammatory effects. These reports reinforce the increasing interest in the pharmacologic regulation of Nrf2 and its potential applications. Nevertheless, a majority of Nrf2 inducers are electrophilic molecules which may present off-target effects. In recent years, novel strategies have been sought to modulate the Nrf2 pathway which has emerged as a therapeutic target in rheumatic conditions.
Collapse
Affiliation(s)
- María Luisa Ferrándiz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| | - Josep Nacher-Juan
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| | - Maria José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
126
|
Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev 2018; 70:348-383. [PMID: 29507103 DOI: 10.1124/pr.117.014753] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Gina Manda
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Ahmed Hassan
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - María José Alcaraz
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Coral Barbas
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Andreas Daiber
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Pietro Ghezzi
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Rafael León
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Manuela G López
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Baldo Oliva
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Marta Pajares
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Natalia Robledinos-Antón
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Angela M Valverde
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Emre Guney
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Harald H H W Schmidt
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| |
Collapse
|
127
|
Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, Calabresi PA, Snyder SH. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 2018; 360:449-453. [PMID: 29599194 DOI: 10.1126/science.aan4665] [Citation(s) in RCA: 492] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/29/2018] [Accepted: 03/15/2018] [Indexed: 12/27/2022]
Abstract
Activated immune cells undergo a metabolic switch to aerobic glycolysis akin to the Warburg effect, thereby presenting a potential therapeutic target in autoimmune disease. Dimethyl fumarate (DMF), a derivative of the Krebs cycle intermediate fumarate, is an immunomodulatory drug used to treat multiple sclerosis and psoriasis. Although its therapeutic mechanism remains uncertain, DMF covalently modifies cysteine residues in a process termed succination. We found that DMF succinates and inactivates the catalytic cysteine of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in mice and humans, both in vitro and in vivo. It thereby down-regulates aerobic glycolysis in activated myeloid and lymphoid cells, which mediates its anti-inflammatory effects. Our results provide mechanistic insight into immune modulation by DMF and represent a proof of concept that aerobic glycolysis is a therapeutic target in autoimmunity.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul M Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vasanta Putluri
- Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adele M Snowman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nagireddy Putluri
- Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H Snyder
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
128
|
Zhao Y, Long MJC, Wang Y, Zhang S, Aye Y. Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses. ACS CENTRAL SCIENCE 2018; 4. [PMID: 29532025 PMCID: PMC5833000 DOI: 10.1021/acscentsci.7b00556] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Posttranslational modifications (PTMs) are the lingua franca of cellular communication. Most PTMs are enzyme-orchestrated. However, the reemergence of electrophilic drugs has ushered mining of unconventional/non-enzyme-catalyzed electrophile-signaling pathways. Despite the latest impetus toward harnessing kinetically and functionally privileged cysteines for electrophilic drug design, identifying these sensors remains challenging. Herein, we designed "G-REX"-a technique that allows controlled release of reactive electrophiles in vivo. Mitigating toxicity/off-target effects associated with uncontrolled bolus exposure, G-REX tagged first-responding innate cysteines that bind electrophiles under true kcat/Km conditions. G-REX identified two allosteric ubiquitin-conjugating proteins-Ube2V1/Ube2V2-sharing a novel privileged-sensor-cysteine. This non-enzyme-catalyzed-PTM triggered responses specific to each protein. Thus, G-REX is an unbiased method to identify novel functional cysteines. Contrasting conventional active-site/off-active-site cysteine-modifications that regulate target activity, modification of Ube2V2 allosterically hyperactivated its enzymatically active binding-partner Ube2N, promoting K63-linked client ubiquitination and stimulating H2AX-dependent DNA damage response. This work establishes Ube2V2 as a Rosetta-stone bridging redox and ubiquitin codes to guard genome integrity.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
| | - Marcus J. C. Long
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
| | - Yiran Wang
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
| | - Sheng Zhang
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
| | - Yimon Aye
- Department of Chemistry & Chemical Biology and Proteomics and Mass Spectrometry
Facility, Institute of Biotechnology, Cornell
University, Ithaca, New York 14850, United States
- Department
of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
- E-mail:
| |
Collapse
|
129
|
Abstract
The role traditionally assigned to astrocytes in the pathogenesis of multiple sclerosis (MS) lesions has been the formation of the glial scar once inflammation has subsided. Astrocytes are now recognized to be early and highly active players during lesion formation and key for providing peripheral immune cells access to the central nervous system. Here, we review the role of astrocytes in the formation and evolution of MS lesions, including the recently described functional polarization of astrocytes, discuss prototypical pathways for astrocyte activation, and summarize mechanisms by which MS treatments affect astrocyte function.
Collapse
Affiliation(s)
- Gerald Ponath
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Calvin Park
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
130
|
Chen N, Liu J, Qiao Z, Liu Y, Yang Y, Jiang C, Wang X, Wang C. Chemical proteomic profiling of protein N-homocysteinylation with a thioester probe. Chem Sci 2018; 9:2826-2830. [PMID: 29732068 PMCID: PMC5914431 DOI: 10.1039/c8sc00221e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) refers to a medical condition of abnormally high level of homocysteine (Hcy) in blood (>15 μmol L-1) and has been clinically implicated with cardiovascular diseases and neurodegenerative disorders. Excessive Hcy can be converted to a reactive thioester intermediate, Hcy thiolactone (HTL), which selectively reacts with protein lysine residues ("N-homocysteinylation") and this non-enzymatic modification largely contributes to manifestations of HHcy. However, the proteome-wide detection of protein N-homocysteinylation remains a challenge to date. In this work, we report a chemoselective reaction to label and enrich N-homocysteinylation from complex proteome samples as inspired by native chemical ligation for protein synthesis. Alkynyl thioester probes are synthesized and the reaction is validated with small molecule and purified protein models successfully. We performed quantitative chemical proteomics to identify more than 800 N-homocysteinylated proteins as well as 304 N-homocysteinylated sites directly from HTL-treated HeLa cells. The chemical proteomics strategies will facilitate functional study of protein N-homocysteinylations in the HHcy-implicated diseases.
Collapse
Affiliation(s)
- Nan Chen
- Synthetic and Functional Biomolecules Center , Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China .
| | - Jinmin Liu
- Synthetic and Functional Biomolecules Center , Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China .
| | - Zeyu Qiao
- Synthetic and Functional Biomolecules Center , Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China .
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center , Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China .
| | - Yue Yang
- Department of Physiology and Pathophysiology , School of Basic Medical Sciences , Peking University , Beijing , 100191 , China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology , School of Basic Medical Sciences , Peking University , Beijing , 100191 , China
| | - Xian Wang
- Department of Physiology and Pathophysiology , School of Basic Medical Sciences , Peking University , Beijing , 100191 , China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center , Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China . .,Peking-Tsinghua Center for Life Sciences , Peking University , Beijing , 100871 , China
| |
Collapse
|
131
|
Mills EA, Ogrodnik MA, Plave A, Mao-Draayer Y. Emerging Understanding of the Mechanism of Action for Dimethyl Fumarate in the Treatment of Multiple Sclerosis. Front Neurol 2018; 9:5. [PMID: 29410647 PMCID: PMC5787128 DOI: 10.3389/fneur.2018.00005] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
Dimethyl fumarate (DMF) is an effective treatment option for relapsing-remitting multiple sclerosis (MS), but its therapeutic mechanism of action has not been fully elucidated. A better understanding of its mechanism will allow for the development of assays to monitor its clinical efficacy and safety in patients, as well as guide the development of the next generation of therapies for MS. In order to build the foundation for determining its mechanism, we reviewed the manner in which DMF alters lymphocyte subsets in MS patients, its impact on clinical efficacy and safety, as well as its molecular effects in cellular and animal models. DMF decreases absolute lymphocyte counts, but does not affect all subsets uniformly. CD8+ T-cells are the most profoundly affected, but reduction also occurs in the CD4+ population, particularly within the pro-inflammatory T-helper Th1 and Th17 subsets, creating a bias toward more anti-inflammatory Th2 and regulatory subsets. Similarly, B-lymphocyte, myeloid, and natural killer populations are also shifted toward a more anti-inflammatory state. In vitro and animal models demonstrate a role for DMF within the central nervous system (CNS) in promoting neuronal survival in an Nrf2 pathway-dependent manner. However, the impact of DMF directly within the CNS of MS patients remains largely unknown.
Collapse
Affiliation(s)
- Elizabeth A Mills
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Magdalena A Ogrodnik
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrew Plave
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
132
|
Long MC, Urul DA, Chawla S, Lin HY, Zhao Y, Haegele JA, Wang Y, Aye Y. Precision Electrophile Tagging in Caenorhabditis elegans. Biochemistry 2018; 57:216-220. [PMID: 28857552 PMCID: PMC5770885 DOI: 10.1021/acs.biochem.7b00642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/30/2017] [Indexed: 11/30/2022]
Abstract
Adduction of an electrophile to privileged sensor proteins and the resulting phenotypically dominant responses are increasingly appreciated as being essential for metazoan health. Functional similarities between the biological electrophiles and electrophilic pharmacophores commonly found in covalent drugs further fortify the translational relevance of these small-molecule signals. Genetically encodable or small-molecule-based fluorescent reporters and redox proteomics have revolutionized the observation and profiling of cellular redox states and electrophile-sensor proteins, respectively. However, precision mapping between specific redox-modified targets and specific responses has only recently begun to be addressed, and systems tractable to both genetic manipulation and on-target redox signaling in vivo remain largely limited. Here we engineer transgenic Caenorhabditis elegans expressing functional HaloTagged fusion proteins and use this system to develop a generalizable light-controlled approach to tagging a prototypical electrophile-sensor protein with native electrophiles in vivo. The method circumvents issues associated with low uptake/distribution and toxicity/promiscuity. Given the validated success of C. elegans in aging studies, this optimized platform offers a new lens with which to scrutinize how on-target electrophile signaling influences redox-dependent life span regulation.
Collapse
Affiliation(s)
- Marcus
J. C. Long
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Daniel A. Urul
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Shivansh Chawla
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Hong-Yu Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Yi Zhao
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Joseph A. Haegele
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Yiran Wang
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Yimon Aye
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Department
of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
133
|
Mrowietz U, Morrison PJ, Suhrkamp I, Kumanova M, Clement B. The Pharmacokinetics of Fumaric Acid Esters Reveal Their In Vivo Effects. Trends Pharmacol Sci 2018; 39:1-12. [DOI: 10.1016/j.tips.2017.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022]
|
134
|
Target Identification of Bioactive Covalently Acting Natural Products. Curr Top Microbiol Immunol 2018; 420:351-374. [PMID: 30105423 DOI: 10.1007/82_2018_121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are countless natural products that have been isolated from microbes, plants, and other living organisms that have been shown to possess therapeutic activities such as antimicrobial, anticancer, or anti-inflammatory effects. However, developing these bioactive natural products into drugs has remained challenging in part because of their difficulty in isolation, synthesis, mechanistic understanding, and off-target effects. Among the large pool of bioactive natural products lies classes of compounds that contain potential reactive electrophilic centers that can covalently react with nucleophilic amino acid hotspots on proteins and other biological molecules to modulate their biological action. Covalently acting natural products are more amenable to rapid target identification and mapping of specific druggable hotspots within proteins using activity-based protein profiling (ABPP)-based chemoproteomic strategies. In addition, the granular biochemical insights afforded by knowing specific sites of protein modifications of covalently acting natural products enable the pharmacological interrogation of these sites with more synthetically tractable covalently acting small molecules whose structures are more easily tuned. Both discovering binding pockets and targets hit by natural products and exploiting druggable modalities targeted by natural products with simpler molecules may overcome some of the challenges faced with translating natural products into drugs.
Collapse
|
135
|
Abstract
Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.
Collapse
|
136
|
Satoh T, Lipton S. Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate. F1000Res 2017; 6:2138. [PMID: 29263788 PMCID: PMC5730864 DOI: 10.12688/f1000research.12111.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 12/18/2022] Open
Abstract
Dimethyl fumarate (DMF) is an electrophilic compound previously called BG-12 and marketed under the name Tecfidera
®. It was approved in 2013 by the US Food and Drug Administration and the European Medicines Agency for the treatment of relapsing multiple sclerosis. One mechanism of action of DMF is stimulation of the nuclear factor erythroid 2-related factor 2 (NRF2) transcriptional pathway that induces anti-oxidant and anti-inflammatory phase II enzymes to prevent chronic neurodegeneration. However, electrophiles such as DMF also produce severe systemic side effects, in part due to non-specific S-alkylation of cysteine thiols and resulting depletion of glutathione. This mini-review presents the present status and future strategy for NRF2 activators designed to avoid these side effects. Two modes of chemical reaction leading to NRF2 activation are considered here. The first mode is S-alkylation (covalent reaction) of thiols in Kelch-like ECH-associated protein 1 (KEAP1), which interacts with NRF2. The second mechanism involves non-covalent pharmacological inhibition of protein-protein interactions, in particular domain-specific interaction between NRF2 and KEAP1 or other repressor proteins involved in this transcriptional pathway. There have been significant advances in drug development using both of these mechanisms that can potentially avoid the systemic side effects of electrophilic compounds. In the first case concerning covalent reaction with KEAP1, monomethyl fumarate and monoethyl fumarate appear to represent safer derivatives of DMF. In a second approach, pro-electrophilic drugs, such as carnosic acid from the herb
Rosmarinus officinalis, can be used as a safe pro-drug of an electrophilic compound. Concerning non-covalent activation of NRF2, drugs are being developed that interfere with the direct interaction of KEAP1-NRF2 or inhibit BTB domain and CNC homolog 1 (BACH1), which is a transcriptional repressor of the promoter where NRF2 binds.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Anti-Aging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Stuart Lipton
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.,Department of Neurosciences, University of California, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
137
|
Tyrakis PA, Yurkovich ME, Sciacovelli M, Papachristou EK, Bridges HR, Gaude E, Schreiner A, D'Santos C, Hirst J, Hernandez-Fernaud J, Springett R, Griffiths JR, Frezza C. Fumarate Hydratase Loss Causes Combined Respiratory Chain Defects. Cell Rep 2017; 21:1036-1047. [PMID: 29069586 PMCID: PMC5668630 DOI: 10.1016/j.celrep.2017.09.092] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 08/15/2017] [Accepted: 09/26/2017] [Indexed: 11/07/2022] Open
Abstract
Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid (TCA) cycle mutated in hereditary and sporadic cancers. Despite recent advances in understanding its role in tumorigenesis, the effects of FH loss on mitochondrial metabolism are still unclear. Here, we used mouse and human cell lines to assess mitochondrial function of FH-deficient cells. We found that human and mouse FH-deficient cells exhibit decreased respiration, accompanied by a varying degree of dysfunction of respiratory chain (RC) complex I and II. Moreover, we show that fumarate induces succination of key components of the iron-sulfur cluster biogenesis family of proteins, leading to defects in the biogenesis of iron-sulfur clusters that affect complex I function. We also demonstrate that suppression of complex II activity is caused by product inhibition due to fumarate accumulation. Overall, our work provides evidence that the loss of a single TCA cycle enzyme is sufficient to cause combined RC activity dysfunction.
Collapse
Affiliation(s)
- Petros A Tyrakis
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Marie E Yurkovich
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Box 197, Cambridge CB2 0XZ, UK
| | - Evangelia K Papachristou
- Proteomics Core Facility, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Hannah R Bridges
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edoardo Gaude
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Box 197, Cambridge CB2 0XZ, UK
| | | | - Clive D'Santos
- Proteomics Core Facility, Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Juan Hernandez-Fernaud
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Roger Springett
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Box 197, Cambridge CB2 0XZ, UK.
| |
Collapse
|
138
|
Sun R, Shi F, Liu K, Fu L, Tian C, Yang Y, Tallman KA, Porter NA, Yang J. A Chemoproteomic Platform To Assess Bioactivation Potential of Drugs. Chem Res Toxicol 2017; 30:1797-1803. [DOI: 10.1021/acs.chemrestox.7b00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui Sun
- State
Key Laboratory of Proteomics, National Center for Protein Sciences,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Disease, Center for New Drug Safety Evaluation
and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Fuguo Shi
- Department
of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry
of Education and Joint International Research Laboratory of Ethnomedicine
of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Keke Liu
- State
Key Laboratory of Proteomics, National Center for Protein Sciences,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Ling Fu
- State
Key Laboratory of Proteomics, National Center for Protein Sciences,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Caiping Tian
- State
Key Laboratory of Proteomics, National Center for Protein Sciences,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yong Yang
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Disease, Center for New Drug Safety Evaluation
and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Keri A. Tallman
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ned A. Porter
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jing Yang
- State
Key Laboratory of Proteomics, National Center for Protein Sciences,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| |
Collapse
|
139
|
Grossman EA, Ward CC, Spradlin JN, Bateman LA, Huffman TR, Miyamoto DK, Kleinman JI, Nomura DK. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products. Cell Chem Biol 2017; 24:1368-1376.e4. [PMID: 28919038 DOI: 10.1016/j.chembiol.2017.08.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 01/30/2023]
Abstract
Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy.
Collapse
Affiliation(s)
- Elizabeth A Grossman
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Carl C Ward
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Jessica N Spradlin
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Leslie A Bateman
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Tucker R Huffman
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - David K Miyamoto
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Jordan I Kleinman
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
140
|
Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, Cravatt BF. Global profiling of lysine reactivity and ligandability in the human proteome. Nat Chem 2017; 9:1181-1190. [PMID: 29168484 DOI: 10.1038/nchem.2826] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022]
Abstract
Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.
Collapse
Affiliation(s)
- Stephan M Hacker
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92307, USA
| | - Keriann M Backus
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92307, USA
| | - Michael R Lazear
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92307, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92307, USA
| | - Bruno E Correia
- Laboratory of Protein Design & Immunoengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92307, USA
| |
Collapse
|
141
|
Long MJ, Lin HY, Parvez S, Zhao Y, Poganik JR, Huang P, Aye Y. β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling. Cell Chem Biol 2017; 24:944-957.e7. [PMID: 28736239 DOI: 10.1016/j.chembiol.2017.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/16/2017] [Accepted: 06/17/2017] [Indexed: 12/22/2022]
Abstract
Simultaneous hyperactivation of Wnt and antioxidant response (AR) are often observed during oncogenesis. However, it remains unclear how the β-catenin-driven Wnt and the Nrf2-driven AR mutually regulate each other. The situation is compounded because many players in these two pathways are redox sensors, rendering bolus redox signal-dosing methods uninformative. Herein we examine the ramifications of single-protein target-specific AR upregulation in various knockdown lines. Our data document that Nrf2/AR strongly inhibits β-catenin/Wnt. The magnitude and mechanism of this negative regulation are dependent on the direct interaction between β-catenin N terminus and β-TrCP1 (an antagonist of both Nrf2 and β-catenin), and independent of binding between Nrf2 and β-TrCP1. Intriguingly, β-catenin positively regulates AR. Because AR is a negative regulator of Wnt regardless of β-catenin N terminus, this switch of function is likely sufficient to establish a new Wnt/AR equilibrium during tumorigenesis.
Collapse
Affiliation(s)
- Marcus John Long
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hong-Yu Lin
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Saba Parvez
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yi Zhao
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jesse Richard Poganik
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul Huang
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yimon Aye
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
142
|
Abstract
This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing-which enables rapid reaction with an endogenous signaling electrophile-is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing.
Collapse
Affiliation(s)
| | - Yimon Aye
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
143
|
Galloway DA, Williams JB, Moore CS. Effects of fumarates on inflammatory human astrocyte responses and oligodendrocyte differentiation. Ann Clin Transl Neurol 2017; 4:381-391. [PMID: 28589165 PMCID: PMC5454401 DOI: 10.1002/acn3.414] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/30/2022] Open
Abstract
Objective Dimethyl fumarate (DMF) is a fumaric acid ester approved for the treatment of relapsing‐remitting multiple sclerosis (RRMS). In both the brain and periphery, DMF and its metabolite monomethyl fumarate (MMF) exert anti‐inflammatory and antioxidant effects. Our aim was to compare the effects of DMF and MMF on inflammatory and antioxidant pathways within astrocytes, a critical supporting glial cell in the central nervous system (CNS). Direct effects of fumarates on neural progenitor cell (NPC) differentiation toward the oligodendrocyte lineage were also assessed. Methods Primary astrocyte cultures were derived from both murine and human brains. Following pretreatment with MMF, DMF, or vehicle, astrocytes were stimulated with IL‐1β for 24 h; gene and microRNA expression were measured by qPCR. Cytokine production and reactive oxygen species (ROS) generation were also measured. NPCs were differentiated into the oligodendrocyte lineage in the presence of fumarates and immunostained using early oligodendrocyte markers. Results In both murine and human astrocytes, DMF, but not MMF, significantly reduced secretion of IL‐6, CXCL10, and CCL2; neither fumarate promoted a robust increase in antioxidant gene expression, although both MMF and DMF prevented intracellular ROS production. Pretreatment with fumarates reduced microRNAs ‐146a and ‐155 upon stimulation. In NPC cultures, DMF increased the number of O4+ and NG2+ cells. Interpretation These results suggest that DMF, and to a lesser extent MMF, mediates the anti‐inflammatory effects within astrocytes. This is supported by recent observations that in the inflamed CNS, DMF may be the active compound mediating the anti‐inflammatory effects independent from altered antioxidant gene expression.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of Bio Medical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland Canada
| | - John B Williams
- Division of Bio Medical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland Canada
| | - Craig S Moore
- Division of Bio Medical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland Canada
| |
Collapse
|
144
|
Smith MD, Martin KA, Calabresi PA, Bhargava P. Dimethyl fumarate alters B-cell memory and cytokine production in MS patients. Ann Clin Transl Neurol 2017; 4:351-355. [PMID: 28491903 PMCID: PMC5420807 DOI: 10.1002/acn3.411] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
We evaluated the effect of dimethyl fumarate (DMF) treatment on B-cell memory and cytokine production in 18 patients with relapsing remitting multiple sclerosis (RRMS) using peripheral blood mononuclear cells obtained prior to and at 6 months post-DMF initiation. We noted a decline in the absolute B-cell number with DMF treatment, with a preferential depletion of memory B cells and a concurrent increase in naïve B cells. We noted significant reductions in GM-CSF, TNF-α, and IL-6 producing B cells with DMF treatment. These effects on the B-cell compartment may underlie the beneficial effects of DMF in RRMS.
Collapse
Affiliation(s)
- Matthew D. Smith
- Department of NeurologyJohns Hopkins UniversityBaltimoreMaryland
| | - Kyle A. Martin
- Department of NeurologyJohns Hopkins UniversityBaltimoreMaryland
| | | | - Pavan Bhargava
- Department of NeurologyJohns Hopkins UniversityBaltimoreMaryland
| |
Collapse
|
145
|
Zaro BW, Whitby LR, Lum KM, Cravatt BF. Metabolically Labile Fumarate Esters Impart Kinetic Selectivity to Irreversible Inhibitors. J Am Chem Soc 2016; 138:15841-15844. [PMID: 27960302 DOI: 10.1021/jacs.6b10589] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrophilic small molecules are an important class of chemical probes and drugs that produce biological effects by irreversibly modifying proteins. Examples of electrophilic drugs include covalent kinase inhibitors that are used to treat cancer and the multiple sclerosis drug dimethyl fumarate. Optimized covalent drugs typically inactivate their protein targets rapidly in cells, but ensuing time-dependent, off-target protein modification can erode selectivity and diminish the utility of reactive small molecules as chemical probes and therapeutics. Here, we describe an approach to confer kinetic selectivity to electrophilic drugs. We show that an analogue of the covalent Bruton's tyrosine kinase (BTK) inhibitor Ibrutinib bearing a fumarate ester electrophile is vulnerable to enzymatic metabolism on a time-scale that preserves rapid and sustained BTK inhibition, while thwarting more slowly accumulating off-target reactivity in cell and animal models. These findings demonstrate that metabolically labile electrophilic groups can endow covalent drugs with kinetic selectivity to enable perturbation of proteins and biochemical pathways with greater precision.
Collapse
Affiliation(s)
- Balyn W Zaro
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Landon R Whitby
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kenneth M Lum
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
146
|
Cravatt BF, Blewett MM, Teijaro JR, VanHook AM. Science Signaling
Podcast for 13 September 2016: DMF and the immune system. Sci Signal 2016. [DOI: 10.1126/scisignal.aai8956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Covalent modification of a kinase by the immunosuppressive drug DMF inhibits T cell activation.
Collapse
Affiliation(s)
- Benjamin F. Cravatt
- The Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megan M. Blewett
- The Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R. Teijaro
- The Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- The Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| |
Collapse
|