101
|
Hartnell F, Brown A, Capone S, Kopycinski J, Bliss C, Makvandi-Nejad S, Swadling L, Ghaffari E, Cicconi P, Del Sorbo M, Sbrocchi R, Esposito I, Vassilev V, Marriott P, Gardiner CM, Bannan C, Bergin C, Hoffmann M, Turner B, Nicosia A, Folgori A, Hanke T, Barnes E, Dorrell L. A Novel Vaccine Strategy Employing Serologically Different Chimpanzee Adenoviral Vectors for the Prevention of HIV-1 and HCV Coinfection. Front Immunol 2019; 9:3175. [PMID: 30713538 PMCID: PMC6346592 DOI: 10.3389/fimmu.2018.03175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Nearly 3 million people worldwide are coinfected with HIV and HCV. Affordable strategies for prevention are needed. We developed a novel vaccination regimen involving replication-defective and serologically distinct chimpanzee adenovirus (ChAd3, ChAd63) vector priming followed by modified vaccinia Ankara (MVA) boosts, for simultaneous delivery of HCV non-structural (NSmut) and HIV-1 conserved (HIVconsv) region immunogens. Methods: We conducted a phase I trial in which 33 healthy volunteers were sequentially enrolled and vaccinated via the intramuscular route as follows: 9 received ChAd3-NSmut [2.5 × 1010 vp] and MVA-NSmut [2 × 108 pfu] at weeks 0 and 8, respectively; 8 received ChAdV63.HIVconsv [5 × 1010 vp] and MVA.HIVconsv [2 × 108 pfu] at the same interval; 16 were co-primed with ChAd3-NSmut [2.5 × 1010 vp] and ChAdV63.HIVconsv [5 × 1010 vp] followed at week 8 by MVA-NSmut and MVA.HIVconsv [both 1 × 108 pfu]. Immunogenicity was assessed using peptide pools in ex vivo ELISpot and intracellular cytokine assays. Vaccine-induced whole blood transcriptome changes were assessed by microarray analysis. Results: All vaccines were well tolerated and no vaccine-related serious adverse events occurred. Co-administration of the prime-boost vaccine regimens induced high magnitude and broad T cell responses that were similar to those observed following immunization with either regimen alone. Median (interquartile range, IQR) peak responses to NSmut were 3,480 (2,728–4,464) and 3,405 (2,307–7,804) spot-forming cells (SFC)/106 PBMC for single and combined HCV vaccinations, respectively (p = 0.8). Median (IQR) peak responses to HIVconsv were 1,305 (1,095–4,967) and 1,005 (169–2,482) SFC/106 PBMC for single and combined HIV-1 vaccinations, respectively (p = 0.5). Responses were maintained above baseline to 34 weeks post-vaccination. Intracellular cytokine analysis indicated that the responding populations comprised polyfunctional CD4+ and CD8+ T cells. Canonical pathway analysis showed that in the single and combined vaccination groups, pathways associated with antiviral and innate immune responses were enriched for upregulated interferon-stimulated genes 24 h after priming and boosting vaccinations. Conclusions: Serologically distinct adenoviral vectors encoding HCV and HIV-1 immunogens can be safely co-administered without reducing the immunogenicity of either vaccine. This provides a novel strategy for targeting these viruses simultaneously and for other pathogens that affect the same populations. Clinical trial registration:https://clinicaltrials.gov, identifier: NCT02362217
Collapse
Affiliation(s)
- Felicity Hartnell
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Carly Bliss
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emma Ghaffari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paola Cicconi
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Ilaria Esposito
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Paula Marriott
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | | | | | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Bethany Turner
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alfredo Nicosia
- Keires AG, Basel, Switzerland.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | | | - Tomáš Hanke
- Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Centre, Headington, United Kingdom
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Centre, Headington, United Kingdom
| |
Collapse
|
102
|
Bailey JR, Barnes E, Cox AL. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019; 156:418-430. [PMID: 30268785 PMCID: PMC6340767 DOI: 10.1053/j.gastro.2018.08.060] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022]
Abstract
Risk factors for hepatitis C virus (HCV) infection vary, and there were an estimated 1.75 million new cases worldwide in 2015. The World Health Organization aims for a 90% reduction in new HCV infections by 2030. An HCV vaccine would prevent transmission, regardless of risk factors, and significantly reduce the global burden of HCV-associated disease. Barriers to development include virus diversity, limited models for testing vaccines, and our incomplete understanding of protective immune responses. Although highly effective vaccines could prevent infection altogether, immune responses that increase the rate of HCV clearance and prevent chronic infection may be sufficient to reduce disease burden. Adjuvant envelope or core protein and virus-vectored nonstructural antigen vaccines have been tested in healthy volunteers who are not at risk for HCV infection; viral vectors encoding nonstructural proteins are the only vaccine strategy to be tested in at-risk individuals. Despite development challenges, a prophylactic vaccine is necessary for global control of HCV.
Collapse
Affiliation(s)
- Justin R. Bailey
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the Oxford NIHR Biomedical Research Centre, Oxford University, UK
| | - Andrea L. Cox
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland,Reprint requests Address requests for reprints to: Andrea L. Cox, MD, PhD, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 551 Rangos Building, 855 N Wolfe Street, Baltimore, Maryland 21205. fax: (443)769-1221.
| |
Collapse
|
103
|
Jia W, Channappanavar R, Zhang C, Li M, Zhou H, Zhang S, Zhou P, Xu J, Shan S, Shi X, Wang X, Zhao J, Zhou D, Perlman S, Zhang L. Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection. Emerg Microbes Infect 2019; 8:760-772. [PMID: 31130102 PMCID: PMC6542157 DOI: 10.1080/22221751.2019.1620083] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 01/19/2023]
Abstract
The recently identified Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe and fatal acute respiratory illness in humans. However, no approved prophylactic and therapeutic interventions are currently available. The MERS-CoV envelope spike protein serves as a crucial target for neutralizing antibodies and vaccine development, as it plays a critical role in mediating viral entry through interactions with the cellular receptor, dipeptidyl peptidase 4 (DPP4). Here, we constructed a recombinant rare serotype of the chimpanzee adenovirus 68 (AdC68) that expresses full-length MERS-CoV S protein (AdC68-S). Single intranasal immunization with AdC68-S induced robust and sustained neutralizing antibody and T cell responses in BALB/c mice. In a human DPP4 knock-in (hDPP4-KI) mouse model, it completely protected against lethal challenge with a mouse-adapted MERS-CoV (MERS-CoV-MA). Passive transfer of immune sera to naïve hDPP4-KI mice also provided survival advantages from lethal MERS-CoV-MA challenge. Analysis of sera absorption and isolated monoclonal antibodies from immunized mice demonstrated that the potent and broad neutralizing activity was largely attributed to antibodies targeting the receptor binding domain (RBD) of the S protein. These results show that AdC68-S can induce protective immune responses in mice and represent a promising candidate for further development against MERS-CoV infection in both dromedaries and humans.
Collapse
MESH Headings
- Adenoviridae/genetics
- Administration, Intranasal
- Animals
- Animals, Genetically Modified
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Coronavirus Infections/prevention & control
- Drug Carriers/administration & dosage
- Humans
- Immunization, Passive
- Mice, Inbred BALB C
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Survival Analysis
- T-Lymphocytes/immunology
- Treatment Outcome
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Wenxu Jia
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Rudragouda Channappanavar
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, USA
- Department of Acute and Tertiary Care, and the Institute for the Study of Host–Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chao Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Mingxi Li
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Haixia Zhou
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Shuyuan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Panpan Zhou
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jiuyang Xu
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Sisi Shan
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Dongming Zhou
- Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
104
|
Ashraf MU, Iman K, Khalid MF, Salman HM, Shafi T, Rafi M, Javaid N, Hussain R, Ahmad F, Shahzad-Ul-Hussan S, Mirza S, Shafiq M, Afzal S, Hamera S, Anwar S, Qazi R, Idrees M, Qureshi SA, Chaudhary SU. Evolution of efficacious pangenotypic hepatitis C virus therapies. Med Res Rev 2018; 39:1091-1136. [PMID: 30506705 DOI: 10.1002/med.21554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C compromises the quality of life of more than 350 million individuals worldwide. Over the last decade, therapeutic regimens for treating hepatitis C virus (HCV) infections have undergone rapid advancements. Initially, structure-based drug design was used to develop molecules that inhibit viral enzymes. Subsequently, establishment of cell-based replicon systems enabled investigations into various stages of HCV life cycle including its entry, replication, translation, and assembly, as well as role of host proteins. Collectively, these approaches have facilitated identification of important molecules that are deemed essential for HCV life cycle. The expanded set of putative virus and host-encoded targets has brought us one step closer to developing robust strategies for efficacious, pangenotypic, and well-tolerated medicines against HCV. Herein, we provide an overview of the development of various classes of virus and host-directed therapies that are currently in use along with others that are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Talha Shafi
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momal Rafi
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Nida Javaid
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rashid Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | | | - Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shafiq
- Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Hamera
- Department of Plant Genetics, Institute of Life Sciences, University of Rostock, Germany
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Idrees
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Sohail A Qureshi
- Institute of Integrative Biosciences, CECOS-University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
105
|
Leoni MC, Ustianowski A, Farooq H, Arends JE. HIV, HCV and HBV: A Review of Parallels and Differences. Infect Dis Ther 2018; 7:407-419. [PMID: 30182282 PMCID: PMC6249183 DOI: 10.1007/s40121-018-0210-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
Elimination of the three blood-borne viruses-human immunodeficiency virus (HIV), hepatitis B (HBV) and hepatitis C (HCV)-as public health issues may be plausible in the near future. Spectacular advances have been made with the introduction of highly effective antiviral agents into clinical practice, and prevention strategies are available for all three infections. Effective disease control, laid out by WHO global strategies, is currently feasible for all three viruses. However, for worldwide elimination of these viruses, effective vaccines are required that are currently only available for HBV. In this review differences and parallels among HIV, HCV and HBV will be discussed with a focus on virologic and therapeutic issues, and prospects for the future of HBV will be presented.
Collapse
Affiliation(s)
- Maria C Leoni
- Department of Internal Medicine, Section Infectious Diseases, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- Infectious Diseases Department, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Andrew Ustianowski
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Hamzah Farooq
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK
| | - Joop E Arends
- Department of Internal Medicine, Section Infectious Diseases, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
106
|
Luxenburger H, Neumann-Haefelin C, Thimme R, Boettler T. HCV-Specific T Cell Responses During and After Chronic HCV Infection. Viruses 2018; 10:v10110645. [PMID: 30453612 PMCID: PMC6265781 DOI: 10.3390/v10110645] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV)-specific T cell responses are closely linked to the clinical course of infection. While T cell responses in self-limiting infection are typically broad and multi-specific, they display several distinct features of functional impairment in the chronic phase. Moreover, HCV readily adapts to immune pressure by developing escape mutations within epitopes targeted by T cells. Much of our current knowledge on HCV-specific T cell responses has been gathered under the assumption that this might eventually pave the way for a therapeutic vaccine. However, with the development of highly efficient direct acting antivirals (DAAs), there is less interest in the development of a therapeutic vaccine for HCV and the scope of T cell research has shifted. Indeed, the possibility to rapidly eradicate an antigen that has persisted over years or decades, and has led to T cell exhaustion and dysfunction, provides the unique opportunity to study potential T cell recovery after antigen cessation in a human in vivo setting. Findings from such studies not only improve our basic understanding of T cell immunity but may also advance immunotherapeutic approaches in cancer or chronic hepatitis B and D infection. Moreover, in order to edge closer to the WHO goal of HCV elimination by 2030, a prophylactic vaccine is clearly required. Thus, in this review, we will summarize our current knowledge on HCV-specific T cell responses and also provide an outlook on the open questions that require answers in this field.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Robert Thimme
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Tobias Boettler
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
107
|
Law JLM, Logan M, Landi A, Tyrrell DL, Houghton M. Progress toward approval of an HCV vaccine. CANADIAN LIVER JOURNAL 2018; 1:130-138. [DOI: 10.3138/canlivj.2018.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022]
Abstract
New effective drugs to treat hepatitis C (HCV) promise to cure nearly all patients, but relying solely on antivirals without an effective vaccine has been ineffective in eliminating all other infectious diseases. A prophylactic HCV vaccine needs to be developed. Along with increased screening and drug coverage, an effective vaccine could make it possible to meet the World Health Organization’s target to eliminate HCV by 2030. On the basis of recent knowledge of immune correlates of protection combined with the demonstrated immunogenicity and protective animal efficacies of various HCV vaccine candidates, there is a possibility that a prophylactic HCV vaccine is on the horizon. This article summarizes the current status of a prophylactic HCV vaccine. Elicitation of cross-neutralizing antibodies and broad cellular immune responses are likely needed to overcome this highly diverse virus.
Collapse
Affiliation(s)
- John LM Law
- 1Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta
| | - Mike Logan
- 1Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta
| | - Amir Landi
- 1Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta
| | - D Lorne Tyrrell
- 1Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta
| | - Michael Houghton
- 1Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta
| |
Collapse
|
108
|
Removal of the C6 Vaccinia Virus Interferon-β Inhibitor in the Hepatitis C Vaccine Candidate MVA-HCV Elicited in Mice High Immunogenicity in Spite of Reduced Host Gene Expression. Viruses 2018; 10:v10080414. [PMID: 30096846 PMCID: PMC6116028 DOI: 10.3390/v10080414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) represents a major global health problem for which a vaccine is not available. Modified vaccinia virus Ankara (MVA)-HCV is a unique HCV vaccine candidate based in the modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV genotype 1a that elicits CD8⁺ T-cell responses in mice. With the aim to improve the immune response of MVA-HCV and because of the importance of interferon (IFN) in HCV infection, we deleted in MVA-HCV the vaccinia virus (VACV) C6L gene, encoding an inhibitor of IFN-β that prevents activation of the interferon regulatory factors 3 and 7 (IRF3 and IRF7). The resulting vaccine candidate (MVA-HCV ΔC6L) expresses all HCV antigens and deletion of C6L had no effect on viral growth in permissive chicken cells. In human monocyte-derived dendritic cells, infection with MVA-HCV ΔC6L triggered severe down-regulation of IFN-β, IFN-β-induced genes, and cytokines in a manner similar to MVA-HCV, as defined by real-time polymerase chain reaction (PCR) and microarray analysis. In infected mice, both vectors had a similar profile of recruited immune cells and induced comparable levels of adaptive and memory HCV-specific CD8⁺ T-cells, mainly against p7 + NS2 and NS3 HCV proteins, with a T cell effector memory (TEM) phenotype. Furthermore, antibodies against E2 were also induced. Overall, our findings showed that while these vectors had a profound inhibitory effect on gene expression of the host, they strongly elicited CD8⁺ T cell and humoral responses against HCV antigens and to the virus vector. These observations add support to the consideration of these vectors as potential vaccine candidates against HCV.
Collapse
|
109
|
Levander S, Holmström F, Frelin L, Ahlén G, Rupp D, Long G, Bartenschlager R, Sällberg M. Immune-mediated effects targeting hepatitis C virus in a syngeneic replicon cell transplantation mouse model. Gut 2018; 67. [PMID: 28646094 PMCID: PMC6204962 DOI: 10.1136/gutjnl-2016-313579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE HCV is characterised by its ability to establish chronic infection in hepatocytes and to replicate in the presence of an inflammation. We mimicked this situation in vivo in immune-competent mice by syngeneic transplantation of HCV replicon-containing mouse hepatoma cells. DESIGN A total of 5 million H-2b positive Hep56.1D cells, carrying a subgenomic genotype (gt) 2a replicon (HCV replicon cells) or stably expressing comparable levels of the HCV NS3/4A protease/helicase complex (NS3/4A hepatoma cells), were injected subcutaneously into syngeneic H-2b-restricted mice. Kinetics of tumour growth, HCV RNA replication levels and HCV-specific immune responses were monitored. For immune monitoring, new H-2b-restricted cytotoxic T cell epitopes within the gt2a NS3/4A region were mapped. Immune mice were generated by DNA-based vaccination. RESULTS HCV replicon and NS3/4A hepatoma cells generated solid tumours in vivo. Similar to what is seen in human HCV infection did HCV RNA replicate in the presence of inflammation. NS3/4A-specific CD8+ T cells seemed to transiently reduce HCV RNA levels. Both CD4+ and CD8+ T cells were required for protection against tumour growth. Vaccine-induced NS3/4A(gt2a)-specific T cells protected against HCV replicon tumours in wild-type, but not in HCV NS3/4A(gt1a)-transgenic mice with dysfunctional HCV-specific T cells. Importantly, as in human HCV infection, HCV replicon cells neither primed nor boosted a strong NS3/4A-specific T cell response. CONCLUSION Syngeneic transplantation of mouse HCV replicon cells into immune-competent animals mirrors many in vivo events in humans. This system is versatile and can be applied to any genetically modified H-2b-restricted mouse strain.
Collapse
Affiliation(s)
- Sepideh Levander
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Daniel Rupp
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany,Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Gang Long
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany,Unit of Virus Assembly and Host, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany,German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany,Division of Virus-AssociatedCarcinogenesis, German Cancer Research Center, Heidelberg, germany
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden,Karolinska University Laboratory, Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
110
|
Hagedorn C, Kreppel F. Capsid Engineering of Adenovirus Vectors: Overcoming Early Vector-Host Interactions for Therapy. Hum Gene Ther 2018; 28:820-832. [PMID: 28854810 DOI: 10.1089/hum.2017.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenovirus-based vectors comprise the most frequently used vector type in clinical studies to date. Both intense lab research and insights from the clinical trials reveal the importance of a comprehensive understanding of vector-host interactions. Especially for systemic intravenous adenovirus vector delivery, it is paramount to develop safe and efficacious vectors. Very early vector-host interactions that take place in blood long before the first cell is being transduced are phenomena triggered by the surface, shape, and size of the adenovirus vector particles. Not surprisingly, a multitude of different technologies ranging from genetics to chemistry has been developed to alter the adenovirus vector surface. In this review, we discuss the most important technologies and evaluate them for their suitability to overcome hurdles imposed by early vector-host interactions.
Collapse
Affiliation(s)
- Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| |
Collapse
|
111
|
|
112
|
Guo J, Mondal M, Zhou D. Development of novel vaccine vectors: Chimpanzee adenoviral vectors. Hum Vaccin Immunother 2018; 14:1679-1685. [PMID: 29300685 PMCID: PMC6067905 DOI: 10.1080/21645515.2017.1419108] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022] Open
Abstract
Adenoviral vector has been employed as one of the most efficient means against infectious diseases and cancer. It can be genetically modified and armed with foreign antigens to elicit specific antibody responses and T cell responses in hosts as well as engineered to induce apoptosis in cancer cells. The chimpanzee adenovirus-based vector is one kind of novel vaccine carriers whose unique features and non-reactivity to pre-existing human adenovirus neutralizing antibodies makes it an outstanding candidate for vaccine research and development. Here, we review the different strategies for constructing chimpanzee adenoviral vectors and their applications in recent clinical trials and also discuss the oncolytic virotherapy and immunotherapy based on chimpanzee adenoviral vectors.
Collapse
Affiliation(s)
- Jingao Guo
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Moumita Mondal
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
113
|
Shoukry NH. Hepatitis C Vaccines, Antibodies, and T Cells. Front Immunol 2018; 9:1480. [PMID: 30002657 PMCID: PMC6031729 DOI: 10.3389/fimmu.2018.01480] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
The development of vaccines that protect against persistent hepatitis C virus (HCV) infection remain a public health priority. The broad use of highly effective direct-acting antivirals (DAAs) is unlikely to achieve HCV elimination without vaccines that can limit viral transmission. Two vaccines targeting either the antibody or the T cell response are currently in preclinical or clinical trials. Next-generation vaccines will likely involve a combination of these two strategies. This review summarizes the state of knowledge about the immune protective role of HCV-specific antibodies and T cells and the current vaccine strategies. In addition, it discusses the potential efficacy of vaccination in DAA-cured individuals. Finally, it summarizes the challenges to vaccine development and the collaborative efforts required to overcome them.
Collapse
Affiliation(s)
- Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
114
|
Young KG, Haq K, MacLean S, Dudani R, Elahi SM, Gilbert R, Weeratna RD, Krishnan L. Development of a recombinant murine tumour model using hepatoma cells expressing hepatitis C virus nonstructural antigens. J Viral Hepat 2018; 25:649-660. [PMID: 29316037 DOI: 10.1111/jvh.12856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) chronically infects 2%-3% of the world's population, causing liver disease and cancer with prolonged infection. The narrow host range of the virus, being restricted largely to human hepatocytes, has made the development of relevant models to evaluate the efficacy of vaccines a challenge. We have developed a novel approach to accomplish this by generating a murine hepatoma cell line stably expressing nonstructural HCV antigens which can be used in vitro or in vivo to test HCV vaccine efficacies. These HCV-recombinant hepatoma cells formed large solid-mass tumours when implanted into syngeneic mice, allowing us to test candidate HCV vaccines to demonstrate the development of an HCV-specific immune response that limited tumour growth. Using this model, we tested the therapeutic potential of recombinant anti-HCV-specific vaccines based on two fundamentally different attenuated pathogen vaccine systems-attenuated Salmonella and recombinant adenoviral vector based vaccine. While attenuated Salmonella that secreted HCV antigens limited growth of the HCV-recombinant tumours when used in a therapeutic vaccination trial, replication-competent but noninfectious adenovirus expressing nonstructural HCV antigens showed overall greater survival and reduced weight loss compared to non-replicating nondisseminating adenovirus. Our results demonstrate a model with anti-tumour responses to HCV nonstructural (NS) protein antigens and suggest that recombinant vaccine vectors should be explored as a therapeutic strategy for controlling HCV and HCV-associated cancers.
Collapse
Affiliation(s)
- K G Young
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - K Haq
- National Research Council Canada, Ottawa, ON, Canada
| | - S MacLean
- National Research Council Canada, Ottawa, ON, Canada
| | - R Dudani
- National Research Council Canada, Ottawa, ON, Canada
| | - S M Elahi
- National Research Council Canada, Montréal, QC, Canada
| | - R Gilbert
- National Research Council Canada, Montréal, QC, Canada
| | - R D Weeratna
- National Research Council Canada, Ottawa, ON, Canada
| | - L Krishnan
- National Research Council Canada, Ottawa, ON, Canada
| |
Collapse
|
115
|
Abstract
Memory inflation, as a term, has been used for 15 years now to describe the longitudinal development of stable, expanded CD8+ T memory pools with a distinct phenotype and functional profile which emerge in specific infection and vaccine settings. These settings have in common the persistence of antigen, especially cytomegalovirus infection but also more recently adenoviral vector vaccination. However, in contrast to chronic infections which lead to "exhaustion" the repeated antigen encounters experienced by CD8+ T cells lead to development of a robust T-cell population structure which maintains functionality and size. In this review, I will discuss how the ideas around this form of memory have evolved over time and some new models which can help explain how these populations are induced and sustained. These models are relevant to immunity against persistent viruses, to novel vaccine strategies and to concepts about aging.
Collapse
Affiliation(s)
- Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology UnitUniversity of OxfordOxfordUK
| |
Collapse
|
116
|
Gordon CL, Lee LN, Swadling L, Hutchings C, Zinser M, Highton AJ, Capone S, Folgori A, Barnes E, Klenerman P. Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8 + T Cells by Persistent Viruses and Vaccines. Cell Rep 2018; 23:768-782. [PMID: 29669283 PMCID: PMC5917822 DOI: 10.1016/j.celrep.2018.03.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The induction and maintenance of T cell memory is critical to the success of vaccines. A recently described subset of memory CD8+ T cells defined by intermediate expression of the chemokine receptor CX3CR1 was shown to have self-renewal, proliferative, and tissue-surveillance properties relevant to vaccine-induced memory. We tracked these cells when memory is sustained at high levels: memory inflation induced by cytomegalovirus (CMV) and adenovirus-vectored vaccines. In mice, both CMV and vaccine-induced inflationary T cells showed sustained high levels of CX3R1int cells exhibiting an effector-memory phenotype, characteristic of inflationary pools, in early memory. In humans, CX3CR1int CD8+ T cells were strongly induced following adenovirus-vectored vaccination for hepatitis C virus (HCV) (ChAd3-NSmut) and during natural CMV infection and were associated with a memory phenotype similar to that in mice. These data indicate that CX3CR1int cells form an important component of the memory pool in response to persistent viruses and vaccines in both mice and humans.
Collapse
Affiliation(s)
- Claire Louse Gordon
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Leo Swadling
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Madeleine Zinser
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Andrew John Highton
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Stefania Capone
- Reithera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Antonella Folgori
- Reithera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK.
| |
Collapse
|
117
|
Hofmann M, Wieland D, Pircher H, Thimme R. Memory vs memory-like: The different facets of CD8+T-cell memory in HCV infection. Immunol Rev 2018; 283:232-237. [DOI: 10.1111/imr.12642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Maike Hofmann
- Department of Medicine II; University Hospital Freiburg; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Dominik Wieland
- Department of Medicine II; University Hospital Freiburg; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Hanspeter Pircher
- Institute for Immunology; Medical Center; Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Robert Thimme
- Department of Medicine II; University Hospital Freiburg; Faculty of Medicine; University of Freiburg; Freiburg Germany
| |
Collapse
|
118
|
Induction of Genotype Cross-Reactive, Hepatitis C Virus-Specific, Cell-Mediated Immunity in DNA-Vaccinated Mice. J Virol 2018; 92:JVI.02133-17. [PMID: 29437963 DOI: 10.1128/jvi.02133-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
A universal hepatitis C virus (HCV) vaccine should elicit multiantigenic, multigenotypic responses, which are more likely to protect against challenge with the range of genotypes and subtypes circulating in the community. A vaccine cocktail and vaccines encoding consensus HCV sequences are attractive approaches to achieve this goal. Consequently, in a series of mouse vaccination studies, we compared the immunogenicity of a DNA vaccine encoding a consensus HCV nonstructural 5B (NS5B) protein to that of a cocktail of DNA plasmids encoding the genotype 1b (Gt1b) and Gt3a NS5B proteins. To complement this study, we assessed responses to a multiantigenic cocktail regimen by comparing a DNA vaccine cocktail encoding Gt1b and Gt3a NS3, NS4, and NS5B proteins to a single-genotype NS3/4/5B DNA vaccine. To thoroughly evaluate in vivo cytotoxic T lymphocyte (CTL) and T helper (Th) cell responses against Gt1b and Gt3a HCV peptide-pulsed target cells, we exploited a novel fluorescent-target array (FTA). FTA and enzyme-linked immunosorbent spot (ELISpot) analyses collectively indicated that the cocktail regimens elicited higher responses to Gt1b and Gt3a NS5B proteins than those with the consensus vaccine, while the multiantigenic DNA cocktail significantly increased the responses to NS3 and NS5B compared to those elicited by the single-genotype vaccines. Thus, a DNA cocktail vaccination regimen is more effective than a consensus vaccine or a monovalent vaccine at increasing the breadth of multigenotypic T cell responses, which has implications for the development of vaccines for communities where multiple HCV genotypes circulate.IMPORTANCE Despite the development of highly effective direct-acting antivirals (DAA), infections with hepatitis C virus (HCV) continue, particularly in countries where the supply of DAA is limited. Furthermore, patients who eliminate the virus as a result of DAA therapy can still be reinfected. Thus, a vaccine for HCV is urgently required, but the heterogeneity of HCV strains makes the development of a universal vaccine difficult. To address this, we developed a novel cytolytic DNA vaccine which elicits robust cell-mediated immunity (CMI) to the nonstructural (NS) proteins in vaccinated animals. We compared the immune responses against genotypes 1 and 3 that were elicited by a consensus DNA vaccine or a DNA vaccine cocktail and showed that the cocktail induced higher levels of CMI to the NS proteins of both genotypes. This study suggests that a universal HCV vaccine can most readily be achieved by use of a DNA vaccine cocktail.
Collapse
|
119
|
Maini MK, Pallett LJ. Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. Lancet Gastroenterol Hepatol 2018; 3:192-202. [PMID: 29870733 DOI: 10.1016/s2468-1253(18)30007-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) remains a major cause of morbidity and mortality worldwide. Treatments that can induce functional cure in patients chronically infected with this hepatotropic, non-cytopathic virus are desperately needed. Attempts to use therapeutic vaccines to expand the weak antiviral T-cell response and induce sustained immunity have been unsuccessful. However, exciting progress has been made in defining the molecular defects that must be overcome to harness T-cell immunity. A large arsenal of immunotherapeutic agents and direct-acting antivirals targeting multiple steps of the viral lifecycle is emerging. In this Review, we discuss how to translate the new insights into T-cell manipulation, combined with better understanding of patient heterogeneity, into optimisation of therapeutic vaccines against HBV. We review the opportunities and risks involved in boosting endogenous T-cell responses using combinations of next generation therapeutic vaccines and immunotherapy agents.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK.
| | - Laura J Pallett
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
120
|
Bliss CM, Bowyer G, Anagnostou NA, Havelock T, Snudden CM, Davies H, de Cassan SC, Grobbelaar A, Lawrie AM, Venkatraman N, Poulton ID, Roberts R, Mange PB, Choudhary P, Faust SN, Colloca S, Gilbert SC, Nicosia A, Hill AVS, Ewer KJ. Assessment of novel vaccination regimens using viral vectored liver stage malaria vaccines encoding ME-TRAP. Sci Rep 2018; 8:3390. [PMID: 29467399 PMCID: PMC5821890 DOI: 10.1038/s41598-018-21630-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/07/2018] [Indexed: 11/18/2022] Open
Abstract
Heterologous prime-boost vaccination with viral vectors simian adenovirus 63 (ChAd63) and Modified Vaccinia Ankara (MVA) induces potent T cell and antibody responses in humans. The 8-week regimen demonstrates significant efficacy against malaria when expressing the pre-erythrocytic malaria antigen Thrombospondin-Related Adhesion Protein fused to a multiple epitope string (ME-TRAP). We tested these vaccines in 7 new 4- and 8- week interval schedules to evaluate safety and immunogenicity of multiple ChAd63 ME-TRAP priming vaccinations (denoted A), multiple MVA ME-TRAP boosts (denoted M) and alternating vectors. All regimens exhibited acceptable reactogenicity and CD8+ T cell immunogenicity was enhanced with a 4-week interval (AM) and with incorporation of additional ChAd63 ME-TRAP vaccination at 4- or 8-weeks (AAM or A_A_M). Induction of TRAP antibodies was comparable between schedules. T cell immunity against the ChAd63 hexon did not affect T cell responses to the vaccine insert, however pre-vaccination ChAd63-specific T cells correlated with reduced TRAP antibodies. Vaccine-induced antibodies against MVA did not affect TRAP antibody induction, and correlated positively with ME-TRAP-specific T cells. This study identifies potentially more effective immunisation regimens to assess in Phase IIa trials and demonstrates a degree of flexibility with the timing of vectored vaccine administration, aiding incorporation into existing vaccination programmes.
Collapse
Affiliation(s)
- Carly M Bliss
- The Jenner Institute, University of Oxford, Oxford, UK.
| | | | | | - Tom Havelock
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA, USA
| | | | | | | | | | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Pooja B Mange
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Saul N Faust
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | | - Alfredo Nicosia
- ReiThera (formerly Okairos), 00144, Rome, Italy
- CEINGE, Via Comunale Margherita, 484-538, 80131, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
121
|
Panagioti E, Klenerman P, Lee LN, van der Burg SH, Arens R. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Front Immunol 2018; 9:276. [PMID: 29503649 PMCID: PMC5820320 DOI: 10.3389/fimmu.2018.00276] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lian N. Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
122
|
Yokokawa H, Higashino A, Suzuki S, Moriyama M, Nakamura N, Suzuki T, Suzuki R, Ishii K, Kobiyama K, Ishii KJ, Wakita T, Akari H, Kato T. Induction of humoural and cellular immunity by immunisation with HCV particle vaccine in a non-human primate model. Gut 2018; 67:372-379. [PMID: 27797937 DOI: 10.1136/gutjnl-2016-312208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although HCV is a major cause of chronic liver disease worldwide, there is currently no prophylactic vaccine for this virus. Thus, the development of an HCV vaccine that can induce both humoural and cellular immunity is urgently needed. To create an effective HCV vaccine, we evaluated neutralising antibody induction and cellular immune responses following the immunisation of a non-human primate model with cell culture-generated HCV (HCVcc). DESIGN To accomplish this, 10 common marmosets were immunised with purified, inactivated HCVcc in combination with two different adjuvants: the classically used aluminum hydroxide (Alum) and the recently established adjuvant: CpG oligodeoxynucleotide (ODN) wrapped by schizophyllan (K3-SPG). RESULTS The coadministration of HCVcc with K3-SPG efficiently induced immune responses against HCV, as demonstrated by the production of antibodies with specific neutralising activity against chimaeric HCVcc with structural proteins from multiple HCV genotypes (1a, 1b, 2a and 3a). The induction of cellular immunity was also demonstrated by the production of interferon-γ mRNA in spleen cells following stimulation with the HCV core protein. These changes were not observed following immunisation with HCVcc/Alum preparation. No vaccination-related abnormalities were detected in any of the immunised animals. CONCLUSIONS The current preclinical study demonstrated that a vaccine included both HCVcc and K3-SPG induced humoural and cellular immunity in marmosets. Vaccination with this combination resulted in the production of antibodies exhibiting cross-neutralising activity against multiple HCV genotypes. Based on these findings, the vaccine created in this study represents a promising, potent and safe prophylactic option against HCV.
Collapse
Affiliation(s)
- Hiroshi Yokokawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan.,Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsunori Higashino
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Saori Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Moriyama
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan
| | - Noriko Nakamura
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan
| | - Tomohiko Suzuki
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
123
|
von Delft A, Donnison TA, Lourenço J, Hutchings C, Mullarkey CE, Brown A, Pybus OG, Klenerman P, Chinnakannan S, Barnes E. The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes. Vaccine 2018; 36:313-321. [PMID: 29203182 PMCID: PMC5756538 DOI: 10.1016/j.vaccine.2017.10.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/29/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) genomic variability is a major challenge to the generation of a prophylactic vaccine. We have previously shown that HCV specific T-cell responses induced by a potent T-cell vaccine encoding a single strain subtype-1b immunogen target epitopes dominant in natural infection. However, corresponding viral regions are highly variable at a population level, with a reduction in T-cell reactivity to these variants. We therefore designed and manufactured second generation simian adenovirus vaccines encoding genomic segments, conserved between viral genotypes and assessed these for immunogenicity. METHODS We developed a computer algorithm to identify HCV genomic regions that were conserved between viral subtypes. Conserved segments below a pre-defined diversity threshold spanning the entire HCV genome were combined to create novel immunogens (1000-1500 amino-acids), covering variation in HCV subtypes 1a and 1b, genotypes 1 and 3, and genotypes 1-6 inclusive. Simian adenoviral vaccine vectors (ChAdOx) encoding HCV conserved immunogens were constructed. Immunogenicity was evaluated in C57BL6 mice using panels of genotype-specific peptide pools in ex-vivo IFN-ϒ ELISpot and intracellular cytokine assays. RESULTS ChAdOx1 conserved segment HCV vaccines primed high-magnitude, broad, cross-reactive T-cell responses; the mean magnitude of total HCV specific T-cell responses was 1174 SFU/106 splenocytes for ChAdOx1-GT1-6 in C57BL6 mice targeting multiple genomic regions, with mean responses of 935, 1474 and 1112 SFU/106 against genotype 1a, 1b and 3a peptide panels, respectively. Functional assays demonstrated IFNg and TNFa production by vaccine-induced CD4 and CD8 T-cells. In silico analysis shows that conserved immunogens contain multiple epitopes, with many described in natural HCV infection, predicting immunogenicity in humans. CONCLUSIONS Simian adenoviral vectored vaccines encoding genetic segments that are conserved between all major HCV genotypes contain multiple T-cell epitopes and are highly immunogenic in pre-clinical models. These studies pave the way for the assessment of multi-genotypic HCV T-cell vaccines in humans.
Collapse
Affiliation(s)
- Annette von Delft
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Timothy A Donnison
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | | | - Claire Hutchings
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Caitlin E Mullarkey
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Anthony Brown
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | | | - Paul Klenerman
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Senthil Chinnakannan
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
124
|
Abstract
The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.
Collapse
|
125
|
Lanford RE, Walker CM, Lemon SM. The Chimpanzee Model of Viral Hepatitis: Advances in Understanding the Immune Response and Treatment of Viral Hepatitis. ILAR J 2017; 58:172-189. [PMID: 29045731 PMCID: PMC5886334 DOI: 10.1093/ilar/ilx028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Chimpanzees (Pan troglodytes) have contributed to diverse fields of biomedical research due to their close genetic relationship to humans and in many instances due to the lack of any other animal model. This review focuses on the contributions of the chimpanzee model to research on hepatitis viruses where chimpanzees represented the only animal model (hepatitis B and C) or the most appropriate animal model (hepatitis A). Research with chimpanzees led to the development of vaccines for HAV and HBV that are used worldwide to protect hundreds of millions from these diseases and, where fully implemented, have provided immunity for entire generations. More recently, chimpanzee research was instrumental in the development of curative therapies for hepatitis C virus infections. Over a span of 40 years, this research would identify the causative agent of NonA,NonB hepatitis, validate the molecular tools for drug discovery, and provide safety and efficacy data on the therapies that now provide a rapid and complete cure of HCV chronic infections. Several cocktails of antivirals are FDA approved that eliminate the virus following 12 weeks of once-per-day oral therapy. This represents the first cure of a chronic viral disease and, once broadly implemented, will dramatically reduce the occurrence of cirrhosis and liver cancer. The recent contributions of chimpanzees to our current understanding of T cell immunity for HCV, development of novel therapeutics for HBV, and the biology of HAV are reviewed. Finally, a perspective is provided on the events leading to the cessation of the use of chimpanzees in research and the future of the chimpanzees previously used to bring about these amazing breakthroughs in human healthcare.
Collapse
Affiliation(s)
- Robert E Lanford
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| | - Christopher M Walker
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| | - Stanley M Lemon
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| |
Collapse
|
126
|
Taherkhani R, Farshadpour F. Global elimination of hepatitis C virus infection: Progresses and the remaining challenges. World J Hepatol 2017; 9:1239-1252. [PMID: 29312527 PMCID: PMC5745585 DOI: 10.4254/wjh.v9.i33.1239] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/01/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
Today, with the introduction of interferon-free direct-acting antivirals and outstanding progresses in the prevention, diagnosis and treatment of hepatitis C virus (HCV) infection, the elimination of HCV infection seems more achievable. A further challenge is continued transmission of HCV infection in high-risk population specially injecting drug users (IDUs) as the major reservoir of HCV infection. Considering the fact that most of these infections remain undiagnosed, unidentified HCV-infected IDUs are potential sources for the rapid spread of HCV in the community. The continuous increase in the number of IDUs along with the rising prevalence of HCV infection among young IDUs is harbinger of a forthcoming public health dilemma, presenting a serious challenge to control transmission of HCV infection. Even the changes in HCV genotype distribution attributed to injecting drug use confirm this issue. These circumstances create a strong demand for timely diagnosis and proper treatment of HCV-infected patients through risk-based screening to mitigate the risk of HCV transmission in the IDUs community and, consequently, in the society. Meanwhile, raising general awareness of HCV infection, diagnosis and treatment through public education should be the core activity of any harm reduction intervention, as the root cause of failure in control of HCV infection has been lack of awareness among young drug takers. In addition, effective prevention, comprehensive screening programs with a specific focus on high-risk population, accessibility to the new anti-HCV treatment regimens and public education should be considered as the top priorities of any health policy decision to eliminate HCV infection.
Collapse
Affiliation(s)
- Reza Taherkhani
- the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Fatemeh Farshadpour
- the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran.
| |
Collapse
|
127
|
Hemmi M, Tachibana M, Fujimoto N, Shoji M, Sakurai F, Kobiyama K, Ishii KJ, Akira S, Mizuguchi H. T Helper 17 Promotes Induction of Antigen-Specific Gut-Mucosal Cytotoxic T Lymphocytes following Adenovirus Vector Vaccination. Front Immunol 2017; 8:1456. [PMID: 29163524 PMCID: PMC5681732 DOI: 10.3389/fimmu.2017.01456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 11/14/2022] Open
Abstract
Few current vaccines can establish antigen (Ag)-specific immune responses in both mucosal and systemic compartments. Therefore, development of vaccines providing defense against diverse infectious agents in both compartments is of high priority in global health. Intramuscular vaccination of an adenovirus vector (Adv) has been shown to induce Ag-specific cytotoxic T lymphocytes (CTLs) in both systemic and gut-mucosal compartments. We previously found that type I interferon (IFN) signaling is required for induction of gut-mucosal, but not systemic, CTLs following vaccination; however, the molecular mechanism involving type I IFN signaling remains unknown. Here, we found that T helper 17 (Th17)-polarizing cytokine expression was down-regulated in the inguinal lymph nodes (iLNs) of Ifnar2−/− mice, resulting in the reduction of Ag-specific Th17 cells in the iLNs and gut mucosa of the mice. We also found that prior transfer of Th17 cells reversed the decrease in the number of Ag-specific gut-mucosal CTLs in Ifnar2−/− mice following Adv vaccination. Additionally, prior transfer of Th17 cells into wild-type mice enhanced the induction of Ag-specific CTLs in the gut mucosa, but not in systemic compartments, suggesting a gut mucosa-specific mechanism where Th17 cells regulate the magnitude of vaccine-elicited Ag-specific CTL responses. These data suggest that Th17 cells translate systemic type I IFN signaling into a gut-mucosal CTL response following vaccination, which could promote the development of promising Adv vaccines capable of establishing both systemic and gut-mucosal protective immunity.
Collapse
Affiliation(s)
- Masahisa Hemmi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Natsuki Fujimoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masaki Shoji
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kouji Kobiyama
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Host Defense, The Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
128
|
Payne RO, Silk SE, Elias SC, Miura K, Diouf A, Galaway F, de Graaf H, Brendish NJ, Poulton ID, Griffiths OJ, Edwards NJ, Jin J, Labbé GM, Alanine DG, Siani L, Di Marco S, Roberts R, Green N, Berrie E, Ishizuka AS, Nielsen CM, Bardelli M, Partey FD, Ofori MF, Barfod L, Wambua J, Murungi LM, Osier FH, Biswas S, McCarthy JS, Minassian AM, Ashfield R, Viebig NK, Nugent FL, Douglas AD, Vekemans J, Wright GJ, Faust SN, Hill AV, Long CA, Lawrie AM, Draper SJ. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight 2017; 2:96381. [PMID: 29093263 PMCID: PMC5752323 DOI: 10.1172/jci.insight.96381] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022] Open
Abstract
The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing.
Collapse
Affiliation(s)
- Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sean C. Elias
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Hans de Graaf
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan J. Brendish
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Loredana Siani
- ReiThera SRL (formerly Okairos SRL), Viale Città d’Europa, Rome, Italy
| | - Stefania Di Marco
- ReiThera SRL (formerly Okairos SRL), Viale Città d’Europa, Rome, Italy
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nicky Green
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | | | | | - Martino Bardelli
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Frederica D. Partey
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Michael F. Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lea Barfod
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Juliana Wambua
- KEMRI Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Linda M. Murungi
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- KEMRI Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Faith H. Osier
- KEMRI Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - James S. McCarthy
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Rebecca Ashfield
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Adrian V.S. Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Alison M. Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
129
|
Vitelli A, Folgori A, Scarselli E, Colloca S, Capone S, Nicosia A. Chimpanzee adenoviral vectors as vaccines - challenges to move the technology into the fast lane. Expert Rev Vaccines 2017; 16:1241-1252. [PMID: 29047309 DOI: 10.1080/14760584.2017.1394842] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In recent years, replication-defective chimpanzee-derived adenoviruses have been extensively evaluated as genetic vaccines. These vectors share desirable properties with human adenoviruses like the broad tissue tropism and the ease of large-scale manufacturing. Additionally, chimpanzee adenoviruses have the advantage to overcome the negative impact of pre-existing anti-human adenovirus immunity. Areas covered: Here the authors review current pre-clinical research and clinical trials that utilize chimpanzee-derived adenoviral vectors as vaccines. A wealth of studies are ongoing to evaluate different vector backbones and administration routes with the aim of improving immune responses. The challenges associated with the identification of an optimal chimpanzee vector and immunization strategies for different immunological outcomes will be discussed. Expert commentary: The demonstration that chimpanzee adenoviruses can be safely used in humans has paved the way to the use of a whole new array of vectors of different serotypes. However, so far no predictive signature of vector immunity in humans has been identified. The high magnitude of T cell responses elicited by chimpanzee adenoviruses has allowed dissecting the qualitative aspects that may be important for protective immunity. Ultimately, only the results from the most clinically advanced products will help establish the efficacy of the vaccine vector platform in the field of disease prevention.
Collapse
Affiliation(s)
| | | | | | | | | | - Alfredo Nicosia
- a ReiThera , Rome , Italy.,c CEINGE , Naples , Italy.,d Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Naples , Italy
| |
Collapse
|
130
|
Afik S, Yates KB, Bi K, Darko S, Godec J, Gerdemann U, Swadling L, Douek DC, Klenerman P, Barnes EJ, Sharpe AH, Haining WN, Yosef N. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res 2017; 45:e148. [PMID: 28934479 PMCID: PMC5766189 DOI: 10.1093/nar/gkx615] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
The T cell compartment must contain diversity in both T cell receptor (TCR) repertoire and cell state to provide effective immunity against pathogens. However, it remains unclear how differences in the TCR contribute to heterogeneity in T cell state. Single cell RNA-sequencing (scRNA-seq) can allow simultaneous measurement of TCR sequence and global transcriptional profile from single cells. However, current methods for TCR inference from scRNA-seq are limited in their sensitivity and require long sequencing reads, thus increasing the cost and decreasing the number of cells that can be feasibly analyzed. Here we present TRAPeS, a publicly available tool that can efficiently extract TCR sequence information from short-read scRNA-seq libraries. We apply it to investigate heterogeneity in the CD8+ T cell response in humans and mice, and show that it is accurate and more sensitive than existing approaches. Coupling TRAPeS with transcriptome analysis of CD8+ T cells specific for a single epitope from Yellow Fever Virus (YFV), we show that the recently described ‘naive-like’ memory population have significantly longer CDR3 regions and greater divergence from germline sequence than do effector-memory phenotype cells. This suggests that TCR usage is associated with the differentiation state of the CD8+ T cell response to YFV.
Collapse
Affiliation(s)
- Shaked Afik
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kathleen B Yates
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kevin Bi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Jernej Godec
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Ulrike Gerdemann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Leo Swadling
- Translational Gastroenterology Unit, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Paul Klenerman
- Translational Gastroenterology Unit, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Eleanor J Barnes
- Translational Gastroenterology Unit, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.,Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, USA.,Chan Zuckerberg Biohub
| |
Collapse
|
131
|
Attanasio J, Wherry EJ. Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 2017; 44:1052-68. [PMID: 27192569 DOI: 10.1016/j.immuni.2016.04.022] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Indexed: 12/16/2022]
Abstract
Costimulatory and inhibitory receptors play a key role in regulating immune responses to infections. Recent translation of knowledge about inhibitory receptors such as CTLA-4 and PD-1 into the cancer clinic highlights the opportunities to manipulate these pathways to treat human disease. Studies in infectious disease have provided key insights into the specific roles of these pathways and the effects of their manipulation. Here, recent studies are discussed that have addressed how major inhibitory and costimulatory pathways play a role in regulating immune responses during acute and chronic infections. Mechanistic insights from studies of infectious disease provide opportunities to further expand our toolkit to treat cancer and chronic infections in the clinic.
Collapse
Affiliation(s)
- John Attanasio
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
132
|
Li D, Wang X, von Schaewen M, Tao W, Zhang Y, Heller B, Hrebikova G, Deng Q, Sun Q, Ploss A, Zhong J, Huang Z. Immunization With a Subunit Hepatitis C Virus Vaccine Elicits Pan-Genotypic Neutralizing Antibodies and Intrahepatic T-Cell Responses in Nonhuman Primates. J Infect Dis 2017; 215:1824-1831. [PMID: 28398489 DOI: 10.1093/infdis/jix180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022] Open
Abstract
Background The global control of hepatitis C virus (HCV) infection remains a great burden, owing to the high prices and potential drug resistance of the new direct-acting antivirals (DAAs), as well as the risk of reinfection in DAA-cured patients. Thus, a prophylactic vaccine for HCV is of great importance. We previously reported that a single recombinant soluble E2 (sE2) vaccine produced in insect cells was able to induce broadly neutralizing antibodies (NAbs) and prevent HCV infection in mice. Here the sE2 vaccine was evaluated in non-human primates. Methods Rhesus macaques were immunized with sE2 vaccine in combination with different adjuvants. Vaccine-induced NAbs in antisera were tested for neutralization activities against a panel of cell culture-derived HCV (HCVcc), while T-cell responses were evaluated in splenocytes, peripheral blood mononuclear cells, and hepatic lymphocytes. Results sE2 is able to elicit NAbs against HCVcc harboring structural proteins from multiple HCV genotypes in rhesus macaques. Moreover, sE2-immunized macaques developed systemic and intrahepatic memory T cells specific for E2. A significant correlation between the sE2-specific immunoglobulin G titers and neutralization spectrum was observed, highlighting the essential role of sE2 immunogenicity on achieving broad NAbs. Conclusions sE2 is a promising HCV vaccine candidate that warrants further preclinical and clinical development.
Collapse
Affiliation(s)
- Dapeng Li
- Unit of Vaccinology and Antiviral Strategies.,Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai
| | - Xuesong Wang
- Unit of Vaccinology and Antiviral Strategies.,Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai
| | | | - Wanyin Tao
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai
| | | | - Brigitte Heller
- Department of Molecular Biology, Princeton University, New Jersey
| | | | - Qiang Deng
- Unit of Vaccinology and Antiviral Strategies
| | - Qiang Sun
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai.,Suzhou Nonhuman Primate Facility, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Suzhou, China
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, New Jersey
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai
| | - Zhong Huang
- Unit of Vaccinology and Antiviral Strategies
| |
Collapse
|
133
|
van der Ree MH, Stelma F, Willemse SB, Brown A, Swadling L, van der Valk M, Sinnige MJ, van Nuenen AC, de Vree JML, Klenerman P, Barnes E, Kootstra NA, Reesink HW. Immune responses in DAA treated chronic hepatitis C patients with and without prior RG-101 dosing. Antiviral Res 2017; 146:139-145. [PMID: 28844749 PMCID: PMC7610787 DOI: 10.1016/j.antiviral.2017.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023]
Abstract
Background & aims With the introduction of DAA’s, the majority of treated chronic hepatitis C patients (CHC) achieve a viral cure. The exact mechanisms by which the virus is cleared after successful therapy, is still unknown. The aim was to assess the role of the immune system and miRNA levels in acquiring a sustained virological response after DAA treatment in CHC patients with and without prior RG-101 (antimiR-122) dosing. Methods In this multicenter, investigator-initiated study, 29 patients with hepatitis C virus (HCV) genotype 1 (n = 11), 3 (n = 17), or 4 (n = 1) infection were treated with sofosbuvir and daclatasvir ± ribavirin. 18 patients were previously treated with RG-101. IP-10 levels were measured by ELISA. Ex vivo HCV-specific T cell responses were quantified in IFN-γ-ELISpot assays. Plasma levels of miR-122 were measured by qPCR. Results All patients had an SVR12. IP-10 levels rapidly declined during treatment, but were still elevated 24 weeks after treatment as compared to healthy controls (median 53.82 and 39.4 pg/mL, p = 0.02). Functional IFN-γ HCV-specific T cell responses did not change by week 12 of follow-up (77.5 versus 125 SFU/106 PBMC, p = 0.46). At follow-up week 12, there was no difference in plasma miR-122 levels between healthy controls and patients with and without prior RG-101 dosing. Conclusions Our data shows that successful treatment of CHC patients with and without prior RG-101 dosing results in reduction of broad immune activation, and normalisation of miR-122 levels (EudraCT: 2014-002808-25).
Collapse
Affiliation(s)
- Meike H van der Ree
- Dep. of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands; Dep. of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Femke Stelma
- Dep. of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands; Dep. of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Sophie B Willemse
- Dep. of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Anthony Brown
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, UK
| | - Leo Swadling
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, UK
| | - Marc van der Valk
- Dep. of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands; Dep. of Internal Medicine, Division of Infectious Diseases, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Marjan J Sinnige
- Dep. of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ad C van Nuenen
- Dep. of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - J Marleen L de Vree
- Dep. of Gastroenterology and Hepatology, University Medical Center Groningen, The Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, UK
| | - Neeltje A Kootstra
- Dep. of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Hendrik W Reesink
- Dep. of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands; Dep. of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
134
|
Bruder JT, Chen P, Ekberg G, Smith EC, Lazarski CA, Myers BA, Bolton J, Sedegah M, Villasante E, Richie TL, King CR, Aguiar JC, Doolan DL, Brough DE. Profiling the Targets of Protective CD8 + T Cell Responses to Infection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:20-31. [PMID: 28948187 PMCID: PMC5602877 DOI: 10.1016/j.omtm.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022]
Abstract
T cells are critical effectors of host immunity that target intracellular pathogens, such as the causative agents of HIV, tuberculosis, and malaria. The development of vaccines that induce effective cell-mediated immunity against such pathogens has proved challenging; for tuberculosis and malaria, many of the antigens targeted by protective T cells are not known. Here, we report a novel approach for screening large numbers of antigens as potential targets of T cells. Malaria provides an excellent model to test this antigen discovery platform because T cells are critical mediators of protection following immunization with live sporozoite vaccines and the specific antigen targets are unknown. We generated an adenovirus array by cloning 312 highly expressed pre-erythrocytic Plasmodium yoelii antigens into adenovirus vectors using high-throughput methodologies. The array was screened to identify antigen-specific CD8+ T cells induced by a live sporozoite vaccine regimen known to provide high levels of sterile protection mediated by CD8+ T cells. We identified 69 antigens that were targeted by CD8+ T cells induced by this vaccine regimen. The antigen that recalled the highest frequency of CD8+ T cells, PY02605, induced protective responses in mice, demonstrating proof of principle for this approach in identifying antigens for vaccine development.
Collapse
Affiliation(s)
- Joseph T. Bruder
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
- Corresponding author: Joseph T. Bruder, Summit Consulting, 567 Chestertown Street, Gaithersburg, MD 20878, USA.
| | - Ping Chen
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Greg Ekberg
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Emily C. Smith
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | | | - Bennett A. Myers
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Jessica Bolton
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - C. Richter King
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Joao C. Aguiar
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Camris International, 3 Bethesda Metro Center, 16th Floor, Bethesda, MD 20814, USA
| | - Denise L. Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, McGregor Road, Cairns, QLD 4870, Australia
| | - Douglas E. Brough
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| |
Collapse
|
135
|
Vujadinovic M, Wunderlich K, Callendret B, Koning M, Vermeulen M, Sanders B, van der Helm E, Gecgel A, Spek D, de Boer K, Stalknecht M, Serroyen J, Grazia Pau M, Schuitemaker H, Zahn R, Custers J, Vellinga J. Adenoviral Type 35 and 26 Vectors with a Bidirectional Expression Cassette in the E1 Region Show an Improved Genetic Stability Profile and Potent Transgene-Specific Immune Response. Hum Gene Ther 2017; 29:337-351. [PMID: 28816084 DOI: 10.1089/hum.2017.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic vaccines based on replication-incompetent adenoviral (AdV) vectors are currently in clinical development. Monovalent AdV vectors express one antigen from an expression cassette placed in most cases in the E1 region. For many vaccines, inclusion of several antigens is necessary in order to raise protective immunity and/or target more than one pathogen or pathogen strain. On the basis of the current technology, a mix of several monovalent vectors can be employed. However, a mix of the standard monovalent AdV vectors may not be optimal with respect to manufacturing costs and the final dose per vector in humans. Alternatively, a variety of bivalent recombinant AdV vector approaches is described in the literature. It remains unclear whether all strategies are equally suitable for clinical development while preserving all the beneficial properties of the monovalent AdV (e.g., immunogenic potency). Therefore, a thorough assessment of different bivalent AdV strategies was performed in a head-to-head fashion compared with the monovalent benchmark. The vectors were tested for rescue efficiency, genetic stability, transgene expression, and potency to induce transgene-specific immune responses. We report that the vector expressing multiple antigens from a bidirectional expression cassette in E1 shows a better genetic stability profile and a potent transgene-specific immune response compared with the other tested bivalent vectors.
Collapse
Affiliation(s)
- Marija Vujadinovic
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Kerstin Wunderlich
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Benoit Callendret
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Marina Koning
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Mark Vermeulen
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Barbara Sanders
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Esmeralda van der Helm
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Adile Gecgel
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Dirk Spek
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Karin de Boer
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Masha Stalknecht
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Maria Grazia Pau
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Hanneke Schuitemaker
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jerome Custers
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jort Vellinga
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| |
Collapse
|
136
|
Venkatraman N, Silman D, Folegatti PM, Hill AVS. Vaccines against Ebola virus. Vaccine 2017; 36:5454-5459. [PMID: 28780120 DOI: 10.1016/j.vaccine.2017.07.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 11/29/2022]
Abstract
We have just witnessed the largest and most devastating outbreak of Ebola virus disease, which highlighted the urgent need for development of an efficacious vaccine that could be used to curtail future outbreaks. Prior to 2014, there had been limited impetus worldwide to develop a vaccine since the virus was first discovered in 1976. Though too many lives were lost during this outbreak, it resulted in the significantly accelerated clinical development of a number of candidate vaccines through an extraordinary collaborative global effort coordinated by the World Health Organisation (WHO) and involving a number of companies, trial centres, funders, global stakeholders and agencies. We have acquired substantial safety and immunogenicity data on a number of vaccines in Caucasian and African populations. The rapid pace of events led to the initiation of the landmark efficacy trial testing the rVSV-vectored vaccine, which showed high level efficacy in an outbreak setting when deployed using an innovative ring vaccination strategy. Though the Public Health Emergency of International Concern (PHEIC) declared by the WHO has now been lifted, the global scientific community faces numerous challenges ahead to ensure that there is a licensed, deployable vaccine available for use in future outbreaks for at least the Zaire and Sudan strains of Ebola virus. There remain several unanswered questions on the durability of protection, mechanistic immunological correlates and preferred deployment strategies. This review outlines a brief history of the development of Ebola vaccines, the significant progress made since the scale of the outbreak became apparent, some lessons learnt and how they could shape future development of vaccines and the management of similar outbreaks.
Collapse
Affiliation(s)
- Navin Venkatraman
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| | - Daniel Silman
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Pedro M Folegatti
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Adrian V S Hill
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
137
|
Zhang S, Sun F, Ren T, Duan Y, Gu H, Lai C, Wang Z, Zhang P, Wang X, Yang P. Immunogenicity of an influenza virus-vectored vaccine carrying the hepatitis C virus protein epitopes in mice. Antiviral Res 2017; 145:168-174. [PMID: 28778831 DOI: 10.1016/j.antiviral.2017.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/25/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) has a devastating impact on human health, and infections can progress into liver fibrosis, cirrhosis, and hepatocellular carcinoma. There is no effective HCV vaccine. In this study, we rescued a recombinant PR8 influenza viral vector, called rgFLU-HCVCE1E2, carrying the core and envelope glycoprotein (C/E1/E2) epitopes of HCV inserted into the influenza nonstructural protein 1 gene. The morphological characteristics of rgFLU-HCVCE1E2 and the expression of the C/E1/E2 epitopes of HCV were examined. rgFLU-HCVCE1E2 replicated in various cell lines, including MDCK, A549, and Huh7.5 cells. More importantly, in BALB/c mice immunized intranasally twice at a 21-day interval with 104, 105, or 106 TCID50 rgFLU-HCVCE1E2, the viral vector induced a robust antibody response to influenza and HCV and potent IFN-γ and IL-4 secretion in response to HCV antigens in a dose-dependent manner. The rgFLU-HCVCE1E2 virus also stimulated IFN-γ production by virus-specific peripheral blood mononuclear cells in patients with chronic HCV infection. The study demonstrated that rgFLU-HCVCE1E2 carrying HCV antigens is immunogenic in vivo and has potential for the development of a HCV vaccine.
Collapse
Affiliation(s)
| | - Fang Sun
- Beijing 302 Hospital, Beijing, 100039, China
| | - Tianyu Ren
- Beijing 302 Hospital, Beijing, 100039, China
| | - Yueqiang Duan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hongjing Gu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chengcai Lai
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | | | | | - Xiliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Penghui Yang
- Beijing 302 Hospital, Beijing, 100039, China; State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
138
|
Barriers to systemic application of virus-based vectors in gene therapy: lessons from adenovirus type 5. Virus Genes 2017; 53:692-699. [PMID: 28755290 DOI: 10.1007/s11262-017-1498-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 01/01/2023]
Abstract
Currently, virus-based vectors, namely derivatives of the adenovirus, are frequently used in a wide variety of ex vivo or local gene therapeutic applications. However, the efficacy of virus-based vectors in systemic applications is presently still extremely limited. Complex interactions of the various vector types with the patient's organism hinder successful vector deployment. Exemplary, here we summarize barriers to systemic application of Adenovirus-based vectors leading either to acute toxic effects or rapid vector neutralization and discuss strategies to overcome these barriers aiming to develop more efficient vector types.
Collapse
|
139
|
Limbach K, Stefaniak M, Chen P, Patterson NB, Liao G, Weng S, Krepkiy S, Ekberg G, Torano H, Ettyreddy D, Gowda K, Sonawane S, Belmonte A, Abot E, Sedegah M, Hollingdale MR, Moormann A, Vulule J, Villasante E, Richie TL, Brough DE, Bruder JT. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model. Malar J 2017; 16:263. [PMID: 28673287 PMCID: PMC5496260 DOI: 10.1186/s12936-017-1911-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
Background A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. Results The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. Conclusion These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1911-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keith Limbach
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Maureen Stefaniak
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ping Chen
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Noelle B Patterson
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Grant Liao
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Shaojie Weng
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Svetlana Krepkiy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Greg Ekberg
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Holly Torano
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Damodar Ettyreddy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Kalpana Gowda
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Sharvari Sonawane
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Esteban Abot
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Michael R Hollingdale
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ann Moormann
- University of Massachusetts Medical School, Worcester, MA, USA
| | - John Vulule
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Thomas L Richie
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Douglas E Brough
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Joseph T Bruder
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA.
| |
Collapse
|
140
|
Stelma F, van der Ree MH, Sinnige MJ, Brown A, Swadling L, de Vree JML, Willemse SB, van der Valk M, Grint P, Neben S, Klenerman P, Barnes E, Kootstra NA, Reesink HW. Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-MicroRNA-122, RG-101. Hepatology 2017; 66:57-68. [PMID: 28295463 PMCID: PMC5850982 DOI: 10.1002/hep.29148] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED MicroRNA-122 is an important host factor for the hepatitis C virus (HCV). Treatment with RG-101, an N-acetylgalactosamine-conjugated anti-microRNA-122 oligonucleotide, resulted in a significant viral load reduction in patients with chronic HCV infection. Here, we analyzed the effects of RG-101 therapy on antiviral immunity. Thirty-two chronic HCV patients infected with HCV genotypes 1, 3, and 4 received a single subcutaneous administration of RG-101 at 2 mg/kg (n = 14) or 4 mg/kg (n = 14) or received a placebo (n = 2/dosing group). Plasma and peripheral blood mononuclear cells were collected at multiple time points, and comprehensive immunological analyses were performed. Following RG-101 administration, HCV RNA declined in all patients (mean decline at week 2, 3.27 log10 IU/mL). At week 8 HCV RNA was undetectable in 15/28 patients. Plasma interferon-γ-induced protein 10 (IP-10) levels declined significantly upon dosing with RG-101. Furthermore, the frequency of natural killer (NK) cells increased, the proportion of NK cells expressing activating receptors normalized, and NK cell interferon-γ production decreased after RG-101 dosing. Functional HCV-specific interferon-γ T-cell responses did not significantly change in patients who had undetectable HCV RNA levels by week 8 post-RG-101 injection. No increase in the magnitude of HCV-specific T-cell responses was observed at later time points, including 3 patients who were HCV RNA-negative 76 weeks postdosing. CONCLUSION Dosing with RG-101 is associated with a restoration of NK-cell proportions and a decrease of NK cells expressing activation receptors; however, the magnitude and functionality of ex vivo HCV-specific T-cell responses did not increase following RG-101 injection, suggesting that NK cells, but not HCV adaptive immunity, may contribute to HCV viral control following RG-101 therapy. (Hepatology 2017;66:57-68).
Collapse
Affiliation(s)
- Femke Stelma
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands,Department of Experimental Immunology Academic Medical Center, Amsterdam, The Netherlands
| | - Meike H van der Ree
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands,Department of Experimental Immunology Academic Medical Center, Amsterdam, The Netherlands
| | - Marjan J Sinnige
- Department of Experimental Immunology Academic Medical Center, Amsterdam, The Netherlands
| | - Anthony Brown
- Nuffield department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, UK
| | - Leo Swadling
- Nuffield department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, UK
| | - J Marleen L de Vree
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Sophie B Willemse
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc van der Valk
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Paul Grint
- Regulus Therapeutics, San Diego, CA, USA
| | | | - Paul Klenerman
- Nuffield department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, UK
| | - Neeltje A Kootstra
- Department of Experimental Immunology Academic Medical Center, Amsterdam, The Netherlands
| | - Hendrik W Reesink
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
141
|
Broadening CD4 + and CD8 + T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes. J Virol 2017; 91:JVI.00130-17. [PMID: 28446674 DOI: 10.1128/jvi.00130-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023] Open
Abstract
Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance has hampered vaccine development. It is generally accepted that in infected individuals, a narrow repertoire of exhausted T cells is a hallmark of persistent infection, whereas broad, vigorous CD4+ and CD8+ T cell responses are associated with control of acute hepatitis C. We employed a vaccine approach based on a mixture of peptides (pepmix) spanning the entire sequence of HCV nonstructural protein 3 (NS3) in cross-priming cationic liposomes (CAF09) to facilitate a versatile presentation of all possible T cell epitopes, regardless of the HLA background of the vaccine recipient. Here, we demonstrate that vaccination of mice with NS3 pepmix broadens the repertoire of epitope-specific T cells compared to the corresponding recombinant protein (rNS3). Moreover, vaccination with rNS3 induced only CD4+ T cells, whereas the NS3 pepmix induced a far more vigorous CD4+ T cell response and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice. In conclusion, we present a novel vaccine approach against HCV, inducing a broadened T cell response targeting both immunodominant and potential subdominant epitopes, which may be key elements to counter T cell exhaustion and prevent chronicity.IMPORTANCE With at least 700,000 annual deaths, development of a vaccine against hepatitis C virus (HCV) has high priority, but the tremendous ability of the virus to dodge the human immune system poses great challenges. Furthermore, many chronic infections, including HCV infection, have a remarkable ability to drive initially strong CD4+ and CD8+ T cell responses against dominant epitopes toward an exhausted, dysfunctional state. Thus, new and innovative vaccine approaches to control HCV should be evaluated. Here, we report on a novel peptide-based nanoparticle vaccine strategy (NS3 pepmix) aimed at generating T cell immunity against potential subdominant T cell epitopes that are not efficiently targeted by vaccination with full-length recombinant protein (rNS3) or infection with HCV. As proof of concept, we found that NS3 pepmix excels in broadening the repertoire of epitope-specific, multifunctional, and cytotoxic CD4+ and CD8+ T cells compared to vaccination with rNS3, which generated only CD4+ T cell responses.
Collapse
|
142
|
Fonseca JA, McCaffery JN, Kashentseva E, Singh B, Dmitriev IP, Curiel DT, Moreno A. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice. Vaccine 2017; 35:3239-3248. [PMID: 28483199 PMCID: PMC5522619 DOI: 10.1016/j.vaccine.2017.04.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4+ T cell responses. Based on evidence that viral vectors increase CD8+ T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8+ T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8+ T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States
| | - Jessica N McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Elena Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Igor P Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States.
| |
Collapse
|
143
|
Rapid development of vaccines against emerging pathogens: The replication-deficient simian adenovirus platform technology. Vaccine 2017; 35:4461-4464. [PMID: 28576573 PMCID: PMC5571606 DOI: 10.1016/j.vaccine.2017.04.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Despite the fact that there had been multiple small outbreaks of Ebola Virus Disease, when a large outbreak occurred in 2014 there were no vaccines or drugs available for use. Clinical development of multiple candidate vaccines was then initiated in parallel with attempts to contain the outbreak but only one vaccine was eventually tested in a phase III trial. In order to be better prepared for future outbreaks of known human pathogens, platform technologies to accelerate vaccine development should be employed, allowing vaccine developers to take advantage of detailed knowledge of the vaccine platform and facilitating rapid progress to clinical trials and eventually to vaccine stockpiles. This review gives an example of one such vaccine platform, replication-deficient simian adenoviruses, and describes progress in human and livestock vaccine development for three outbreak pathogens, Ebola virus, Rift Valley Fever Virus and Middle East Respiratory Syndrome Coronavirus.
Collapse
|
144
|
Designing an HCV vaccine: a unique convergence of prevention and therapy? Curr Opin Virol 2017; 23:113-119. [PMID: 28550816 DOI: 10.1016/j.coviro.2017.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022]
Abstract
Direct acting antivirals can cure chronic hepatitis C virus (HCV) infection but whether they will reduce global liver disease burden is uncertain. Most chronic infections are undiagnosed and transmission has increased in recent years. The first trial of a preventive vaccine is now underway in humans at risk for HCV infection. It will test the novel hypothesis that T cell-mediated immunity alone can prevent persistent HCV infection. Another vaccine that elicits neutralizing antibodies is at an advanced stage of development. Attention is turning to the understudied question of whether direct acting antiviral (DAA) cure of chronic infection restores HCV immunity. If not, it will be important to determine if preventive vaccines can also act therapeutically to reverse immune dysfunction and protect from re-infection.
Collapse
|
145
|
A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. PLoS Negl Trop Dis 2017; 11:e0005527. [PMID: 28498840 PMCID: PMC5443534 DOI: 10.1371/journal.pntd.0005527] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/24/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL or kala azar) is the most serious form of human leishmaniasis, responsible for over 20,000 deaths annually, and post kala azar dermal leishmaniasis (PKDL) is a stigmatizing skin condition that often occurs in patients after successful treatment for VL. Lack of effective or appropriately targeted cell mediated immunity, including CD8+ T cell responses, underlies the progression of VL and progression to PKDL, and can limit the therapeutic efficacy of anti-leishmanial drugs. Hence, in addition to the need for prophylactic vaccines against leishmaniasis, the development of therapeutic vaccines for use alone or in combined immuno-chemotherapy has been identified as an unmet clinical need. Here, we report the first clinical trial of a third-generation leishmaniasis vaccine, developed intentionally to induce Leishmania-specific CD8+ T cells. METHODS We conducted a first-in-human dose escalation Phase I trial in 20 healthy volunteers to assess the safety, tolerability and immunogenicity of a prime-only adenoviral vaccine for human VL and PKDL. ChAd63-KH is a replication defective simian adenovirus expressing a novel synthetic gene (KH) encoding two Leishmania proteins KMP-11 and HASPB. Uniquely, the latter was engineered to reflect repeat domain polymorphisms and arrangements identified from clinical isolates. We monitored innate immune responses by whole blood RNA-Seq and antigen specific CD8+ T cell responses by IFNγ ELISPOT and intracellular flow cytometry. FINDINGS ChAd63-KH was safe at intramuscular doses of 1x1010 and 7.5x1010 vp. Whole blood transcriptomic profiling indicated that ChAd63-KH induced innate immune responses characterized by an interferon signature and the presence of activated dendritic cells. Broad and quantitatively robust CD8+ T cell responses were induced by vaccination in 100% (20/20) of vaccinated subjects. CONCLUSION The results of this study support the further development of ChAd63-KH as a novel third generation vaccine for VL and PKDL. TRIAL REGISTRATION This clinical trial (LEISH1) was registered at EudraCT (2012-005596-14) and ISRCTN (07766359).
Collapse
|
146
|
Chlamydial Type III Secretion System Needle Protein Induces Protective Immunity against Chlamydia muridarum Intravaginal Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3865802. [PMID: 28459057 PMCID: PMC5385227 DOI: 10.1155/2017/3865802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis imposes serious health problems and causes infertility. Because of asymptomatic onset, it often escapes antibiotic treatment. Therefore, vaccines offer a better option for the prevention of unwanted inflammatory sequelae. The existence of serologically distinct serovars of C. trachomatis suggests that a vaccine will need to provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of structural and effector proteins which is an essential virulence factor. In this study, we expressed the T3SS needle protein of Chlamydia muridarum, TC_0037, an ortholog of C. trachomatis CdsF, in a replication-defective adenoviral vector (AdTC_0037) and evaluated its protective efficacy in an intravaginal Chlamydia muridarum model. For better immune responses, we employed a heterologous prime-boost immunization protocol in which mice were intranasally primed with AdTC_0037 and subcutaneously boosted with recombinant TC_0037 and Toll-like receptor 4 agonist monophosphoryl lipid A mixed in a squalene nanoscale emulsion. We found that immunization with TC_0037 antigen induced specific humoral and T cell responses, decreased Chlamydia loads in the genital tract, and abrogated pathology of upper genital organs. Together, our results suggest that TC_0037, a highly conserved chlamydial T3SS protein, is a good candidate for inclusion in a Chlamydia vaccine.
Collapse
|
147
|
Ledgerwood JE, DeZure AD, Stanley DA, Coates EE, Novik L, Enama ME, Berkowitz NM, Hu Z, Joshi G, Ploquin A, Sitar S, Gordon IJ, Plummer SA, Holman LA, Hendel CS, Yamshchikov G, Roman F, Nicosia A, Colloca S, Cortese R, Bailer RT, Schwartz RM, Roederer M, Mascola JR, Koup RA, Sullivan NJ, Graham BS. Chimpanzee Adenovirus Vector Ebola Vaccine. N Engl J Med 2017; 376:928-938. [PMID: 25426834 DOI: 10.1056/nejmoa1410863] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. METHODS We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×1010 particle units or 2×1011 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. RESULTS In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×1011 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×1011 particle-unit dose than in the group that received the 2×1010 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×1011 particle-unit dose than among those who received the 2×1010 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×1011 particle-unit dose. CONCLUSIONS Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At the 2×1011 particle-unit dose, glycoprotein Zaire-specific antibody responses were in the range reported to be associated with vaccine-induced protective immunity in challenge studies involving nonhuman primates, and responses were sustained to week 48. Phase 2 studies and efficacy trials assessing cAd3-EBO are in progress. (Funded by the Intramural Research Program of the National Institutes of Health; VRC 207 ClinicalTrials.gov number, NCT02231866 .).
Collapse
Affiliation(s)
- Julie E Ledgerwood
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Adam D DeZure
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Daphne A Stanley
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Emily E Coates
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Laura Novik
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Mary E Enama
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Nina M Berkowitz
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Zonghui Hu
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Gyan Joshi
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Aurélie Ploquin
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Sandra Sitar
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Ingelise J Gordon
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Sarah A Plummer
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - LaSonji A Holman
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Cynthia S Hendel
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Galina Yamshchikov
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Francois Roman
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Alfredo Nicosia
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Stefano Colloca
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Riccardo Cortese
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Robert T Bailer
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Richard M Schwartz
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Mario Roederer
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - John R Mascola
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Richard A Koup
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Nancy J Sullivan
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| | - Barney S Graham
- From the Vaccine Research Center (J.E.L., A.D.D., D.A.S., E.E.C., L.N., M.E.E., N.M.B., A.P., S.S., I.J.G., S.A.P., L.A.H., C.S.H., G.Y., R.T.B., R.M.S., M.R., J.R.M., R.A.K., N.J.S., B.S.G.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H., G.J.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; GlaxoSmithKline Vaccines, Rixensart, Belgium (F.R.); ReiThera, Rome (A.N., S.C.), and CEINGE and the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples (A.N.) - both in Italy; and Keires, Basel, Switzerland (R.C.)
| |
Collapse
|
148
|
Comprehensive mapping of antigen specific T cell responses in hepatitis C virus infected patients with or without spontaneous viral clearance. PLoS One 2017; 12:e0171217. [PMID: 28170421 PMCID: PMC5295680 DOI: 10.1371/journal.pone.0171217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022] Open
Abstract
Elucidating protective immunity against HCV is important for the development of a preventative vaccine. We hypothesize that spontaneous resolution of acute HCV infection offers clue to protective immune responses, and that DAA therapy affects the quality and quantity of HCV-specific T cell responses. To test these hypotheses, we performed T cell epitope mapping in 111 HCV-infected individuals including 61 chronically HCV-1b (CHC-1b) infected, 24 chronically HCV-2a (CHC-2a) infected and 26 spontaneously recovered (SPR) patients with 376 overlapping peptides covering the entire HCV polyprotein. Selected T cell epitopes were then used to evaluate T cell responses in another 22 chronically HCV-1b infected patients on DAA therapy. Results showed that SPR had better HCV-specific T cell responses than CHC, as manifested by higher response rate, greater magnitude and broader epitope coverage. In addition, SPR recognized novel epitopes in Core, E1, E2, NS4B, NS5A regions that were not present in the CHC. Furthermore, during the first 24 weeks of DAA therapy, there was no functional immune reconstitution of HCV-specific T cells. These results indicate that T cell responses may be a correlate of protection. Therefore, effective preventative vaccines should elicit a robust T cell response. Although various DAA regimens efficiently cleared viruses from the blood of HCV-infected patients, there was no contemporaneous early T cell immune reconstitution, suggesting that early treatment is needed for preserving the functions of HCV-specific T cells.
Collapse
|
149
|
Matthews PC, Sharp C, Simmonds P, Klenerman P. Human parvovirus 4 'PARV4' remains elusive despite a decade of study. F1000Res 2017; 6:82. [PMID: 28184291 PMCID: PMC5288687 DOI: 10.12688/f1000research.9828.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Human parvovirus 4 ('PARV4') is a small DNA tetraparvovirus, first reported in 2005. In some populations, PARV4 infection is uncommon, and evidence of exposure is found only in individuals with risk factors for parenteral infection who are infected with other blood-borne viruses. In other settings, seroprevalence studies suggest an endemic, age-associated transmission pattern, independent of any specific risk factors. The clinical impact of PARV4 infection remains uncertain, but reported disease associations include an influenza-like syndrome, encephalitis, acceleration of HIV disease, and foetal hydrops. In this review, we set out to report progress updates from the recent literature, focusing on the investigation of cohorts in different geographical settings, now including insights from Asia, the Middle East, and South America, and discussing whether attributes of viral or host populations underpin the striking differences in epidemiology. We review progress in understanding viral phylogeny and biology, approaches to diagnostics, and insights that might be gained from studies of closely related animal pathogens. Crucial questions about pathogenicity remain unanswered, but we highlight new evidence supporting a possible link between PARV4 and an encephalitis syndrome. The unequivocal evidence that PARV4 is endemic in certain populations should drive ongoing research efforts to understand risk factors and routes of transmission and to gain new insights into the impact of this virus on human health.
Collapse
Affiliation(s)
- Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Colin Sharp
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK; NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
150
|
Rosen HR. "Hep C, where art thou": What are the remaining (fundable) questions in hepatitis C virus research? Hepatology 2017; 65:341-349. [PMID: 27640881 DOI: 10.1002/hep.28848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) has dominated the field of hepatology for the past 25 years, and its cure in the majority of treated patients is one of the greatest achievements in all of medicine. However, the latter has led to the belief by some that HCV research should be shelved for other, more pressing areas. The mission for HCV eradication is far from accomplished. As a historical reference, we should consider that disease elimination has required vaccination with all previously controlled infections including smallpox and polio and that simple, effective treatment is not sufficient in most infections to lead to substantial control. Syphilis is the best example, for which a single dose of penicillin (which literally costs pennies and that we have had since 1945) is curative in early stages. Not only have we not eradicated syphilis, rates of infection have increased in many places within the United States in recent years. Most HCV-infected subjects are unaware of their infection, remaining at risk for transmission to others and disease progression, including cirrhosis and hepatocellular carcinoma. In the era of highly effective direct-acting antivirals (DAAs), many questions pertaining to HCV remain, but they are more complex and difficult to answer. Here, I provide my perspective on some of these salient issues: the residual risk for disease progression after sustained virologic response, the optimal approach to current DAA failures, the impact of targeting people who inject drugs with DAAs, vaccine prospects, and application of neutralizing HCV glycoprotein antibodies. (Hepatology 2017;65:341-349).
Collapse
Affiliation(s)
- Hugo Ramón Rosen
- Division of Gastroenterology and Hepatology (B-158), Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO
| |
Collapse
|