101
|
Aït-Ammar N, Levesque E, Murat JB, Imbert S, Foulet F, Dannaoui E, Botterel F. Aspergillus pseudodeflectus: a new human pathogen in liver transplant patients. BMC Infect Dis 2018; 18:648. [PMID: 30541477 PMCID: PMC6292062 DOI: 10.1186/s12879-018-3527-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Liver transplant recipients are at high risk of developing invasive aspergillosis and in particular by Aspergillus fumigatus which is the most commonly encountered species in this population. Other non-fumigatus Aspergillus species with reduced susceptibility to antifungal drugs can also be involved. Accurate identification associated to antifungal susceptibility testing is essential for therapy adjustment. We report a case of invasive pulmonary aspergillosis due to Aspergillus pseudodeflectus in a liver transplant recipient. To our knowledge, this is the first reported case of invasive aspergillosis due to this species with a reduced susceptibility to azoles. CASE PRESENTATION A 64 year-old woman with drug-induced fulminant hepatitis underwent liver transplantation. Prophylactic treatment with caspofungin was introduced due to aspergillosis risk factors consisting in hemodialysis and fulminant hepatitis. Six weeks after transplantation, CT scan showed a right pulmonary opacity associated with an increase of galactomannan (index 5.4). Culture of BAL grew with several colonies of Aspergillus sp. The diagnosis of invasive aspergillosis was probable according to the EORTC criteria. The antifungal susceptibility tests (Etest®) revealed low MICs to echinocandins and amphotericin B) but high MICs to azoles. After these results, voriconazole was switched to liposomal amphotericin B. The patient died one month after diagnosis from a refractory septic shock with multiple organ failure. A molecular identification of isolate, based on partial β-tubulin and calmodulin genes, was performed and identified A. pseudodeflectus. CONCLUSIONS Our case raises the question of pathogenicity of this species, which belongs to Aspergillus section Usti and is genetically and morphologically very close to Aspergillus calidoustus that was previously reported in human transplant recipients.
Collapse
Affiliation(s)
- Nawel Aït-Ammar
- Unité de Parasitologie–Mycologie, Département de Virologie, Bactériologie–Hygiène, Parasitologie–Mycologie, DHU VIC, CHU Henri Mondor, AP-HP, Créteil, France
- EA Dynamyc UPEC, ENVA, Faculté de Médecine de Créteil, Créteil, France
| | - Eric Levesque
- Réanimation Digestive et Hépato-biliaire, Service d’Anesthésie et des Réanimations Chirurgicales, CHU Henri Mondor, AP-HP, Créteil, France
| | - Jean-Benjamin Murat
- Unité de Parasitologie–Mycologie, Département de Virologie, Bactériologie–Hygiène, Parasitologie–Mycologie, DHU VIC, CHU Henri Mondor, AP-HP, Créteil, France
- EA Dynamyc UPEC, ENVA, Faculté de Médecine de Créteil, Créteil, France
| | - Sébastien Imbert
- Service de Parasitologie-Mycologie, CHU Pitié Salpêtrière, AP-HP, Paris, France
| | - Françoise Foulet
- Unité de Parasitologie–Mycologie, Département de Virologie, Bactériologie–Hygiène, Parasitologie–Mycologie, DHU VIC, CHU Henri Mondor, AP-HP, Créteil, France
| | - Eric Dannaoui
- EA Dynamyc UPEC, ENVA, Faculté de Médecine de Créteil, Créteil, France
- Université Paris–Descartes, Faculté de Médecine, Unité de Parasitologie–Mycologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Françoise Botterel
- Unité de Parasitologie–Mycologie, Département de Virologie, Bactériologie–Hygiène, Parasitologie–Mycologie, DHU VIC, CHU Henri Mondor, AP-HP, Créteil, France
- EA Dynamyc UPEC, ENVA, Faculté de Médecine de Créteil, Créteil, France
| |
Collapse
|
102
|
Schwarz C, Vandeputte P, Rougeron A, Giraud S, Dugé de Bernonville T, Duvaux L, Gastebois A, Alastruey-Izquierdo A, Martín-Gomez MT, Mazuelos EM, Sole A, Cano J, Pemán J, Quindos G, Botterel F, Bougnoux ME, Chen S, Delhaès L, Favennec L, Ranque S, Sedlacek L, Steinmann J, Vazquez J, Williams C, Meyer W, Le Gal S, Nevez G, Fleury M, Papon N, Symoens F, Bouchara JP. Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Med Mycol 2018. [PMID: 29538733 DOI: 10.1093/mmy/myx106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is the major genetic inherited disease in Caucasian populations. The respiratory tract of CF patients displays a sticky viscous mucus, which allows for the entrapment of airborne bacteria and fungal spores and provides a suitable environment for growth of microorganisms, including numerous yeast and filamentous fungal species. As a consequence, respiratory infections are the major cause of morbidity and mortality in this clinical context. Although bacteria remain the most common agents of these infections, fungal respiratory infections have emerged as an important cause of disease. Therefore, the International Society for Human and Animal Mycology (ISHAM) has launched a working group on Fungal respiratory infections in Cystic Fibrosis (Fri-CF) in October 2006, which was subsequently approved by the European Confederation of Medical Mycology (ECMM). Meetings of this working group, comprising both clinicians and mycologists involved in the follow-up of CF patients, as well as basic scientists interested in the fungal species involved, provided the opportunity to initiate collaborative works aimed to improve our knowledge on these infections to assist clinicians in patient management. The current review highlights the outcomes of some of these collaborative works in clinical surveillance, pathogenesis and treatment, giving special emphasis to standardization of culture procedures, improvement of species identification methods including the development of nonculture-based diagnostic methods, microbiome studies and identification of new biological markers, and the description of genotyping studies aiming to differentiate transient carriage and chronic colonization of the airways. The review also reports on the breakthrough in sequencing the genomes of the main Scedosporium species as basis for a better understanding of the pathogenic mechanisms of these fungi, and discusses treatment options of infections caused by multidrug resistant microorganisms, such as Scedosporium and Lomentospora species and members of the Rasamsonia argillacea species complex.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Center Berlin/Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Vandeputte
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | - Amandine Rougeron
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Laboratoire de Parasitologie-Mycologie, CHU, Bordeaux, France
| | - Sandrine Giraud
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales (EA 2106), Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Université François Rabelais, Tours
| | - Ludovic Duvaux
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Institut de Recherche en Horticulture et Semences (IRHS), UMR INRA 1345, Beaucouzé, France
| | - Amandine Gastebois
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Maria Teresa Martín-Gomez
- Respiratory Bacteriology Unit & Clinical Mycology Unit, Department of Microbiology, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Amparo Sole
- Unidad de Trasplante Pulmonar y Fibrosis Quística, Hospital Universitari la Fe, Valencia, Spain
| | - Josep Cano
- Mycology Unit, Medical School/Oenology School, Universitat Rovira i Virgili, Reus, Spain
| | - Javier Pemán
- Unidad de Micología, Servicio de Microbiología, Universitari la Fe, Valencia, Spain
| | - Guillermo Quindos
- Laboratorio de Micología Médica, Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Bilbao, Spain
| | - Françoise Botterel
- Laboratoire de Parasitologie-Mycologie, CHU Henri Mondor, Créteil, France
| | | | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, Westmead, New South Wales, Australia
| | - Laurence Delhaès
- Center for Cardiothoracic Research of Bordeaux, Inserm U1045, Bordeaux, France
| | - Loïc Favennec
- Laboratoire de Parasitologie-Mycologie, EA 3800, CHU Charles Nicolle and Université de Rouen, Rouen, France
| | - Stéphane Ranque
- Laboratoire de Parasitologie-Mycologie, AP-HM Timone, Marseille, France
| | - Ludwig Sedlacek
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jose Vazquez
- Division of Infectious Diseases, Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Craig Williams
- University of the West of Scotland, Institute of Healthcare Associated Infection, University Hospital Crosshouse, Kilmarnock, United Kingdom
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Solène Le Gal
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Gilles Nevez
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Brest, France.,Laboratoire de Parasitologie-Mycologie, CHU, Brest, France
| | - Maxime Fleury
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Françoise Symoens
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Jean-Philippe Bouchara
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France.,Laboratoire de Parasitologie-Mycologie, CHU, Angers, France
| | | |
Collapse
|
103
|
Vidal-Acuña MR, Ruiz-Pérez de Pipaón M, Torres-Sánchez MJ, Aznar J. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Med Mycol 2018; 56:838-846. [PMID: 29228361 DOI: 10.1093/mmy/myx115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/11/2017] [Indexed: 01/30/2023] Open
Abstract
An expanded library of matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been constructed using the spectra generated from 42 clinical isolates and 11 reference strains, including 23 different species from 8 sections (16 cryptic plus 7 noncryptic species). Out of a total of 379 strains of Aspergillus isolated from clinical samples, 179 strains were selected to be identified by sequencing of beta-tubulin or calmodulin genes. Protein spectra of 53 strains, cultured in liquid medium, were used to construct an in-house reference database in the MALDI-TOF MS. One hundred ninety strains (179 clinical isolates previously identified by sequencing and the 11 reference strains), cultured on solid medium, were blindy analyzed by the MALDI-TOF MS technology to validate the generated in-house reference database. A 100% correlation was obtained with both identification methods, gene sequencing and MALDI-TOF MS, and no discordant identification was obtained. The HUVR database provided species level (score of ≥2.0) identification in 165 isolates (86.84%) and for the remaining 25 (13.16%) a genus level identification (score between 1.7 and 2.0) was obtained. The routine MALDI-TOF MS analysis with the new database, was then challenged with 200 Aspergillus clinical isolates grown on solid medium in a prospective evaluation. A species identification was obtained in 191 strains (95.5%), and only nine strains (4.5%) could not be identified at the species level. Among the 200 strains, A. tubingensis was the only cryptic species identified. We demonstrated the feasibility and usefulness of the new HUVR database in MALDI-TOF MS by the use of a standardized procedure for the identification of Aspergillus clinical isolates, including cryptic species, grown either on solid or liquid media.
Collapse
Affiliation(s)
- M Reyes Vidal-Acuña
- Infectious Diseases, Clinical Microbiology and Preventive Medicine Unit, University Hospital Virgen del Rocío, Seville, Spain
| | - Maite Ruiz-Pérez de Pipaón
- Infectious Diseases, Clinical Microbiology and Preventive Medicine Unit, University Hospital Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Spain
| | - María José Torres-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Spain.,Molecular Microbiology Division, Microbiology Department, University of Seville, Spain
| | - Javier Aznar
- Infectious Diseases, Clinical Microbiology and Preventive Medicine Unit, University Hospital Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Spain.,Molecular Microbiology Division, Microbiology Department, University of Seville, Spain
| |
Collapse
|
104
|
Hubka V, Barrs V, Dudová Z, Sklenář F, Kubátová A, Matsuzawa T, Yaguchi T, Horie Y, Nováková A, Frisvad J, Talbot J, Kolařík M. Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. PERSOONIA 2018; 41:142-174. [PMID: 30728603 PMCID: PMC6344812 DOI: 10.3767/persoonia.2018.41.08] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Although Aspergillus fumigatus is the major agent of invasive aspergillosis, an increasing number of infections are caused by its cryptic species, especially A. lentulus and the A. viridinutans species complex (AVSC). Their identification is clinically relevant because of antifungal drug resistance and refractory infections. Species boundaries in the AVSC are unresolved since most species have uniform morphology and produce interspecific hybrids in vitro. Clinical and environmental strains from six continents (n = 110) were characterized by DNA sequencing of four to six loci. Biological compatibilities were tested within and between major phylogenetic clades, and ascospore morphology was characterised. Species delimitation methods based on the multispecies coalescent model (MSC) supported recognition of ten species including one new species. Four species are confirmed opportunistic pathogens; A. udagawae followed by A. felis and A. pseudoviridinutans are known from opportunistic human infections, while A. felis followed by A. udagawae and A. wyomingensis are agents of feline sino-orbital aspergillosis. Recently described human-pathogenic species A. parafelis and A. pseudofelis are synonymized with A. felis and an epitype is designated for A. udagawae. Intraspecific mating assay showed that only a few of the heterothallic species can readily generate sexual morphs in vitro. Interspecific mating assays revealed that five different species combinations were biologically compatible. Hybrid ascospores had atypical surface ornamentation and significantly different dimensions compared to parental species. This suggests that species limits in the AVSC are maintained by both pre- and post-zygotic barriers and these species display a great potential for rapid adaptation and modulation of virulence. This study highlights that a sufficient number of strains representing genetic diversity within a species is essential for meaningful species boundaries delimitation in cryptic species complexes. MSC-based delimitation methods are robust and suitable tools for evaluation of boundaries between these species.
Collapse
Affiliation(s)
- V. Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - V. Barrs
- Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia
| | - Z. Dudová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - A. Kubátová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
| | - T. Matsuzawa
- University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Y. Horie
- Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - A. Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - J.J. Talbot
- Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia
| | - M. Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
105
|
Yamairi K, Ido K, Nakamura S, Niki M, Imoto W, Shibata W, Namikawa H, Fujimoto H, Yamada K, Nakamae H, Hino M, Kaneko Y, Miyazaki Y, Kakeya H. Successful treatment of invasive pulmonary aspergillosis caused by Aspergillus felis, a cryptic species within the Aspergillus section Fumigati: A case report. J Infect Chemother 2018; 25:307-310. [PMID: 30503017 DOI: 10.1016/j.jiac.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
Aspergillus species are a major cause of life-threatening infections in immunocompromised hosts, and the most common pathogen of invasive aspergillosis is Aspergillus fumigatus. Recently, the development of molecular identification has revealed cryptic Aspergillus species, and A. felis is one such species within the Aspergillus section Fumigati reported in 2013. We describe a case of invasive pulmonary aspergillosis caused by A. felis in a 41-year-old Japanese woman diagnosed with myelodysplastic syndrome. She presented with fever 19 days after undergoing autologous peripheral blood stem cell transplantation and was clinically diagnosed with invasive pulmonary aspergillosis. Bronchoscopy and bronchoalveolar lavage were performed for definitive diagnosis. The β-tubulin genes of the mold isolated from the bronchoalveolar lavage fluid, and sequenced directly from the PCR products using a primer pair were found to have 100% homology with A. felis. We successfully treated the patient with echinocandin following careful susceptibility testing. To the best of our knowledge, this is the first published case reporting the clinical course for diagnosis and successful treatment of invasive aspergillosis by A. felis.
Collapse
Affiliation(s)
- Kazushi Yamairi
- Department of Infection Control Science, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Research Center for Infectious Disease Sciences (RCIDS), Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kentaro Ido
- Department of Hematology, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shigeki Nakamura
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Niki
- Department of Bacteriology, Osaka City University, Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Waki Imoto
- Department of Infection Control Science, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Research Center for Infectious Disease Sciences (RCIDS), Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Wataru Shibata
- Department of Infection Control Science, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Research Center for Infectious Disease Sciences (RCIDS), Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroki Namikawa
- Department of Infection Control Science, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Research Center for Infectious Disease Sciences (RCIDS), Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroki Fujimoto
- Department of Infection Control Science, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Research Center for Infectious Disease Sciences (RCIDS), Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koichi Yamada
- Department of Infection Control Science, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Research Center for Infectious Disease Sciences (RCIDS), Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yukihiro Kaneko
- Research Center for Infectious Disease Sciences (RCIDS), Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Department of Bacteriology, Osaka City University, Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hiroshi Kakeya
- Department of Infection Control Science, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Research Center for Infectious Disease Sciences (RCIDS), Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
106
|
Lackner M, Rambach G, Jukic E, Sartori B, Fritz J, Seger C, Hagleitner M, Speth C, Lass-Flörl C. Azole-resistant and -susceptible Aspergillus fumigatus isolates show comparable fitness and azole treatment outcome in immunocompetent mice. Med Mycol 2018; 56:703-710. [PMID: 29228287 DOI: 10.1093/mmy/myx109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/05/2017] [Indexed: 11/15/2022] Open
Abstract
No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitro azole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection.
Collapse
Affiliation(s)
- Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Emina Jukic
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Sartori
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef Fritz
- Department for Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Austria
| | - Christoph Seger
- Division of Mass Spectrometry and Chromatography, Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital Innsbruck, Innsbruck, Austria
| | - Magdalena Hagleitner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
107
|
Garcia-Vidal C. [Current therapeutic options in invasive mycosis and potential therapeutic role of isavuconazole]. Rev Iberoam Micol 2018; 35:192-197. [PMID: 30455108 DOI: 10.1016/j.riam.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023] Open
Abstract
The treatment of invasive fungal infections has deeply evolved in recent years with the inclusion of new antifungals to the therapeutic treatment arsenal. A new azole, isavuconazole, has been recently approved. This review focuses on the role of isavuconazole for treating the most important invasive fungal infections: invasive candidiasis, aspergillosis, mucormicosis, infections caused by other filamentous fungi and those caused by dimorphic fungi.
Collapse
Affiliation(s)
- Carolina Garcia-Vidal
- Servicio de Enfermedades Infecciosas, Hospital Clínic de Barcelona-IDIBAPS; Universitat de Barcelona, FungiCLINIC Research group (AGAUR), Barcelona, España.
| |
Collapse
|
108
|
Ukai Y, Kuroiwa M, Kurihara N, Naruse H, Homma T, Maki H, Naito A. Contributions of yap1 Mutation and Subsequent atrF Upregulation to Voriconazole Resistance in Aspergillus flavus. Antimicrob Agents Chemother 2018; 62:AAC.01216-18. [PMID: 30126960 PMCID: PMC6201102 DOI: 10.1128/aac.01216-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 01/16/2023] Open
Abstract
Aspergillus flavus is the second most significant pathogenic cause of invasive aspergillosis; however, its emergence risks and mechanisms of voriconazole (VRC) resistance have not yet been elucidated in detail. Here, we demonstrate that repeated exposure of A. flavus to subinhibitory concentrations of VRC in vitro causes the emergence of a VRC-resistant mutant with a novel resistance mechanism. The VRC-resistant mutant shows a MIC of 16 μg/ml for VRC and of 0.5 μg/ml for itraconazole (ITC). Whole-genome sequencing analysis showed that the mutant possesses a point mutation in yap1, which encodes a bZIP transcription factor working as the master regulator of the oxidative stress response, but no mutations in the cyp51 genes. This point mutation in yap1 caused alteration of Leu558 to Trp (Yap1Leu558Trp) in the putative nuclear export sequence in the carboxy-terminal cysteine-rich domain of Yap1. This Yap1Leu558Trp substitution was confirmed as being responsible for the VRC-resistant phenotype, but not for that of ITC, by the revertant to Yap1wild type with homologous gene replacement. Furthermore, Yap1Leu558Trp caused marked upregulation of the atrF ATP-binding cassette transporter, and the deletion of atrF restored susceptibility to VRC in A. flavus These findings provide new insights into VRC resistance mechanisms via a transcriptional factor mutation that is independent of the cyp51 gene mutation in A. flavus.
Collapse
Affiliation(s)
- Yuuta Ukai
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Miho Kuroiwa
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Naoko Kurihara
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Hiroki Naruse
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Tomoyuki Homma
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Hideki Maki
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Akira Naito
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| |
Collapse
|
109
|
Al-Hatmi AMS, Castro MA, de Hoog GS, Badali H, Alvarado VF, Verweij PE, Meis JF, Zago VV. Epidemiology of Aspergillus species causing keratitis in Mexico. Mycoses 2018; 62:144-151. [PMID: 30256460 DOI: 10.1111/myc.12855] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND The incidence of fungal keratitis has increased in recent years. While the epidemiology and clinical roles of various Candida and Fusarium species have been relatively well-identified in infections of the eye, data regarding keratitis caused by Aspergillus species are scant. Accurate and rapid diagnosis is important for successful management of this infection. OBJECTIVES To present the first molecular epidemiological data from Mexico during a 4-year period of cases admitted with Aspergillus keratitis to a tertiary care eye institution in Mexico City. PATIENTS/METHODS A total of 25 cases of keratitis were included in the study. Aspergillus isolates were identified by sequencing the calmodulin gene. Antifungal susceptibility was tested according to CLSI. RESULTS The aetiological agents belonged to Aspergillus flavus (n = 13), Aspergillus effusus (n = 1), Aspergillus tamarii (n = 4), Aspergillus sydowii (n = 1), Aspergillus protuberus (n = 3) and Aspergillus terreus (n = 3). All strains had low minimum inhibitory concentrations (MICs) of itraconazole and voriconazole (VCZ). Amphotericin B and natamycin showed moderate elevated MICs. CONCLUSIONS Early diagnosis and application of topical VCZ 1% were associated with good outcome. Monitoring of local epidemiological data plays an important role in clinical practice.
Collapse
Affiliation(s)
- Abdullah M S Al-Hatmi
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Directorate General of Health Services, Ministry of Health, Ibri, Oman.,Centre of Expertise in Mycology, Radboud University Medical Centre / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Marino Alcantara Castro
- Laboratory of Microbiology, Asociacion para Evitar la Ceguera en Mexico Hospital "Dr. Luis Sanchez-Bulnes", Coyoacán, Mexico
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Centre of Expertise in Mycology, Radboud University Medical Centre / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Hamid Badali
- Department of Medical Mycology, Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Victor Flores Alvarado
- Laboratory of Microbiology, Asociacion para Evitar la Ceguera en Mexico Hospital "Dr. Luis Sanchez-Bulnes", Coyoacán, Mexico
| | - Paul E Verweij
- Centre of Expertise in Mycology, Radboud University Medical Centre / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jacques F Meis
- Centre of Expertise in Mycology, Radboud University Medical Centre / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands
| | - Virginia Vanzzini Zago
- Laboratory of Microbiology, Asociacion para Evitar la Ceguera en Mexico Hospital "Dr. Luis Sanchez-Bulnes", Coyoacán, Mexico
| |
Collapse
|
110
|
Hagiwara S, Tamura T, Satoh K, Kamewada H, Nakano M, Shinden S, Yamaguchi H, Makimura K. The Molecular Identification and Antifungal Susceptibilities of Aspergillus Species Causing Otomycosis in Tochigi, Japan. Mycopathologia 2018; 184:13-21. [PMID: 30291485 DOI: 10.1007/s11046-018-0299-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/24/2018] [Indexed: 02/01/2023]
Abstract
Aspergillus species are the most common pathogenic fungi involved in otomycosis, an infection of the outer ear canal. In this study, we examined the incidence of Aspergillus infections and the antifungal susceptibilities of 30 Aspergillus species isolates from patients with otomycosis who visited Saiseikai Utsunomiya Hospital between August 2013 and July 2016. Based on the morphological test results, the strains were identified as Aspergillus niger sensu lato (20 strains), A. terreus sensu lato (7 strains), and A. fumigatus sensu lato (3 strains). In contrast, the molecular identifications based on analyzing the isolates' partial β-tubulin gene sequences revealed them to be A. niger sensu stricto (12 strains), A. tubingensis (8 strains), A. terreus sensu stricto (7 strains), and A. fumigatus sensu stricto (3 strains). The antifungal susceptibility test results indicated that strains of A. tubingensis and A. niger sensu stricto displayed lower susceptibilities to ravuconazole, compared with the other isolates. The Aspergillus strains from this study showed low minimum inhibitory concentrations toward the azole-based drugs efinaconazole, lanoconazole, and luliconazole. Therefore, these topical therapeutic agents may be effective for the treatment of otomycosis.
Collapse
Affiliation(s)
- Shigehiro Hagiwara
- Graduate School of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Clinical Laboratory, Saiseikai Utsunomiya Hospital, 911-1 Takebayashi-machi, Utsunomiya, Tochigi, 391-0974, Japan
| | - Takashi Tamura
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan.,Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Kazuo Satoh
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan.,Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Hitoshi Kamewada
- Department of Clinical Laboratory, Saiseikai Utsunomiya Hospital, 911-1 Takebayashi-machi, Utsunomiya, Tochigi, 391-0974, Japan
| | - Masayasu Nakano
- Department of Laboratory Medicine, Saiseikai Utsunomiya Hospital, 911-1 Takebayashi-machi, Utsunomiya, Tochigi, 391-0974, Japan
| | - Seiichi Shinden
- Department of Otorhinolaryngology, Saiseikai Utsunomiya Hospital, 911-1 Takebayashi-machi, Utsunomiya, Tochigi, 391-0974, Japan
| | | | - Koichi Makimura
- Graduate School of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Medical Mycology Research Unit, Graduate School of Medicine, Teikyo University, Tokyo, Japan. .,General Medical Education and Research Center, Teikyo University, Tokyo, Japan. .,Teikyo University Institute of Medical Mycology, Tokyo, Japan.
| |
Collapse
|
111
|
Prevalence and in vitro antifungal susceptibility of cryptic species of the genus Aspergillus isolated in clinical samples. Enferm Infecc Microbiol Clin 2018; 37:296-300. [PMID: 30292326 DOI: 10.1016/j.eimc.2018.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/08/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The genus Aspergillus contains more than 300 species, which are divided into closely related groups called sections. Molecular studies have revealed numerous cryptic species within different sections of this genus, which have different profiles of antifungal susceptibility and lack diagnostic morphological features. However, there are few studies on the prevalence and in vitro antifungal susceptibility of the cryptic species of this genus. The aim of this study was to investigate the distribution of Aspergillus spp. among clinical samples, and to study their in vitro susceptibility to different antifungal drugs. METHOD Over a period of 2-years (2014-2015), a total of 379 strains of the genus Aspergillus were isolated. Most of the isolates were classified as respiratory colonizations; no cases of invasive aspergillosis were found. The strains were identified by MALDI-TOF mass spectrometry, and susceptibility testing was performed by the EUCAST reference procedure. RESULTS Twenty species belonging to 8 sections were identified, being A. fumigatus the most prevalent (44.1%). The prevalence of cryptic species was 15.3%, with a clear predominance of A. tubingensis. Among the tested antifungal drugs, amphotericin B was the less active in vitro, followed by triazole drugs and echinocandins. The cryptic species had minimun inhibitory concentrations (MICs) higher than the corresponding type species. CONCLUSIONS Accurate identification of the genus Aspergillus at the species level and in vitro antifungal susceptibility testing are necessary because, as it has been shown, some species of this genus may show resistance profiles against available antifungal drugs.
Collapse
|
112
|
Epidemiología de las micosis invasoras: un paisaje en continuo cambio. Rev Iberoam Micol 2018; 35:171-178. [DOI: 10.1016/j.riam.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
|
113
|
Molecular Identification and Susceptibility Testing of Molds Isolated in a Prospective Surveillance of Triazole Resistance in Spain (FILPOP2 Study). Antimicrob Agents Chemother 2018; 62:AAC.00358-18. [PMID: 29941643 DOI: 10.1128/aac.00358-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
Antifungal resistance is increasing by the emergence of intrinsically resistant species and by the development of secondary resistance in susceptible species. A previous study performed in Spain revealed levels of azole resistance in molds of between 10 and 12.7%, but secondary resistance in Aspergillus fumigatus was not detected. We used itraconazole (ITZ)-supplemented medium to select resistant strains. A total of 500 plates supplemented with 2 mg/liter of ITZ were sent to 10 Spanish tertiary hospitals, and molecular identification and antifungal susceptibility testing were performed. In addition, the cyp51A gene in those A. fumigatus strains showing azole resistance was sequenced. A total of 493 isolates were included in the study. Sixteen strains were isolated from patients with an infection classified as proven, 104 were isolated from patients with an infection classified as probable, and 373 were isolated from patients with an infection classified as colonization. Aspergillus was the most frequent genus isolated, at 80.3%, followed by Scedosporium-Lomentospora (7.9%), Penicillium-Talaromyces (4.5%), Fusarium (2.6%), and the order Mucorales (1%). Antifungal resistance was detected in Scedosporium-Lomentospora species, Fusarium, Talaromyces, and Mucorales Three strains of A. fumigatus sensu stricto were resistant to azoles; two of them harbored the TR34+L98H mechanism of resistance, and the other one had no mutations in cyp51A The level of azole resistance in A. fumigatus remains low, but cryptic species represent over 10% of the isolates and have a broader but overall higher range of antifungal resistance.
Collapse
|
114
|
Emerging Antifungal Drug Resistance in Aspergillus fumigatus and Among Other Species of Aspergillus. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0318-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
115
|
Pinto E, Monteiro C, Maia M, Faria MA, Lopes V, Lameiras C, Pinheiro D. Aspergillus Species and Antifungals Susceptibility in Clinical Setting in the North of Portugal: Cryptic Species and Emerging Azoles Resistance in A. fumigatus. Front Microbiol 2018; 9:1656. [PMID: 30083151 PMCID: PMC6065200 DOI: 10.3389/fmicb.2018.01656] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
Aspergillus spp. are agents of a broad-spectrum of diseases among humans. Their growing resistance to azoles, the cornerstone in the management of human aspergillosis, is a worrisome problem around the world. Considering lack of data from Portugal on this topic, particularly from the northern region, a retrospective surveillance study was planned to assess frequency of cryptic Aspergillus species and azoles resistance. A total of 227 clinical isolates, mainly from the respiratory tract (92.1%), collected from three hospitals serving a population of about three million people, were studied for their epidemiology and antifungal susceptibility patterns determined by the E.DEF.9.3 protocol of EUCAST. Employing molecular methods, seven Aspergillus complexes were identified; Aspergillus fumigatus sensu stricto was the most frequent isolate (86.7%). A 7.5% prevalence of cryptic species was found; A. welwitschiae (A. niger complex-3.1%) and A. lentulus (A. fumigatus complex-2.2%) were the most frequent. Amongst cryptic species, it was found a percentage of resistance to voriconazole, posaconazole and isavuconazole of 47.1, 82.4, and 100%, respectively. Five A. fumigatus sensu stricto showed pan-azole resistance. Sequencing their cyp51A gene revealed the presence of one isolate with TR46/Y121F/T289A mutation and two isolates with TR34/L98H mutation. This study emphasizes the need to identify strains to the species level and to evaluate their antifungal susceptibility in all human originated Aspergillus spp. isolates, particularly those from invasive aspergillosis.
Collapse
Affiliation(s)
- Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Carolina Monteiro
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Marta Maia
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Virgínia Lopes
- Microbiology Laboratory, Pathology Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Catarina Lameiras
- Microbiology Service, Laboratorial Diagnostic Department, Instituto Português Oncologia do Porto Francisco Gentil, EPE (IPOFG-Porto), Porto, Portugal
| | - Dolores Pinheiro
- Laboratory of Microbiology, Service of Clinical Pathology, Centro Hospitalar S. João EPE, Porto, Portugal
| |
Collapse
|
116
|
Ashu EE, Xu J. Strengthening the One Health Agenda: The Role of Molecular Epidemiology in Aspergillus Threat Management. Genes (Basel) 2018; 9:genes9070359. [PMID: 30029491 PMCID: PMC6071254 DOI: 10.3390/genes9070359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
The United Nations’ One Health initiative advocates the collaboration of multiple sectors within the global and local health authorities toward the goal of better public health management outcomes. The emerging global health threat posed by Aspergillus species is an example of a management challenge that would benefit from the One Health approach. In this paper, we explore the potential role of molecular epidemiology in Aspergillus threat management and strengthening of the One Health initiative. Effective management of Aspergillus at a public health level requires the development of rapid and accurate diagnostic tools to not only identify the infecting pathogen to species level, but also to the level of individual genotype, including drug susceptibility patterns. While a variety of molecular methods have been developed for Aspergillus diagnosis, their use at below-species level in clinical settings has been very limited, especially in resource-poor countries and regions. Here we provide a framework for Aspergillus threat management and describe how molecular epidemiology and experimental evolution methods could be used for predicting resistance through drug exposure. Our analyses highlight the need for standardization of loci and methods used for molecular diagnostics, and surveillance across Aspergillus species and geographic regions. Such standardization will enable comparisons at national and global levels and through the One Health approach, strengthen Aspergillus threat management efforts.
Collapse
Affiliation(s)
- Eta E Ashu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, Ontario, ON L8S 4K1, Canada.
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, Ontario, ON L8S 4K1, Canada.
- Public Research Laboratory, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
117
|
Corzo-León DE, Chora-Hernández LD, Rodríguez-Zulueta AP, Walsh TJ. Diabetes mellitus as the major risk factor for mucormycosis in Mexico: Epidemiology, diagnosis, and outcomes of reported cases. Med Mycol 2018; 56:29-43. [PMID: 28431008 DOI: 10.1093/mmy/myx017] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
Mucormycosis is an emerging infectious disease with high rates of associated mortality and morbidity. Little is known about the characteristics of mucormycosis or entomophthoromycosis occurring in Mexico. A search strategy was performed of literature published in journals found in available databases and theses published online at Universidad Nacional Autónoma de México (UNAM) library website reporting clinical cases or clinical case series of mucormycosis and entomophthoromycosis occurring in Mexico between 1982 and 2016. Among the 418 cases identified, 72% were diabetic patients, and sinusitis accounted for 75% of the reported cases. Diabetes mellitus was not a risk factor for entomophthoromycosis. Mortality rate was 51% (125/244). Rhizopus species were the most frequent isolates (59%, 148/250). Amphotericin B deoxycholate was used in 89% of cases (204/227), while surgery and antifungal management as combined treatment was used in 90% (172/191). In diabetic individuals, this combined treatment approach was associated with a higher probability of survival (95% vs 66%, OR = 0.1, 95% CI, 0.02-0.43' P = .002). The most common complications were associated with nephrotoxicity and prolonged hospitalization due to IV antifungal therapy. An algorithm is proposed to establish an early diagnosis of rhino-orbital cerebral (ROC) mucormycosis based on standardized identification of warning signs and symptoms and performing an early direct microbiological exam and histopathological identification through a multidisciplinary medical and surgical team. In summary, diabetes mellitus was the most common risk factor for mucormycosis in Mexico; combined antifungal therapy and surgery in ROC mucormycosis significantly improved survival.
Collapse
Affiliation(s)
- Dora E Corzo-León
- Department of Epidemiology and Infectious Diseases, Hospital General Dr. Manuel Gea González, Mexico City, Mexico.,Medical Mycology and Fungal immunology / Wellcome Trust Strategic Award Program. Aberdeen Fungal Group, University of Aberdeen, Aberdeen, UK
| | - Luis D Chora-Hernández
- Department of Epidemiology and Infectious Diseases, Hospital General Dr. Manuel Gea González, Mexico City, Mexico.,Department of Infectious Diseases. Hospital General No. 1 Instituto Mexicano del Seguro Social. Morelia Michoacan
| | - Ana P Rodríguez-Zulueta
- Department of Epidemiology and Infectious Diseases, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program and Infectious Diseases Translational Research Laboratory, Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, NY, USA
| |
Collapse
|
118
|
Siqueira JPZ, Wiederhold N, Gené J, García D, Almeida MTG, Guarro J. CrypticAspergillusfrom clinical samples in the USA and description of a new species in sectionFlavipedes. Mycoses 2018; 61:814-825. [DOI: 10.1111/myc.12818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/27/2022]
Affiliation(s)
- João P. Z. Siqueira
- Unitat de Micologia; Facultat de Medicina i Ciències de la Salut; IISPV; Universitat Rovira i Virgili; Reus Spain
- Faculdade de Medicina de São José do Rio Preto; Laboratório de Microbiologia; São José do Rio Preto Brazil
| | - Nathan Wiederhold
- Fungus Testing Laboratory; University of Texas Health Science Center; San Antonio Texas
| | - Josepa Gené
- Unitat de Micologia; Facultat de Medicina i Ciències de la Salut; IISPV; Universitat Rovira i Virgili; Reus Spain
| | - Dania García
- Unitat de Micologia; Facultat de Medicina i Ciències de la Salut; IISPV; Universitat Rovira i Virgili; Reus Spain
| | - Margarete T. G. Almeida
- Faculdade de Medicina de São José do Rio Preto; Laboratório de Microbiologia; São José do Rio Preto Brazil
| | - Josep Guarro
- Unitat de Micologia; Facultat de Medicina i Ciències de la Salut; IISPV; Universitat Rovira i Virgili; Reus Spain
| |
Collapse
|
119
|
Szalewski DA, Hinrichs VS, Zinniel DK, Barletta RG. The pathogenicity ofAspergillus fumigatus, drug resistance, and nanoparticle delivery. Can J Microbiol 2018; 64:439-453. [DOI: 10.1139/cjm-2017-0749] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genus Aspergillus includes fungal species that cause major health issues of significant economic importance. These microorganisms are also the culprit for production of carcinogenic aflatoxins in grain storages, contaminating crops, and economically straining the production process. Aspergillus fumigatus is a very important pathogenic species, being responsible for high human morbidity and mortality on a global basis. The prevalence of these infections in immunosuppressed individuals is on the rise, and physicians struggle with the diagnosis of these deadly pathogens. Several virulence determinants facilitate fungal invasion and evasion of the host immune response. Metabolic functions are also important for virulence and drug resistance, since they allow fungi to obtain nutrients for their own survival and growth. Following a positive diagnostic identification, mortality rates remain high due, in part, to emerging resistance to frequently used antifungal drugs. In this review, we discuss the role of the main virulence, drug target, and drug resistance determinants. We conclude with the review of new technologies being developed to treat aspergillosis. In particular, microsphere and nanoparticle delivery systems are discussed in the context of improving drug bioavailability. Aspergillus will likely continue to cause problematic infections in immunocompromised patients, so it is imperative to improve treatment options.
Collapse
Affiliation(s)
- David A. Szalewski
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0726, USA
- Department of Microbiology, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Victoria S. Hinrichs
- College of Agricultural Sciences and Natural Resources, University of Nebraska, Lincoln, NE 68583-0702, USA
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0905, USA
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0905, USA
| |
Collapse
|
120
|
Sensibilidad in vitro de especies crípticas de Aspergillus fumigatus a isavuconazol, itraconazol y voriconazol mediante E-test. Rev Iberoam Micol 2018; 35:113-114. [DOI: 10.1016/j.riam.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/04/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022] Open
|
121
|
Lyskova P, Hubka V, Svobodova L, Barrs V, Dhand NK, Yaguchi T, Matsuzawa T, Horie Y, Kolarik M, Dobias R, Hamal P. Antifungal Susceptibility of the Aspergillus viridinutans Complex: Comparison of Two In Vitro Methods. Antimicrob Agents Chemother 2018; 62:e01927-17. [PMID: 29437620 PMCID: PMC5913995 DOI: 10.1128/aac.01927-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/28/2018] [Indexed: 12/20/2022] Open
Abstract
Cryptic species of Aspergillus fumigatus, including the Aspergillus viridinutans species complex, are increasingly reported to be causes of invasive aspergillosis. Their identification is clinically relevant, as these species frequently have intrinsic resistance to common antifungals. We evaluated the susceptibilities of 90 environmental and clinical isolates from the A. viridinutans species complex, identified by DNA sequencing of the calmodulin gene, to seven antifungals (voriconazole, posaconazole, itraconazole, amphotericin B, anidulafungin, micafungin, and caspofungin) using the reference European Committee on Antimicrobial Susceptibility Testing (EUCAST) method. The majority of species demonstrated elevated MICs of voriconazole (geometric mean [GM] MIC, 4.46 mg/liter) and itraconazole (GM MIC, 9.85 mg/liter) and had variable susceptibility to amphotericin B (GM MIC, 2.5 mg/liter). Overall, the MICs of posaconazole and the minimum effective concentrations of echinocandins were low. The results obtained by the EUCAST method were compared with the results obtained with Sensititre YeastOne (YO) panels. Overall, there was 67% agreement (95% confidence interval [CI], 62 to 72%) between the results obtained by the EUCAST method and those obtained with YO panels when the results were read at 48 h and 82% agreement (95% CI, 78 to 86%) when the results were read at 72 h. There was a significant difference in agreement between antifungals; agreement was high for amphotericin B, voriconazole, and posaconazole (70 to 86% at 48 h and 88 to 93% at 72 h) but was very low for itraconazole (37% at 48 h and 57% at 72 h). The agreement was also variable between species, with the maximum agreement being observed for A. felis isolates (85 and 93% at 48 and 72 h, respectively). Elevated MICs of voriconazole and itraconazole were cross-correlated, but there was no correlation between the other azoles tested.
Collapse
Affiliation(s)
- Pavlina Lyskova
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Laboratory of Medical Mycology, Department of Parasitology, Mycology and Mycobacteriology Prague, Public Health Institute in Usti nad Labem, Prague, Czech Republic
| | - Vit Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, Prague, Czech Republic
| | - Lucie Svobodova
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Vanessa Barrs
- Sydney School of Veterinary Science and Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, New South Wales, Australia
| | - Navneet K Dhand
- Sydney School of Veterinary Science and Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, New South Wales, Australia
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Yoshikazu Horie
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Miroslav Kolarik
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, Prague, Czech Republic
| | - Radim Dobias
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Laboratory of Clinical Mycology, Institute of Public Health, Ostrava, Czech Republic
| | - Petr Hamal
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
122
|
Zoran T, Sartori B, Sappl L, Aigner M, Sánchez-Reus F, Rezusta A, Chowdhary A, Taj-Aldeen SJ, Arendrup MC, Oliveri S, Kontoyiannis DP, Alastruey-Izquierdo A, Lagrou K, Cascio GL, Meis JF, Buzina W, Farina C, Drogari-Apiranthitou M, Grancini A, Tortorano AM, Willinger B, Hamprecht A, Johnson E, Klingspor L, Arsic-Arsenijevic V, Cornely OA, Meletiadis J, Prammer W, Tullio V, Vehreschild JJ, Trovato L, Lewis RE, Segal E, Rath PM, Hamal P, Rodriguez-Iglesias M, Roilides E, Arikan-Akdagli S, Chakrabarti A, Colombo AL, Fernández MS, Martin-Gomez MT, Badali H, Petrikkos G, Klimko N, Heimann SM, Uzun O, Roudbary M, de la Fuente S, Houbraken J, Risslegger B, Lass-Flörl C, Lackner M. Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon? Front Microbiol 2018; 9:516. [PMID: 29643840 PMCID: PMC5882871 DOI: 10.3389/fmicb.2018.00516] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 11/22/2022] Open
Abstract
Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%), and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions:Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4% of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10%, resistance against voriconazole was rare and absent for itraconazole.
Collapse
Affiliation(s)
- Tamara Zoran
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Sartori
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura Sappl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Aigner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ferran Sánchez-Reus
- Servei de Microbiologia, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Antonio Rezusta
- Microbiologia, Hospital Universitario Miguel Servet, IIS Aragon, Universidad de Zaragoza, Zaragoza, Spain
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Saad J Taj-Aldeen
- Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Maiken C Arendrup
- Unit of Mycology, Department of Clinical Microbiology, Statens Serum Institute, Copenhagen University, Rigshospitalet, Copenhagen, Denmark
| | - Salvatore Oliveri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Giuliana Lo Cascio
- Unità Operativa Complessa di Microbiologia e Virologia, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Walter Buzina
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Claudio Farina
- Microbiology Institute, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Miranda Drogari-Apiranthitou
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Grancini
- Laboratorio Centrale di Analisi Chimico Cliniche e Microbiologia, IRCCS Foundation, Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna M Tortorano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Elizabeth Johnson
- Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Lena Klingspor
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Valentina Arsic-Arsenijevic
- National Reference Medical Mycology Laboratory, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Oliver A Cornely
- Department I of Internal Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Clinical Trials Centre Cologne, Center for Integrated Oncology (CIO Köln-Bonn), German Centre for Infection Research, University of Cologne, Cologne, Germany
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, National Kapodistrian University of Athens, ATTIKON University Hospital Athens, Athens, Greece
| | - Wolfgang Prammer
- Department of Hygiene and Medical Microbiology, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Vivian Tullio
- Department of Public Health and Pediatrics, Microbiology Division, Turin, Italy
| | - Jörg-Janne Vehreschild
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Laura Trovato
- A.O.U. Policlinico Vittorio Emanuele Catania, Biometec-University of Catania, Catania, Italy
| | - Russell E Lewis
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Petr Hamal
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czechia
| | | | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | - Arunaloke Chakrabarti
- Division of Mycology, Department of Medial Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnaldo L Colombo
- Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana S Fernández
- Departmento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - M Teresa Martin-Gomez
- Division of Clinical Mycology, Department of Microbiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Hamid Badali
- Department of Medical Mycology and Parasitology, Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Nikolai Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, Saint Petersburg, Russia
| | - Sebastian M Heimann
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Omrum Uzun
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | - Maryam Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sonia de la Fuente
- Department of Dermatology, Hospital Ernest Lluch Martin, Zaragoza, Spain
| | - Jos Houbraken
- Department Applied and Industrial Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Brigitte Risslegger
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
123
|
Lung Abscess Due to Aspergillus lentulus and Pseudomonas aeruginosa in a Patient With Granulomatosis With Polyangiitis. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2018. [DOI: 10.1097/ipc.0000000000000536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
124
|
Investigation of Multiple Resistance Mechanisms in Voriconazole-Resistant Aspergillus flavus Clinical Isolates from a Chest Hospital Surveillance in Delhi, India. Antimicrob Agents Chemother 2018; 62:AAC.01928-17. [PMID: 29311090 DOI: 10.1128/aac.01928-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/30/2017] [Indexed: 11/20/2022] Open
Abstract
Invasive and allergic infections by Aspergillus flavus are more common in tropical and subtropical countries. The emergence of voriconazole (VRC) resistance in A. flavus impacts the management of aspergillosis, as azoles are used as the first-line and empirical therapy. We screened 120 molecularly confirmed A. flavus isolates obtained from respiratory and sinonasal specimens in a chest hospital in Delhi, India, for azole resistance using the CLSI broth microdilution (CLSI-BMD) method. Overall, 2.5% (n = 3/120) of A. flavus isolates had VRC MICs above epidemiological cutoff values (>1 μg/ml). The whole-genome sequence analysis of three non-wild-type (WT) A. flavus isolates with high VRC MICs showed polymorphisms in azole target genes (cyp51A, cyp51B, and cyp51C). Further, four novel substitutions (S196F, A324P, N423D, and V465M) encoded in the cyp51C gene were found in a single non-WT isolate which also exhibited overexpression of cyp51 (cyp51A, -B, and -C) genes and transporter genes, namely, MDR1, MDR2, atrF, and mfs1 The homology model of the non-WT isolate suggests that substitutions S196F and N423D exhibited major structural and functional effects on cyp51C drug binding. The substrate (drug) may not be able to bind to binding pocket due to changes in the pocket size or closing down or narrowing of cavities in drug entry channels. Notably, the remaining two VRC-resistant A. flavus isolates, including the one which had a pan-azole resistance phenotype (itraconazole and posaconazole), did not show upregulation of any of the analyzed target genes. These results suggest that multiple target genes and mechanisms could simultaneously contribute to azole resistance in A. flavus.
Collapse
|
125
|
|
126
|
Ramirez-Garcia A, Pellon A, Buldain I, Antoran A, Arbizu-Delgado A, Guruceaga X, Rementeria A, Hernando FL. Proteomics as a Tool to Identify New Targets Against Aspergillus and Scedosporium in the Context of Cystic Fibrosis. Mycopathologia 2018; 183:273-289. [PMID: 28484941 DOI: 10.1007/s11046-017-0139-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is a genetic disorder that increases the risk of suffering microbial, including fungal, infections. In this paper, proteomics-based information was collated relating to secreted and cell wall proteins with potential medical applications from the most common filamentous fungi in CF, i.e., Aspergillus and Scedosporium/Lomentospora species. Among the Aspergillus fumigatus secreted allergens, β-1,3-endoglucanase, the alkaline protease 1 (Alp1/oryzin), Asp f 2, Asp f 13/15, chitinase, chitosanase, dipeptidyl-peptidase V (DppV), the metalloprotease Asp f 5, mitogillin/Asp f 1, and thioredoxin reductase receive a special mention. In addition, the antigens β-glucosidase 1, catalase, glucan endo-1,3-β-glucosidase EglC, β-1,3-glucanosyltransferases Gel1 and Gel2, and glutaminase A were also identified in secretomes of other Aspergillus species associated with CF: Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, and Aspergillus terreus. Regarding cell wall proteins, cytochrome P450 and eEF-3 were proposed as diagnostic targets, and alkaline protease 2 (Alp2), Asp f 3 (putative peroxiredoxin pmp20), probable glycosidases Asp f 9/Crf1 and Crf2, GPI-anchored protein Ecm33, β-1,3-glucanosyltransferase Gel4, conidial hydrophobin Hyp1/RodA, and secreted aspartyl protease Pep2 as protective vaccines in A. fumigatus. On the other hand, for Scedosporium/Lomentospora species, the heat shock protein Hsp70 stands out as a relevant secreted and cell wall antigen. Additionally, the secreted aspartyl proteinase and an ortholog of Asp f 13, as well as the cell wall endo-1,3-β-D-glucosidase and 1,3-β-glucanosyl transferase, were also found to be significant proteins. In conclusion, proteins mentioned in this review may be promising candidates for developing innovative diagnostic and therapeutic tools for fungal infections in CF patients.
Collapse
Affiliation(s)
- Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Aize Pellon
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Aitana Arbizu-Delgado
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain.
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| |
Collapse
|
127
|
Lam PL, Lee KKH, Wong RSM, Cheng GYM, Bian ZX, Chui CH, Gambari R. Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Crit Rev Microbiol 2018; 44:40-78. [PMID: 28423970 DOI: 10.1080/1040841x.2017.1313811] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance of disease-related microorganisms is considered a worldwide prevalent and serious issue which increases the failure of treatment outcomes and leads to high mortality. Considering that the increased resistance to systemic antimicrobial therapy often needs of the use of more toxic agents, topical antimicrobial therapy emerges as an attractive route for the treatment of infectious diseases. The topical antimicrobial therapy is based on the absorption of high drug doses in a readily accessible skin surface, resulting in a reduction of microbial proliferation at infected skin sites. Topical antimicrobials retain the following features: (a) they are able to escape the enzymatic degradation and rapid clearance in the gastrointestinal tract or the first-pass metabolism during oral administration; (b) alleviate the physical discomfort related to intravenous injection; (c) reduce possible adverse effects and drug interactions of systemic administrations; (d) increase patient compliance and convenience; and (e) reduce the treatment costs. Novel antimicrobials for topical application have been widely exploited to control the emergence of drug-resistant microorganisms. This review provides a description of antimicrobial resistance, common microorganisms causing skin and soft tissue infections, topical delivery route of antimicrobials, safety concerns of topical antimicrobials, recent advances, challenges and future prospective in topical antimicrobial development.
Collapse
Affiliation(s)
- P L Lam
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - K K H Lee
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - R S M Wong
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - G Y M Cheng
- c Faculty of Health Sciences , University of Macau , Macau , P.R. China
| | - Z X Bian
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - C H Chui
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - R Gambari
- e Department of Life Sciences and Biotechnology, Centre of Biotechnology , University of Ferrara , Ferrara , Italy
| |
Collapse
|
128
|
Improving the diagnosis of invasive aspergillosis by the detection of Aspergillus in broncho-alveolar lavage fluid: Comparison of non-culture-based assays. J Infect 2018; 76:196-205. [DOI: 10.1016/j.jinf.2017.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022]
|
129
|
Guruceaga X, Ezpeleta G, Mayayo E, Sueiro-Olivares M, Abad-Diaz-De-Cerio A, Aguirre Urízar JM, Liu HG, Wiemann P, Bok JW, Filler SG, Keller NP, Hernando FL, Ramirez-Garcia A, Rementeria A. A possible role for fumagillin in cellular damage during host infection by Aspergillus fumigatus. Virulence 2018; 9:1548-1561. [PMID: 30251593 PMCID: PMC6177242 DOI: 10.1080/21505594.2018.1526528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
Virulence mechanisms of the pathogenic fungus Aspergillus fumigatus are multifactorial and depend on the immune state of the host, but little is known about the fungal mechanism that develops during the process of lung invasion. In this study, microarray technology was combined with a histopathology evaluation of infected lungs so that the invasion strategy followed by the fungus could be described. To achieve this, an intranasal mice infection was performed to extract daily fungal samples from the infected lungs over four days post-infection. The pathological study revealed a heavy fungal progression throughout the lung, reaching the blood vessels on the third day after exposure and causing tissue necrosis. One percent of the fungal genome followed a differential expression pattern during this process. Strikingly, most of the genes of the intertwined fumagillin/pseurotin biosynthetic gene cluster were upregulated as were genes encoding lytic enzymes such as lipases, proteases (DppIV, DppV, Asp f 1 or Asp f 5) and chitinase (chiB1) as well as three genes related with pyomelanin biosynthesis process. Furthermore, we demonstrate that fumagillin is produced in an in vitro pneumocyte cell line infection model and that loss of fumagillin synthesis reduces epithelial cell damage. These results suggest that fumagillin contributes to tissue damage during invasive aspergillosis. Therefore, it is probable that A. fumigatus progresses through the lungs via the production of the mycotoxin fumagillin combined with the secretion of lytic enzymes that allow fungal growth, angioinvasion and the disruption of the lung parenchymal structure.
Collapse
Affiliation(s)
- Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Guillermo Ezpeleta
- Preventive Medicine and Hospital Hygiene Service, Complejo Hospitalario de Navarra, Pamplona, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Emilio Mayayo
- Pathology Unit, Medicine and Health Science Faculty, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Monica Sueiro-Olivares
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ana Abad-Diaz-De-Cerio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Manuel Aguirre Urízar
- Department of Stomatology II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hong G. Liu
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Fernando L. Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
130
|
Sharma C, Chowdhary A. Molecular bases of antifungal resistance in filamentous fungi. Int J Antimicrob Agents 2017; 50:607-616. [DOI: 10.1016/j.ijantimicag.2017.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 01/15/2023]
|
131
|
Chowdhary A, Sharma C, Meis JF. Azole-Resistant Aspergillosis: Epidemiology, Molecular Mechanisms, and Treatment. J Infect Dis 2017; 216:S436-S444. [PMID: 28911045 DOI: 10.1093/infdis/jix210] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aspergillus fumigatus remains the most common species in all pulmonary syndromes, followed by Aspergillus flavus which is a common cause of allergic rhinosinusitis, postoperative aspergillosis and fungal keratitis. The manifestations of Aspergillus infections include invasive aspergillosis, chronic pulmonary aspergillosis and bronchitis. Allergic manifestations of inhaled Aspergillus include allergic bronchopulmonary aspergillosis and severe asthma with fungal sensitization. Triazoles are the mainstay of therapy against Aspergillus infections for treatment and prophylaxis. Lately, increased azole resistance in A. fumigatus has become a significant challenge in effective management of aspergillosis. Earlier studies have brought to light the contribution of non-cyp51 mutations along with alterations in cyp51A gene resulting in azole-resistant phenotypes of A. fumigatus. This review highlights the magnitude of azole-resistant aspergillosis and resistance mechanisms implicated in the development of azole-resistant A. fumigatus and address the therapeutic options available.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, India
| | - Cheshta Sharma
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, India
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital.,Centre of Expertise in Mycology Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
132
|
Seroy J, Antiporta P, Grim SA, Proia LA, Singh K, Clark NM. Aspergillus calidoustuscase series and review of the literature. Transpl Infect Dis 2017; 19. [DOI: 10.1111/tid.12755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/17/2017] [Accepted: 05/14/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Justin Seroy
- Division of Infectious Diseases; Department of Internal Medicine; Loyola University Medical Center; Maywood IL USA
| | - Philip Antiporta
- Division of Infectious Diseases; Department of Internal Medicine; Loyola University Medical Center; Maywood IL USA
| | - Shellee A. Grim
- Division of Infectious Diseases; Department of Internal Medicine; Loyola University Medical Center; Maywood IL USA
- Department of Pharmacy Practice; University of Illinois at Chicago; Chicago IL USA
| | - Laurie A. Proia
- Division of Infectious Diseases; Department of Internal Medicine; Rush University Medical Center; Chicago IL USA
| | - Kamaljit Singh
- Department of Pathology; Rush University Medical Center; Chicago IL USA
| | - Nina M. Clark
- Division of Infectious Diseases; Department of Internal Medicine; Loyola University Medical Center; Maywood IL USA
| |
Collapse
|
133
|
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that can cause life-threatening disease in immunocompromised individuals. The interactions between A. fumigatus and the host environment are dynamic and complex. The host immune system needs to recognize the distinct morphological forms of A. fumigatus to control fungal growth and prevent tissue invasion, whereas the fungus requires nutrients and needs to adapt to the hostile environment by escaping immune recognition and counteracting host responses. Understanding these highly dynamic interactions is necessary to fully understand the pathogenesis of aspergillosis and to facilitate the design of new therapeutics to overcome the morbidity and mortality caused by A. fumigatus. In this Review, we describe how A. fumigatus adapts to environmental change, the mechanisms of host defence, and our current knowledge of the interplay between the host immune response and the fungus.
Collapse
|
134
|
Abstract
Antifungal resistance represents a major clinical challenge to clinicians responsible for treating invasive fungal infections due to the limited arsenal of systemically available antifungal agents. In addition current drugs may be limited by drug-drug interactions and serious adverse effects/toxicities that prevent their prolonged use or dosage escalation. Fluconazole resistance is of particular concern in non-Candida albicans species due to the increased incidence of infections caused by these species in different geographic locations worldwide and the elevated prevalence of resistance to this commonly used azole in many institutions. C. glabrata resistance to the echinocandins has also been documented to be rising in several US institutions, and a higher percentage of these isolates may also be azole resistant. Azole resistance in Aspergillus fumigatus due to clinical and environmental exposure to this class of agents has also been found worldwide, and these isolates can cause invasive infections with high mortality rates. In addition, several species of Aspergillus, and other molds, including Scedosporium and Fusarium species, have reduced susceptibility or pan-resistance to clinically available antifungals. Various investigational antifungals are currently in preclinical or clinical development, including several of them that have the potential to overcome resistance observed against the azoles and the echinocandins. These include agents that also target ergosterol and b-glucan biosynthesis, as well as compounds with novel mechanisms of action that may also overcome the limitations of currently available antifungal classes, including both resistance and adverse effects/toxicity.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Department of Pathology and Laboratory Medicine, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
135
|
Talbot JJ, Houbraken J, Frisvad JC, Samson RA, Kidd SE, Pitt J, Lindsay S, Beatty JA, Barrs VR. Discovery of Aspergillus frankstonensis sp. nov. during environmental sampling for animal and human fungal pathogens. PLoS One 2017; 12:e0181660. [PMID: 28792943 PMCID: PMC5549889 DOI: 10.1371/journal.pone.0181660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022] Open
Abstract
Invasive fungal infections (IFI) due to species in Aspergillus section Fumigati (ASF), including the Aspergillus viridinutans species complex (AVSC), are increasingly reported in humans and cats. The risk of exposure to these medically important fungi in Australia is unknown. Air and soil was sampled from the domiciles of pet cats diagnosed with these IFI and from a nature reserve in Frankston, Victoria, where Aspergillus viridinutans sensu stricto was discovered in 1954. Of 104 ASF species isolated, 61% were A. fumigatus sensu stricto, 9% were AVSC (A. felis-clade and A. frankstonensis sp. nov.) and 30% were other species (30%). Seven pathogenic ASF species known to cause disease in humans and animals (A. felis-clade, A. fischeri, A. thermomutatus, A. lentulus, A. laciniosus A. fumisynnematus, A. hiratsukae) comprised 25% of isolates overall. AVSC species were only isolated from Frankston soil where they were abundant, suggesting a particular ecological niche. Phylogenetic, morphological and metabolomic analyses of these isolates identified a new species, A. frankstonensis that is phylogenetically distinct from other AVSC species, heterothallic and produces a unique array of extrolites, including the UV spectrum characterized compounds DOLD, RAIMO and CALBO. Shared morphological and physiological characteristics with other AVSC species include slow sporulation, optimal growth at 37°C, no growth at 50°C, and viriditoxin production. Overall, the risk of environmental exposure to pathogenic species in ASF in Australia appears to be high, but there was no evidence of direct environmental exposure to AVSC species in areas where humans and cats cohabitate.
Collapse
Affiliation(s)
- Jessica J Talbot
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Sarah E Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, SA Pathology, Adelaide, South Australia, Australia
| | - John Pitt
- CSIRO Food Science, CSIRO, North Ryde, New South Wales, Australia
| | - Sue Lindsay
- Faculty of Science and Engineering, Macquarie University, North Ryde, New South Wales, Australia
| | - Julia A Beatty
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Vanessa R Barrs
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
136
|
Toyotome T. Causative Agents of Aspergillosis Including Cryptic Aspergillus Species and A. fumigatus. Med Mycol J 2017; 57:J149-J154. [PMID: 27904060 DOI: 10.3314/mmj.16.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aspergillosis is an important deep mycosis. The causative agents are Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, and Aspergillus terreus, of which A. fumigatus is the most prevalent. Cryptic Aspergillus spp., which morphologically resemble representative species of each Aspergillus section, also cause aspergillosis. Most of the cryptic species reveal different susceptibility patterns and/or different secondary metabolite profiles, also called exometabolome in this manuscript, from those representative species. On the other hand, azole-resistant A. fumigatus strains in clinical specimens and in the environment have been reported. Therefore, it is imperative to precisely identify the species, including cryptic Aspergillus spp., and evaluate the susceptibility of isolates.In this manuscript, some of the causative cryptic Aspergillus spp. are briefly reviewed. In addition, the exometabolome of Aspergillus section Fumigati is described. Finally, azole resistance of A. fumigatus is also discussed, in reference to several studies from Japan.
Collapse
Affiliation(s)
- Takahito Toyotome
- Obihiro University of Agriculture and Veterinary Medicine Diaghostic Center for Animal Health and Food Safety
| |
Collapse
|
137
|
Lass-Flörl C, Cuenca-Estrella M. Changes in the epidemiological landscape of invasive mould infections and disease. J Antimicrob Chemother 2017; 72:i5-i11. [PMID: 28355462 DOI: 10.1093/jac/dkx028] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although a wide variety of pathogens are associated with invasive mould diseases, Aspergillus spp. have historically been one of the most common causative organisms. Most invasive mould infections are caused by members of the Aspergillus fumigatus species complex and an emerging issue is the occurrence of azole resistance in A. fumigatus, with resistance to amphotericin B documented in other Aspergillus spp. The epidemiology of invasive fungal disease has shifted in recent years as non-A. fumigatus Aspergillus spp. and other moulds have become progressively more important, although there are no consolidated data on the prevalence of less common species of moulds. The incidence of mucormycosis may have been underestimated, which is a potential concern since species belonging to the order Mucorales are more resistant to antifungal agents than Aspergillus spp. All species of Mucorales are unaffected by voriconazole and most show moderate resistance in vitro to echinocandins. Fusarium spp. may be the second most common nosocomial fungal pathogen after Aspergillus in some tertiary hospitals, and show a susceptibility profile marked by a higher level of resistance than that of Aspergillus spp. Recently, Scedosporium aurantiacum has been reported as an emerging opportunistic pathogen, against which voriconazole is the most active antifungal agent. Other mould species can infect humans, although invasive fungal disease occurs less frequently. Since uncommon mould species exhibit individual susceptibility profiles and require tailored clinical management, accurate classification at species level of the aetiological agent in any invasive fungal disease should be regarded as the standard of care.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Manuel Cuenca-Estrella
- Department of Mycology, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km 2, Majadahonda, Madrid, Spain
| |
Collapse
|
138
|
Rosa PD, Heidrich D, Corrêa C, Scroferneker ML, Vettorato G, Fuentefria AM, Goldani LZ. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis. Mycoses 2017; 60:616-622. [PMID: 28657120 DOI: 10.1111/myc.12638] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/30/2017] [Accepted: 05/07/2017] [Indexed: 01/31/2023]
Abstract
Fusarium species have emerged as an important human pathogen in skin disease, onychomycosis, keratitis and invasive disease. Onychomycosis caused by Fusarium spp. The infection has been increasingly described in the immunocompetent and immunosuppressed hosts. Considering onychomycosis is a difficult to treat infection, and little is known about the genetic variability and susceptibility pattern of Fusarium spp., further studies are necessary to understand the pathogenesis and better to define the appropriate antifungal treatment for this infection. Accordingly, the objective of this study was to describe the in vitro susceptibility to different antifungal agents and the genetic diversity of 35 Fusarium isolated from patients with onychomycosis. Fusarium spp. were isolated predominantly from female Caucasians, and the most frequent anatomical location was the nail of the hallux. Results revealed that 25 (71.4%) of isolates belonged to the Fusarium solani species complex, followed by 10 (28.5%) isolates from the Fusarium oxysporum species complex. Noteworthy, the authors report the first case of Neocosmospora rubicola isolated from a patient with onychomycosis. Amphotericin B was the most effective antifungal agent against the majority of isolates (60%, MIC ≤4 μg/mL), followed by voriconazole (34.2%, MIC ≤4 μg/mL). In general, Fusarium species presented MIC values >64 μg/mL for fluconazole, itraconazole and terbinafine. Accurate pathogen identification, characterisation and susceptibility testing provide a better understanding of pathogenesis of Fusarium in onychomycosis.
Collapse
Affiliation(s)
- Priscila D Rosa
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daiane Heidrich
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Corrêa
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maria Lúcia Scroferneker
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gerson Vettorato
- Serviço de Dermatologia, do Hospital Santa Clara, Santa Casa de Porto Alegre, Porto Alegre, Brazil
| | - Alexandre M Fuentefria
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Z Goldani
- Programa de Pós-graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
139
|
Abstract
Aspergillus species are ubiquitous fungal saprophytes found in diverse ecological niches worldwide. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis with high mortality rates in some immunocompromised hosts. Azoles are the first-line drugs in treating diseases caused by Aspergillus spp. However, increasing reports in A. fumigatus azole resistance, both in the clinical setting and in the environment, are threatening the effectiveness of clinical and agricultural azole drugs. The azole target is the 14-α sterol demethylase encoded by cyp51A gene and the main mechanisms of resistance involve the integration of tandem repeats in its promoter and/or single point mutations in this gene. In A. fumigatus, azole resistance can emerge in two different scenarios: a medical route in which azole resistance is generated during long periods of azole treatment in the clinical setting and a route of resistance derived from environmental origin due to extended use of demethylation inhibitors in agriculture. The understanding of A. fumigatus azole resistance development and its evolution is needed in order to prevent or minimize its impact. In this article, we review the current situation of azole resistance epidemiology and the predominant molecular mechanisms described based on the resistance acquisition routes. In addition, the clinical implications of A. fumigatus azole resistance and future research are discussed.
Collapse
|
140
|
Talbot JJ, Barrs VR. One-health pathogens in the Aspergillus viridinutans complex. Med Mycol 2017; 56:1-12. [DOI: 10.1093/mmy/myx016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
|
141
|
Pellon A, Ramirez-Garcia A, Buldain I, Antoran A, Rementeria A, Hernando FL. Molecular and cellular responses of the pathogenic fungus Lomentospora prolificans to the antifungal drug voriconazole. PLoS One 2017; 12:e0174885. [PMID: 28362854 PMCID: PMC5376303 DOI: 10.1371/journal.pone.0174885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/16/2017] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Lomentospora (Scedosporium) prolificans is an emerging opportunistic pathogen associated with fatal infections in patients with disturbed immune function. Unfortunately, conventional therapies are hardly of any use against this fungus due to its intrinsic resistance. Therefore, we performed an integrated study of the L. prolificans responses to the first option to treat these mycoses, namely voriconazole, with the aim of unveiling mechanisms involved in the resistance to this compound. To do that, we used a wide range of techniques, including fluorescence and electron microscopy to study morphological alterations, ion chromatography to measure changes in cell-wall carbohydrate composition, and proteomics-based techniques to identify the proteins differentially expressed under the presence of the drug. Significantly, we showed drastic changes occurring in cell shape after voriconazole exposure, L. prolificans hyphae being shorter and wider than under control conditions. Interestingly, we proved that the architecture and carbohydrate composition of the cell wall had been modified in the presence of the drug. Specifically, L. prolificans constructed a more complex organelle with a higher presence of glucans and mannans. In addition to this, we identified several differentially expressed proteins, including Srp1 and heat shock protein 70 (Hsp70), as the most overexpressed under voriconazole-induced stress conditions. The mechanisms described in this study, which may be directly related to L. prolificans antifungal resistance or tolerance, could be used as targets to improve existing therapies or to develop new ones in order to successfully eliminate these mycoses.
Collapse
Affiliation(s)
- Aize Pellon
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- * E-mail:
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando L. Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
142
|
Colmenarejo C, Milagro A, Briz E, Borderías L. Persistent Hemoptysis in an Elderly Patient with Pseudoallescheria boydii Mycetoma. Arch Bronconeumol 2017; 53:527-528. [PMID: 28336056 DOI: 10.1016/j.arbres.2017.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 10/19/2022]
Affiliation(s)
| | - Ana Milagro
- Sección de Microbiología, Hospital General San Jorge, Huesca, España
| | - Elena Briz
- Sección de Neumología, Hospital General San Jorge, Huesca, España
| | - Luis Borderías
- Sección de Neumología, Hospital General San Jorge, Huesca, España.
| |
Collapse
|
143
|
Paulussen C, Hallsworth JE, Álvarez‐Pérez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 2017; 10:296-322. [PMID: 27273822 PMCID: PMC5328810 DOI: 10.1111/1751-7915.12367] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/26/2023] Open
Abstract
Fungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life-threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host-related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress-tolerance biology and exceptional capacity to generate cell-available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well-studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human- and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.
Collapse
Affiliation(s)
- Caroline Paulussen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Sergio Álvarez‐Pérez
- Faculty of Veterinary MedicineDepartment of Animal HealthUniversidad Complutense de MadridMadridE‐28040Spain
| | | | - Philip G. Hamill
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - David Blain
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| |
Collapse
|
144
|
Case Series Study of Invasive Pulmonary Aspergillosis. Mycopathologia 2016; 182:505-515. [DOI: 10.1007/s11046-016-0097-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
145
|
Dang Y, Li X, Zheng M, Liu H, Zhou X, Jin X. Development of a specific 99mTc-MAG3-mAb-WF-AF-1 for noninvasive detection of Aspergillus fumigatus. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
146
|
Homa M, Galgóczy L, Tóth E, Virágh M, Chandrasekaran M, Vágvölgyi C, Papp T. In vitro susceptibility of Scedosporium isolates to N-acetyl-L-cysteine alone and in combination with conventional antifungal agents. Med Mycol 2016; 54:776-779. [PMID: 27143635 DOI: 10.1093/mmy/myw029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/20/2016] [Indexed: 11/13/2022] Open
Abstract
In recent years, Scedosporium species have been more commonly recognized from severe, difficult-to-treat human infections, such as upper respiratory tract and pulmonary infections. To select an appropriate therapeutic approach for these infections is challenging, because of the commonly observed resistance of the causative agents to several antifungal drugs. Therefore, to find a novel strategy for the treatment of pulmonary Scedosporium infections the in vitro antifungal effect of a mucolytic agent, N-acetyl-L-cysteine and its in vitro combinations with conventional antifungals were investigated. Synergistic and indifferent interactions were registered in 23 and 13 cases, respectively. Antagonism was not revealed between the compounds.
Collapse
Affiliation(s)
- Mónika Homa
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| | - László Galgóczy
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary Medical University of Innsbruck, Biocenter, Division of Molecular Biology, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Eszter Tóth
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| | - Máté Virágh
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| | - Muthusamy Chandrasekaran
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Csaba Vágvölgyi
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tamás Papp
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
147
|
Hagiwara D, Watanabe A, Kamei K, Goldman GH. Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi. Front Microbiol 2016; 7:1382. [PMID: 27708619 PMCID: PMC5030247 DOI: 10.3389/fmicb.2016.01382] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of azole-resistant A. fumigatus isolates has increased significantly over the last decade. What is worse is that azole-resistant strains are likely to have emerged not only in response to long-term drug treatment but also because of exposure to azole fungicides in the environment. Resistance mechanisms include amino acid substitutions in the target Cyp51A protein, tandem repeat sequence insertions at the cyp51A promoter, and overexpression of the ABC transporter Cdr1B. Environmental azole-resistant strains harboring the association of a tandem repeat sequence and punctual mutation of the Cyp51A gene (TR34/L98H and TR46/Y121F/T289A) have become widely disseminated across the world within a short time period. The epidemiological data also suggests that the number of Aspergillus spp. other than A. fumigatus isolated has risen. Some non-fumigatus species intrinsically show low susceptibility to azole drugs, imposing the need for accurate identification, and drug susceptibility testing in most clinical cases. Currently, our knowledge of azole resistance mechanisms in non-fumigatus Aspergillus species such as A. flavus, A. niger, A. tubingensis, A. terreus, A. fischeri, A. lentulus, A. udagawae, and A. calidoustus is limited. In this review, we present recent advances in our understanding of azole resistance mechanisms particularly in A. fumigatus. We then provide an overview of the genome sequences of non-fumigatus species, focusing on the proteins related to azole resistance mechanisms.
Collapse
Affiliation(s)
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University Chiba, Japan
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
148
|
Buldain I, Ramirez-Garcia A, Pellon A, Antoran A, Sevilla MJ, Rementeria A, Hernando FL. Cyclophilin and enolase are the most prevalent conidial antigens of Lomentospora prolificans recognized by healthy human salivary IgA and cross-react with Aspergillus fumigatus. Proteomics Clin Appl 2016; 10:1058-1067. [PMID: 27485921 DOI: 10.1002/prca.201600080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE The study of the immunocompetent airways immune response may provide important information to improve the therapeutic efficacy against Lomentospora (Scedosporium) prolificans. So, this study aimed to identify the most prevalent conidial antigens of this multiresistant fungus recognized by healthy human salivary immunoglobulin A, and to study their expression and cross-reactivity with other fungal species. EXPERIMENTAL DESIGN Twenty saliva from immunocompetent donors were used to detect and identify the immunoreactive proteins by 2D immunoblotting and LC-MS/MS. Moreover, anti-Aspergillus antibodies were purified to study their cross-reactivity. RESULTS Ten proteins of L. prolificans conidia showed reactivity with more than 50% of the saliva samples. Among them, cyclophilin and enolase were the most prevalent antigens recognized by 85 and 80% of the samples, respectively. These enzymes were also identified on the cell wall surface of L. prolificans and on the immunomes of Scedosporium apiospermum and Scedosporium aurantiacum. Additionally, they showed cross-reactivity with the most common pathogenic filamentous fungus Aspergillus fumigatus. CONCLUSION AND CLINICAL RELEVANCE These results show that the immunocompetent immune response might offer a pan-fungal recognition of conserved antigens such as enolase and cyclophilins, making them potential candidates for study as therapeutic targets.
Collapse
Affiliation(s)
- Idoia Buldain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Aize Pellon
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitziber Antoran
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria Jesus Sevilla
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando L Hernando
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
149
|
Chowdhary A, Masih A, Sharma C. Azole Resistance in Moulds—Approach to Detection in a Clinical Laboratory. CURRENT FUNGAL INFECTION REPORTS 2016. [DOI: 10.1007/s12281-016-0265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
150
|
Luplertlop N, Pumeesat P, Muangkaew W, Wongsuk T, Alastruey-Izquierdo A. Environmental Screening for the Scedosporium apiospermum Species Complex in Public Parks in Bangkok, Thailand. PLoS One 2016; 11:e0159869. [PMID: 27467209 PMCID: PMC4965192 DOI: 10.1371/journal.pone.0159869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022] Open
Abstract
The Scedosporium apiospermum species complex, comprising filamentous fungal species S. apiospermum sensu stricto, S. boydii, S. aurantiacum, S. dehoogii and S. minutispora, are important pathogens that cause a wide variety of infections. Although some species (S. boydii and S. apiospermum) have been isolated from patients in Thailand, no environmental surveys of these fungi have been performed in Thailand or surrounding countries. In this study, we isolated and identified species of these fungi from 68 soil and 16 water samples randomly collected from 10 parks in Bangkok. After filtration and subsequent inoculation of samples on Scedo-Select III medium, colony morphological examinations and microscopic observations were performed. Scedosporium species were isolated from soil in 8 of the 10 parks, but were only detected in one water sample. Colony morphologies of isolates from 41 of 68 soil samples (60.29%) and 1 of 15 water samples (6.67%) were consistent with that of the S. apiospermum species complex. Each morphological type was selected for species identification based on DNA sequencing and phylogenetic analysis of the β-tubulin gene. Three species of the S. apiospermum species complex were identified: S. apiospermum (71 isolates), S. aurantiacum (6 isolates) and S. dehoogii (5 isolates). In addition, 16 sequences could not be assigned to an exact Scedosporium species. According to our environmental survey, the S. apiospermum species complex is widespread in soil in Bangkok, Thailand.
Collapse
Affiliation(s)
- Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, Nakorn Pathom, 73170, Thailand
- * E-mail:
| | - Potjaman Pumeesat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, 10600, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Thanwa Wongsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Ana Alastruey-Izquierdo
- National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, 228220, España
| |
Collapse
|