101
|
Malin C, Illmer P. Ability of DNA content and DGGE analysis to reflect the performance condition of an anaerobic biowaste fermenter. Microbiol Res 2007; 163:503-11. [PMID: 17765499 DOI: 10.1016/j.micres.2007.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/26/2007] [Accepted: 07/28/2007] [Indexed: 10/22/2022]
Abstract
Molecular-microbiological techniques have delivered insight into microbial populations present in anaerobic fermenters, although much information still remains to be elucidated. In this study, the ability of denaturing gradient gel electrophoresis (DGGE) to throw light on microbial community composition was investigated and latter data were compared with the gas production of a 750,000l anaerobic biogas fermenter. During 1 year, samples were taken from two different sites of the reactor and additionally from the substrate material. After DNA extraction and PCR with archaeal and bacterial primers, PCR products were run on denaturing gradient gels to compare band patterns. Using gel-imaging software (GelComparII), two major clusters could be identified. Dominant bands were excised from the gels, reamplified and sequenced. Most sequences were closely related to Lactobacilli and yet uncultured microorganisms. DNA content of all samples was significantly correlated with the gas production measured online. We concluded that PCR and subsequent DGGE are useful to monitor community shifts in anaerobic fermenter sludge. However, as these changes are not readily detectable via DGGE-pattern analysis, alternative factors influencing the fermenter functioning should be found and investigated. So far DNA-content measurement seems to be a good parameter to quickly determine anaerobic fermenter condition.
Collapse
Affiliation(s)
- Cornelia Malin
- Institute of Microbiology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
102
|
Zieliński M, Ciesielski S, Cydzik-Kwiatkowska A, Turek J, Dębowski M. Influence of microwave radiation on bacterial community structure in biofilm. Process Biochem 2007. [DOI: 10.1016/j.procbio.2007.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
103
|
Sánchez O, Gasol JM, Massana R, Mas J, Pedrós-Alió C. Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities. Appl Environ Microbiol 2007; 73:5962-7. [PMID: 17660308 PMCID: PMC2074901 DOI: 10.1128/aem.00817-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An annual seasonal cycle of composition of a bacterioplankton community in an oligotrophic coastal system was studied by denaturing gradient gel electrophoresis (DGGE) using five different primer sets. Analysis of DGGE fingerprints showed that primer set 357fGC-907rM grouped samples according to seasons. Additionally, we used the set of 16S rRNA genes archived in the RDPII database to check the percentage of perfect matches of each primer for the most abundant bacterial groups inhabiting coastal plankton communities. Overall, primer set 357fGC-907rM was the most suitable for the routine use of PCR-DGGE analyses in this environment.
Collapse
Affiliation(s)
- Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | | | | | |
Collapse
|
104
|
Zhang R, Liu B, Lau SCK, Ki JS, Qian PY. Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. FEMS Microbiol Ecol 2007; 61:496-508. [PMID: 17627779 DOI: 10.1111/j.1574-6941.2007.00353.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Diversity of particle-attached and free-living marine bacteria in Victoria Harbor, Hong Kong, and its adjacent coastal and estuarial environments was investigated using DNA fingerprinting and clone library analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that bacterial communities in three stations of Victoria Harbor were similar, but differed from those in adjacent coastal and estuarine stations. Particle-attached and free-living bacterial community composition differed in the Victoria Harbor area. DNA sequencing of 28 bands from DGGE gel showed Alphaproteobacteria was the most abundant group, followed by the Bacteroidetes, and other Proteobacteria. Bacterial species richness (number of DGGE bands) differed among stations and populations (particle-attached and free-living; bottom and surface). BIOENV analysis indicated that the concentrations of suspended solids were the major contributing parameter for the spatial variation of total bacterial community structure. Samples from representative stations were selected for clone library (548 clones) construction and their phylogenetic distributions were similar to those of sequences from DGGE. Approximately 80% of clones were affiliated to Proteobacteria, Bacteroidetes and Cyanobacteria. The possible influences of dynamic pollution and hydrological conditions in the Victoria Harbor area on the particle-attached and free-living bacterial community structures were discussed.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biology and Coastal Marine Laboratory, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
105
|
Wang XW, Zhang L, Jin LQ, Jin M, Shen ZQ, An S, Chao FH, Li JW. Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens. Appl Microbiol Biotechnol 2007; 76:225-33. [PMID: 17492283 DOI: 10.1007/s00253-007-0993-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 01/10/2023]
Abstract
The rapid and accurate detection and identification of food-borne pathogenic bacteria is critical for food safety. In this paper, we describe a rapid (<4 h) high-throughput detection and identification system that uses universal polymerase chain reaction (PCR) primers to amplify a variable region of bacterial the 16S rRNA gene, followed by reverse hybridization of the products to species-specific oligonucleotide probes on a chip. This procedure was successful in discriminating 204 strains of bacteria from pure culture belonging to 13 genera of bacteria. When this method was applied directly to 115 strains of bacteria isolated from foods, 112/115 (97.4%) were correctly identified; two strains were indistinguishable due to weak signal, while one failed to produce a PCR product. The array was used to detect and successfully identify two strains of bacteria from food poisoning outbreak samples, giving results through hybridization that were identical to those obtained by traditional methods. The sensitivity of the microarray assay was 10(2) CFU of bacteria. Thus, the oligonucleotide microarray is a powerful tool for the detection and identification of pathogens from foods.
Collapse
Affiliation(s)
- Xin-Wei Wang
- Institute of Environment and Health, No. 1, Dali Road, Tianjin, 300050, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Selim S, Martin-Laurent F, Rouard N, Gianinazzi S, van Tuinen D. Impact of a new biopesticide produced by Paenibacillus sp. strain B2 on the genetic structure and density of soil bacterial communities. PEST MANAGEMENT SCIENCE 2007; 63:269-75. [PMID: 17245694 DOI: 10.1002/ps.1335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The effect of paenimyxin, a new biopesticide produced by Paenibacillus sp. strain B2, on the density of soil bacterial communities was assessed by colony counting and by 16S rDNA and nirK quantitative polymerase chain reaction (PCR). Paenimyxin had a negative effect on the bacterial colony-forming unit (CFU) number, which was significantly reduced 2 and 4 days after treatment. The effect of paenimyxin on cultivatable bacteria was negligible 7 days after treatment. Approximately 10(7) 16S rDNA sequences per gram of soil (dry weight) were detected by quantitative PCR in all samples. Paenimyxin did not affect the quantification of 16S rDNA or of the denitrifying bacterial community. In addition, RISA fingerprinting showed that the genetic structure of the bacterial communities was significantly modified 2 days after paenimyxin application at 50 microM and 4 days after treatment at lower concentrations (0.5 and 5 microM). The impact of paenimyxin treatment on the genetic structure of soil bacterial communities was transient, as no effect could be observed after 7, 14 and 28 days when compared with the untreated control.
Collapse
Affiliation(s)
- Sameh Selim
- UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement CMSE-INRA, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | |
Collapse
|
107
|
Wilms R, Sass H, Köpke B, Cypionka H, Engelen B. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 2007; 59:611-21. [PMID: 17059478 DOI: 10.1111/j.1574-6941.2006.00225.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The anoxic layers of marine sediments are dominated by sulfate reduction and methanogenesis as the main terminal oxidation processes. The aim of this study was to analyze the vertical succession of microbial populations involved in these processes along the first 4.5 m of a tidal-flat sediment. Therefore, a quantitative PCR approach was applied using primers targeting the domains of Bacteria and Archaea, and key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). The sampling site was characterized by an unusual sulfate peak at 250 cm depth resulting in separate sulfate-methane transition zones. Methane and sulfate profiles were diametrically opposed, with a methane maximum in the sulfate-depleted zone showing high numbers of archaea and methanogens. The methane-sulfate interfaces harbored elevated numbers of sulfate reducers, and revealed a slight increase in mcrA and archaeal 16S rRNA genes, suggesting sulfate-dependent anaerobic oxidation of methane. A diversity analysis of both functional genes by PCR-denaturing gradient gel electrophoresis revealed a vertical succession of subpopulations that were governed by geochemical and sedimentologic conditions. Along the upper 200 cm, sulfate-reducing populations appeared quite uniform and were dominated by the Deltaproteobacteria. In the layers beneath, an apparent increase in diversity and a shift to the Firmicutes as the predominant group was observed.
Collapse
Affiliation(s)
- Reinhard Wilms
- Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | | | | | | |
Collapse
|
108
|
Mosier AC, Murray AE, Fritsen CH. Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol Ecol 2007; 59:274-88. [PMID: 17092309 DOI: 10.1111/j.1574-6941.2006.00220.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lake Vida, located in the McMurdo Dry Valleys, Antarctica, is an 'ice-sealed' lake with approximately 19 m of ice covering a highly saline water column (approximately 245 ppt). The lower portions of the ice cover and the lake beneath have been isolated from the atmosphere and land for circa 2800 years. Analysis of microbial assemblages within the perennial ice cover of the lake revealed a diverse array of bacteria and eukarya. Bacterial and eukaryal denaturing gradient gel electrophoresis phylotype profile similarities were low (<59%) between all of the depths compared (five depths spanning 11 m of the ice cover), with the greatest differences occurring between surface and deep ice. The majority of bacterial 16S rRNA gene sequences in the surface ice were related to Actinobacteria (42%) while Gammaproteobacteria (52%) dominated the deep ice community. Comparisons of assemblage composition suggest differences in ice habitability and organismal origin in the upper and lower portions of ice cover. Specifically, the upper ice cover microbiota likely reflect the modern day transport and colonization of biota from the terrestrial landscape, whereas assemblages in the deeper ice are more likely to be persistent remnant biota that originated from the ancient liquid water column of the lake that froze.
Collapse
Affiliation(s)
- Annika C Mosier
- Desert Research Institute, Division of Earth and Ecosystem Sciences, Reno, NV 89512, USA
| | | | | |
Collapse
|
109
|
Goldenberg O, Herrmann S, Marjoram G, Noyer-Weidner M, Hong G, Bereswill S, Göbel UB. Molecular monitoring of the intestinal flora by denaturing high performance liquid chromatography. J Microbiol Methods 2007; 68:94-105. [PMID: 16904779 DOI: 10.1016/j.mimet.2006.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 06/14/2006] [Accepted: 06/23/2006] [Indexed: 11/16/2022]
Abstract
Gut flora analysis is hampered by the complexity of the intestinal microbiota and by inherent limitations of culture-based approaches. Therefore, culture-independent molecular methods based upon 16S rRNA gene analysis were applied successfully for the analysis of complex microbial communities. However, generally accepted and validated profiling methods such as denaturing and temperature gradient gel electrophoresis (DGGE/TGGE) are still laborious and time consuming. Thus, we adapted the separation of amplified bacterial 16S rRNA gene fragments by denaturing high performance liquid chromatography (DHPLC) using the WAVE Microbial Analysis System as a rapid and convenient means to display complex intestinal bacterial communities and to monitor changes in the gut flora. The separation of 16S rRNA gene fragments amplified from reference strains representing main gut bacterial populations and from human stool samples revealed that DHPLC analysis effectively detects bacterial groups predominant in the human gut flora. The investigation of faecal samples from hospitalized patients before, during and after antibiotic therapy showed that PCR-based DHPLC can be used to monitor gut flora changes. Results from DHPLC analysis were comparable with DGGE profiles generated from the same samples, demonstrating that the adapted DHPLC protocol is well suited for the analysis of complex microbial communities.
Collapse
Affiliation(s)
- Oliver Goldenberg
- Institut für Mikrobiologie und Hygiene, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Dorotheenstrasse 96, D-10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
110
|
El-Baradei G, Delacroix-Buchet A, Ogier JC. Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese. Appl Environ Microbiol 2006; 73:1248-55. [PMID: 17189434 PMCID: PMC1828670 DOI: 10.1128/aem.01667-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type.
Collapse
Affiliation(s)
- Gaber El-Baradei
- Department of Dairy Science and Technology, Faculty of Agriculture, Alexandria University, Aflaton Street, El-Shatby, Alexandria, Egypt.
| | | | | |
Collapse
|
111
|
De Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudici P. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol 2006; 23:809-13. [PMID: 16943087 DOI: 10.1016/j.fm.2006.01.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 01/04/2006] [Accepted: 01/25/2006] [Indexed: 11/26/2022]
Abstract
Acetic acid bacteria (AAB) are fastidious micro-organisms to isolate and cultivate despite of the great number of growth media available. Moreover, conventional techniques used to study AAB populations are time consuming and not completely reliable. In this study, we tested the usefulness of the polymerase chain reaction-denaturing gradient gel electophoresis (PCR-DGGE) as a rapid and cost effective method for the screening of AAB in traditional balsamic vinegar (TBV). DGGE analysis was applied to 19 AAB strains isolated by agar plating from three different samples of TBV. DGGE was also used for the analysis of PCR products obtained from DNA extracted directly from the TBV samples. A tentative species identification was achieved comparing the PCR-DGGE patterns of the isolated strains and the TBV samples to those of 15 AAB reference strains. The results support that DGGE is functional to monitor vinegar's AAB population.
Collapse
Affiliation(s)
- Luciana De Vero
- Dipartimento di Scienze Agrarie, Università degli Studi di Modena e Reggio Emilia, Italy.
| | | | | | | | | | | |
Collapse
|
112
|
Dorigo U, Fontvieille D, Humbert JF. Spatial variability in the abundance and composition of the free-living bacterioplankton community in the pelagic zone of Lake Bourget (France). FEMS Microbiol Ecol 2006; 58:109-19. [PMID: 16958912 DOI: 10.1111/j.1574-6941.2006.00139.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Spatial variations in the abundance and diversity of the free-living bacterioplankton community of a large Alpine lake, Lake Bourget (France), were investigated in the pelagic zone by means of two two-dimensional samplings taken in 2003. Lake-water samples were collected in winter during water mixing, and in early summer during stratification. The population abundance in each sample was determined by flow cytometry. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments from organisms measuring less than 2 mum was used to assess eubacterioplankton community composition. In winter, no obvious differences were observed in either the abundance or the diversity of the bacterial community, on either the horizontal or the vertical scales. The only influence detected was that of river water input, but this was at a very minor scale relative to the surface area of the lake. In early summer, changes were found in the community composition on the vertical scale related to the thermal stratification of the water column. There were also marked differences on the horizontal scale at 15 m depth due to internal waves. The implications of these findings for sampling strategies are very important from the perspective of comparative studies of free-living bacterial community diversity and functioning in large and deep lakes.
Collapse
Affiliation(s)
- Ursula Dorigo
- UMR CARRTEL (INRA/Université de Savoie), Laboratoire de Microbiologie Aquatique, BP 511, 74203 Thonon Cedex, France
| | | | | |
Collapse
|
113
|
Blumenberg M, Krüger M, Nauhaus K, Talbot HM, Oppermann BI, Seifert R, Pape T, Michaelis W. Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 2006; 8:1220-7. [PMID: 16817930 DOI: 10.1111/j.1462-2920.2006.01014.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfate reduction accounts for about a half of the remineralization of organic carbon in anoxic marine shelf regions. Moreover, it was already a major microbial process in the very early ocean at least 2.4 billion years before the present. Here we demonstrate for the first time the capability of sulfate-reducing bacteria (SRB) to biosynthesize hopanoids, compounds that are quantitatively important and widely distributed biomarkers in recent and fossil sediments dating back to the late Archean. We found high concentrations (9.8-12.3 mg per gram of dry cells) of non-extended and extended bacteriohopanoids (bacteriohopanetetrol, aminobacteriohopanetriol, aminobacteriohopanetetrol) in pure cultures of SRB belonging to the widely distributed genus Desulfovibrio. Biohopanoids were found--considered as membrane rigidifiers--in more than 50% of bacterial species analysed so far. However, their biosynthesis appeared to be restricted to aerobes or facultative anaerobes with a very few recently described exceptions. Consequently, findings of sedimentary hopanoids are often used as indication for oxygenated settings. Nevertheless, our findings shed new light on the presence of hopanoids in specific anoxic settings and suggests that SRB are substantial sources of this quantitatively important lipid class in recent but also past anoxic environments.
Collapse
Affiliation(s)
- Martin Blumenberg
- Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Eller G, Deines P, Grey J, Richnow HH, Krüger M. Methane cycling in lake sediments and its influence on chironomid larval delta13C. FEMS Microbiol Ecol 2006; 54:339-50. [PMID: 16332332 DOI: 10.1016/j.femsec.2005.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 11/29/2022] Open
Abstract
Stable carbon isotope analysis of chironomid larvae gave rise to the hypothesis that methane-oxidizing bacteria can provide an important food source for higher trophic levels in lakes. To investigate the importance of the methane cycle for the larval stable carbon signatures, isotope analysis and microbiological and biogeochemical investigations were combined. The study was based on comparison of a dimictic lake (Holzsee) and a polymictic, shallow lake (Grosser Binnensee), both located in northern Germany. Both lakes are inhabited by Chironomus plumosus larvae, which exhibited a stronger (13)C-depletion in Holzsee than in Grosser Binnensee, indicating a greater contribution of methane-carbon in the former. Indeed, the processes involved in the microbial methane cycle were found to be more active in Holzsee, showing higher potential methane production and methane oxidation rates. Consistently, cell numbers of methane-oxidizing bacteria were with 0.5 - 1.7 x 10(6) cells g(dw)(-1) about one order of magnitude higher in Holzsee than in Grosser Binnensee. Molecular analysis of the microbial community structure revealed no differences in the methanotrophic community between the two lakes, with a clear dominance of type I methanotrophs. The methanogenic population seemed to be adapted to the prevailing substrate in the respective lake (H(2)/CO(2) in Holzsee and acetate in Grosser Binnensee), even though differences were minor. In conclusion, the stronger larval (13)C-depletion in Holzsee was not reflected in differences in the microbial community structure, but in the activity and size of the methanogenic and methanotrophic populations in the lake sediment.
Collapse
Affiliation(s)
- Gundula Eller
- Max Planck Institute for Limnology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| | | | | | | | | |
Collapse
|
115
|
Obodai M, Dodd CER. Characterization of dominant microbiota of a Ghanaian fermented milk product, nyarmie, by culture- and nonculture-based methods. J Appl Microbiol 2006; 100:1355-63. [PMID: 16696684 DOI: 10.1111/j.1365-2672.2006.02895.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To characterize the predominant micro-organisms in a Ghanaian traditional fermented dairy product, nyarmie, made from cows' milk, using both culture- and nonculture-based methods. METHODS AND RESULTS Samples of nyarmie were analysed from three production sites in Accra, by determining the counts on selective culture media. The microbial diversity occurring in nyarmie was also evaluated by 16S/18S ribosomal DNA PCR amplification and denaturing gradient gel electrophoresis. Results showed that nyarmie contained lactococci and lactobacilli in the range of 10(8) and 10(10) CFU ml(-1), respectively, and yeasts at around 10(7) CFU ml(-1). The pH ranged between 3.49 and 4.25. The predominant lactic acid bacteria (LAB) in nyarmie were Leuconostocmesenteroides ssp. mesenteroides, Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lact.helveticus, Lact. delbrueckii ssp. lactis and Lactococcus lactis, while Saccharomyces cerevisiae was the predominant yeast species. Lactobacillus delbrueckii ssp. delbrueckii was not detected by cultivation but its predominance was revealed by PCR-DGGE analysis. CONCLUSIONS The flora in products from different producers varied in the LAB composition present and may result in variations in product quality. SIGNIFICANCE AND IMPACT OF THE STUDY Development and use of starter cultures for nyarmie may be beneficial in improving the consistency of product quality.
Collapse
Affiliation(s)
- M Obodai
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD UK
| | | |
Collapse
|
116
|
Grzymski JJ, Carter BJ, DeLong EF, Feldman RA, Ghadiri A, Murray AE. Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Appl Environ Microbiol 2006; 72:1532-41. [PMID: 16461708 PMCID: PMC1392886 DOI: 10.1128/aem.72.2.1532-1541.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six environmental fosmid clones from Antarctic coastal water bacterioplankton were completely sequenced. The genome fragments harbored small-subunit rRNA genes that were between 85 and 91% similar to those of their nearest cultivated relatives. The six fragments span four phyla, including the Gemmatimonadetes, Proteobacteria (alpha and gamma), Bacteroidetes, and high-G+C gram-positive bacteria. Gene-finding and annotation analyses identified 244 total open reading frames. Amino acid comparisons of 123 and 113 Antarctic bacterial amino acid sequences to mesophilic homologs from G+C-specific and SwissProt/UniProt databases, respectively, revealed widespread adaptation to the cold. The most significant changes in these Antarctic bacterial protein sequences included a reduction in salt-bridge-forming residues such as arginine, glutamic acid, and aspartic acid, reduced proline contents, and a reduction in stabilizing hydrophobic clusters. Stretches of disordered amino acids were significantly longer in the Antarctic sequences than in the mesophilic sequences. These characteristics were not specific to any one phylum, COG role category, or G+C content and imply that underlying genotypic and biochemical adaptations to the cold are inherent to life in the permanently subzero Antarctic waters.
Collapse
|
117
|
Green GL, Brostoff J, Hudspith B, Michael M, Mylonaki M, Rayment N, Staines N, Sanderson J, Rampton DS, Bruce KD. Molecular characterization of the bacteria adherent to human colorectal mucosa. J Appl Microbiol 2006; 100:460-9. [PMID: 16478485 DOI: 10.1111/j.1365-2672.2005.02783.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS To study large intestinal mucosal bacterial communities by Denaturing Gradient Gel Electrophoresis (DGGE) profiling and sequencing of 16S rRNA gene polymerase chain reaction (PCR) products amplified from DNA extracted from colorectal biopsies taken from healthy individuals. The specific aims were to determine how similar the mucosa-associated bacterial communities are within and between individuals and also to characterize the phylogenetic origin of isolated DGGE bands. METHODS AND RESULTS Human colorectal biopsies were taken at routine colonoscopy from 33 patients with normal looking mucosa. The DNA was extracted directly from single biopsies and the bacterial 16S rDNA PCR amplified. The PCR products were profiled using DGGE to generate a fingerprint of the dominant members of the bacterial community associated with the biopsy. The reproducibility of this method was high (>98%). Washed and unwashed biopsies gave similar DGGE banding patterns (Median Similarity Coefficient - MSC 96%, InterQuartile Range - IQR 3.0%, n = 5). Adjacent biopsies sampled from the same patient using different forceps gave similar DGGE profiles (MSC 94%, n = 2). Two colorectal biopsies sampled at locations 2-5 cm apart, from each of 18 patients, resulted in very similar profiles (MSC 100%, IQR 2.8%). Biopsies sampled from different locations within the large intestine of the same patient also gave similar DGGE profiles (MSC 98% IQR 3.3%n = 6). Although all patients (n = 33) gave different DGGE profiles, some similarity (c. 34%) was observed between profiles obtained from 15 patients arbitrarily selected. 35 DGGE bands were excised and sequenced. Many were found to be most closely related to uncultured bacterial sequence entries in the Genbank database. Others belonged to typical gut bacterial genera including Bacteroides, Ruminococcus, Faecalibacterium and Clostridium. CONCLUSIONS Bacterial communities adherent to colorectal mucosa within a normal patient show little variation; in contrast, mucosal bacterial communities sampled from different patients with normal colorectal mucosa show a high degree of variation. SIGNIFICANCE AND IMPACT OF THE STUDY This research demonstrates that DGGE profiling of 16S rRNA gene PCR products amplified from DNA extracted directly from mucosal samples offers fresh insight into the bacterial communities that are adherent to colorectal mucosa. These findings are important with respect to further studies on the gastrointestinal tract in health and disease.
Collapse
Affiliation(s)
- G L Green
- Life Sciences, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Nercessian O, Kalyuzhnaya MG, Joye SB, Lidstrom ME, Chistoserdova L. Analysis of fae and fhcD genes in Mono Lake, California. Appl Environ Microbiol 2006; 71:8949-53. [PMID: 16332897 PMCID: PMC1317423 DOI: 10.1128/aem.71.12.8949-8953.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes for two enzymes of the tetrahydromethanopterin-linked C(1) transfer pathway (fae and fhcD) were detected in hypersaline, hyperalkaline Mono Lake (California), via PCR amplification and analysis. Low diversity for fae and fhcD was noted, in contrast to the diversity previously detected in a freshwater lake, Lake Washington (Washington).
Collapse
Affiliation(s)
- Olivier Nercessian
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
119
|
Aguilera A, Gómez F, Lospitao E, Amils R. A molecular approach to the characterization of the eukaryotic communities of an extreme acidic environment: methods for DNA extraction and denaturing gradient gel electrophoresis analysis. Syst Appl Microbiol 2006; 29:593-605. [PMID: 16458470 DOI: 10.1016/j.syapm.2006.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Indexed: 10/25/2022]
Abstract
The diversity of the phytobenthonic community present in six acidophilic microbial mats from Río Tinto (Iberian Pyritic Belt, SW Spain) was analysed by optical microscopy and two molecular techniques, denaturing gradient gel electrophoresis (DGGE) and sequence analysis of 18S rDNA cloned gene fragments. Sixteen DNA isolation protocols as well as two commercial DNA extraction kits were tested and their efficiency compared. Purified DNA extracts were amplified by PCR using universal eukaryotic primers and the PCR products analysed by DGGE. Bead-mill homogenization was found to be superior to the other cell lysis methodologies assayed (sonication or freeze-thawing cycles) as it allowed efficiencies of cell disruption of over 95%. The methods combining bead-mill homogenization in the presence of SDS, treatment with chemical extractants (hexadecylmethylammonium bromide or guanidine isothiocyanate) and phenol extraction resulted in DNA preparations that amplified the same number of bands when analysed by DGGE as the two commercial kits assayed. The phylogenetic affiliations of the DGGE bands were determined by a BLAST search, and nine different species related to the Chlorophyta, Ciliophora, Kinetoplastida, Ascomycota, Streptophyta and Colcochaetales taxonomical groups were identified. Similar levels of diversity were found using cloning procedures. Although not all the species observed under the microscope were detected using molecular techniques, e.g. euglenas, heliozoan, or amoebae, DGGE fingerprints showed rather well the level of diversity present in the samples analysed, with limitations similar to cloning techniques.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA/isolation & purification
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- Electrophoresis, Polyacrylamide Gel/methods
- Environmental Microbiology
- Eukaryota/genetics
- Eukaryota/isolation & purification
- Fungi/genetics
- Fungi/isolation & purification
- Geologic Sediments
- Hydrogen-Ion Concentration
- Polymerase Chain Reaction
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
- Spain
Collapse
Affiliation(s)
- Angeles Aguilera
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850 Madrid, Spain.
| | | | | | | |
Collapse
|
120
|
Acinas SG, Rodrı́guez-Valera F, Pedrós-Alió C. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00420.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
121
|
Siqueira JF, Rôças IN, Rosado AS. Application of denaturing gradient gel electrophoresis (DGGE) to the analysis of endodontic infections. J Endod 2006; 31:775-82. [PMID: 16249718 DOI: 10.1097/01.don.0000155221.33667.bb] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The recent expanding use of cultivation-independent techniques for bacterial identification is reliant on the lack of knowledge of the conditions under which most bacteria are growing in their natural habitat and the difficulty to develop culture media that accurately reproduce these conditions. A molecular method that has been recently used in several areas to examine the bacterial diversity living in diverse environments is the denaturing gradient gel electrophoresis (DGGE). In DGGE, polymerase chain reaction (PCR)-generated DNA fragments of the same length but with different base-pair sequences can be separated. Separation is based on electrophorectic mobility of a partially melted double-strand DNA molecule in polyacrylamide gels, which is decreased when compared with that of the completely helical form of the molecule. Molecules with different sequences may have a different melting behavior and will therefore stop migrating at different positions in the gel. Application of the PCR-DGGE method in endodontic research has revealed that there are significant differences in the predominant bacterial composition between asymptomatic and symptomatic cases. This suggests that the structure of the bacterial community can play a role in the development of symptoms. In addition, new bacterial phylotypes have been disclosed in primary endodontic infections. PCR-DGGE has also confirmed that intra-radicular infections are a common finding in root-filled teeth associated with persistent periradicular lesions. The microbiota in failed cases significantly vary from teeth to teeth, with a mean number of species far higher than previously shown by culturing approaches. Application of the PCR-DGGE technique in endodontic microbiology research has the potential to shed light on several aspects of the different types of endodontic infection as well as on the effects of treatment procedures with regard to infection control.
Collapse
Affiliation(s)
- José F Siqueira
- Department of Endodontics, Estácio de Sá University, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
122
|
Del Panno MT, Morelli IS, Engelen B, Berthe-Corti L. Effect of petrochemical sludge concentrations on microbial communities during soil bioremediation. FEMS Microbiol Ecol 2005; 53:305-16. [PMID: 16329950 DOI: 10.1016/j.femsec.2005.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/28/2004] [Accepted: 01/07/2005] [Indexed: 11/26/2022] Open
Abstract
Qualitative and quantitative changes of microbial communities in soil microcosms during bioremediation were determined throughout one year. The soil was contaminated with 0%, 2.5%, 5%, 10% (wt/wt) of petrochemical sludge containing polynuclear aromatic hydrocarbons. We analyzed the hydrocarbon concentration in the microcosms, the number of cultivable bacteria using CFU and most probable number assays, the community structure using denaturing gradient gel electrophoresis, and the metabolic activity of soil using dehydrogenase activity and substrate-induced respiration assays. After one year of treatment, the chemical analysis suggested that the hydrocarbon elimination process was over. The biological analysis, however, showed that the contaminated microcosms suffered under long-term disturbance. The number of heterotrophic bacteria that increased after sludge addition (up to 10(8)-10(9) cells ml(-1)) has not returned to the level of the control soil (2-6 x 10(7) cells ml(-1)). The community structure in the contaminated soils differed considerably from that in the control. The substrate-induced respiration of the contaminated soils was significantly lower (approximately 10-fold) and the dehydrogenase activity was significantly higher (20-40-fold) compared to the control. Changes in the community structure of soils depended on the amount of added sludge. The species, which were predominant in the sludge community, could not be detected in the contaminated soils.
Collapse
Affiliation(s)
- María T Del Panno
- LBMH, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
123
|
Gich F, Schubert K, Bruns A, Hoffelner H, Overmann J. Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl Environ Microbiol 2005; 71:5908-19. [PMID: 16204504 PMCID: PMC1265938 DOI: 10.1128/aem.71.10.5908-5919.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-throughput cultivation was combined with rapid and group-specific phylogenetic fingerprinting in order to recover representatives of three freshwater bacterioplankton communities. A total of 570 bacterial cultures were obtained by employing the most probable number and MicroDrop techniques. The majority of the cultured bacteria were closely related to previously uncultured bacteria and grouped with the alpha-Proteobacteria, beta-Proteobacteria, Actinobacteria, Firmicutes, or Flavobacteria-Cytophaga lineage. Correspondingly, the natural bacterioplankton community was analyzed by high-resolution phylogenetic fingerprinting of these five bacterial lineages. 16S rRNA gene fragments were generated for each lineage and subsequently separated by denaturing gradient gel electrophoresis. By the combination of five group-specific PCR protocols, the total number of 16S rRNA gene fingerprints generated from the natural communities was increased sixfold compared to conventional (eubacterial) fingerprinting. Four of the environmental alpha-Proteobacteria 16S rRNA gene sequences obtained from the natural community were found to be identical to those of bacterial isolates. One of these phylotypes was detected in 14 different cultures and hence represented the most frequently cultured bacterium. Three of these 14 strains were characterized in detail. Their complete 16S rRNA gene sequences showed only 93% similarity to that of Sandaracinobacter sibiricus, the closest relative described so far. The novel phylotype of bacterium is a strict aerobe capable of using numerous organic carbon substrates and contains bacteriochlorophyll a bound to two different photosynthetic light-harvesting complexes. Dot blot hybridization revealed that the strains occur in lakes of different trophic status and constitute up to 2% of the microbial community.
Collapse
Affiliation(s)
- Frederic Gich
- Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Maria-Ward-Str. 1a, D-80638 München, Germany
| | | | | | | | | |
Collapse
|
124
|
Carini S, Bano N, LeCleir G, Joye SB. Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environ Microbiol 2005; 7:1127-38. [PMID: 16011750 DOI: 10.1111/j.1462-2920.2005.00786.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patterns of aerobic methane (CH4) oxidation and associated methanotroph community composition were investigated during the development of seasonal stratification in Mono Lake, California (USA). CH4 oxidation rates were measured using a tritiated CH4 radiotracer technique. Fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequence analysis were used to characterize methanotroph community composition. A temporally shifting zone of elevated CH4 oxidation (59-123 nM day(-1)) was consistently associated with a suboxycline, microaerophilic zone that migrated upwards in the water column as stratification progressed. FISH analysis revealed stable numbers of type I (4.1-9.3 x 10(5) cells ml(-1)) and type II (1.4-3.4 x 10(5) cells ml(-1)) methanotrophs over depth and over time. Denaturing gradient gel electrophoresis and sequence analysis indicated slight shifts in methanotroph community composition despite stable absolute cell numbers. Variable CH4 oxidation rates in the presence of a relatively stable methanotroph population suggested that zones of high CH4 oxidation resulted from an increase in activity of a subset of the existing methanotroph population. These results challenge existing paradigms suggesting that zones of elevated CH4 oxidation activity result from the accumulation of methanotrophic biomass and illustrate that type II methanotrophs may be an important component of the methanotroph population in saline and/or alkaline pelagic environments.
Collapse
Affiliation(s)
- Stephen Carini
- Department of Marine Sciences, University of Georgia, Athens, GA 30602-3636, USA
| | | | | | | |
Collapse
|
125
|
Rasiah IA, Wong L, Anderson SA, Sissons CH. Variation in bacterial DGGE patterns from human saliva: over time, between individuals and in corresponding dental plaque microcosms. Arch Oral Biol 2005; 50:779-87. [PMID: 15970209 DOI: 10.1016/j.archoralbio.2005.02.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 02/01/2005] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Eubacterial 16S rDNA fingerprints of human saliva and dental plaque microcosm biofilms grown in the multi-plaque artificial mouth (MAM) were characterised using denaturing gradient gel electrophoresis (DGGE). DESIGN The stability of the bacterial community in the saliva of one individual collected over 7 years was assessed and compared with bacterial patterns in the saliva of 10 different individuals. DGGE was also used to assess changes in bacterial composition between saliva and mature plaque microcosms developed in the MAM from these 10 individual saliva samples. RESULTS A relatively stable bacterial community (>87% concordance) was maintained within the individual oral environment of the standard donor over 7 years of monitoring. By comparison, DGGE fingerprint patterns of saliva from 10 different donors displayed greater variability (66% concordance). Variability between individual DGGE profiles increased further in mature plaque microcosms grown from the saliva of the 10 donors (52% concordance) with an increase in detected species diversity and evidence for conserved similarity and hence the maintenance of organisation during community development. CONCLUSIONS These results suggest that stable ecological conditions were maintained long-term within the oral environment of the individual saliva donor but that transient fluctuations also occurred. The ecology and predominating microbiota in different individuals was host-specific and these differences were maintained to a degree during development into mature plaque microcosms. These findings also demonstrate the potential usefulness of applying DGGE to monitor temporal and developmental changes and possibly pathogenic patterns in oral bacterial communities from saliva and plaque.
Collapse
Affiliation(s)
- Indira A Rasiah
- Dental Research Group, Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, P.O. Box 7343, Wellington 6039, New Zealand
| | | | | | | |
Collapse
|
126
|
Kamako SI, Hoshina R, Ueno S, Imamura N. Establishment of axenic endosymbiotic strains of Japanese Paramecium bursaria and the utilization of carbohydrate and nitrogen compounds by the isolated algae. Eur J Protistol 2005. [DOI: 10.1016/j.ejop.2005.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
127
|
|
128
|
Rôças IN, Siqueira JF, Aboim MCR, Rosado AS. Denaturing gradient gel electrophoresis analysis of bacterial communities associated with failed endodontic treatment. ACTA ACUST UNITED AC 2005; 98:741-9. [PMID: 15583550 DOI: 10.1016/j.tripleo.2004.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE A great deal of evidence indicates that persistent infections of the root canal of human teeth play an important role in the failure of the root canal treatment. The present study was undertaken to apply the PCR-DGGE fingerprinting approach to examine the structure of the bacterial population infecting previously treated root canals of humans associated with persistent periradicular lesions. STUDY DESIGN Samples were taken from 14 filled root canals, DNA was extracted, and part of the 16S rDNA of all bacteria was amplified by PCR and separated by DGGE, generating banding patterns representative of the community structure. Species-specific PCR for the detection of Enterococcus faecalis was also performed. RESULTS The mean number of bands detected in the 16S rDNA community profiles was about 6, ranging from 1 to 26 bands. Each sample showed a unique structure of the microbial community. The species-specific PCR assay revealed the presence of E. faecalis in 10 of 14 samples, but DGGE analysis revealed it was not the dominant species. CONCLUSIONS Results revealed that the intraradicular bacterial community associated with failed endodontic treatment significantly varied in composition from teeth to teeth. Persistent intraradicular infections were present in all root-filled teeth.
Collapse
Affiliation(s)
- Isabela N Rôças
- Department of Endodontics, Estácio de Sá University, Federal University of Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
129
|
Zhang X, Yan X, Gao P, Wang L, Zhou Z, Zhao L. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system. J Microbiol Methods 2005; 60:1-11. [PMID: 15567219 DOI: 10.1016/j.mimet.2004.08.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 08/20/2004] [Accepted: 08/20/2004] [Indexed: 11/18/2022]
Abstract
Sequence retrieval from single bands of polymerase chain reaction (PCR)-denaturing gel electrophoresis (DGE) profiles is an important but often difficult step for molecular diversity analysis of complex microbial communities such as activated sludge systems. We analyzed the temperature gradient gel electrophoresis (TGGE) profiles of PCR-amplified 16S rDNA fragments from an activated sludge sample of a coking wastewater treatment plant. Single bands were excised, and a clone library was constructed for each. Sequence heterogeneity in each single band was found to be significantly overestimated due to single-stranded DNA (ssDNA) contamination formed during the PCR amplification, since only 10-60% of library clones of each single TGGE band had identical migration behavior compared with the parent band. Three methods, digestion with mung bean nuclease, optimization of PCR amplification, and purification via denatured polyacrylamide gel electrophoresis (d-PAGE), were compared for their ability to minimize ssDNA contamination, with the last one being the most efficient. After using d-PAGE to minimize ssDNA to a nearly nondetectable level, 70-100% of library clones for each single TGGE band had identical migration compared with the parent band. Several sequences were found in each of six single bands, and this co-migration could be predicted with the Poland software. The predominant bacteria of the activated sludge were assessed via a combination of sequence retrieval from each single TGGE band and band intensity analysis. Only beta and alpha subclasses of the Proteobacteria were detected, 93.8% and 6.2%, respectively. Our work suggests that prior to constructing a clone library to retrieve the actual sequence diversity of a single DGE band, it is advisable to minimize ssDNA contamination to a nondetectable level.
Collapse
Affiliation(s)
- Xueli Zhang
- Laboratory of Molecular Microbial Ecology and Ecogenomics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, #800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
130
|
Bernhard AE, Colbert D, McManus J, Field KG. Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. FEMS Microbiol Ecol 2004; 52:115-28. [PMID: 16329898 DOI: 10.1016/j.femsec.2004.10.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 10/12/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022] Open
Abstract
We analyzed bacterioplankton community structure in Tillamook Bay, Oregon and its tributaries to evaluate phylogenetic variability and its relation to changes in environmental conditions along an estuarine gradient. Using eubacterial primers, we amplified 16S rRNA genes from environmental DNA and analyzed the PCR products by length heterogeneity polymerase chain reaction (LH-PCR), which discriminates products based on naturally occurring length differences. Analysis of LH-PCR profiles by multivariate ordination methods revealed differences in community composition along the estuarine gradient that were correlated with changes in environmental variables. Microbial community differences were also detected among different rivers. Using partial 16S rRNA sequences, we identified members of dominant or unique gene fragment size classes distributed along the estuarine gradient. Gammaproteobacteria and Betaproteobacteria and members of the Bacteroidetes dominated in freshwater samples, while Alphaproteobacteria, Cyanobacteria and chloroplast genes dominated in marine samples. Changes in the microbial communities correlated most strongly with salinity and dissolved silicon, but were also strongly correlated with precipitation. We also identified specific gene fragments that were correlated with inorganic nutrients. Our data suggest that there is a significant and predictable change in microbial species composition along an estuarine gradient, shifting from a more complex community structure in freshwater habitats to a community more typical of open ocean samples in the marine-influenced sites. We also demonstrate the resolution and power of LH-PCR and multivariate analyses to provide a rapid assessment of major community shifts, and show how these shifts correlate with environmental variables.
Collapse
Affiliation(s)
- Anne E Bernhard
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | |
Collapse
|
131
|
Siqueira JF, Rôças IN, Rosado AS. Investigation of bacterial communities associated with asymptomatic and symptomatic endodontic infections by denaturing gradient gel electrophoresis fingerprinting approach. ACTA ACUST UNITED AC 2004; 19:363-70. [PMID: 15491461 DOI: 10.1111/j.1399-302x.2004.00170.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to investigate the bacterial communities associated with asymptomatic and symptomatic endodontic infections and to compare denaturing gradient gel electrophoresis (DGGE) fingerprinting patterns of these two clinical conditions. The root canal microbiota of teeth associated with asymptomatic or symptomatic periradicular lesions was profiled by the PCR-DGGE method and then compared, taking into consideration the banding patterns. Bacteria were present in all examined cases. Comparative analysis of the two clinical conditions revealed bands that were common to both symptomatic and asymptomatic cases, but most DGGE bands appeared to be unique for each clinical condition. No single band occurred in all profiles. The mean number of bands detected in the 16S rDNA community profiles were 12.1 +/- 9.4 (range 2-29) for symptomatic samples and 6.7 +/- 2.7 (range 2-11) for asymptomatic ones. Clustering methods and principal component analysis of DGGE banding pattern placed the samples according to the presence or absence of symptoms. Four intense bands that were excised from the gel and sequenced showed similarities to species of the Campylobacter genus (found in 5/12 asymptomatic and in 3/11 symptomatic cases), Fusobacterium genus (4/11 symptomatic cases), Acinetobacter genus (5/12 asymptomatic cases), and Enterobacteriaceae family (11/12 asymptomatic and 2/11 symptomatic cases). The profiles of the predominant bacterial community appeared to be unique for each individual. These findings confirm that endodontic infections are polymicrobial and showed that there are significant differences in the predominant bacterial composition between asymptomatic and symptomatic cases.
Collapse
Affiliation(s)
- J F Siqueira
- Department of Endodontics, Estácio de Sá University, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
132
|
Gast RJ, Dennett MR, Caron DA. Characterization of protistan assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis. Appl Environ Microbiol 2004; 70:2028-37. [PMID: 15066793 PMCID: PMC383151 DOI: 10.1128/aem.70.4.2028-2037.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of protistan assemblages has traditionally been studied using microscopy and morphological characterization, but these methods are often inadequate for ecological studies of these communities because most small protists inherently lack adequate taxonomic characters to facilitate their identification at the species level and many protistan species also do not preserve well. We have therefore used a culture-independent approach (denaturing gradient gel electrophoresis [DGGE]) to obtain an assessment of the genetic composition and distribution of protists within different microhabitats (seawater, meltwater or slush on sea-ice floes, and ice) of the Ross Sea, Antarctica. Samples of the same type (e.g., water) shared more of the same bands than samples of different types (e.g., ice versus water), despite being collected from different sites. These findings imply that samples from the same environment have a similar protistan species composition and that the type of microenvironment significantly influences the protistan species composition of these Antarctic assemblages. It should be noted that a large number of bands among the samples within each microhabitat were distinct, indicating the potential presence of significant genetic diversity within each microenvironment. Sequence analysis of selected DGGE bands revealed sequences that represent diatoms, dinoflagellates, ciliates, flagellates, and several unidentified eukaryotes.
Collapse
Affiliation(s)
- Rebecca J Gast
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
| | | | | |
Collapse
|
133
|
Molecular sequence analysis of prokaryotic diversity in the middle and outer sections of the Portuguese estuary Ria de Aveiro. FEMS Microbiol Ecol 2004; 49:269-79. [DOI: 10.1016/j.femsec.2004.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
134
|
Crump BC, Hopkinson CS, Sogin ML, Hobbie JE. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl Environ Microbiol 2004; 70:1494-505. [PMID: 15006771 PMCID: PMC365029 DOI: 10.1128/aem.70.3.1494-1505.2004] [Citation(s) in RCA: 333] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([(14)C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and ACTINOBACTERIA: Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.
Collapse
Affiliation(s)
- Byron C Crump
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland 21613, USA.
| | | | | | | |
Collapse
|
135
|
Jenkins BD, Steward GF, Short SM, Ward BB, Zehr JP. Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray. Appl Environ Microbiol 2004; 70:1767-76. [PMID: 15006803 PMCID: PMC368353 DOI: 10.1128/aem.70.3.1767-1776.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Investigations of the distribution and diversity of nitrogen-fixing microorganisms in natural environments have often relied on PCR amplification and sequence analysis of a portion of one of the key enzymes in nitrogen fixation, dinitrogenase reductase, encoded by nifH. Recent work has suggested that DNA macroarrays provide semiquantitative fingerprints of diversity within mixtures of nifH amplicons (G. F. Steward, B. D. Jenkins, B. B. Ward, and J. P. Zehr, Appl. Environ. Microbiol. 70:1455-1465, 2004). Here we report the application of macroarrays for a study in the Chesapeake Bay. Samples from different locations in the bay yielded distinct fingerprints. Analysis of replicates and samples from different locations by cluster analysis showed that replicates clustered together, whereas different samples formed distinct clusters. There was a correspondence between the hybridization pattern observed and that predicted from the distribution of sequence types in a corresponding clone library. Some discrepancies between the methods were observed which are likely a result of the high nifH sequence diversity in the Chesapeake Bay and the limited number of sequences represented on this version of the array. Analyses of sequences in the clone library indicate that the Chesapeake Bay harbors unique, phylogenetically diverse diazotrophs. The macroarray hybridization patterns suggest that there are spatially variable communities of diazotrophs, which have been confirmed by quantitative PCR methods (S. M. Short, B. D. Jenkins, and J. P. Zehr, Appl. Environ. Microbiol., in press). The results show that DNA macroarrays have great potential for mapping the spatial and temporal variability of functional gene diversity in the environment.
Collapse
Affiliation(s)
- Bethany D Jenkins
- University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
136
|
Romaní AM, Guasch H, Muñoz I, Ruana J, Vilalta E, Schwartz T, Emtiazi F, Sabater S. Biofilm structure and function and possible implications for riverine DOC dynamics. MICROBIAL ECOLOGY 2004; 47:316-328. [PMID: 14681738 DOI: 10.1007/s00248-003-2019-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 07/29/2003] [Indexed: 05/24/2023]
Abstract
Biofilms are major sites of carbon cycling in streams and rivers. Here we elucidate the relationship between biofilm structure and function and river DOC dynamics. Metabolism (extracellular enzymatic activity) and structure (algae, bacteria, C/N content) of light-grown (in an open channel) and dark-grown (in a dark pipe) biofilms were studied over a year, and variations in dissolved organic carbon (DOC) and biodegradable DOC (BDOC) were also recorded. A laboratory experiment on 14C-glucose uptake and DOC dynamics was also performed by incubating natural biofilms in microcosms. On the basis of our field (annual DOC budget) and laboratory results, we conclude that light-grown biofilm is, on annual average, a net DOC consumer. This biofilm showed a high monthly variability in DOC uptake/release rates, but, on average, the annual uptake rate was greater than that of the dark-grown biofilm. The higher algal biomass and greater structure of the light-grown biofilm may enhance the development of the bacterial community (bacterial biomass and activity) and microbial heterotrophic activity. In addition, the light-grown biofilm may promote abiotic adsorption because of the development of a polysaccharide matrix. In contrast, the dark-grown biofilm is highly dependent on the amount and quality of organic matter that enters the system and is more efficient in the uptake of labile molecules (higher 14C-glucose uptake rate per mgC). The positive relationships between the extracellular enzymatic activity of biofilm and DOC and BDOC content in flowing water indicate that biofilm metabolism contributes to DOC dynamics in fluvial systems. Our results show that short-term fluvial DOC dynamics is mainly due to the use and recycling of the more labile molecules. At the river ecosystem level, the potential surface area for biofilm formation and the quantity and quality of available organic carbon might determine the effects of biofilm function on DOC dynamics.
Collapse
Affiliation(s)
- A M Romaní
- Inst Ecologia Aquàtica and Dep Ciències Ambientals, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Viruses can influence the genetic diversity of prokaryotes in various ways. They can affect the community composition of prokaryotes by 'killing the winner' and keeping in check competitive dominants. This may sustain species richness and the amount of information encoded in genomes. Viruses can also transfer (viral and host) genes between species. Such mechanisms have probably influenced the speciation of prokaryotes. Whole-genome sequencing has clearly revealed the importance of (virus-mediated) gene transfer. However, its significance for the ecological performance of aquatic microbial communities is only poorly studied, although the few available reports indicate a large potential. Here, we present data supporting the hypothesis that viral genes and viral activity generate genetic variability of prokaryotes and are a driving force for ecological functioning and evolutionary change.
Collapse
Affiliation(s)
- Markus G Weinbauer
- Laboratoire d'Océanographie de Villefranche, Biogeochemistry, Functional Diversity and Microbial Ecology Group, BP 28, 06234 Villefranche-sur-Mer, France.
| | | |
Collapse
|
138
|
Collier CT, van der Klis JD, Deplancke B, Anderson DB, Gaskins HR. Effects of tylosin on bacterial mucolysis, Clostridium perfringens colonization, and intestinal barrier function in a chick model of necrotic enteritis. Antimicrob Agents Chemother 2004; 47:3311-7. [PMID: 14506046 PMCID: PMC201165 DOI: 10.1128/aac.47.10.3311-3317.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Necrotic enteritis (NE) is a worldwide poultry disease caused by the alpha toxin-producing bacterium Clostridium perfringens. Disease risk factors include concurrent coccidial infection and the dietary use of cereal grains high in nonstarch polysaccharides (NSP), such as wheat, barley, rye, and oats. Outbreaks of NE can be prevented or treated by the use of in-feed antibiotics. However, the current debate regarding the prophylactic use of antibiotics in animal diets necessitates a better understanding of factors that influence intestinal colonization by C. perfringens as well as the pathophysiological consequences of its growth. We report a study with a chick model of NE, which used molecular (16S rRNA gene [16S rDNA]) and culture-based microbiological techniques to investigate the impact of the macrolide antibiotic tylosin phosphate (100 ppm) and a dietary NSP (pectin) on the community structure of the small intestinal microbiota relative to colonization by C. perfringens. The effects of tylosin and pectin on mucolytic activity of the microbiota and C. perfringens colonization and their relationship to pathological indices of NE were of particular interest. The data demonstrate that tylosin reduced the percentage of mucolytic bacteria in general and the concentration of C. perfringens in particular, and these responses correlated in a temporal fashion with a reduction in the occurrence of NE lesions and an improvement in barrier function. The presence of pectin did not significantly affect the variables measured. Thus, it appears that tylosin can control NE through its modulation of C. perfringens colonization and the mucolytic activity of the intestinal microbiota.
Collapse
Affiliation(s)
- C T Collier
- Departments of Animal Sciences, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
139
|
Emtiazi F, Schwartz T, Marten SM, Krolla-Sidenstein P, Obst U. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. WATER RESEARCH 2004; 38:1197-1206. [PMID: 14975653 DOI: 10.1016/j.watres.2003.10.056] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 10/08/2003] [Accepted: 10/13/2003] [Indexed: 05/24/2023]
Abstract
Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1-2m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. beta-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds.
Collapse
Affiliation(s)
- Farahnaz Emtiazi
- Department of Environmental Microbiology, Forschungszentrum Karlsruhe GmbH, Institute for Technical Chemistry-Water Technology and Geotechnology Division, P.O. Box 3640, Karlsruhe D-76021, Germany
| | | | | | | | | |
Collapse
|
140
|
Studying the deep subsurface biosphere: Emerging technologies and applications. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/144gm24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
141
|
Schwiertz A, Gruhl B, Löbnitz M, Michel P, Radke M, Blaut M. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res 2003; 54:393-9. [PMID: 12788986 DOI: 10.1203/01.pdr.0000078274.74607.7a] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The establishment and succession of bacterial communities in hospitalized preterm infants has not been extensively studied. Because earlier studies depended on classical cultural techniques, their results were limited. This study monitored the establishment and succession of the neonatal microbiota in the first weeks of life by analyzing the 16S rDNA variety in fecal samples applying PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Fecal samples from 29 preterm infants hospitalized in a neonatal intensive care unit, including samples from antibiotic-treated infants and one with neonatal necrotizing enterocolitis, were subjected to PCR-DGGE analysis. Daily DGGE profiles from all preterm infants during the first 4 wk were obtained and analyzed. In addition, feces of 15 breast-fed, full-term infants and a variety of clinical bacterial isolates were examined and compared with the PCR-DGGE profiles of the preterm infants. During the first days of life, the DGGE profiles were rather simple but increased in their complexity over time. It became obvious that not only the intraindividual band-pattern similarity increased over time, but also the interindividual. During the observation period, similarity values (Cs) increased in each preterm infant from 0 to 80%, whereas interindividual Cs increased from 18.1 to 57.4%, revealing the acquisition of a highly similar bacterial community in these infants. In contrast, Cs-values obtained for breast-fed, full-term infants were rather low (11.2%). Escherichia coli, Enterococcus sp., and Klebsiella pneumoniae were the bacteria most commonly found in all preterm infants. The interindividual bacterial composition in hospitalized preterm infants is more similar in comparison with breast-fed, full-term infants and is not necessarily influenced by birth weight, diet, or antibiotic treatment.
Collapse
Affiliation(s)
- Andreas Schwiertz
- Deutsches Institut für Ernaehrungsforschung, Abteilung Gastrointestinale Mikrobiologie, Bergholz-Rehbrücke, Germany.
| | | | | | | | | | | |
Collapse
|
142
|
Rogers GB, Hart CA, Mason JR, Hughes M, Walshaw MJ, Bruce KD. Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2003; 41:3548-58. [PMID: 12904354 PMCID: PMC179861 DOI: 10.1128/jcm.41.8.3548-3558.2003] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leading cause of morbidity and mortality in cystic fibrosis (CF) patients stems from repeated bacterial respiratory infections. Many bacterial species have been cultured from CF specimens and so are associated with lung disease. Despite this, much remains to be determined. In the present study, we characterized without prior cultivation the total bacterial community present in specimens taken from adult CF patients, extracting DNA directly from 14 bronchoscopy or sputum samples. Bacterial 16S ribosomal DNA (rRNA) gene PCR products were amplified from extracted nucleic acids, with analyses by terminal restriction fragment length polymorphism (T-RFLP), length heterogeneity PCR (LH-PCR), and sequencing of individual cloned PCR products to characterize these communities. Using the same loading of PCR products, 12 distinct T-RFLP profiles were identified that had between 3 and 32 T-RFLP bands. Nine distinct LH-PCR profiles were identified containing between one and four bands. T-RFLP bands were detected in certain samples at positions that corresponded to pathogens cultured from CF samples, e.g., Burkholderia cepacia and Haemophilus influenzae. In every sample studied, one T-RFLP band was identified that corresponded to that produced by Pseudomonas aeruginosa. A total of 103 16S rRNA gene clones were examined from five patients. P. aeruginosa was the most commonly identified species (59% of clones). Stenotrophomonas species were also common, with eight other (typically anaerobic) bacterial species identified within the remaining 17 clones. In conclusion, T-RFLP analysis coupled with 16S rRNA gene sequencing is a powerful means of analyzing the composition and diversity of the bacterial community in specimens sampled from CF patients.
Collapse
Affiliation(s)
- G B Rogers
- Department of Life Sciences, King's College London, London SE1 9NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
143
|
Hume ME, Kubena LF, Edrington TS, Donskey CJ, Moore RW, Ricke SC, Nisbet DJ. Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis. Poult Sci 2003; 82:1100-7. [PMID: 12872965 DOI: 10.1093/ps/82.7.1100] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Populations of digestive microflora in chickens change with age and are affected by diet, stressors, and performance enhancers. Culturing techniques used to profile a bacterial community inadvertently select for some organisms while excluding others. Several molecular-based techniques have been used to profile mixed microbial populations on the basis of DNA extracted from the entire community. Denaturing gradient gel electrophoresis was used in the present study to examine PCR-amplified fragments (amplicons) of a 16S ribosomal DNA variable region from predominant digestive bacteria. The objective of the study was to examine changes in digestive microbial communities of developing Leghorn chicks and molted Leghorn hens. Dendrograms of amplicon patterns indicated approximately 51% similarity between cecal bacteria composition in Leghorn chicks less than 20 d old and chicks greater than 20 d old. Cecal communities in Leghorn chicks given a competitive exclusion culture exhibited 21% correlation at all ages with those in control chicks. Nonmolted and molted hens had 40% similarity between cecal communities, whereas diets with low calcium (0.8% wt/wt) and excess zinc (2,800 mg/kg) lessened population differences (90% similarity). Results indicated the potential usefulness of the molecular-based denaturing gradient gel electrophoresis to monitor changes in digestive bacterial communities in chickens.
Collapse
Affiliation(s)
- M E Hume
- USDA, ARS, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
144
|
Hofman-Bang J, Zheng D, Westermann P, Ahring BK, Raskin L. Molecular ecology of anaerobic reactor systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 81:151-203. [PMID: 12747563 DOI: 10.1007/3-540-45839-5_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these processes. Only a few percent of Bacteria and Archaea have so far been isolated, and almost nothing is known about the dynamics and interactions between these and other microorganisms. This lack of knowledge is most clearly exemplified by the sometimes unpredictable and unexplainable failures and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine why and what they are doing. As genetic manipulations of anaerobes have been shown in only a few species permitting in-situ gene expression studies, the only way to elucidate the function of different microbes is to correlate the metabolic capabilities of isolated microbes in pure culture to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various specific nucleic acid probes are discussed and exemplified by studies of anaerobic granular sludge, biofilm and digester systems.
Collapse
Affiliation(s)
- J Hofman-Bang
- Environmental Microbiology and Biotechnology, Biocentrum DTU, The Technical University of Denmark, Building 227, 2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
145
|
Sandaa RA, Magnesen T, Torkildsen L, Bergh O. Characterisation of the bacterial community associated with early stages of Great Scallop (Pecten maximus), using denaturing gradient gel electrophoresis (DGGE). Syst Appl Microbiol 2003; 26:302-11. [PMID: 12866858 DOI: 10.1078/072320203322346164] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA was used to characterise and compare bacterial communities associated with scallop larvae (Pecten maximus), in different production units in a shellfish hatchery. Water and larvae samples were collected from three different aquaculture systems; stagnant, flow-through and a flow- through system with seawater treated with ozone. Samples were also collected from different algal cultures, inlet tanks and water pipes leading to the different aquaculture systems. Clear differences were seen between the bacterial community associated with the larvae and in the water from the different aquaculture systems. However, there were high similarities in the community composition between different water samples and between larvae samples collected at different time periods, indicating a high stability in the bacterial communities. Fifty three percent of the sequences from these samples were similar to 16S rRNA gene sequences of members of the gamma-subclass of the Proteobacteria. The different algal cultures had different bacterial communities, however 73 percent of the sequences were similar to 16S rRNA gene sequences of members of the alpha-subclass of the Proteobacteria. Differences in the DGGE profiles were also seen between the samples taken from the inlet tanks and water pipes, indicating a change in the bacterial community composition as the water passed through the pipes. To our knowledge this is the first study investigating bacterial communities associated with Great Scallop larvae in different aquaculture systems including noncultured components.
Collapse
|
146
|
Maukonen J, Mättö J, Wirtanen G, Raaska L, Mattila-Sandholm T, Saarela M. Methodologies for the characterization of microbes in industrial environments: a review. J Ind Microbiol Biotechnol 2003; 30:327-56. [PMID: 12764674 DOI: 10.1007/s10295-003-0056-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Accepted: 04/02/2003] [Indexed: 10/26/2022]
Abstract
There is growing interest in research and development to develop novel tools to study, detect, and characterize microbes and their communities in industrial environments. However, knowledge about their validity in practical industrial use is still scarce. This review describes the advantages and limitations of traditional and molecular methods used for biofilm and/or planktonic cell studies, especially those performed with Listeria monocytogenes, Bacillus cereus, and/or Clostridium perfringens. In addition, the review addresses the importance of isolating the microorganisms from the industrial environment and the possibilities and future prospects for exploiting the described methods in the industrial environment.
Collapse
|
147
|
Call DR, Borucki MK, Loge FJ. Detection of bacterial pathogens in environmental samples using DNA microarrays. J Microbiol Methods 2003; 53:235-43. [PMID: 12654494 DOI: 10.1016/s0167-7012(03)00027-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Polymerase chain reaction (PCR) is an important tool for pathogen detection, but historically, it has not been possible to accurately identify PCR products without sequencing, Southern blots, or dot-blots. Microarrays can be coupled with PCR where they serve as a set of parallel dot-blots to enhance product detection and identification. Microarrays are composed of many discretely located probes on a solid substrate such as glass. Each probe is composed of a sequence that is complimentary to a pathogen-specific gene sequence. PCR is used to amplify one or more genes and the products are then hybridized to the array to identify species-specific polymorphism within one or more genes. We illustrate this type of array using 16S rDNA probes suitable for distinguishing between several salmonid pathogens. We also describe the use of microarrays for direct detection of either RNA or DNA without the aid of PCR, although the sensitivity of these systems currently limits their application for pathogen detection. Finally, microarrays can also be used to "fingerprint" bacterial isolates and they can be used to identify diagnostic markers suitable for developing new PCR-based detection assays. We illustrate this type of array for subtyping an important food-borne pathogen, Listeria monocytogenes.
Collapse
Affiliation(s)
- Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
148
|
Miambi E, Guyot JP, Ampe F. Identification, isolation and quantification of representative bacteria from fermented cassava dough using an integrated approach of culture-dependent and culture-independent methods. Int J Food Microbiol 2003; 82:111-20. [PMID: 12568751 DOI: 10.1016/s0168-1605(02)00256-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The use of denaturing gradient gel electrophoresis (DGGE) and traditional culture-depending methods for examining the bacterial community of traditional cassava starch fermentation were investigated. It appeared that DGGE profiles of total DNA of cassava dough exhibited 10 distinguishable bands. In contrast, DGGE fingerprints of bacteria recovered from enrichment cultures of fermented dough gave variable profiles containing fewer bands. Bands corresponding to five bacterial species detected by direct PCR-DGGE of total DNA from of cassava dough were also observed in DGGE patterns of enrichment cultures. Eighteen strains were isolated from cultures selected on the basis of their DGGE banding patterns. Assessment of bacterial identification by 16S rDNA sequence similarity revealed that band comigration implied sequence identity. Comparison of 16S rDNA sequences of excised DGGE bands and recovered pure culture isolates with those in GENBANK and the RDP databases revealed that representative bacteria of fermented cassava dough were Lactobacillus and Pediococcus species as well as species of Clostridium, Propionibacterium and Bacillus. Some Lactobacillus species detected in dough samples by sequence analysis of DGGE bands were not recovered in any of the five culture media and conditions used. On the other hand, some species recovered as pure cultures from enrichments were not detected by direct DGGE analysis of total bacterial DNA from cassava dough. Our results provide evidence of the necessity to combine both culture-dependent and culture-independent methods for better description of microbial communities in indigenous cassava starch fermentations.
Collapse
Affiliation(s)
- Edouard Miambi
- Unité de Recherches sur les Ressources Microbiennes (GERDIB-DGRST)-BP 2400, Brazzaville, Congo.
| | | | | |
Collapse
|
149
|
Konstantinov SR, Zhu WY, Williams BA, Tamminga S, Vos WM, Akkermans AD. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol Ecol 2003; 43:225-35. [DOI: 10.1111/j.1574-6941.2003.tb01062.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
150
|
Schabereiter-Gurtner C, Lubitz W, Rölleke S. Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. J Microbiol Methods 2003; 52:251-60. [PMID: 12459246 DOI: 10.1016/s0167-7012(02)00186-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ticks play an important role in the transmission of arthropod-borne diseases of viral, protozoal and bacterial origin. The present article describes a molecular-biological based method, which facilitated the broad-range analyses of bacterial communities in ixodid ticks (Ixodes ricinus). DNA was extracted both from single ticks and pooled adult ticks. Eubacterial 16S rRNA gene fragments (16S rDNA) were amplified by polymerase chain reaction (PCR) with broad-range ribosomal primers. Sequences spanning the hypervariable V3 region of the 16S rDNA and representing individual bacterial taxons were separated by denaturing gradient gel electrophoresis (DGGE). For phylogenetic identification, DGGE bands were exised, cloned and sequenced. In addition, we set up a 16S rDNA clone library which was screened by DGGE. Sequences were compared with sequences of known bacteria listed in the GenBank database. A number of bacteria were affiliated with the genera Rickettsia, Bartonella, and Borrelia, which are known to be pathogenic and transmitted by ticks. Two sequences were related to the yet to be cultivated Haemobartonella. To our knowledge, Haemobartonella has never been directly detected in I. ricinus. In addition, members of the genera Staphylococcus, Rhodococcus, Pseudomonas, and Moraxella were detected, which have not been identified in ticks so far. Two bacteria were most closely related to a rickettsial endosymbiont of an Acanthamoeba sp., and to an endosymbiont (Legionellaceae, Coxiella group) of the microarthropod Folsomia candida. The results prove that 16S rDNA genotyping in combination with DGGE analysis is a promising approach for the detection and identification of bacteria infecting ticks, regardless of whether these bacteria are fastidious, obligate intracellular or noncultivable.
Collapse
|