101
|
Li R, Hao Y, Shen Y, Gui L, Lv W, Yuan L, Du B, Xie L, Li J, Xu X. Impact of cadmium and diclofenac exposure on biochemical responses, transcriptome, gut microflora, and growth performance in grass carp (Ctenopharyngodonidella). CHEMOSPHERE 2024; 360:142428. [PMID: 38797211 DOI: 10.1016/j.chemosphere.2024.142428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
In recent years, the concentrations of cadmium (Cd) and diclofenac (DCF) in water have frequently exceeded the standard; however, the toxic effects of these two pollutants on grass carp under single and combined exposure are unknown. In this study, the concentrations of pollutants in different tissues were detected, and the toxicities of the two pollutants to grass carp under different exposure conditions were compared based on growth traits, biochemical responses, gut microbiome, and transcriptomes. Based on these findings, the brain showed the lowest levels of Cd and DCF accumulation. Oxidative stress and pathological damage were observed in the brain and intestines. Changes in the structure and abundance of the gut microflora affect the synthesis of neurotransmitters, such as GABA and steroids. Differentially expressed genes in the brain were enriched in circadian rhythm functions. The expression of PER, CLOCK,1L-1β, 1L-17, and other genes are related to the abundance of Akkermansia, which indicates that the disorder of gut microflora will affect the normal circadian rhythm of the brain. All indices in the recovery group showed an increasing trend. Overall, the toxicity of Cd and DCF showed antagonism, and a single exposure had a stronger effect on gut microorganisms and circadian rhythm, which provided a scientific basis for exploring the comprehensive effects of different pollutants.
Collapse
Affiliation(s)
- Runbo Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yinghu Hao
- Tongling Puji Sangtian Daoyu Ecological Development Co., Ltd., Anhui, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Wenyao Lv
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Li Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
102
|
Zeng P, Zhang CZ, Fan ZX, Yang CJ, Cai WY, Huang YF, Xiang ZJ, Wu JY, Zhang J, Yang J. Effect of probiotics on children with autism spectrum disorders: a meta-analysis. Ital J Pediatr 2024; 50:120. [PMID: 38902804 PMCID: PMC11191217 DOI: 10.1186/s13052-024-01692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Researches have found that alteration of intestinal flora may be closely related to the development of autism spectrum disorder (ASD). However, whether probiotics supplementation has a protective effect on ASD remains controversial. This meta-analysis aimed to analyze the outcome of probiotics in the treatment of ASD children. METHODS The Pubmed, Cochrane Library, Web of Science and Embase were searched until Sep 2022. Randomized controlled trials (RCTs) relevant to the probiotics and placebo treatment on ASD children were screened. Quality assessment of the included RCTs was evaluated by the Cochrane collaboration's tool. The primary outcomes were ASD assessment scales, including ABC (aberrant behavior checklist) and CBCL (child behavior checklist) for evaluating the behavior improvement, SRS (social responsiveness scale) for social assessment, DQ (developmental quotient) for physical and mental development and CGI-I (clinical global impression improvement) for overall improvement. The secondary outcome was total 6-GSI (gastrointestinal severity index). RESULTS In total, 6 RCTs from 6 studies with 302 children were included in the systemic review. Total 6-GSI (MD=-0.59, 95%CI [-1.02,-0.17], P < 0.05) decreased significantly after oral administration of probiotics. Whereas, there was no statistical difference in ABC, CBCL, SRS, DQ and CGI-I between probiotics and placebo groups in ASD children. CONCLUSION Probiotics treatment could improve gastrointestinal symptoms, but there was no significant improvement in ASD.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cheng-Zhi Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Chao-Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Wan-Yin Cai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yi-Fan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zu-Jin Xiang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing-Yi Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| |
Collapse
|
103
|
Semenova N, Garashchenko N, Kolesnikov S, Darenskaya M, Kolesnikova L. Gut Microbiome Interactions with Oxidative Stress: Mechanisms and Consequences for Health. PATHOPHYSIOLOGY 2024; 31:309-330. [PMID: 39051221 PMCID: PMC11270257 DOI: 10.3390/pathophysiology31030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Understanding how gut flora interacts with oxidative stress has been the subject of significant research in recent years. There is much evidence demonstrating the existence of the microbiome-oxidative stress interaction. However, the biochemical basis of this interaction is still unclear. In this narrative review, possible pathways of the gut microbiota and oxidative stress interaction are presented, among which genetic underpinnings play an important role. Trimethylamine-N-oxide, mitochondria, short-chain fatty acids, and melatonin also appear to play roles. Moreover, the relationship between oxidative stress and the gut microbiome in obesity, metabolic syndrome, chronic ethanol consumption, dietary supplements, and medications is considered. An investigation of the correlation between bacterial community features and OS parameter changes under normal and pathological conditions might provide information for the determination of new research methods. Furthermore, such research could contribute to establishing a foundation for determining the linkers in the microbiome-OS association.
Collapse
Affiliation(s)
- Natalya Semenova
- Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia; (N.G.); (S.K.); (M.D.); (L.K.)
| | | | | | | | | |
Collapse
|
104
|
Hu L, Ye W, Deng Q, Wang C, Luo J, Huang L, Fang Z, Sun L, Gooneratne R. Microbiome and Metabolite Analysis Insight into the Potential of Shrimp Head Hydrolysate to Alleviate Depression-like Behaviour in Growth-Period Mice Exposed to Chronic Stress. Nutrients 2024; 16:1953. [PMID: 38931307 PMCID: PMC11206410 DOI: 10.3390/nu16121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic stress (CS) endangers the physical and mental health of adolescents. Therefore, alleviating and preventing such negative health impacts are a top priority. This study explores the effect of feeding shrimp head hydrolysate (SHH) on gut microbiota, short-chain fatty acids (SCFAs), and neurotransmitters in growing C57BL/6 mice subjected to chronic unpredictable mild stress. Mice in the model group and three SHH groups were exposed to CS for 44 days, distilled water and SHH doses of 0.18, 0.45, 0.90 g/kg·BW were given respectively by gavage daily for 30 days from the 15th day. The results showed that SHH can significantly reverse depression-like behaviour, amino acids degradation, α diversity and β diversity, proportion of Firmicutes and Bacteroidota, abundance of genera such as Muribaculaceae, Bacteroides, Prevotellaceae_UCG-001, Parabacteroides and Alistipes, concentration of five short-chain fatty acids (SCFAs), 5-HT and glutamate induced by CS. Muribaculaceae and butyric acid may be a controlled target. This study highlights the potential and broad application of SHH as an active ingredient in food to combat chronic stress damage.
Collapse
Affiliation(s)
- Lianhua Hu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Weichang Ye
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Qi Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Chen Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Jinjin Luo
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Ling Huang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Zhijia Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Lijun Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.H.); (W.Y.); (C.W.); (J.L.); (L.H.); (Z.F.); (L.S.)
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand;
| |
Collapse
|
105
|
De Sales-Millán A, Reyes-Ferreira P, Aguirre-Garrido JF, Corral-Guillé I, Barrientos-Ríos R, Velázquez-Aragón JA. Comprehensive Analysis of Gut Microbiota Composition and Functional Metabolism in Children with Autism Spectrum Disorder and Neurotypical Children: Implications for Sex-Based Differences and Metabolic Dysregulation. Int J Mol Sci 2024; 25:6701. [PMID: 38928411 PMCID: PMC11203636 DOI: 10.3390/ijms25126701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to investigate the gut microbiota composition in children with autism spectrum disorder (ASD) compared to neurotypical (NT) children, with a focus on identifying potential differences in gut bacteria between these groups. The microbiota was analyzed through the massive sequencing of region V3-V4 of the 16S RNA gene, utilizing DNA extracted from stool samples of participants. Our findings revealed no significant differences in the dominant bacterial phyla (Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Verrucomicrobiota) between the ASD and NT groups. However, at the genus level, notable disparities were observed in the abundance of Blautia, Prevotella, Clostridium XI, and Clostridium XVIII, all of which have been previously associated with ASD. Furthermore, a sex-based analysis unveiled additional discrepancies in gut microbiota composition. Specifically, three genera (Megamonas, Oscilibacter, Acidaminococcus) exhibited variations between male and female groups in both ASD and NT cohorts. Particularly noteworthy was the exclusive presence of Megamonas in females with ASD. Analysis of predicted metabolic pathways suggested an enrichment of pathways related to amine and polyamine degradation, as well as amino acid degradation in the ASD group. Conversely, pathways implicated in carbohydrate biosynthesis, degradation, and fermentation were found to be underrepresented. Despite the limitations of our study, including a relatively small sample size (30 ASD and 31 NT children) and the utilization of predicted metabolic pathways derived from 16S RNA gene analysis rather than metagenome sequencing, our findings contribute to the growing body of evidence suggesting a potential association between gut microbiota composition and ASD. Future research endeavors should focus on validating these findings with larger sample sizes and exploring the functional significance of these microbial differences in ASD. Additionally, there is a critical need for further investigations to elucidate sex differences in gut microbiota composition and their potential implications for ASD pathology and treatment.
Collapse
Affiliation(s)
- Amapola De Sales-Millán
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico;
| | - Paulina Reyes-Ferreira
- Departamento de Salud Mental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico;
| | - Ismene Corral-Guillé
- Centro de Investigación del Neurodesarrollo, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | | | | |
Collapse
|
106
|
Gallo A, Martone AM, Liperoti R, Cipriani MC, Ibba F, Camilli S, Rognoni FM, Landi F, Montalto M. Mild cognitive impairment and microbiota: what is known and future perspectives. Front Med (Lausanne) 2024; 11:1410246. [PMID: 38957302 PMCID: PMC11217486 DOI: 10.3389/fmed.2024.1410246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Mild cognitive impairment (MCI) is a heterogeneous condition definable as the intermediate clinical state between normal aging and dementia. As a pre-dementia condition, there is a recent growing interest in the identification of non-invasive markers able to predict the progression from MCI to a more advanced stage of the disease. Previous evidence showed the close link between gut microbiota and neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's disease (PD). Conversely, the actual relationship between gut microbiota and MCI is yet to be clarified. In this work, we provide an overview about the current knowledge regarding the role of gut microbiota in the context of MCI, also assessing the potential for microbiota-targeted therapies. Through the review of the most recent studies focusing on this topic, we found evidence of an increase of Bacteroidetes at phylum level and Bacteroides at genus level in MCI subjects with respect to healthy controls and patients with AD. Despite such initial evidence, the definitive identification of a typical microbiota profile associated with MCI is still far from being achieved. These preliminary results, however, are growingly encouraging research on the role of gut microbiota modulation in improving the cognitive status of pre-dementia subjects. To date, few studies evaluated the role of probiotics in MCI subjects, and they showed favorable results, although still biased by small sample size, heterogeneity of study design and short follow-up.
Collapse
Affiliation(s)
- Antonella Gallo
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Anna Maria Martone
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Rosa Liperoti
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Camilla Cipriani
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Francesca Ibba
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Camilli
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiammetta Maria Rognoni
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Montalto
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
107
|
Song C, Wang Z, Cao J, Dong Y, Chen Y. Neurotoxic mechanisms of mycotoxins: Focus on aflatoxin B1 and T-2 toxin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124359. [PMID: 38866317 DOI: 10.1016/j.envpol.2024.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Aflatoxin B1 (AFB1) and T-2 toxin are commonly found in animal feed and stored grain, posing a serious threat to human and animal health. Mycotoxins can penetrate brain tissue by compromising the blood-brain barrier, triggering oxidative stress and neuroinflammation, and leading to oxidative damage and apoptosis of brain cells. The potential neurotoxic mechanisms of AFB1 and T-2 toxin were discussed by summarizing the relevant research reports from the past ten years. AFB1 and T-2 toxin cause neuronal damage in the cerebral cortex and hippocampus, leading to synaptic transmission dysfunction, ultimately impairing the nervous system function of the body. The toxic mechanism is related to excessive reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction, apoptosis, autophagy, and an exaggerated inflammatory response. After passing through the blood-brain barrier, toxins can directly affect glial cells, alter the activation state of microglia and astrocytes, thereby promoting brain inflammation, disrupting the blood-brain barrier, and influencing the synaptic transmission process. We discussed the diverse effects of various concentrations of toxins and different modes of exposure on neurotoxicity. In addition, toxins can also cross the placental barrier, causing neurotoxic symptoms in offspring, as demonstrated in various species. Our goal is to uncover the underlying mechanisms of the neurotoxicity of AFB1 and T-2 toxin and to provide insights for future research, including investigating the impact of mycotoxins on interactions between microglia and astrocytes.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China.
| |
Collapse
|
108
|
Isokääntä H, Pinto da Silva L, Karu N, Kallonen T, Aatsinki AK, Hankemeier T, Schimmel L, Diaz E, Hyötyläinen T, Dorrestein PC, Knight R, Orešič M, Kaddurah-Daouk R, Dickens AM, Lamichhane S. Comparative Metabolomics and Microbiome Analysis of Ethanol versus OMNImet/gene•GUT Fecal Stabilization. Anal Chem 2024; 96:8893-8904. [PMID: 38782403 PMCID: PMC11154662 DOI: 10.1021/acs.analchem.3c04436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Metabolites from feces provide important insights into the functionality of the gut microbiome. As immediate freezing is not always feasible in gut microbiome studies, there is a need for sampling protocols that provide the stability of the fecal metabolome and microbiome at room temperature (RT). Here, we investigated the stability of various metabolites and the microbiome (16S rRNA) in feces collected in 95% ethanol (EtOH) and commercially available sample collection kits with specific preservatives OMNImet•GUT/OMNIgene•GUT. To simulate field-collection scenarios, the samples were stored at different temperatures at varying durations (24 h + 4 °C, 24 h RT, 36 h RT, 48 h RT, and 7 days RT) and compared to aliquots immediately frozen at -80 °C. We applied several targeted and untargeted metabolomics platforms to measure lipids, polar metabolites, endocannabinoids, short-chain fatty acids (SCFAs), and bile acids (BAs). We found that SCFAs in the nonstabilized samples increased over time, while a stable profile was recorded in sample aliquots stored in 95% EtOH and OMNImet•GUT. When comparing the metabolite levels between aliquots stored at room temperature and at +4 °C, we detected several changes in microbial metabolites, including multiple BAs and SCFAs. Taken together, we found that storing samples at RT and stabilizing them in 95% EtOH yielded metabolomic results comparable to those from flash freezing. We also found that the overall composition of the microbiome did not vary significantly between different storage types. However, notable differences were observed in the α diversity. Altogether, the stability of the metabolome and microbiome in 95% EtOH provided results similar to those of the validated commercial collection kits OMNImet•GUT and OMNIgene•GUT, respectively.
Collapse
Affiliation(s)
- Heidi Isokääntä
- Research
Center for Infections and Immunity, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Lucas Pinto da Silva
- Turku
Bioscience Centre, University of Turku, Tykistönkatu 6A, 20520 Turku, Finland
| | - Naama Karu
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Teemu Kallonen
- Department
of Clinical Microbiology, Laboratory Division, Turku University Hospital, Kiinamyllynkatu 10 D, 20520 Turku, Finland
- Clinical
Microbiome Bank, Microbe Center, University
Hospital and University of Turku, 20520 Turku, Finland
| | - Anna-Katariina Aatsinki
- Centre
for
Population Health Research, University of
Turku, Kiinamyllynkatu
10A, 20520 Turku, Finland
| | - Thomas Hankemeier
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Leyla Schimmel
- Department
of Psychiatry and Behavioral Sciences, Duke
University, Durham, North Carolina 27708-0187, United States
| | - Edgar Diaz
- Department
of Psychiatry and Behavioral Sciences, Duke
University, Durham, North Carolina 27708-0187, United States
| | - Tuulia Hyötyläinen
- School
of Science and Technology, Örebro
University, 70281 Örebro, Sweden
| | - Pieter C. Dorrestein
- Center
for Microbiome Innovation, University of
California, San Diego, La Jolla, California 92093-6607, United States
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California,
San Diego, 9500 Gilman, La Jolla, California 92093-0657, United States
| | - Rob Knight
- Center
for Microbiome Innovation, University of
California, San Diego, La Jolla, California 92093-6607, United States
| | - Matej Orešič
- Turku
Bioscience Centre, University of Turku, Tykistönkatu 6A, 20520 Turku, Finland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden
| | - Rima Kaddurah-Daouk
- Department
of Psychiatry and Behavioral Sciences, Duke
University, Durham, North Carolina 27708-0187, United States
| | - Alex M. Dickens
- Turku
Bioscience Centre, University of Turku, Tykistönkatu 6A, 20520 Turku, Finland
- Department of Chemistry, University of
Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Santosh Lamichhane
- Turku
Bioscience Centre, University of Turku, Tykistönkatu 6A, 20520 Turku, Finland
| |
Collapse
|
109
|
Xue H, Liang B, Wang Y, Gao H, Fang S, Xie K, Tan J. The regulatory effect of polysaccharides on the gut microbiota and their effect on human health: A review. Int J Biol Macromol 2024; 270:132170. [PMID: 38734333 DOI: 10.1016/j.ijbiomac.2024.132170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Polysaccharides with low toxicity and high biological activities are a kind of biological macromolecule. Recently, growing studies have confirmed that polysaccharides could improve obesity, diabetes, tumors, inflammatory bowel disease, hyperlipidemia, diarrhea, and liver-related diseases by changing the intestinal micro-environment. Moreover, polysaccharides could promote human health by regulating gut microbiota, enhancing production of short-chain fatty acids (SCFAs), improving intestinal mucosal barrier, regulating lipid metabolism, and activating specific signaling pathways. Notably, the biological activities of polysaccharides are closely related to their molecular weight, monosaccharide composition, glycosidic bond types, and regulation of gut microbiota. The intestinal microbiota can secrete glycoside hydrolases, lyases, and esterases to break down polysaccharides chains and generate monosaccharides, thereby promoting their absorption and utilization. The degradation of polysaccharides can produce SCFAs, further regulating the proportion of gut microbiota and achieving the effect of preventing and treating various diseases. This review aims to summarize the latest studies: 1) effect of polysaccharides structures on intestinal flora; 2) regulatory effect of polysaccharides on gut microbiota; 3) effects of polysaccharides on gut microbe-mediated diseases; 4) regulation of gut microbiota on polysaccharides metabolism. The findings are expected to provide important information for the development of polysaccharides and the treatment of diseases.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Beimeng Liang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
110
|
Zou J, Gao J, Sun L, Liu Y, Ma C, Chen S, Zheng Y, Wu S, Gao X. Perceived Taste and Olfactory Dysfunctions and Subsequent Stroke Risk. JACC. ASIA 2024; 4:483-492. [PMID: 39100703 PMCID: PMC11291397 DOI: 10.1016/j.jacasi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 08/06/2024]
Abstract
Background Taste and olfactory dysfunction are commonly associated with neurodegenerative diseases and cardiovascular risk factors, but their specific associations with stroke risk remain uncertain. Objectives The purpose of this paper was to explore whether perceived taste and olfactory dysfunctions were associated with stroke risk. Methods Included were 85,656 participants (mean age 51.0 ± 15.3 years) of the Kailuan study. Perceived olfactory and taste dysfunctions were assessed via a questionnaire at baseline (in 2014-2016). Incident stroke cases were confirmed by review of medical records. Cox proportional hazards models were used to investigate associations of perceived olfactory and taste dysfunctions with stroke risk, and mediation analysis was used to estimate the mediating effect of chronic disease statuses. Results We documented 2,198 incident stroke cases during a mean of 5.6 years of follow-up. Perceived taste dysfunction was associated with a doubled risk of developing total stroke (adjusted HR: 2.03; 95% CI: 1.36-3.04; P < 0.001) even with adjustment of lifestyle factors, biomarkers (ie, blood lipids, blood glucose, blood pressure, and uric acid), and other potential confounders. However, perceived olfactory dysfunction (adjusted HR: 1.22; 95% CI: 0.79-1.90; P = 0.34) was not significantly associated with a high risk of total stroke. Similar results of both perceived taste and olfactory dysfunctions were observed for ischemic stroke. Presence of chronic diseases, including hypertension, diabetes, chronic kidney disease, and overweight/obesity, mediated 4% to 5% of the association of perceived taste dysfunction with both total stroke and ischemic stroke. Conclusions In this large cohort study, perceived taste dysfunction was associated with a high risk of developing stroke.
Collapse
Affiliation(s)
- Jiaojiao Zou
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jingli Gao
- Department of Intensive Care Unit, Kailuan General Hospital, Tangshan, China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Yesong Liu
- Department of Neurology, Kailuan General Hospital, Tangshan, China
| | - Chaoran Ma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| |
Collapse
|
111
|
Wu ZJ, Zhao YY, Hao SJ, Dong BB, Zheng YX, Liu B, Li J. Combining fecal 16 S rRNA sequencing and spinal cord metabolomics analysis to explain the modulatory effect of PPARα on neuropathic pain. Brain Res Bull 2024; 211:110943. [PMID: 38614408 DOI: 10.1016/j.brainresbull.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Existing evidence suggests that the composition of the gut microbiota is associated with neuropathic pain (NP), but the mechanistic link is elusive. Peroxisome proliferator-activated receptor α (PPARα) has been shown to be a pharmacological target for the treatment of metabolic disorders, and its expression is also involved in inflammatory regulation. The aim of this study was to investigate the important modulatory effects of PPARα on gut microbiota and spinal cord metabolites in mice subjected to chronic constriction injury. METHODS We analyzed fecal microbiota and spinal cord metabolic alterations in mice from the sham, CCI, GW7647 (PPARα agonist) and GW6471 (PPARα antagonist) groups by 16 S rRNA amplicon sequencing and untargeted metabolomics analysis. On this basis, the intestinal microbiota and metabolites that were significantly altered between treatment groups were analyzed in a combined multiomics analysis. We also investigated the effect of PPARα on the polarization fractionation of spinal microglia. RESULTS PPARα agonist significantly reduce paw withdrawal threshold and paw withdrawal thermal latency, while PPARα antagonist significantly increase paw withdrawal threshold and paw withdrawal thermal latency. 16 S rRNA gene sequencing showed that intraperitoneal injection of GW7647 or GW6471 significantly altered the abundance, homogeneity and composition of the gut microbiome. Analysis of the spinal cord metabolome showed that the levels of spinal cord metabolites were shifted after exposure to GW7647 or GW6471. Alterations in the composition of gut microbiota were significantly associated with the abundance of various spinal cord metabolites. The abundance of Licheniformes showed a significant positive correlation with nicotinamide, benzimidazole, eicosanoids, and pyridine abundance. Immunofluorescence results showed that intraperitoneal injection of GW7647 or GW6471 altered microglial activation and polarization levels. CONCLUSION Our study shows that PPARα can promote M2-type microglia polarization, as well as alter gut microbiota and metabolites in CCI mice. This study enhances our understanding of the mechanism of PPARα in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Shu-Jing Hao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bei-Bei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, China; Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China.
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
112
|
Suslov AV, Panas A, Sinelnikov MY, Maslennikov RV, Trishina AS, Zharikova TS, Zharova NV, Kalinin DV, Pontes-Silva A, Zharikov YO. Applied physiology: gut microbiota and antimicrobial therapy. Eur J Appl Physiol 2024; 124:1631-1643. [PMID: 38683402 DOI: 10.1007/s00421-024-05496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The gut microbiota plays an important role in maintaining human health and in the pathogenesis of several diseases. Antibiotics are among the most commonly prescribed drugs and have a significant impact on the structure and function of the gut microbiota. The understanding that a healthy gut microbiota prevents the development of many diseases has also led to its consideration as a potential therapeutic target. At the same time, any factor that alters the gut microbiota becomes important in this approach. Exercise and antibacterial therapy have a direct effect on the microbiota. The review reflects the current state of publications on the mechanisms of intestinal bacterial involvement in the pathogenesis of cardiovascular, metabolic, and neurodegenerative diseases. The physiological mechanisms of the influence of physical activity on the composition of the gut microbiota are considered. The mechanisms of the common interface between exercise and antibacterial therapy will be considered using the example of several socially important diseases. The aim of the study is to show the physiological relationship between the effects of exercise and antibiotics on the gut microbiota.
Collapse
Affiliation(s)
- Andrey V Suslov
- Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, 117418, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - Alin Panas
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology, Radiotherapy and Reconstructive Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119048, Russia
| | - Roman V Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Aleksandra S Trishina
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nataliya V Zharova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, 115093, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), Universidade Federal de São Carlos (UFSCar), São Carlos (SP), Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| |
Collapse
|
113
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
114
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
115
|
Qiu Y, Song B, Xie M, Tao Y, Yin Z, Wang M, Ma C, Chen Z, Wang Z. Causal links between gut microbiomes, cytokines and risk of different subtypes of epilepsy: a Mendelian randomization study. Front Neurosci 2024; 18:1397430. [PMID: 38855442 PMCID: PMC11157073 DOI: 10.3389/fnins.2024.1397430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Recent research suggests a potential link between the gut microbiome (GM) and epilepsy. We undertook a Mendelian randomization (MR) study to determine the possible causal influence of GM on epilepsy and its various subtypes, and explore whether cytokines act as mediators. Methods We utilized Genome-Wide Association Study (GWAS) summary statistics to examine the causal relationships between GM, cytokines, and four epilepsy subtypes. Furthermore, we assessed whether cytokines mediate the relationship between GM and epilepsy. Significant GMs were further investigated using transcriptomic MR analysis with genes mapped from the FUMA GWAS. Sensitivity analyses and reverse MR were conducted for validation, and false discovery rate (FDR) correction was applied for multiple comparisons. Results We pinpointed causal relationships between 30 GMs and various epilepsy subtypes. Notably, the Family Veillonellaceae (OR:1.03, 95%CI:1.02-1.05, p = 0.0003) consistently showed a strong positive association with child absence epilepsy, and this causal association endured even after FDR correction (p-FDR < 0.05). Seven cytokines were significantly associated with epilepsy and its subtypes. A mediating role for cytokines has not been demonstrated. Sensitivity tests validated the primary MR analysis outcomes. Additionally, no reverse causality was detected between significant GMs and epilepsy. Of the mapped genes of notable GMs, genes like BLK, FDFT1, DOK2, FAM167A, ZSCAN9, RNGTT, RBM47, DNAJC21, SUMF1, TCF20, GLO1, TMTC1, VAV2, and RNF14 exhibited a profound correlation with the risk factors of epilepsy subtypes. Conclusion Our research validates the causal role of GMs and cytokines in various epilepsy subtypes, and there has been no evidence that cytokines play a mediating role between GM and epilepsy. This could provide fresh perspectives for the prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Youjia Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyi Song
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minjia Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuchen Tao
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Ziqian Yin
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Menghan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Ma
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
116
|
Lu Q, Yu A, Pu J, Chen D, Zhong Y, Bai D, Yang L. Post-stroke cognitive impairment: exploring molecular mechanisms and omics biomarkers for early identification and intervention. Front Mol Neurosci 2024; 17:1375973. [PMID: 38845616 PMCID: PMC11153683 DOI: 10.3389/fnmol.2024.1375973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a major stroke consequence that has a severe impact on patients' quality of life and survival rate. For this reason, it is especially crucial to identify and intervene early in high-risk groups during the acute phase of stroke. Currently, there are no reliable and efficient techniques for the early diagnosis, appropriate evaluation, or prognostication of PSCI. Instead, plenty of biomarkers in stroke patients have progressively been linked to cognitive impairment in recent years. High-throughput omics techniques that generate large amounts of data and process it to a high quality have been used to screen and identify biomarkers of PSCI in order to investigate the molecular mechanisms of the disease. These techniques include metabolomics, which explores dynamic changes in the organism, gut microbiomics, which studies host-microbe interactions, genomics, which elucidates deeper disease mechanisms, transcriptomics and proteomics, which describe gene expression and regulation. We looked through electronic databases like PubMed, the Cochrane Library, Embase, Web of Science, and common databases for each omics to find biomarkers that might be connected to the pathophysiology of PSCI. As all, we found 34 studies: 14 in the field of metabolomics, 5 in the field of gut microbiomics, 5 in the field of genomics, 4 in the field of transcriptomics, and 7 in the field of proteomics. We discovered that neuroinflammation, oxidative stress, and atherosclerosis may be the primary causes of PSCI development, and that metabolomics may play a role in the molecular mechanisms of PSCI. In this study, we summarized the existing issues across omics technologies and discuss the latest discoveries of PSCI biomarkers in the context of omics, with the goal of investigating the molecular causes of post-stroke cognitive impairment. We also discuss the potential therapeutic utility of omics platforms for PSCI mechanisms, diagnosis, and intervention in order to promote the area's advancement towards precision PSCI treatment.
Collapse
Affiliation(s)
- Qiuyi Lu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Anqi Yu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Dawei Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Yujie Zhong
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Dingqun Bai
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Lining Yang
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| |
Collapse
|
117
|
Song HS, Lee NR, Kessell AK, McCullough HC, Park SY, Zhou K, Lee DY. Kinetics-based inference of environment-dependent microbial interactions and their dynamic variation. mSystems 2024; 9:e0130523. [PMID: 38682902 PMCID: PMC11097648 DOI: 10.1128/msystems.01305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Microbial communities in nature are dynamically evolving as member species change their interactions subject to environmental variations. Accounting for such context-dependent dynamic variations in interspecies interactions is critical for predictive ecological modeling. In the absence of generalizable theoretical foundations, we lack a fundamental understanding of how microbial interactions are driven by environmental factors, significantly limiting our capability to predict and engineer community dynamics and function. To address this issue, we propose a novel theoretical framework that allows us to represent interspecies interactions as an explicit function of environmental variables (such as substrate concentrations) by combining growth kinetics and a generalized Lotka-Volterra model. A synergistic integration of these two complementary models leads to the prediction of alterations in interspecies interactions as the outcome of dynamic balances between positive and negative influences of microbial species in mixed relationships. The effectiveness of our method was experimentally demonstrated using a synthetic consortium of two Escherichia coli mutants that are metabolically dependent (due to an inability to synthesize essential amino acids) but competitively grow on a shared substrate. The analysis of the E. coli binary consortium using our model not only showed how interactions between the two amino acid auxotrophic mutants are controlled by the dynamic shifts in limiting substrates but also enabled quantifying previously uncharacterizable complex aspects of microbial interactions, such as asymmetry in interactions. Our approach can be extended to other ecological systems to model their environment-dependent interspecies interactions from growth kinetics.IMPORTANCEModeling environment-controlled interspecies interactions through separate identification of positive and negative influences of microbes in mixed relationships is a new capability that can significantly improve our ability to understand, predict, and engineer the complex dynamics of microbial communities. Moreover, the prediction of microbial interactions as a function of environmental variables can serve as valuable benchmark data to validate modeling and network inference tools in microbial ecology, the development of which has often been impeded due to the lack of ground truth information on interactions. While demonstrated against microbial data, the theory developed in this work is readily applicable to general community ecology to predict interactions among macroorganisms, such as plants and animals, as well as microorganisms.
Collapse
Affiliation(s)
- Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Na-Rae Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, South Korea
| | - Aimee K. Kessell
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hugh C. McCullough
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, South Korea
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, South Korea
| |
Collapse
|
118
|
Ishaq HM, Yasin R, Mohammad IS, Fan Y, Li H, Shahzad M, Xu J. The gut-brain-axis: A positive relationship between gut microbial dysbiosis and glioblastoma brain tumour. Heliyon 2024; 10:e30494. [PMID: 38756585 PMCID: PMC11096965 DOI: 10.1016/j.heliyon.2024.e30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
The glioblastoma brain tumour (GBM) stands out as the most aggressive and resistant-to-treatment malignancy. Nevertheless, the gut-brain connection plays a pivotal role in influencing the growth and activation of the central nervous system. In this particular investigation, we aimed to assess and characterize the gut microbial ecosystem in GBM patients, both quantitatively and qualitatively. We collected faecal samples from 15 healthy volunteers and 25 GBM patients. To delve into the microbial content, we employed PCR-DGGE, targeting the V3 region of the 16S rRNA gene, and conducted qPCR to measure the levels of crucial intestinal bacteria. For a more in-depth analysis, high-throughput sequencing was performed on a selection of 20 random faecal samples (10 from healthy individuals and 10 from GBM patients), targeting the V3+V4 region of the 16S rRNA gene. Our findings from examining the richness and diversity of the gut microbiota unveiled that GBM patients exhibited significantly higher microbial diversity compared to healthy individuals. At the phylum level, Proteobacteria saw a significant increase, while Firmicutes experienced a noteworthy decrease in the GBM group. Moving down to the family level, we observed significantly elevated levels of Enterobacteriaceae, Bacteroidaceae, and Lachnospiraceae in GBM patients, while levels of Veillonellaceae, Rikenellaceae, and Prevotellaceae were notably lower. Delving into genera statistics, we noted a substantial increase in the abundance of Parasutterella, Escherichia-Shigella, and Bacteroides, alongside significantly lower levels of Ruminococcus 2, Faecalibacterium, and Prevotella_9 in the GBM group compared to the control group. Furthermore, when examining specific species, we found a significant increase in Bacteroides vulgatus and Escherichia coli in the GBM group. These observations collectively indicate a marked dysbiosis in the gut microbial composition of GBM patients. Additionally, the GBM group exhibited notably higher levels of alpha diversity when compared to the control group. This increase in diversity suggests a significant bacterial overgrowth in the gut of GBM patients in contrast to the controls. As a result, this research opens up potential avenues to gain a better understanding of the underlying mechanisms, pathways, and potential treatments for GBM, stemming from the significant implications of gut microbial dysbiosis in these patients.
Collapse
Affiliation(s)
- Hafiz Muhammad Ishaq
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Pathobiology and Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
| | - Riffat Yasin
- Department of Zoology University of Education Lahore, D.G. Khan Campus, Pakistan
| | - Imran Shair Mohammad
- Department of Radiology, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Yang Fan
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Huan Li
- Xi'an Mental Health Centre, Xi'an, China
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Khyaban-e-Jamia Punjab, Lahore, Pakistan
| | - Jiru Xu
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
119
|
Li G, Hou Y, Zhang C, Zhou X, Bao F, Yang Y, Chen L, Yu D. Interplay Between Drug-Induced Liver Injury and Gut Microbiota: A Comprehensive Overview. Cell Mol Gastroenterol Hepatol 2024; 18:101355. [PMID: 38729523 PMCID: PMC11260867 DOI: 10.1016/j.jcmgh.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Drug-induced liver injury is a prevalent severe adverse event in clinical settings, leading to increased medical burdens for patients and presenting challenges for the development and commercialization of novel pharmaceuticals. Research has revealed a close association between gut microbiota and drug-induced liver injury in recent years. However, there has yet to be a consensus on the specific mechanism by which gut microbiota is involved in drug-induced liver injury. Gut microbiota may contribute to drug-induced liver injury by increasing intestinal permeability, disrupting intestinal metabolite homeostasis, and promoting inflammation and oxidative stress. Alterations in gut microbiota were found in drug-induced liver injury caused by antibiotics, psychotropic drugs, acetaminophen, antituberculosis drugs, and antithyroid drugs. Specific gut microbiota and their abundance are associated closely with the severity of drug-induced liver injury. Therefore, gut microbiota is expected to be a new target for the treatment of drug-induced liver injury. This review focuses on the association of gut microbiota with common hepatotoxic drugs and the potential mechanisms by which gut microbiota may contribute to the pathogenesis of drug-induced liver injury, providing a more comprehensive reference for the interaction between drug-induced liver injury and gut microbiota.
Collapse
Affiliation(s)
- Guolin Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province and Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changji Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Furong Bao
- Department of Nursing, Guanghan People's Hospital, Guanghan, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
120
|
Ren J, Zhang X, Zhou L, Cao W, Zhang L, Chen X, Li G. Comprehensive evaluation of Dragon's Blood in combination with borneol in ameliorating ischemic/reperfusion brain injury using RNA sequencing, metabolomics, and 16S rRNA sequencing. Front Pharmacol 2024; 15:1372449. [PMID: 38783945 PMCID: PMC11112420 DOI: 10.3389/fphar.2024.1372449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Ischemia/reperfusion (IR) can induce deleterious responses such as apoptosis, inflammation, and oxidative stress; however, there are currently no efficient therapeutics to treat IR brain injury. Dragon's blood (DB) plays a significant role in treating ischemic stroke in China. Borneol (B) is an upper ushering drug that guides drugs to the target organs, including the brain. Therefore, we hypothesized that the combination of DB and B (DB + B) would provide cooperative therapeutic benefits for IR brain injury. To confirm this, we first investigated the protective effect of DB + B in an IR brain injury rat model using the modified neurological severity score (mNSS), infarction size measure, HE staining, and laser speckle contrast imaging. Then, we comprehensively evaluated the mechanism of DB + B in ameliorating IR brain injury based on RNA sequencing, serum untargeted metabolomics, and 16S rRNA sequencing. We have confirmed that DB + B enhanced the efficacy of the ischemic stroke treatment compared to DB or B alone for the first time. Our study provisionally confirms that the mechanism by which DB + B prevents IR brain injury is related to the maintenance of intestinal microecological balance and regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. DB + B may effectively regulate intestinal flora including o_Pseudomonadales, s_Bacteroides_caecimuris, o_unidentified_Bacilli, f-Pseudomonadaceae, and g-Pseudomonas, mainly regulate serum metabolites including improve the protective benefit of IR brain injury lysoPCs and lysoPEs, thus inhibiting TLR4/MyD88/NF-κB and IL-17 signing pathway to reduce inflammatory reactions. hat this mechanism is associated with the maintenance of intestinal flora balance and the regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. This provides scientific support for the clinical translation of DB + B in the prevention and treatment of ischemic stroke and establishes a basis for further investigation of its therapeutic mechanism.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| | - Xue Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingjuan Zhou
- Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Jinghong, China
| | - Wanyu Cao
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lixia Zhang
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| |
Collapse
|
121
|
Shi L, Liu X, Zhang S, Zhou A. Association of gut microbiota with cerebral cortical thickness: A Mendelian randomization study. J Affect Disord 2024; 352:312-320. [PMID: 38382814 DOI: 10.1016/j.jad.2024.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The causal relationship between gut microbiota and cerebral cortex development remains unclear. We aimed to scrutinize the plausible causal impact of gut microbiota on cortical thickness via Mendelian randomization (MR) study. METHODS Genome-wide association study (GWAS) data for 196 gut microbiota phenotypes (N = 18,340) were obtained as exposures, and GWAS data for cortical thickness-related traits (N = 51,665) were selected as outcomes. Inverse variance weighted was used as the main estimate method. A series of sensitivity analyses was used to test the robustness of the estimates including Cochran's Q test, MR-Egger intercept analysis, Steiger filtering, scatter plot funnel plot and leave-one-out analysis. RESULTS Genetic prediction of high Bacillales (β = 0.005, P = 0.032) and Lactobacillales (β = 0.010, P = 0.012) abundance was associated with a potential increase in global cortical thickness. For specific functional brain subdivisions, genetically predicted order Lactobacillales would potentially increase the thickness of the fusiform (β = 0.014, P = 0.016) and supramarginal (β = 0.017, P = 0.003). Meanwhile, order Bacillales would increase the thickness of fusiform (β = 0.007, P = 0.039), insula (β = 0.011, P = 0.003), rostralanteriorcingulate (β = 0.014, P = 0.002) and supramarginal (β = 0.006, P = 0.043). No significant estimates of heterogeneity or pleiotropy were found. CONCLUSIONS Through MR studies, we discovered genetic prediction of the Lactobacillales and Bacillales orders potentially linked to cortical thickness, affirming gut microbiota may enhance brain structure. Genetically predicted supramarginal and fusiform may be potential targets.
Collapse
Affiliation(s)
- Lubo Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center Beijing, China
| | - Xiaoduo Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center Beijing, China.
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center Beijing, China.
| |
Collapse
|
122
|
Mughal ZUN, Malik A, Rangwala BS, Rangwala HS, Fatima H, Ali M, Farah AA. Glutamate-reduced diet and ketogenic diet for pediatric drug-resistant epilepsy: a novel approach to treatment. Ann Med Surg (Lond) 2024; 86:2399-2401. [PMID: 38694279 PMCID: PMC11060265 DOI: 10.1097/ms9.0000000000001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 05/04/2024] Open
Affiliation(s)
- Zaib Un Nisa Mughal
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Abdul Malik
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | | | | | - Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Mirha Ali
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Asma A. Farah
- Department of Medicine, East Africa University, Bosaso, Somalia
| |
Collapse
|
123
|
Zhai J, Wang C, Jin L, Liu M, Chen Y. Research progress on the relationship between epilepsy and circRNA. Brain Res 2024; 1830:148823. [PMID: 38403039 DOI: 10.1016/j.brainres.2024.148823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE This review aims to provide a comprehensive summary of the latest research progress regarding the relationship between epilepsy and circular RNA (circRNA). METHODS Relevant literature from the PubMed database was meticulously searched and reviewed. The selected articles focused on investigating the association between epilepsy and circRNA, including studies on expression patterns, diagnostic markers, therapeutic targets, and functional mechanisms. RESULTS Epilepsy, characterized by recurrent seizures, is a neurological disorder. Numerous studies have demonstrated significant alterations in the expression profiles of circRNA in epileptic brain tissues, animal models, and peripheral blood samples. These differential expressions of circRNA are believed to be closely linked with the occurrence and development of epilepsy. Moreover, circRNA has shown promising potential as diagnostic markers for epilepsy, as well as prognostic indicators for predicting disease outcomes. Furthermore, circRNA has emerged as a potential therapeutic target for epilepsy treatment, offering prospects for gene therapy interventions. CONCLUSION The dysregulation of circRNA expression in epilepsy suggests its potential involvement in the pathogenesis and progression of this disorder. Identifying specific circRNA molecules associated with epilepsy may pave the way for novel diagnostic approaches and therapeutic strategies. However, further investigations are imperative to elucidate the precise functional mechanisms of circRNA in epilepsy and validate its clinical utility.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Jin
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingjie Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
124
|
Li X, Wang H, Wang H, Bullert AJ, Cui JY, Wang K, Lehmler HJ. Germ-free status but not subacute polychlorinated biphenyl (PCB) exposure altered hepatic phosphatidylcholine and ether-phosphatidylcholine levels in mice. Toxicology 2024; 504:153790. [PMID: 38552894 DOI: 10.1016/j.tox.2024.153790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that pose a current ecosystem and human health concern. PCB exposure impacts the gut microbiome in animal models, suggesting a mechanistic link between PCB exposure and adverse health outcomes. The presence and absence of the microbiome and exposure to PCBs independently affect the lipid composition in the liver, which in turn affects the PCB disposition in target tissues, such as the liver. Here, we investigated microbiome × subacute PCB effects on the hepatic lipid composition of conventional and germ-free female mice exposed to 0, 6, or 30 mg/kg body weight of an environmental PCB mixture in sterile corn oil once daily for 3 consecutive days. Hepatic triacylglyceride and polar lipid levels were quantified using mass spectrometric methods following the subacute PCB exposure. The lipidomic analysis revealed no PCB effect on the hepatic levels. No microbiome effect was observed on levels of triacylglyceride and most polar lipid classes. The total hepatic levels of phosphatidylcholine (PC) and ether-phosphatidylcholine (ePC) lipids were lower in germ-free mice than the conventional mice from the same exposure group. Moreover, levels of several unsaturated PCs, such as PC(36:5) and PC(42:10), and ePCs, such as ePC(36:2) and ePC(4:2), were lower in germ-free than conventional female mice. Based on a KEGG pathway meta-analysis of RNA sequencing data, the ether lipid metabolism pathway is altered in the germ-free mouse liver. In contrast to the liver, extractable lipid levels, determined gravimetrically, differed in several tissues from naïve conventional vs. germ-free mice. Overall, microbiome × subacute PCB exposure effects on hepatic lipid composition are unlikely to affect PCB distribution into the mouse liver. Further studies are needed to assess how the different extractable lipid levels in other tissues alter PCB distribution in conventional vs. germ-free mice.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, University of Iowa, Iowa City, IA 52242, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
125
|
Hazan S, Haroon J, Jordan S, Walker SJ. Improvements in Gut Microbiome Composition and Clinical Symptoms Following Familial Fecal Microbiota Transplantation in a Nineteen-Year-Old Adolescent With Severe Autism. J Med Cases 2024; 15:82-91. [PMID: 38715916 PMCID: PMC11073461 DOI: 10.14740/jmc4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This case report describes a novel therapy for patients with severe autism spectrum disorder (ASD) that is worth further investigation. A 19-year-old male adolescent with ASD, who was not responding to standard treatment received fecal microbiota transplant (FMT) using donor material from his typically developing female sibling. The patient's ASD symptoms were assessed by assessors who were blind to the patient's past ASD symptomatology. Assessors used the Childhood Autism Rating Scale (CARS), an observation-based rating scale to assess developmental delay in children with autism (range of CARS scores is 15 - 60; a score > 28 is indicative of autism; higher score is positively correlated with degree of severity), at baseline and again at six timepoints post-FMT. The patient experienced marked improvements in microbiome diversity and composition over the year and a half period that followed the FMT procedure. Additionally, the patient who was previously nonverbal said his first two words and experienced a reduction in aggression 1-month post-FMT. To the authors' knowledge, this is the first report to demonstrate the use of familial FMT in an adolescent patient with ASD. Given that ASD symptom improvements post-FMT tend to occur in younger patients, the authors hypothesize that the use of a familial donor may be an important factor that contributed to the improved outcomes experienced by this older child.
Collapse
Affiliation(s)
- Sabine Hazan
- ProgenaBiome, LLC, Ventura, CA, USA
- Microbiome Research Foundation, Ventura, CA, USA
| | | | | | - Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| |
Collapse
|
126
|
Sun X, Zhou C, Ju M, Feng W, Guo Z, Qi C, Yang K, Xiao R. Roseburia intestinalis Supplementation Could Reverse the Learning and Memory Impairment and m6A Methylation Modification Decrease Caused by 27-Hydroxycholesterol in Mice. Nutrients 2024; 16:1288. [PMID: 38732535 PMCID: PMC11085097 DOI: 10.3390/nu16091288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
The abnormality in N6-methyladenosine (m6A) methylation is involved in the course of Alzheimer's disease (AD), while the intervention of 27-Hydroxycholesterol (27-OHC) can affect the m6A methylation modification in the brain cortex. Disordered gut microbiota is a key link in 27-OHC leading to cognitive impairment, and further studies have found that the abundance of Roseburia intestinalis in the gut is significantly reduced under the intervention of 27-OHC. This study aims to investigate the association of 27-OHC, Roseburia intestinalis in the gut, and brain m6A modification in the learning and memory ability injury. In this study, 9-month-old male C57BL/6J mice were treated with antibiotic cocktails for 6 weeks to sweep the intestinal flora, followed by 27-OHC or normal saline subcutaneous injection, and then Roseburia intestinalis or normal saline gavage were applied to the mouse. The 27-OHC level in the brain, the gut barrier function, the m6A modification in the brain, and the memory ability were measured. From the results, we observed that 27-OHC impairs the gut barrier function, causing a disturbance in the expression of m6A methylation-related enzymes and reducing the m6A methylation modification level in the brain cortex, and finally leads to learning and memory impairment. However, Roseburia intestinalis supplementation could reverse the negative effects mentioned above. This study suggests that 27-OHC-induced learning and memory impairment might be linked to brain m6A methylation modification disturbance, while Roseburia intestinalis, as a probiotic with great potential, could reverse the damage caused by 27-OHC. This research could help reveal the mechanism of 27-OHC-induced neural damage and provide important scientific evidence for the future use of Roseburia intestinalis in neuroprotection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China; (X.S.); (C.Z.); (M.J.); (W.F.); (Z.G.); (C.Q.); (K.Y.)
| |
Collapse
|
127
|
Li W, Wan P, Qiao J, Liu Y, Peng Q, Zhang Z, Shu X, Xia Y, Sun B. Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders. Front Pharmacol 2024; 15:1372110. [PMID: 38694913 PMCID: PMC11061445 DOI: 10.3389/fphar.2024.1372110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
128
|
Cai Y, Wen S, Hu J, Wang Z, Huang G, Zeng Q, Zou J. Multiple reports on the causal relationship between various chronic pain and gut microbiota: a two-sample Mendelian randomization study. Front Neurosci 2024; 18:1369996. [PMID: 38694896 PMCID: PMC11061420 DOI: 10.3389/fnins.2024.1369996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Previous evidence suggests a link between gut microbiota and chronic pain, but the causal relationship is not yet fully understood. METHODS We categorized gut microbiota based on phylum, class, order, family, and genus levels and gathered pain-related information from the UKB and FinnGen GWAS project. Then, we conducted MR analysis to explore the potential causal relationship between gut microbiota and chronic pain at 12 specific locations. RESULTS We have discovered a direct connection between genetic susceptibility in the gut microbiota (gut metabolites) and pain experienced at 12 specific locations. Notably, Serotonin (5-HT) and Glycine were found to be associated with a higher risk of pain in the extremities. On the other hand, certain microbial families and orders were found to have a protective effect against migraines. Specifically, the family Bifidobacteriaceae (IVW, FDR p = 0.013) was associated with a lower risk of migraines. Furthermore, the genus Oxalobacter (IVW, FDR p = 0.044) was found to be linked to an increased risk of low back pain. Importantly, these associations remained significant even after applying the Benjamini-Hochberg correction test. Our analysis did not find any heterogeneity in the data (p > 0.05), as confirmed by the Cochrane's Q-test. Additionally, both the MR-Egger and MR-PRESSO tests indicated no significant evidence of horizontal pleiotropy (p > 0.05). CONCLUSION Our MR analysis demonstrated a causal relationship between the gut microbiota and pain, highlighting its potential significance in advancing our understanding of the underlying mechanisms and clinical implications of microbiota-mediated pain.
Collapse
Affiliation(s)
- Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Shuyang Wen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Ziyi Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
129
|
Zhao Z, Xu Z, Lv D, Rong Y, Hu Z, Yin R, Dong Y, Cao X, Tang B. Impact of the gut microbiome on skin fibrosis: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1380938. [PMID: 38695027 PMCID: PMC11061451 DOI: 10.3389/fmed.2024.1380938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Objective Skin fibrosis is a lesion in the dermis causing to itching, pain, and psychological stress. The gut microbiome plays as an essential role in skin diseases developments. We conducted a Mendelian randomization study to determine the causal association between the gut microbiome and skin fibrosis. Methods We retrieved valid instrumental variables from the genome-wide association study (GWAS) files of the gut microbiome (n = 18,340) conducted by the MiBioGen consortium. Skin fibrosis-associated data were downloaded from the GWAS Catalog. Subsequently, a two-sample Mendelian randomization (MR) analysis was performed to determine whether the gut microbiome was related to skin fibrosis. A reverse MR analysis was also performed on the bacterial traits which were causally associated with skin fibrosis in the forward MR analysis. In addition, we performed an MR-Pleiotropy Residual Sum and Outlier analysis to remove outliers and a sensitivity analysis to verify our results. Results According to the inverse variance-weighted estimation, we identified that ten bacterial traits (Class Actinobacteria, Class Bacteroidia, family Bifidobacteriaceae, family Rikenellaceae, genus Lachnospiraceae (UCG004 group), genus Ruminococcaceae (UCG013 group), order Bacteroidales, order Bifidobacteriales, genus Peptococcus and genus Victivallis) were negatively correlated with skin fibrosis while five bacterial traits (genus Olsenella, genus Oscillospira, genus Turicibacter, genus Lachnospiraceae (NK4A136group), and genus Sellimonas) were positively correlated. No results were obtained from reverse MR analysis. No significant heterogeneity or horizontal pleiotropy was observed in MR analysis. Objective conclusion There is a causal association between the gut microbiome and skin fibrosis, indicating the existence of a gut-skin axis. This provides a new breakthrough point for mechanistic and clinical studies of skin fibrosis.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongming Lv
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanchao Rong
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Yin
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunxian Dong
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaoling Cao
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
130
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
131
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Role of the gut microbiota in complications after ischemic stroke. Front Cell Infect Microbiol 2024; 14:1334581. [PMID: 38644963 PMCID: PMC11026644 DOI: 10.3389/fcimb.2024.1334581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
132
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
133
|
Peng X, Zhang X, Sharma G, Dai C. Thymol as a Potential Neuroprotective Agent: Mechanisms, Efficacy, and Future Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6803-6814. [PMID: 38507708 DOI: 10.1021/acs.jafc.3c06461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Neurodegenerative diseases pose a growing global health challenge, with limited effective therapeutic options. Mitochondrial dysfunction, oxidative stress, neuroinflammation, apoptosis, and autophagy are common underlying mechanisms in these diseases. Thymol is a phenolic monoterpene compound that has gained attention for its diverse biological properties, including antioxidant, anti-inflammatory, and immunomodulatory activities. Thymol supplementation could provide potential neuroprotection and improve cognitive deficits, depressant-like effects, learning, and memory impairments in rodents. Mechanistic investigations reveal that the neuroprotective effects of thymol involve the improvement of oxidative stress, mitochondrial dysfunction, and inflammatory response. Several signaling pathways, including mitochondrial apoptotic, NF-κB, AKT, Nrf2, and CREB/BDNF pathways are also involved. In this review, the neuroprotective effects of thymol, the potential molecular mechanisms, safety, applications, and current challenges toward development as a neuroprotective agent were summarized and discussed. We hope that this review provides valuable insights for the further development of this promising natural product as a promising neuroprotective agent.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264000, P. R. China
| | - Xiaowen Zhang
- College of Life Sciences, Yantai University, Yantai 264000, P. R. China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
134
|
Li J, Li Y, Zhou L, Li C, Liu J, Liu D, Fu Y, Wang Y, Tang J, Zhou L, Tan S, Wang L. The human microbiome and benign prostatic hyperplasia: Current understandings and clinical implications. Microbiol Res 2024; 281:127596. [PMID: 38215640 DOI: 10.1016/j.micres.2023.127596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
The research of the human microbiome in the preceding decade has yielded novel perspectives on human health and diseases. Benign prostatic hyperplasia (BPH) is a common disease in middle-aged and elderly males, which negatively affects the life quality. Existing evidence has indicated that the human microbiome, including urinary, intra-prostate, gut, oral and blood microbiome may exert a significant impact on the natural progression of BPH. The dysbiosis of the microbiome may induce inflammation at either a local or systemic level, thereby affecting the BPH. Moreover, metabolic syndrome (MetS) caused by the microbiome can also be involved in the development of BPH. Additionally, alterations in the microbiome composition during the senility process may serve as another cause of the BPH. Here, we summarize the influence of human microbiome on BPH and explore how the microbiome is linked to BPH through inflammation, MetS, and senility. In addition, we propose promising areas of investigation and discuss the implications for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Dingwen Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yunlong Fu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yichuan Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shuo Tan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
135
|
Wang Y, Jia Y, Liu X, Yang K, Lin Y, Shao Q, Ling J. Effect of Chaihu-Shugan-San on functional dyspepsia and gut microbiota: A randomized, double-blind, placebo-controlled trial. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117659. [PMID: 38151181 DOI: 10.1016/j.jep.2023.117659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaihu-Shugan-San (CSS) is a classic traditional Chinese medicine (TCM) formula from the Ming Dynasty "Jingyue's Complete Works". In China, it is prevalent for the treatment of a wide range of ailments, with a particular emphasis on functional gastrointestinal disorders (FGIDs). Clinical evidence suggests that CSS has been found to be a highly effective therapeutic approach for the treatment of Functional Dyspepsia (FD), however, there is a limited amount of high-quality clinical evidence, particularly randomized, double-blind, placebo-controlled trials to support this claim. AIM OF THE STUDY To evaluate the therapeutic efficacy of Chaihu-Shugan-San (CSS) for treating functional dyspepsia (FD) by comparing it to placebos, as well as to investigate the impact of CSS on the gut microbiota in individuals diagnosed with FD. MATERIALS AND METHODS This was a randomized double-blind, placebo-controlled clinical trial implemented at Shuguang Hospital in Shanghai. Between May 2021 and December 2022, 94 participants satisfying the Rome IV diagnostic criteria for FD were enrolled. They were assigned randomly to either the CSS group or the placebo group, with an equal allocation ratio of 1:1. Patients in both groups received the intervention for four weeks. The primary outcome was the dyspepsia symptom scores evaluated by using single dyspepsia symptom scale (SDS) after four weeks of treatment. The secondary outcomes were the solid gastric empties rate measured by a barium strip method, Hamilton anxiety scale (HAMA), Hamilton depression scale (HAMD), and Functional dyspepsia Quality of life scale (FDDQL). In addition, after unblinding, 30 patients in the CSS group were randomly selected and divided into before and after treatment of the FD groups (FD1, FD2), and 30 healthy participants were selected as healthy control group (HC), and the gut microbiota was analyzed by 16S rRNA sequencing. RESULTS After four weeks of treatment, the SDS score exhibited a significant improvement in the CSS group compared to the placebo group (t = 4.882; P <0.001). The difference in barium strip gastric emptying rate in the CSS group showed a significant ascent compared to the control group (P < 0.01). The HAMA, HAMD, and FDDQL scores in the CSS group showed a statistically significant increase compared to the control group (all P < 0.01). The results of 16S rRNA sequencing revealed that FD patients had less diverse and abundant microbiota than the healthy people. Additionally, the application of CSS resulted in the modulation of certain bacterial populations, leading to both up-regulation and down-regulation of their quantities. CONCLUSIONS These findings suggested that CSS is more effective compared to a placebo in treating FD, relieves anxiety and depression, increases gastric emptying rate in FD patients, and that CSS also affects the bacterial community structure in FD patients. TRIAL REGISTRATION ChiCTR, ChiCTR2100045793. Registered 25 Mach 2021.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yuebo Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xuejiao Liu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Keming Yang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yunzhi Lin
- Department of TCM, Shanghai Pudong New District Zhoupu Hospital, Shanghai, 201318, China.
| | - Qin Shao
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianghong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
136
|
Busch A, Roy S, Helbing DL, Colic L, Opel N, Besteher B, Walter M, Bauer M, Refisch A. Gut microbiome in atypical depression. J Affect Disord 2024; 349:277-285. [PMID: 38211751 DOI: 10.1016/j.jad.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Recent studies showed that immunometabolic dysregulation is related to unipolar major depressive disorder (MDD) and that it more consistently maps to MDD patients endorsing an atypical symptom profile, characterized by energy-related symptoms including increased appetite, weight gain, and hypersomnia. Despite the documented influence of the microbiome on immune regulation and energy homeostasis, studies have not yet investigated microbiome differences among clinical groups in individuals with MDD. METHODS Fifteen MDD patients with atypical features according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)-5, forty-four MDD patients not fulfilling the DSM-5 criteria for the atypical subtype, and nineteen healthy controls were included in the study. Participants completed detailed clinical assessment and stool samples were collected. Samples were sequenced for the prokaryotic 16S rRNA gene, in the V3-V4 variable regions. Only samples with no antibiotic exposure in the previous 12 months and a minimum of >2000 quality-filtered reads were included in the analyses. RESULTS There were no statistically significant differences in alpha- and beta-diversity between the MDD groups and healthy controls. However, within the atypical MDD group, there was an increase in the Verrucomicrobiota phylum, with Akkermansia as the predominant bacterial genus. LIMITATIONS Cross-sectional data, modest sample size, and significantly increased body mass index in the atypical MDD group. CONCLUSIONS There were no overall differences among the investigated groups. However, differences were found at several taxonomic levels. Studies in larger longitudinal samples with relevant confounders are needed to advance the understanding of the microbial influences on the clinical heterogeneity of depression.
Collapse
Affiliation(s)
- Anne Busch
- Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Sagnik Roy
- Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
137
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
138
|
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 2024; 19:519-528. [PMID: 37721279 PMCID: PMC10581566 DOI: 10.4103/1673-5374.380869] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated. In the human body, the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks. Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability. In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other. Here, we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis. We found that abnormal intestinal flora, the intestinal microenvironment, lung infection, chronic diseases, and mechanical ventilation can worsen the outcome of ischemic stroke. This review also introduces the influence of the brain on the gut and lungs after stroke, highlighting the bidirectional feedback effect among the gut, lungs, and brain.
Collapse
Affiliation(s)
- Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Shanshan Dong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - ShanChun Ge
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
139
|
Chen Y, Le D, Xu J, Jin P, Zhang Y, Liao Z. Gut Microbiota Dysbiosis and Inflammation Dysfunction in Late-Life Depression: An Observational Cross-Sectional Analysis. Neuropsychiatr Dis Treat 2024; 20:399-414. [PMID: 38436041 PMCID: PMC10908248 DOI: 10.2147/ndt.s449224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose There are some challenges to diagnosis in the context of similar diagnostic criteria for late-life depression (LLD) and adult depression due to cognitive impairment and other clinical manifestations. The association between gut microbiota and inflammation remains unclear in LLD. We analyzed gut microbiota characteristics and serum inflammatory cytokines in individuals with LLD to explore the combined role of these two factors in potential biomarkers of LLD. Methods This was an observational cross-sectional study. Fecal samples and peripheral blood from 29 patients and 33 sex- and age-matched healthy controls (HCs) were collected to detect gut microbiota and 12 inflammatory factors. We analyzed differences in diversity and composition of gut microbiota and evaluated relations among gut microbiota, inflammatory factors, and neuropsychological scales. We extracted potential biomarkers using receiver-operating characteristic curve analysis to predict LLD utilizing the combination of the microbiota and inflammatory cytokines. Results Elevated systemic inflammatory cytokine levels and gut microbiota dysbiosis were found in LLD patients. Relative abundance of Verrucomicrobia at the phylum level and Megamonas, Citrobacter, and Akkermansia at the genus level among LLD patients was lower than HCs. Abundance of Coprococcus, Lachnobacterium, Oscillospira, and Sutterella was higher in LLD patients. Notably, IL6, IFNγ, Verrucomicrobia, and Akkermansia levels were correlated with depression severity. Our study identified IL6, Akkermansia, and Sutterella as predictors of LLD, and their combination achieved an area under the curve of 0.962 in distinguishing LLD patients from HCs. Conclusion This research offers evidence of changes within gut microbiota and systemic inflammation in LLD. These findings possibly help elucidate functions of gut microbiota and systemic inflammation in LLD development and offer fresh ideas on biomarkers for clinical practise in the context of LLD.
Collapse
Affiliation(s)
- Yan Chen
- Center for Rehabilitation Medicine, Department of Psychiatry, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Dansheng Le
- Center for Rehabilitation Medicine, Department of Psychiatry, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaxi Xu
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Piaopiao Jin
- Department of Psychiatry, Yiwu Central Hospital, Jin Hu, Zhejiang, People’s Republic of China
| | - Yuhan Zhang
- The Second Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengluan Liao
- Center for Rehabilitation Medicine, Department of Psychiatry, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
140
|
Giovanetti M, Pannella G, Altomare A, Rocchi G, Guarino M, Ciccozzi M, Riva E, Gherardi G. Exploring the Interplay between COVID-19 and Gut Health: The Potential Role of Prebiotics and Probiotics in Immune Support. Viruses 2024; 16:370. [PMID: 38543736 PMCID: PMC10975078 DOI: 10.3390/v16030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 05/23/2024] Open
Abstract
The COVID-19 pandemic has profoundly impacted global health, leading to extensive research focused on developing strategies to enhance outbreak response and mitigate the disease's severity. In the aftermath of the pandemic, attention has shifted towards understanding and addressing long-term health implications, particularly in individuals experiencing persistent symptoms, known as long COVID. Research into potential interventions to alleviate long COVID symptoms has intensified, with a focus on strategies to support immune function and mitigate inflammation. One area of interest is the gut microbiota, which plays a crucial role in regulating immune responses and maintaining overall health. Prebiotics and probiotics, known for their ability to modulate the gut microbiota, have emerged as potential therapeutic agents in bolstering immune function and reducing inflammation. This review delves into the intricate relationship between long COVID, the gut microbiota, and immune function, with a specific focus on the role of prebiotics and probiotics. We examine the immune response to long COVID, emphasizing the importance of inflammation and immune regulation in the persistence of symptoms. The potential of probiotics in modulating immune responses, including their mechanisms in combating viral infections such as COVID-19, is discussed in detail. Clinical evidence supporting the use of probiotics in managing long COVID symptoms is summarized, highlighting their role as adjunctive therapy in addressing various aspects of SARS-CoV-2 infection and its aftermath.
Collapse
Affiliation(s)
- Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy; (G.P.); (A.A.)
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, Brazil
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Gianfranco Pannella
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy; (G.P.); (A.A.)
- Department of Agricultural, Enviromental and Food Science, University of Molise, 86100 Campobasso, Italy
| | - Annamaria Altomare
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy; (G.P.); (A.A.)
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (M.G.)
| | - Giulia Rocchi
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (M.G.)
| | - Michele Guarino
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (M.G.)
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Roma, Italy;
| | - Elisabetta Riva
- Unit of Virology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
- Applied Bacteriological Sciences Unit, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giovanni Gherardi
- Applied Bacteriological Sciences Unit, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
141
|
Hao W, Ma Q, Wang L, Yuan N, Gan H, He L, Li X, Huang J, Chen J. Gut dysbiosis induces the development of depression-like behavior through abnormal synapse pruning in microglia-mediated by complement C3. MICROBIOME 2024; 12:34. [PMID: 38378622 PMCID: PMC10877840 DOI: 10.1186/s40168-024-01756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Remodeling eubiosis of the gut microenvironment may contribute to preventing the occurrence and development of depression. Mounting experimental evidence has shown that complement C3 signaling is associated with the pathogenesis of depression, and disruption of the gut microbiota may be an underlying cause of complement system activation. However, the mechanism by which complement C3 participates in gut-brain crosstalk in the pathogenesis of depression remains unknown. RESULTS In the present study, we found that chronic unpredictable mild stress (CUMS)-induced mice exhibited obvious depression-like behavior as well as cognitive impairment, which was associated with significant gut dysbiosis, especially enrichment of Proteobacteria and elevation of microbiota-derived lipopolysaccharides (LPS). In addition, peripheral and central complement C3 activation and central C3/CR3-mediated aberrant synaptic pruning in microglia have also been observed. Transplantation of gut microbiota from CUMS-induced depression model mice into specific pathogen-free and germ-free mice induced depression-like behavior and concomitant cognitive impairment in the recipient mice, accompanied by increased activation of the complement C3/CR3 pathway in the prefrontal cortex and abnormalities in microglia-mediated synaptic pruning. Conversely, antidepressants and fecal microbiota transplantation from antidepressant-treated donors improved depression-like behaviors and restored gut microbiome disturbances in depressed mice. Concurrently, inhibition of the complement C3/CR3 pathway, amelioration of abnormal microglia-mediated synaptic pruning, and increased expression of the synapsin and postsynaptic density protein 95 were observed. Collectively, our results revealed that gut dysbiosis induces the development of depression-like behaviors through abnormal synapse pruning in microglia-mediated by complement C3, and the inhibition of abnormal synaptic pruning is the key to targeting microbes to treat depression. CONCLUSIONS Our findings provide novel insights into the involvement of complement C3/CR3 signaling and aberrant synaptic pruning of chemotactic microglia in gut-brain crosstalk in the pathogenesis of depression. Video Abstract.
Collapse
Affiliation(s)
- Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lu Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Liangliang He
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
142
|
Chen X, Wei J, Zhang Y, Zhang Y, Zhang T. Crosstalk between gut microbiome and neuroinflammation in pathogenesis of HIV-associated neurocognitive disorder. J Neurol Sci 2024; 457:122889. [PMID: 38262196 DOI: 10.1016/j.jns.2024.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
HIV-associated neurocognitive disorder (HAND) has become a chronic neurodegenerative disease affecting the quality of life in people living with HIV (PLWH). Despite an established association between HAND and neuroinflammation induced by HIV proteins (gp120, Tat, Rev., Nef, and Vpr), the pathogenesis of HAND remains to be fully elucidated. Accumulating evidence demonstrated that the gut microbiome is emerging as a critical regulator of various neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease), suggesting that the crosstalk between the gut microbiome and neuroinflammation may contribute to the development of these diseases, for example, gut dysbiosis and microbiota-derived metabolites can trigger inflammation in the brain. However, the potential role of the gut microbiome in the pathogenesis of HAND remains largely unexplored. In this review, we aim to discuss and elucidate the HAND pathogenesis correlated with gut microbiome and neuroinflammation, and intend to explore the probable intervention strategies for HAND.
Collapse
Affiliation(s)
- Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yulin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
143
|
Pan R, Guo M, Chen Y, Lin G, Tian P, Wang L, Zhao J, Chen W, Wang G. Dynamics of the Gut Microbiota and Faecal and Serum Metabolomes during Pregnancy-A Longitudinal Study. Nutrients 2024; 16:483. [PMID: 38398806 PMCID: PMC10892471 DOI: 10.3390/nu16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Normal pregnancy involves numerous physiological changes, including changes in hormone levels, immune responses, and metabolism. Although several studies have shown that the gut microbiota may have an important role in the progression of pregnancy, these findings have been inconsistent, and the relationship between the gut microbiota and metabolites that change dynamically during and after pregnancy remains to be clarified. In this longitudinal study, we comprehensively profiled the temporal dynamics of the gut microbiota, Bifidobacterium communities, and serum and faecal metabolomes of 31 women during their pregnancies and postpartum periods. The microbial composition changed as gestation progressed, with the pregnancy and postpartum periods exhibiting distinct bacterial community characteristics, including significant alterations in the genera of the Lachnospiraceae or Ruminococcaceae families, especially the Lachnospiraceae FCS020 group and Ruminococcaceae UCG-003. Metabolic dynamics, characterised by changes in nutrients important for fetal growth (e.g., docosatrienoic acid), anti-inflammatory metabolites (e.g., trans-3-indoleacrylic acid), and steroid hormones (e.g., progesterone), were observed in both serum and faecal samples during pregnancy. Moreover, a complex correlation was identified between the pregnancy-related microbiota and metabolites, with Ruminococcus1 and Ruminococcaceae UCG-013 making important contributions to changes in faecal and serum metabolites, respectively. Overall, a highly coordinated microbiota-metabolite regulatory network may underlie the pregnancy process. These findings provide a foundation for enhancing our understanding of the molecular processes occurring during the progression of pregnancy, thereby contributing to nutrition and health management during this period.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guopeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
144
|
Yue M, Zhang L. Exploring the Mechanistic Interplay between Gut Microbiota and Precocious Puberty: A Narrative Review. Microorganisms 2024; 12:323. [PMID: 38399733 PMCID: PMC10892899 DOI: 10.3390/microorganisms12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiota has been implicated in the context of sexual maturation during puberty, with discernible differences in its composition before and after this critical developmental stage. Notably, there has been a global rise in the prevalence of precocious puberty in recent years, particularly among girls, where approximately 90% of central precocious puberty cases lack a clearly identifiable cause. While a link between precocious puberty and the gut microbiota has been observed, the precise causality and underlying mechanisms remain elusive. This narrative review aims to systematically elucidate the potential mechanisms that underlie the intricate relationship between the gut microbiota and precocious puberty. Potential avenues of exploration include investigating the impact of the gut microbiota on endocrine function, particularly in the regulation of hormones, such as gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Additionally, this review will delve into the intricate interplay between the gut microbiome, metabolism, and obesity, considering the known association between obesity and precocious puberty. This review will also explore how the microbiome's involvement in nutrient metabolism could impact precocious puberty. Finally, attention is given to the microbiota's ability to produce neurotransmitters and neuroactive compounds, potentially influencing the central nervous system components involved in regulating puberty. By exploring these mechanisms, this narrative review seeks to identify unexplored targets and emerging directions in understanding the role of the gut microbiome in relation to precocious puberty. The ultimate goal is to provide valuable insights for the development of non-invasive diagnostic methods and innovative therapeutic strategies for precocious puberty in the future, such as specific probiotic therapy.
Collapse
Affiliation(s)
- Min Yue
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
145
|
Chen S, Cai X, Lao L, Wang Y, Su H, Sun H. Brain-Gut-Microbiota Axis in Amyotrophic Lateral Sclerosis: A Historical Overview and Future Directions. Aging Dis 2024; 15:74-95. [PMID: 37307822 PMCID: PMC10796086 DOI: 10.14336/ad.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease which is strongly associated with age. The incidence of ALS increases from the age of 40 and peaks between the ages of 65 and 70. Most patients die of respiratory muscle paralysis or lung infections within three to five years of the appearance of symptoms, dealing a huge blow to patients and their families. With aging populations, improved diagnostic methods and changes in reporting criteria, the incidence of ALS is likely to show an upward trend in the coming decades. Despite extensive researches have been done, the cause and pathogenesis of ALS remains unclear. In recent decades, large quantities of studies focusing on gut microbiota have shown that gut microbiota and its metabolites seem to change the evolvement of ALS through the brain-gut-microbiota axis, and in turn, the progression of ALS will exacerbate the imbalance of gut microbiota, thereby forming a vicious cycle. This suggests that further exploration and identification of the function of gut microbiota in ALS may be crucial to break the bottleneck in the diagnosis and treatment of this disease. Hence, the current review summarizes and discusses the latest research advancement and future directions of ALS and brain-gut-microbiota axis, so as to help relevant researchers gain correlative information instantly.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Lin Lao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuxuan Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Huanxing Su
- Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
146
|
Guan Y, Tang G, Li L, Shu J, Zhao Y, Huang L, Tang J. Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management. Arch Pharm Res 2024; 47:146-164. [PMID: 38225532 PMCID: PMC10830735 DOI: 10.1007/s12272-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.
Collapse
Affiliation(s)
- Yueyue Guan
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Guohua Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jianzhong Shu
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yuhua Zhao
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Li Huang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Jun Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
147
|
Huang L, Li Q, Lu Y, Pan F, Cui L, Wang Y, Miao Y, Chen T, Li Y, Wu J, Chen X, Jia J, Guo Q. Consensus on rapid screening for prodromal Alzheimer's disease in China. Gen Psychiatr 2024; 37:e101310. [PMID: 38313393 PMCID: PMC10836380 DOI: 10.1136/gpsych-2023-101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia, characterised by cerebral amyloid-β deposition, pathological tau and neurodegeneration. The prodromal stage of AD (pAD) refers to patients with mild cognitive impairment (MCI) and evidence of AD's pathology. At this stage, disease-modifying interventions should be used to prevent the progression to dementia. Given the inherent heterogeneity of MCI, more specific biomarkers are needed to elucidate the underlying AD's pathology. Although the uses of cerebrospinal fluid and positron emission tomography are widely accepted methods for detecting AD's pathology, their clinical applications are limited by their high costs and invasiveness, particularly in low-income areas in China. Therefore, to improve the early detection of Alzheimer's disease (AD) pathology through cost-effective screening methods, a panel of 45 neurologists, psychiatrists and gerontologists was invited to establish a formal consensus on the screening of pAD in China. The supportive evidence and grades of recommendations are based on a systematic literature review and focus group discussion. National meetings were held to allow participants to review, vote and provide their expert opinions to reach a consensus. A majority (two-thirds) decision was used for questions for which consensus could not be reached. Recommended screening methods are presented in this publication, including neuropsychological assessment, peripheral biomarkers and brain imaging. In addition, a general workflow for screening pAD in China is established, which will help clinicians identify individuals at high risk and determine therapeutic targets.
Collapse
Affiliation(s)
- Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yatian Li
- Shanghai BestCovered, Shanghai, China
| | | | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianping Jia
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
148
|
Lu Y, Gao X, Mohammed SAD, Wang T, Fu J, Wang Y, Nan Y, Lu F, Liu S. Efficacy and mechanism study of Baichanting compound, a combination of Acanthopanax senticosus (Rupr. and Maxim.) Harms, Paeonia lactiflora Pall and Uncaria rhynchophylla (Miq.) Miq. ex Havil, on Parkinson's disease based on metagenomics and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117182. [PMID: 37714224 DOI: 10.1016/j.jep.2023.117182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a rapidly progressing neurological disorder. Currently, Medication for PD has numerous limitations. Baichanting Compound (BCT) is a Chinese herbal prescription, a Combination of Acanthopanax senticosus (Rupr. and Maxim.) Harms, Paeonia lactiflora Pall and Uncaria rhynchophylla (Miq.) Miq. ex Havil, that was developed to treat PD and holds a national patent (ZL, 201110260536.3). AIM OF THE STUDY To clarify the therapeutic effect of BCT on PD and explore its possible mechanism based on metabolomics and metagenomics. MATERIALS AND METHODS C57BL/6 mice were used as a control group, and α-syn transgenic C57BL/6 mice were randomly assigned to the PD (without treatment) or BCT (with BCT treatment) group. UPLC-MS was performed to detect dopamine levels in brain tissue, while ELISA was used to determine inflammatory factors such as IL-1β, IL-6, TNF-α, IFN-γ and NO, and oxidative stress indicators such as malondialdehyde, superoxide dismutase and glutathione peroxidase enzyme activity. Fecal metabolomics was used to detect fecal metabolic profiles, screen differential metabolic markers, and predict metabolic pathways by KEGG enrichment analysis. Metagenomics was used to determine the intestinal microbial composition, and KO enrichment analysis was performed to predict the potential function of different gut microbiota. Finally, Spearman correlation analysis was used to find the possible relationships among intestinal flora, metabolic markers, inflammatory factors, oxidative stress and dopamine levels. RESULTS BCT increased the superoxide dismutase activity of α-Syn transgenic C57BL/6 mice (P < 0.01), decreased the levels of TNF-α, IFN-γ, IL-1β, IL-6, NO and malondialdehyde (P < 0.01, 0.05), and increased the release of dopamine (P < 0.01). Metabolomics results show that BCT could regulate Acetatifactor, Marvinbryantia, Faecalitalea, Anaeromassilibacillus, Anaerobium, Pseudobutyrivibrio and Lachnotalea and Acetatifactor_muris, Marvinbryantia_formatexigens, Lachnotalea_sp_AF33_28, Faecalitalea_sp_Marseille_P3755 and Anaerobium_acetethylicum, Gemmiger_sp_An120 abundance to restore intestinal flora function, and reverse fecal metabolism trend, restoring the content of α-D-glucose, cytidine, L-glutamate, L-glutamine, N-acetyl-L-glutamate, raffinose and uracil. In addition, it regulates arginine biosynthesis, D-glutamine and D-glutamate, pyrimidine, galactose and alanine, aspartate and glutamate metabolic pathways. CONCLUSION BCT may regulate the composition of the gut microbiota to reverse fecal metabolism in PD mice to protect the substantia nigra and striatum from oxidative stress and inflammatory factors and ultimately play an anti-PD role.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xin Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Shadi A D Mohammed
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China; School of Pharmacy, Lebanese International University, Sana'a, 18644, Yemen
| | - Tianyu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
149
|
Xie P, Chen L, Wang J, Wang X, Yang S, Zhu G. Polysaccharides from Polygonatum cyrtonema Hua prevent post-traumatic stress disorder behaviors in mice: Mechanisms from the perspective of synaptic injury, oxidative stress, and neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117165. [PMID: 37696440 DOI: 10.1016/j.jep.2023.117165] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to traditional Chinese medicine (TCM) theory, post-traumatic stress disorder (PTSD) is a kind of depression syndrome, and its occurrence is related to deficiencies of the heart and kidney. Polygonatum cyrtonema Hua replenishes Qi and blood and tonifies the five zang organs, so it is widely used in TCM as a prescription for the treatment of depression syndrome. The polysaccharides in P. cyrtonema Hua (PSP) are the main active components of the herb, but the effects of PSP on PTSD and the mechanisms remain unclear. AIM OF THE STUDY To investigate the preventive effect of PSP on PTSD-like behaviors and to determine the mechanisms. METHODS We used behavioral tests to evaluate PTSD-like behaviors in mice. Synaptic changes were assessed by transmission electron microscopy. Hematoxylin-eosin staining was used to assess pathological changes to the hippocampus, and immunofluorescence staining was used to observe changes in astrocytes. Serum corticosterone (CORT), cytokine, and hippocampal oxidation-related indicator levels were evaluated by ELISA. We detected the expression levels of synaptic, oxidative, and inflammation-related proteins in the hippocampus by western blotting. RESULTS Single prolonged stress (SPS)-modeled mice exhibited significant PTSD-like phenotypes, including increased fear memory acquisition and anxiety-like behaviors. These behavioral changes were prevented by PSP administration. Compared to controls, SPS modeling increased serum CORT, cytokine, and hippocampal malondialdehyde levels; decreased superoxide dismutase activity; and caused losses in pyramidal neurons, astrocytes, and synapses in the CA1 region. At the molecular level, the expression of brain-derived neurotrophic factor, postsynaptic density protein 95, nuclear factor erythroid 2-related factor 2 (Nrf2), phospho-tyrosine kinase receptor B, activity-regulated cytoskeleton-associated protein, heme oxygenase-1 (HO-1), and GluA1 decreased in SPS mice compared with the control group, while the expression of NOD-like receptor protein 3 (NLRP3), GluN2B, and apoptosis-associated speck-like protein increased in SPS mice. Treatment with PSP counteracted these abnormal changes. Importantly, ML385, an Nrf2 inhibitor, blocked PSP's ability to ameliorate PTSD behaviors and abnormal protein expression. The NLRP3 inhibitor MCC950 reduced the PTSD-like behaviors and normalized protein expression in SPS mice. CONCLUSION PSP prevents SPS-induced PTSD-like behaviors and synaptic damage by regulating oxidative stress and NLRP3-mediated inflammation, probably in an Nrf2/HO-1 signaling pathway-dependent manner.
Collapse
Affiliation(s)
- Pan Xie
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Lixia Chen
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| |
Collapse
|
150
|
Chu C, Huang S, Wang X, Zhao G, Hao W, Zhong Y, Ma Z, Huang C, Peng Y, Wei F. Randomized controlled trial comparing the impacts of Saccharomyces boulardii and Lactobacillus rhamnosus OF44 on intestinal flora in cerebral palsy rats: insights into inflammation biomarkers and depression-like behaviors. Transl Pediatr 2024; 13:72-90. [PMID: 38323178 PMCID: PMC10839280 DOI: 10.21037/tp-23-566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Background Cerebral palsy (CP) is a unique neurological disorder which adversely affects motion. Cytokines and gut microbial composition contribute to CP and other diseases, such as reproductive tract inflammation and bone loss. Importantly, Saccharomyces boulardii (S. boulardii) reduces the degree of inflammation and improves overall health status. As our previous study showed that Lactobacillus rhamnosus (L. rhamnosus) OF44, a selected strain of gut bacteria originally used to treat reproductive tract inflammation and bone loss, has effects similar to that of S. boulardii, we decided to use L. rhamnosus OF44 on CP rats. Validation of the effects of L. rhamnosus OF44 on CP adds to its confirmed effects in treating osteoporosis and reproductive tract microbiota disorders, increasing its potential as a probiotic. The purpose of this was to ascertain whether L. rhamnosus OF44 can alleviate the symptoms of CP. Methods CP rat models were created through left carotid artery ligation. Following this, 100-day old CP rats were exposed to L. rhamnosus OF44, S. boulardii, or normal saline gastric gavage daily for 28 days. Grouping of the rats is determined randomly. Before and after the gavage, behavioral experiments were conducted and the inflammation levels assessed via measurements of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor alpha (TNF-α) inflammatory markers. The efficacy of the outcome is measured by performing statistical analysis like the t-test on the data to see its significance. Additionally, variations inside gut microbiome were evaluated via 16S ribosomal RNA sequencing. Results Before intervention, CP rats failed to exhibit depression-like behavior (P=0.6). L. rhamnosus OF44 treatment significantly reduced the level of IL-6 (P=4.8e-05), S. boulardii treatment significantly reduced the level of TNF-α (P=0.04). In addition, both treatments altered the composition and complexity of the gut microbiome. Conclusions Our results indicated that L. rhamnosus OF44 has potential in alleviating inflammation and altering the gut microbial composition in CP, and that it has the potential to clinically treat CP. There are some limitations of this study. For example, dietary differences and their effects on gastrointestinal dysfunction are not considered in this study, and only two behavioral experiments were used.
Collapse
Affiliation(s)
- Chunuo Chu
- International Department, Shenzhen Middle School, Shenzhen, China
| | - Shang Huang
- Department of Centre Lab, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
- Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Xin Wang
- Department of Centre Lab, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
- School of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Guoqiang Zhao
- Department of Clinical Laboratory, Binzhou People’s Hospital, Binzhou, China
| | - Wenqi Hao
- Department of ENT, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yiyi Zhong
- Department of Nutrition, BGI Nutrition Precision Co., Ltd., Shenzhen, China
| | - Zhihui Ma
- Department of Nutrition, BGI Nutrition Precision Co., Ltd., Shenzhen, China
| | - Congfu Huang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Yuanping Peng
- The Outpatient Department, Longgang District Social Welfare Center, Shenzhen, China
| | - Fengxiang Wei
- Department of Centre Lab, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| |
Collapse
|