101
|
Folichon M, Allemand F, Régnier P, Hajnsdorf E. Stimulation of poly(A) synthesis by Escherichia coli poly(A)polymerase I is correlated with Hfq binding to poly(A) tails. FEBS J 2005; 272:454-63. [PMID: 15654883 DOI: 10.1111/j.1742-4658.2004.04485.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial Lsm protein, host factor I (Hfq), is an RNA chaperone involved in many types of RNA transactions such as replication and stability, control of small RNA activity and polyadenylation. In this latter case, Hfq stimulates poly(A) synthesis and binds poly(A) tails that it protects from exonucleolytic degradation. We show here, that there is a correlation between Hfq binding to the 3' end of an RNA molecule and its ability to stimulate RNA elongation catalyzed by poly(A)polymerase I. In contrast, formation of the Hfq-RNA complex inhibits elongation of the RNA by polynucleotide phosphorylase. We demonstrate also that Hfq binding is not affected by the phosphorylation status of the RNA molecule and occurs equally well at terminal or internal stretches of poly(A).
Collapse
Affiliation(s)
- Marc Folichon
- UPR CNRS 9073, conventionnée avec l'Université Paris 7 - Denis Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
102
|
Lease RA, Woodson SA. Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 2005; 344:1211-23. [PMID: 15561140 DOI: 10.1016/j.jmb.2004.10.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/22/2004] [Accepted: 10/06/2004] [Indexed: 11/15/2022]
Abstract
Small RNAs (sRNAs) regulate bacterial genes involved in environmental adaptation. This RNA regulation requires Hfq, a bacterial Sm-like protein that stabilizes sRNAs and enhances RNA-RNA interactions. To understand the mechanism of target recognition by sRNAs, we investigated the interactions between Hfq, the sRNA DsrA, and its regulatory target rpoS mRNA, which encodes the stress response sigma factor. Nuclease footprinting revealed that Hfq recognized multiple sites in rpoS mRNA without significantly perturbing secondary structure in the 5' leader that inhibits translation initiation. Base-pairing with DsrA, however, made the rpoS ribosome binding site fully accessible, as predicted by genetic data. Hfq bound DsrA four times more tightly than the DsrA.rpoS RNA complex in gel mobility-shift assays. Consequently, Hfq is displaced rapidly from its high-affinity binding site on DsrA by conformational changes in DsrA, when DsrA base-pairs with rpoS mRNA. Hfq accelerated DsrA.rpoS RNA association and stabilized the RNA complex up to twofold. Hybridization of DsrA and rpoS mRNA was optimal when Hfq occupied its primary binding site on free DsrA, but was inhibited when Hfq associated with the DsrA.rpoS RNA complex. We conclude that recognition of rpoS mRNA is stimulated by binding of Hfq to free DsrA sRNA, followed by release of Hfq from the sRNA.mRNA complex.
Collapse
Affiliation(s)
- Richard A Lease
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2865, USA
| | | |
Collapse
|
103
|
Shimada T, Makinoshima H, Ogawa Y, Miki T, Maeda M, Ishihama A. Classification and strength measurement of stationary-phase promoters by use of a newly developed promoter cloning vector. J Bacteriol 2004; 186:7112-22. [PMID: 15489422 PMCID: PMC523215 DOI: 10.1128/jb.186.21.7112-7122.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 07/30/2004] [Indexed: 11/20/2022] Open
Abstract
When an Escherichia coli culture changes from exponential growth to the stationary phase, expression of growth-related genes levels off, while a number of stationary-phase-specific genes are turned on. To gain insight into the growth phase-dependent global regulation of genome transcription, we analyzed the strength and specificity of promoters associated with the stationary-phase genes. For the in vivo assay of promoter activity, 300- to 500-bp DNA fragments upstream from the translation initiation codon were isolated and inserted into a newly constructed doubly fluorescent protein (DFP) vector. The activity of test promoters was determined by measuring the green fluorescent protein (GFP). To avoid the possible influence of plasmid copy number, the level of transcription of reference promoter lacUV5 on the same plasmid was determined by measuring the red fluorescent protein (RFP). Thus, the activities of test promoters could be easily and accurately determined by determining the GFP/RFP ratio. Analysis of the culture time-dependent variation of 100 test promoters indicated that (i) a major group of the stationary-phase promoters are up-regulated only in the presence of RpoS sigma; (ii) the phase-coupled increase in the activity of some promoters takes place even in the absence of RpoS; and (iii) the activity of some promoters increases in the absence of RpoS. This classification was confirmed by testing in vitro transcription by using reconstituted RpoD and RpoS holoenzymes.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Nippon Institute for Biological Science, Shinmachi 9-2221, Ome, Tokyo 198-0024, Japan
| | | | | | | | | | | |
Collapse
|
104
|
Valentin-Hansen P, Eriksen M, Udesen C. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 2004; 51:1525-33. [PMID: 15009882 DOI: 10.1111/j.1365-2958.2003.03935.x] [Citation(s) in RCA: 400] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conserved RNA-binding protein Hfq, originally discovered in Escherichia coli as a host factor for Qbeta replicase, has emerged as a pleiotropic regulator that modulates the stability or the translation of an increasing number of mRNAs. During the past 5 years, Hfq-mediated control has been an area of increasing focus because the protein has been linked to the action of many versatile RNA-based regulators that use basepairing interactions to regulate the expression of target mRNAs. The recent findings that Hfq assists in bimolecular RNA-RNA interactions and is similar structurally and functionally to eukaryotic Sm proteins have further fueled interest in this important post-transcriptional regulator. Here, we summarize the history of Hfq and highlight results that have led to an important gain in insight into the physiology, biochemistry and evolution of Hfq and its homologues.
Collapse
Affiliation(s)
- Poul Valentin-Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
105
|
Abstract
Hfq is an RNA-binding protein that interacts with both small untranslated RNAs (sRNAs) and mRNAs to modulate gene expression post-transcriptionally. In Escherichia coli and Salmonella typhimurium, Hfq is required for efficient expression of the stationary phase sigma factor sigma(S), and consequently is critical for Salmonella virulence. We have found that Hfq is also essential for the virulence of Vibrio cholerae, as strains lacking hfq fail to colonize the suckling mouse intestine. Deletion of the V. cholerae hfq does not prevent production of sigma(S), nor does it prevent expression of TCP, V. cholerae's primary colonization factor. The expression and activity of the alternative sigma factor sigma(E) are dramatically increased in a V. cholerae hfq mutant. Comparison of the transcriptome of an hfq mutant with that of an rseA mutant, which also overexpresses sigma(E), revealed that sigma(E) controls approximately half the genes found to be upregulated in the hfq mutant. However, increased sigma(E) does not appear to account for this strain's reduced virulence. It is likely that sRNAs, in conjunction with Hfq, are critical regulators of V. cholerae pathogenicity.
Collapse
Affiliation(s)
- Yanpeng Ding
- Howard Hughes Medical Institute and Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | |
Collapse
|
106
|
Abstract
Members of the bacterial genus Brucella are facultative intracellular pathogens that reside predominantly within membrane-bound compartments within two host cell types, macrophages and placental trophoblasts. Within macrophages, the brucellae route themselves to an intracellular compartment that is favourable for survival and replication, and they also appear to be well-adapted from a physiological standpoint to withstand the environmental conditions encountered during prolonged residence in this intracellular niche. Much less is known about the interactions of the Brucella with placental trophoblasts, but experimental evidence suggests that these bacteria use an iron acquisition system to support extensive intracellular replication within these host cells that is not required for survival and replication in host macrophages. Thus, it appears that the brucellae rely upon the products of distinct subsets of genes to adapt successfully to the environmental conditions encountered within the two cell types within which they reside in their mammalian hosts.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, 600 Moye Boulevard, Greenville, NC 27858-4354, USA.
| | | | | | | |
Collapse
|
107
|
Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S. Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 2004; 50:1111-24. [PMID: 14622403 DOI: 10.1046/j.1365-2958.2003.03734.x] [Citation(s) in RCA: 423] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hfq, a bacterial member of the Sm family of RNA-binding proteins, is required for the action of many small regulatory RNAs that act by basepairing with target mRNAs. Hfq binds this family of small RNAs efficiently. We have used co-immunoprecipitation with Hfq and direct detection of the bound RNAs on genomic microarrays to identify members of this small RNA family. This approach was extremely sensitive; even Hfq-binding small RNAs expressed at low levels were readily detected. At least 15 of 46 known small RNAs in E. coli interact with Hfq. In addition, high signals in other intergenic regions suggested up to 20 previously unidentified small RNAs bind Hfq; five were confirmed by Northern analysis. Strong signals within genes and operons also were detected, some of which correspond to known Hfq targets. Within the argX-hisR-leuT-proM operon, Hfq appears to compete with RNase E and modulate RNA processing and degradation. Thus Hfq immunoprecipitation followed by microarray analysis is a highly effective method for detecting a major class of small RNAs as well as identifying new Hfq functions.
Collapse
Affiliation(s)
- Aixia Zhang
- Cell Biology and Metabolism Branch, National Institute of Child Health and Development, Bethesda MD 20892, USA
| | | | | | | | | | | |
Collapse
|
108
|
Vecerek B, Moll I, Afonyushkin T, Kaberdin V, Bläsi U. Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron metabolism of Escherichia coli. Mol Microbiol 2004; 50:897-909. [PMID: 14617150 DOI: 10.1046/j.1365-2958.2003.03727.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli Sm-like host factor I (Hfq) is thought to play direct and indirect roles in post-transcriptional regulation by targeting small regulatory RNAs and mRNAs. In this study, we have used proteomics to identify new mRNA targets of Hfq. We have identified 11 candidate proteins, synthesis of which was differentially affected in a hfq- background. The effect of Hfq on some of the corresponding mRNAs including fur, gapA, metF, ppiB and sodB mRNA was assessed, using different in vitro and in vivo methods. This allowed us to distinguish between direct and indirect effects of Hfq in modulating the translational activities of these mRNAs. From the collection of mRNAs tested, only fur and sodB mRNA, encoding the master regulator of iron metabolism and the iron superoxide dismutase, respectively, were found to be regulated by Hfq. Fur is known to be a negative regulator of transcription of the small RNA RyhB. Mutations in the sodB leader and compensating mutations in RyhB revealed that RyhB in turn represses translation of sodB mRNA, explaining the previously reported positive control of sodB by Fur. These data assign a role to Hfq in regulation of iron uptake and in switching off of iron scavenger genes.
Collapse
Affiliation(s)
- Branislav Vecerek
- Max F. Perutz Laboratories, Department of Microbiology and Genetics, University Department at the Vienna Biocenter, Dr Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
109
|
Folichon M, Arluison V, Pellegrini O, Huntzinger E, Régnier P, Hajnsdorf E. The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res 2004; 31:7302-10. [PMID: 14654705 PMCID: PMC291859 DOI: 10.1093/nar/gkg915] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Hfq protein, which shares sequence and structural homology with the Sm and Lsm proteins, binds to various RNAs, primarily recognizing AU-rich single-stranded regions. In this paper, we study the ability of the Escherichia coli Hfq protein to bind to a polyadenylated fragment of rpsO mRNA. Hfq exhibits a high specificity for a 100-nucleotide RNA harboring 18 3'-terminal A-residues. Structural analysis of the adenylated RNA-Hfq complex and gel shift assays revealed the presence of two Hfq binding sites. Hfq binds primarily to the poly(A) tail, and to a lesser extent a U-rich sequence in a single-stranded region located between two hairpin structures. The oligo(A) tail and the interhelical region are sensitive to 3'-5' exoribonucleases and RNase E hydrolysis, respectively, in vivo. In vitro assays demonstrate that Hfq protects poly(A) tails from exonucleolytic degradation by both PNPase and RNase II. In addition, RNase E processing, which occurred close to the U-rich sequence, is impaired by the presence of Hfq. These data suggest that Hfq modulates the sensitivity of RNA to ribonucleases in the cell.
Collapse
Affiliation(s)
- Marc Folichon
- UPR CNRS No. 9073, Conventionnée avec l'Université Paris 7-Denis Diderot, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
110
|
Macvanin M, Björkman J, Eriksson S, Rhen M, Andersson DI, Hughes D. Fusidic acid-resistant mutants of Salmonella enterica serovar Typhimurium with low fitness in vivo are defective in RpoS induction. Antimicrob Agents Chemother 2004; 47:3743-9. [PMID: 14638476 PMCID: PMC296224 DOI: 10.1128/aac.47.12.3743-3749.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Salmonella enterica serovar Typhimurium resistant to fusidic acid (Fusr) have mutations in fusA, the gene encoding translation elongation factor G (EF-G). Most Fusr mutants have reduced fitness in vitro and in vivo, in part explained by mutant EF-G slowing the rate of protein synthesis and growth. However, some Fusr mutants with normal rates of protein synthesis still suffer from reduced fitness in vivo. As shown here, Fusr mutants could be similarly ranked in their relative fitness in mouse infection models, in a macrophage infection model, in their relative hypersensitivity to hydrogen peroxide in vivo and in vitro, and in the amount of RpoS production induced upon entry into the stationary phase. We identify a reduced ability to induce production of RpoS (sigmas) as a defect associated with Fusr strains. Because RpoS is a regulator of the general stress response, and an important virulence factor in Salmonella, an inability to produce RpoS in appropriate amounts can explain the low fitness of Fusr strains in vivo. The unfit Fusr mutants also produce reduced levels of the regulatory molecule ppGpp in response to starvation. Because ppGpp is a positive regulator of RpoS production, we suggest that a possible cause of the reduced levels of RpoS is the reduction in ppGpp production associated with mutant EF-G. The low fitness of Fusr mutants in vivo suggests that drugs that can alter the levels of global regulators of gene expression deserve attention as potential antimicrobial agents.
Collapse
Affiliation(s)
- Mirjana Macvanin
- Department of Cell and Molecular Biology, The Biomedical Center, Uppsala University, S-751 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
111
|
Sonnleitner E, Hagens S, Rosenau F, Wilhelm S, Habel A, Jäger KE, Bläsi U. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog 2003; 35:217-28. [PMID: 14521880 DOI: 10.1016/s0882-4010(03)00149-9] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Sm-like protein Hfq has been implicated in the regulation of sigmaS-dependent and sigmaS-independent genes in E. coli and in the regulation of virulence factors in both, Yersinia enterocolitica and Brucella abortus. Here, we have studied the effect of Hfq on virulence and stress response of Pseudomonas aeruginosa (PAO1). We have constructed a PAO1hfq- mutant and a PAO1hfq-rpoS- double mutant to permit distinction between direct and indirect effects of Hfq. When compared to the wild-type and the rpoS- strains, the hfq knock out strain showed a reduced growth rate and was unable to utilize glucose as a sole carbon source. Elastase activity was 80% reduced in the hfq- mutant when compared to the wild-type or the rpoS- strain, whereas alginate production seemed to be solely affected by sigmaS. The production of catalase and pyocyanin was shown to be affected in an additive manner by both, Hfq and sigmaS. Moreover, twitching and swarming mediated by typeIV pili was shown to be impaired in the hfq- mutant. When compared to PAO1 wild-type and the rpoS- mutant, the hfq- mutant decreased virulence in Galleria mellonella by a factor of 1 x 10(4) and 5 x 10(3), respectively. Likewise, when compared to wild-type, the PAO1hfq- mutant was significantly attenuated in virulence when administered intraperitoneally in mice. These results strongly suggest that Hfq is a global regulator of PAO1 virulence and stress response which is not exclusively due to its role in stimulating the synthesis of sigmaS.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology and Genetics, University Departments at the Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
112
|
Sauter C, Basquin J, Suck D. Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Res 2003; 31:4091-8. [PMID: 12853626 PMCID: PMC167641 DOI: 10.1093/nar/gkg480] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Hfq protein was discovered in Escherichia coli in the early seventies as a host factor for the Qbeta phage RNA replication. During the last decade, it was shown to be involved in many RNA processing events and remote sequence homology indicated a link to spliceosomal Sm proteins. We report the crystal structure of the E.coli Hfq protein showing that its monomer displays a characteristic Sm-fold and forms a homo-hexamer, in agreement with former biochemical data. Overall, the structure of the E.coli Hfq ring is similar to the one recently described for Staphylococcus aureus. This confirms that bacteria contain a hexameric Sm-like protein which is likely to be an ancient and less specialized form characterized by a relaxed RNA binding specificity. In addition, we identified an Hfq ortholog in the archaeon Methanococcus jannaschii which lacks a classical Sm/Lsm gene. Finally, a detailed structural comparison shows that the Sm-fold is remarkably well conserved in bacteria, Archaea and Eukarya, and represents a universal and modular building unit for oligomeric RNA binding proteins.
Collapse
Affiliation(s)
- Claude Sauter
- European Molecular Biology Laboratory, Structural and Computational Biology Programme, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
113
|
Worhunsky DJ, Godek K, Litsch S, Schlax PJ. Interactions of the non-coding RNA DsrA and RpoS mRNA with the 30 S ribosomal subunit. J Biol Chem 2003; 278:15815-24. [PMID: 12600997 DOI: 10.1074/jbc.m301684200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of sigma(s), the gene product of rpoS, is controlled translationally in response to many environmental stresses. DsrA, a small 87-nucleotide non-coding RNA molecule, acts to increase translational efficiency of RpoS mRNA under some growth conditions. In this work, we demonstrate that DsrA binds directly to the 30 S ribosomal subunit with an observed equilibrium affinity of 2.8 x 10(7) m(-1). DsrA does not compete with RpoS mRNA or tRNA(f)(Met) for binding to the 30 S subunit. The 5' end of DsrA binds to 30 S subunits with an observed equilibrium association constant of 2.0 x 10(6) m(-1), indicating that the full affinity of the interaction requires the entire DsrA sequence. In order to investigate translational efficiency of RpoS mRNA, we examined both ribosome-binding site accessibility and the binding of RpoS mRNA to 30 S ribosomal subunits. We find that that ribosome-binding site accessibility is modulated as a function of divalent cation concentration during mRNA renaturation and by the presence of an antisense sequence that binds to nucleotides 1-16 of the RpoS mRNA fragment. The ribosome-binding site accessibility correlates with the amount of RpoS mRNA participating in 30 S-mRNA "pre-initiation" translational complex formation and provides evidence that regulation follows a competitive model of regulation.
Collapse
Affiliation(s)
- David J Worhunsky
- Department of Chemistry and Program in Biological Chemistry, Bates College, Lewiston, Maine 04240, USA
| | | | | | | |
Collapse
|
114
|
Roop RM, Gee JM, Robertson GT, Richardson JM, Ng WL, Winkler ME. Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 2003; 57:57-76. [PMID: 12730323 DOI: 10.1146/annurev.micro.57.030502.090803] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The capacity of the Brucella spp. to establish and maintain long-term residence in the phagosomal compartment of host macrophages is critical to their ability to produce chronic infections in their mammalian hosts. The RNA binding protein host factor I (HF-I) encoded by the hfq gene is required for the efficient translation of the stationary-phase sigma factor RpoS in many bacteria, and a Brucella abortus hfq mutant displays a phenotype in vitro, which suggests that it has a generalized defect in stationary-phase physiology. The inability of the B. abortus hfq mutant to survive and replicate in a wild-type manner in cultured murine macrophages, and the profound attenuation displayed by this strain and its B. melitensis counterpart in experimentally infected animals indicate that stationary-phase physiology plays an essential role in the capacity of the brucellae to establish and maintain long-term intracellular residence in host macrophages. The nature of the Brucella HF-I-regulated genes that have been identified to date suggests that the corresponding gene products contribute to the remarkable capacity of the brucellae to resist the harsh environmental conditions they encounter during their prolonged residence in the phagosomal compartment.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858-4354, USA.
| | | | | | | | | | | |
Collapse
|
115
|
Repoila F, Majdalani N, Gottesman S. Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 2003; 48:855-61. [PMID: 12753181 DOI: 10.1046/j.1365-2958.2003.03454.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adaptation to the changing environment requires both the integration of external signals and the co-ordination of internal responses. Around 50 non-coding small RNAs (sRNAs) have been described in Escherichia coli; the levels of many of these vary with changing environmental conditions. This suggests that they play a role in cell adaptation. In this review, we use the regulation of RpoS (sigma38) translation as a paradigm of sRNA-mediated response to environmental conditions; rpoS is currently the only known gene regulated post-transcriptionally by at least three sRNAs. DsrA and RprA stimulate RpoS translation in response to low temperature and cell surface stress, respectively, whereas OxyS represses RpoS translation in response to oxidative shock. However, in addition to regulating RpoS translation, DsrA represses the translation of HNS (a global regulator of gene expression), whereas OxyS represses the translation of FhlA (a transcriptional activator), allowing the cell to co-ordinate different pathways involved in cell adaptation. Environmental cues affect the synthesis and stability of specific sRNAs, resulting in specific sRNA-dependent translational control.
Collapse
Affiliation(s)
- F Repoila
- UMR960 INRA - ENVT, Laboratoire de Microbiologie Moléculaire, 23 Chemin des Capelles, 31076 Toulouse Cedex, France
| | | | | |
Collapse
|
116
|
Roop RM, Robertson GT, Ferguson GP, Milford LE, Winkler ME, Walker GC. Seeking a niche: putative contributions of the hfq and bacA gene products to the successful adaptation of the brucellae to their intracellular home. Vet Microbiol 2002; 90:349-63. [PMID: 12414155 DOI: 10.1016/s0378-1135(02)00220-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Long-term residence of the brucellae in the phagosomal compartment of host macrophages is essential to their ability to produce disease in both natural and experimental hosts. Correspondingly, the Brucella spp. appear to be well adapted to resist the multiple environmental stresses they encounter in their intracellular home. This brief review will focus on the contributions of the hfq and bacA gene products to this adaptation. Studies with Brucella hfq mutants suggest that stationary phase physiology is critical for successful long-term residence in host macrophages. Analysis of Brucella bacA mutants, on the other hand, reveal very striking parallels between the strategies employed by the rhizobia to establish and maintain protracted intracellular residence in their plant host and those used by the brucellae during their long-term survival in the phagosomal compartment of host macrophages.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27858-4354, USA.
| | | | | | | | | | | |
Collapse
|
117
|
Majdalani N, Hernandez D, Gottesman S. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 2002; 46:813-26. [PMID: 12410838 DOI: 10.1046/j.1365-2958.2002.03203.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Translation of the stationary phase sigma factor RpoS is stimulated by at least two small RNAs, DsrA and RprA. DsrA disrupts an inhibitory secondary structure in the rpoS leader mRNA by pairing with the upstream RNA. Mutations in rprA and compensating mutations in the rpoS leader demonstrate that RprA interacts with the same region of the RpoS leader as DsrA. This is the first example of two different small RNAs regulating a common target. Regulation of these RNAs differs. DsrA synthesis is increased at low temperature. We find that RprA synthesis is regulated by the RcsC/RcsB phosphorelay system, previously found to regulate capsule synthesis and promoters of ftsZ and osmC. An rcsB null mutation abolishes the basal level, whereas mutations in rcsC that activate capsule synthesis also activate expression of the rprA promoter. An essential site with similarity to other RcsB-regulated promoters was defined in the rprA promoter. Activation of the RcsC/RcsB system leads to increased RpoS synthesis, in an RprA-dependent fashion. This work suggests a new signal for RpoS translation and extends the global regulation effected by the RcsC/RcsB system to coregulation of RpoS with capsule and FtsZ.
Collapse
Affiliation(s)
- Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | |
Collapse
|
118
|
Abstract
The bacterial sigma factor RpoS is strongly induced under a variety of stress conditions and during growth into stationary phase. Here, we used rpoS-lac fusions in Escherichia coli to investigate control acting at the level of RpoS synthesis, which is especially evident when cells approach stationary phase in rich medium. Previous work has shown that the small molecule ppGpp is required for normal levels of RpoS in stationary phase. Despite the attraction of a model in which the ppGpp level controls stationary-phase induction of RpoS, careful measurement of rpoS-lac expression in a mutant lacking ppGpp showed similar effects during both exponential growth and stationary phase; the main effect of ppGpp was on basal expression. In addition, a modest regulatory defect was associated with the mutant lacking ppGpp, delaying the time at which full expression was achieved by 2 to 3 h. Deletion analysis showed that the defect in basal expression was distributed over several sequence elements, while the regulatory defect mapped to the region upstream of the rpoS ribosome-binding site (RBS) that contains a cis-acting antisense element. A number of other genes that have been suggested as regulators of rpoS were tested, including dksA, dsrA, barA, ppkx, and hfq. With the exception of the dksA mutant, which had a modest defect in Luria-Bertani medium, none of these mutants was defective for rpoS stationary-phase induction. Even a short rpoS segment starting at 24 nucleotides upstream of the AUG initiation codon was sufficient to confer substantial stationary-phase regulation, which was mainly posttranscriptional. The effect of RBS-proximal sequence was independent of all known trans-acting factors, including ppGpp.
Collapse
Affiliation(s)
- Matthew Hirsch
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
119
|
Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 2002; 66:373-95, table of contents. [PMID: 12208995 PMCID: PMC120795 DOI: 10.1128/mmbr.66.3.373-395.2002] [Citation(s) in RCA: 705] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The sigma(S) (RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli and related bacteria. While rapidly growing cells contain very little sigma(S), exposure to many different stress conditions results in rapid and strong sigma(S) induction. Consequently, transcription of numerous sigma(S)-dependent genes is activated, many of which encode gene products with stress-protective functions. Multiple signal integration in the control of the cellular sigma(S) level is achieved by rpoS transcriptional and translational control as well as by regulated sigma(S) proteolysis, with various stress conditions differentially affecting these levels of sigma(S) control. Thus, a reduced growth rate results in increased rpoS transcription whereas high osmolarity, low temperature, acidic pH, and some late-log-phase signals stimulate the translation of already present rpoS mRNA. In addition, carbon starvation, high osmolarity, acidic pH, and high temperature result in stabilization of sigma(S), which, under nonstress conditions, is degraded with a half-life of one to several minutes. Important cis-regulatory determinants as well as trans-acting regulatory factors involved at all levels of sigma(S) regulation have been identified. rpoS translation is controlled by several proteins (Hfq and HU) and small regulatory RNAs that probably affect the secondary structure of rpoS mRNA. For sigma(S) proteolysis, the response regulator RssB is essential. RssB is a specific direct sigma(S) recognition factor, whose affinity for sigma(S) is modulated by phosphorylation of its receiver domain. RssB delivers sigma(S) to the ClpXP protease, where sigma(S) is unfolded and completely degraded. This review summarizes our current knowledge about the molecular functions and interactions of these components and tries to establish a framework for further research on the mode of multiple signal input into this complex regulatory system.
Collapse
Affiliation(s)
- Regine Hengge-Aronis
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
120
|
Brown L, Gentry D, Elliott T, Cashel M. DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol 2002; 184:4455-65. [PMID: 12142416 PMCID: PMC135238 DOI: 10.1128/jb.184.16.4455-4465.2002] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RpoS sigma factor (also called sigmaS or sigma38) is known to regulate at least 50 genes in response to environmental sources of stress or during entry into stationary phase. Regulation of RpoS abundance and activity is complex, with many factors participating at multiple levels. One factor is the nutritional stress signal ppGpp. The absence of ppGpp blocks or delays the induction of rpoS during entry into stationary phase. Artificially inducing ppGpp, without starvation, is known to induce rpoS during the log phase 25- to 50-fold. Induction of ppGpp is found to have only minor effects on rpoS transcript abundance or on RpoS protein stability; instead, the efficiency of rpoS mRNA translation is increased by ppGpp as judged by both RpoS pulse-labeling and promoter-independent effects on lacZ fusions. DksA is found to affect RpoS abundance in a manner related to ppGpp. Deleting dksA blocks rpoS induction by ppGpp. Overproduction of DksA induces rpoS but not ppGpp. Deleting dksA neither alters regulation of ppGpp in response to amino acid starvation nor nullifies the inhibitory effects of ppGpp on stable RNA synthesis. Although this suggests that dksA is epistatic to ppGpp, inducing ppGpp does not induce DksA. A dksA deletion does display a subset of the same multiple-amino-acid requirements found for ppGpp(0) mutants, but overproducing DksA does not satisfy ppGpp(0) requirements. Sequenced spontaneous extragenic suppressors of dksA polyauxotrophy are frequently the same T563P rpoB allele that suppresses a ppGpp(0) phenotype. We propose that DksA functions downstream of ppGpp but indirectly regulates rpoS induction.
Collapse
Affiliation(s)
- Larissa Brown
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
121
|
Schumacher MA, Pearson RF, Møller T, Valentin-Hansen P, Brennan RG. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 2002; 21:3546-56. [PMID: 12093755 PMCID: PMC126077 DOI: 10.1093/emboj/cdf322] [Citation(s) in RCA: 349] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In prokaryotes, Hfq regulates translation by modulating the structure of numerous RNA molecules by binding preferentially to A/U-rich sequences. To elucidate the mechanisms of target recognition and translation regulation by Hfq, we determined the crystal structures of the Staphylococcus aureus Hfq and an Hfq-RNA complex to 1.55 and 2.71 A resolution, respectively. The structures reveal that Hfq possesses the Sm-fold previously observed only in eukaryotes and archaea. However, unlike these heptameric Sm proteins, Hfq forms a homo-hexameric ring. The Hfq-RNA structure reveals that the single-stranded hepta-oligoribonucleotide binds in a circular conformation around a central basic cleft, whereby Tyr42 residues from adjacent subunits stack with six of the bases, and Gln8, outside the Sm motif, provides key protein-base contacts. Such binding suggests a mechanism for Hfq function.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Carrier Proteins/ultrastructure
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Gene Expression Regulation, Bacterial
- Host Factor 1 Protein
- Integration Host Factors
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Biosynthesis
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Messenger/ultrastructure
- Recombinant Fusion Proteins/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
- Staphylococcus aureus/chemistry
- Substrate Specificity
Collapse
Affiliation(s)
| | | | - Thorleif Møller
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97201-3098, USA and
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark Corresponding author e-mail:
| | - Poul Valentin-Hansen
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97201-3098, USA and
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark Corresponding author e-mail:
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97201-3098, USA and
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark Corresponding author e-mail:
| |
Collapse
|
122
|
Ellermeier CD, Janakiraman A, Slauch JM. Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 2002; 290:153-61. [PMID: 12062810 DOI: 10.1016/s0378-1119(02)00551-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple method for the construction of targeted transcriptional and translational fusions to the lac operon using FLP mediated site-specific recombination is described. Conditional plasmids containing promoterless lacZY genes and the FLP recognition target (FRT) site in both orientations were constructed for generating transcriptional fusions. Similarly, a plasmid used to create translational fusions was constructed in which the endogenous translational start of lacZ has been removed. These plasmids can be transformed into strains containing a single FRT site, which was previously integrated downstream of the promoter of interest using the lambda Red recombination method. The FLP protein produced from a helper plasmid that contains a conditional origin of replication promotes site-specific recombination between the FRT sites, resulting in an integrated lac fusion to the gene of interest. Transcriptional fusions to the Salmonella typhimurium genes sodCII and sitA were constructed using this method and shown to respond appropriately to mutations in the respective regulatory genes, rpoS and fur. Translational fusions were also constructed using this method. In this case, expression of beta-galactosidase was dependent on translation of the target protein. Given that the FLP recombinase does not require host factors for function and that this method requires no molecular cloning, this method should be applicable for the analysis of gene expression in a variety of organisms.
Collapse
Affiliation(s)
- Craig D Ellermeier
- Department of Microbiology, University of Illinois, Urbana-Champaign, B103 Chemical and Life Science Building MC110, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
123
|
Sonnleitner E, Moll I, Bläsi U. Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2002; 148:883-891. [PMID: 11882724 DOI: 10.1099/00221287-148-3-883] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 102 aa Hfq protein of Escherichia coli (Hfq(Ec)) was first described as a host factor required for phage Qbeta replication. More recently, Hfq was shown to affect the stability of several E. coli mRNAs, including ompA mRNA, where it interferes with ribosome binding, which in turn results in rapid degradation of the transcript. In contrast, Hfq is also required for efficient translation of the E. coli and Salmonella typhimurium rpoS gene, encoding the stationary sigma factor. In this study, the authors have isolated and characterized the Hfq homologue of Pseudomonas aeruginosa (Hfq(Pa)), which consists of only 82 aa. The 68 N-terminal amino acids of Hfq(Pa) show 92% identity with Hfq(Ec). Hfq(Pa) was shown to functionally replace Hfq(Ec) in terms of its requirement for phage Qbeta replication and for rpoS expression. In addition, Hfq(Pa) exerted the same negative effect on E. coli ompA mRNA expression. As judged by proteome analysis, the expression of either the plasmid-borne hfq(Pa) or the hfq(Ec) gene in an E. coli Hfq(-) RpoS(-) strain revealed no gross difference in the protein profile. Both Hfq(Ec) and Hfq(Pa) affected the synthesis of approximately 26 RpoS-independent E. coli gene products. These studies showed that the functional domain of Hfq resides within its N-terminal domain. The observation that a C-terminally truncated Hfq(Ec) lacking the last 27 aa [Hfq(Ec(75))] can also functionally replace the full-length E. coli protein lends further support to this notion.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Institute of Microbiology and Genetics, Vienna Biocentre, Dr Bohrgasse 9, 1030 Vienna, Austria1
| | - Isabella Moll
- Institute of Microbiology and Genetics, Vienna Biocentre, Dr Bohrgasse 9, 1030 Vienna, Austria1
| | - Udo Bläsi
- Institute of Microbiology and Genetics, Vienna Biocentre, Dr Bohrgasse 9, 1030 Vienna, Austria1
| |
Collapse
|
124
|
Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 2002; 9:11-22. [PMID: 11804582 DOI: 10.1016/s1097-2765(01)00437-3] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Escherichia coli host factor I, Hfq, binds to many small regulatory RNAs and is required for OxyS RNA repression of fhlA and rpoS mRNA translation. Here we report that Hfq is a bacterial homolog of the Sm and Sm-like proteins integral to RNA processing and mRNA degradation complexes in eukaryotic cells. Hfq exhibits the hallmark features of Sm and Sm-like proteins: the Sm1 sequence motif, a multisubunit ring structure (in this case a homomeric hexamer), and preferential binding to polyU. We also show that Hfq increases the OxyS RNA interaction with its target messages and propose that the enhancement of RNA-RNA pairing may be a general function of Hfq, Sm, and Sm-like proteins.
Collapse
Affiliation(s)
- Aixia Zhang
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
125
|
Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 2001; 15:1637-51. [PMID: 11445539 PMCID: PMC312727 DOI: 10.1101/gad.901001] [Citation(s) in RCA: 556] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A burgeoning list of small RNAs with a variety of regulatory functions has been identified in both prokaryotic and eukaryotic cells. However, it remains difficult to identify small RNAs by sequence inspection. We used the high conservation of small RNAs among closely related bacterial species, as well as analysis of transcripts detected by high-density oligonucleotide probe arrays, to predict the presence of novel small RNA genes in the intergenic regions of the Escherichia coli genome. The existence of 23 distinct new RNA species was confirmed by Northern analysis. Of these, six are predicted to encode short ORFs, whereas 17 are likely to be novel functional small RNAs. We discovered that many of these small RNAs interact with the RNA-binding protein Hfq, pointing to a global role of the Hfq protein in facilitating small RNA function. The approaches used here should allow identification of small RNAs in other organisms.
Collapse
Affiliation(s)
- K M Wassarman
- Cell Biology and Metabolism Branch, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
126
|
Audia JP, Webb CC, Foster JW. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 2001; 291:97-106. [PMID: 11437344 DOI: 10.1078/1438-4221-00106] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ability of enteropathogens such as Salmonella and Escherichia coli to adapt and survive acid stress is fundamental to their pathogenesis. Once inside the host, these organisms encounter life-threatening levels of inorganic acid (H+) in the stomach and a combination of inorganic and organic acids (volatile fatty acids) in the small intestine. To combat these stresses, enteric bacteria have evolved elegant, overlapping strategies that involve both constitutive and inducible defense systems. This article reviews the recent progress made in understanding the pH 3 acid tolerance systems of Salmonella and the even more effective pH 2 acid resistance systems of E. coli. Focus is placed on how Salmonella orchestrates acid tolerance by modulating the activities or levels of diverse regulatory proteins in response to pH stress. The result is induction of overlapping arrays of acid shock proteins that protect the cell against acid and other environmental stresses. Most notable among these pH-response regulators are RpoS, Fur, PhoP and OmpR. In addition, we will review three dedicated acid resistance systems of E. coli, not present in Salmonella, that allow this organism to survive extreme (pH 2) acid challenge.
Collapse
Affiliation(s)
- J P Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile 36688, USA
| | | | | |
Collapse
|
127
|
Abstract
DsrA is an 85-nucleotide, untranslated RNA that has multiple regulatory activities at 30 degrees C. These activities include the translational regulation of RpoS and H-NS, global transcriptional regulators in Escherichia coli. Hfq is an E. coli protein necessary for the in vitro and in vivo replication of the RNA phage Qbeta. Hfq also plays a role in the degradation of numerous RNA transcripts. Here we show that an hfq mutant strain is defective for DsrA-mediated regulation of both rpoS and hns. The defect in rpoS expression can be partially overcome by overexpression of DsrA. Hfq does not regulate the transcription of DsrA, and DsrA does not alter the accumulation of Hfq. However, in an hfq mutant, chromosome-expressed DsrA was unstable (half-life of 1 min) and truncated at the 3' end. When expressed from a multicopy plasmid, DsrA was stable in both wild-type and hfq mutant strains, but it had only partial activity in the hfq mutant strain. Purified Hfq binds DsrA in vitro. These results suggest that Hfq acts as a protein cofactor for the regulatory activities of DsrA by either altering the structure of DsrA or forming an active RNA-protein complex.
Collapse
Affiliation(s)
- D D Sledjeski
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
128
|
Majdalani N, Chen S, Murrow J, St John K, Gottesman S. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol 2001; 39:1382-94. [PMID: 11251852 DOI: 10.1111/j.1365-2958.2001.02329.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem-loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site. The interaction of the rpoS mRNA with a small RNA, DsrA, disrupts the double-strand pairing and allows high levels of translation initiation. We screened a multicopy library of Escherichia coli DNA fragments for novel activators of RpoS translation when DsrA is absent. Clones carrying rprA (RpoS regulator RNA) increased the translation of RpoS. The rprA gene encodes a 106 nucleotide regulatory RNA. As with DsrA, RprA is predicted to form three stem-loops and is highly conserved in Salmonella and Klebsiella species. Thus, at least two small RNAs, DsrA and RprA, participate in the positive regulation of RpoS translation. Unlike DsrA, RprA does not have an extensive region of complementarity to the RpoS leader, leaving its mechanism of action unclear. RprA is non-essential. Mutations in the gene interfere with the induction of RpoS after osmotic shock when DsrA is absent, demonstrating a physiological role for RprA. The existence of two very different small RNA regulators of RpoS translation suggests that such additional regulatory RNAs are likely to exist, both for regulation of RpoS and for regulation of other important cellular components.
Collapse
Affiliation(s)
- N Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bldg. 37 Room 2E 18, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
129
|
Abstract
The promoter recognition specificity of Escherichia coli RNA polymerase is modulated by replacement of the sigma subunit in the first step and by interaction with transcription factors in the second step. The overall differentiated state of approximately 2000 molecules of the RNA polymerase in a single cell can be estimated after measurement of both the intracellular concentrations and the RNA polymerase-binding affinities for all seven species of the sigma subunit and 100-150 transcription factors. The anticipated impact from this line of systematic approach is that the prediction of the expression hierarchy of approximately 4000 genes on the E. coli genome can be estimated.
Collapse
Affiliation(s)
- A Ishihama
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
130
|
Balandina A, Claret L, Hengge-Aronis R, Rouviere-Yaniv J. The Escherichia coli histone-like protein HU regulates rpoS translation. Mol Microbiol 2001; 39:1069-79. [PMID: 11251825 DOI: 10.1046/j.1365-2958.2001.02305.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli HU protein is a major component of the bacterial nucleoid. HU stabilizes higher order nucleoprotein complexes and belongs to a family of DNA architectural proteins. Here, we report that HU is required for efficient expression of the sigma S subunit of RNA polymerase. This rpoS-encoded alternative sigmaS factor induces a number of genes implicated in cell survival in stationary phase and in multiple stress resistance. By analysis of rpoS-lacZ fusions and by pulse-chase experiments, we show that the efficiency of rpoS translation is reduced in cells lacking HU, whereas neither rpoS transcription nor protein stability is affected by HU. Gel mobility shift assays show that HU is able to bind specifically an RNA fragment containing the translational initiation region of rpoS mRNA 1000-fold more strongly than double-stranded DNA. Together with the in vivo data, this finding strongly suggests that, by binding to rpoS mRNA, HU directly stimulates rpoS translation. We demonstrate here that HU, an abundant DNA-binding, histone-like protein, is able specifically to recognize an RNA molecule and therefore play a role in post-transcriptional regulation.
Collapse
Affiliation(s)
- A Balandina
- Laboratoire de Physiologie Bactérienne, CNRS, UPR 9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
131
|
Nou X, Kadner RJ. Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci U S A 2000; 97:7190-5. [PMID: 10852957 PMCID: PMC16521 DOI: 10.1073/pnas.130013897] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2000] [Indexed: 11/18/2022] Open
Abstract
Expression of the btuB gene encoding the outer membrane cobalamin transporter in Escherichia coli is strongly reduced on growth with cobalamins. Previous studies have shown that this regulation occurs in response to adenosylcobalamin (Ado-Cbl) and operates primarily at the translational level. Changes in the level and stability of btuB RNA are consequences of the modulated translation initiation. To examine how Ado-Cbl affects translation, the binding of E. coli 30S ribosomal subunits to btuB RNA was investigated by using a primer extension inhibition assay. Ribosome binding to btuB RNA was much less efficient than to other RNAs and was preferentially lost when the ribosomes were subjected to a high-salt wash. Ribosome binding to btuB RNA was inhibited by Ado-Cbl but not by cyanocobalamin, with half-maximal inhibition around 0.3 microM Ado-Cbl. Ribosome-binding activity was increased or decreased by mutations in the btuB leader region, which affected two predicted RNA hairpins and altered expression of btuB-lacZ reporters. Finally, the presence of Ado-Cbl elicited formation of a single primer extension-inhibition product with the same specificity and Cbl-concentration dependence as the inhibition of ribosome binding. These results indicate that btuB expression is controlled by the specific binding of Ado-Cbl to btuB RNA, which then affects access to its ribosome-binding sequence.
Collapse
Affiliation(s)
- X Nou
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | | |
Collapse
|
132
|
Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Bläsi U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 2000; 14:1109-18. [PMID: 10809669 PMCID: PMC316587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The adaptation of mRNA stability to environmental changes is a means of cells to adjust the level of gene expression. The Escherichia coli ompA mRNA has served as one of the paradigms for regulated mRNA decay in prokaryotes. The stability of the transcript is known to be correlated inversely with the bacterial growth rate. Thus, the regulation of ompA mRNA stability meets the physiological needs to adjust the level of ompA expression to the rate of cell division. Recently, host factor I (Hfq/HF1) was shown to be involved in the regulation of ompA mRNA stability under slow growth conditions. Here, we present the first direct demonstration that 30S ribosomes bound to the ompA 5'-UTR protect the transcript from RNase E cleavage in vitro. However, the 30S protection was found to be abrogated in the presence of Hfq. Toeprinting and in vitro translation assays revealed that translation of ompA is repressed in the presence of Hfq. These in vitro studies are corroborated by in vivo expression studies demonstrating that the reduced synthesis rate of OmpA effected by Hfq results in functional inactivation of the ompA mRNA. The data are discussed in terms of a model wherein Hfq regulates the stability of ompA mRNA by competing with 30S ribosomes for binding to the ompA 5'-UTR.
Collapse
Affiliation(s)
- O Vytvytska
- Institute of Microbiology and Genetics, Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
133
|
Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Bläsi U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1109] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The adaptation of mRNA stability to environmental changes is a means of cells to adjust the level of gene expression. The Escherichia coli ompA mRNA has served as one of the paradigms for regulated mRNA decay in prokaryotes. The stability of the transcript is known to be correlated inversely with the bacterial growth rate. Thus, the regulation of ompA mRNA stability meets the physiological needs to adjust the level of ompA expression to the rate of cell division. Recently, host factor I (Hfq/HF1) was shown to be involved in the regulation of ompA mRNA stability under slow growth conditions. Here, we present the first direct demonstration that 30S ribosomes bound to the ompA 5′-UTR protect the transcript from RNase E cleavage in vitro. However, the 30S protection was found to be abrogated in the presence of Hfq. Toeprinting and in vitro translation assays revealed that translation of ompA is repressed in the presence of Hfq. These in vitro studies are corroborated by in vivo expression studies demonstrating that the reduced synthesis rate of OmpA effected by Hfq results in functional inactivation of the ompA mRNA. The data are discussed in terms of a model wherein Hfq regulates the stability of ompA mRNA by competing with 30S ribosomes for binding to the ompA 5′-UTR.
Collapse
|
134
|
Bang IS, Kim BH, Foster JW, Park YK. OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar typhimurium. J Bacteriol 2000; 182:2245-52. [PMID: 10735868 PMCID: PMC111274 DOI: 10.1128/jb.182.8.2245-2252.2000] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Accepted: 01/24/2000] [Indexed: 11/20/2022] Open
Abstract
Tolerance to acidic environments is an important property of free-living and pathogenic enteric bacteria. Salmonella enterica serovar Typhimurium possesses two general forms of inducible acid tolerance. One is evident in exponentially growing cells exposed to a sudden acid shock. The other is induced when stationary-phase cells are subjected to a similar shock. These log-phase and stationary-phase acid tolerance responses (ATRs) are distinct in that genes identified as participating in log-phase ATR have little to no effect on the stationary-phase ATR (I. S. Lee, J. L. Slouczewski, and J. W. Foster, J. Bacteriol. 176:1422-1426, 1994). An insertion mutagenesis strategy designed to reveal genes associated with acid-inducible stationary-phase acid tolerance (stationary-phase ATR) yielded two insertions in the response regulator gene ompR. The ompR mutants were defective in stationary-phase ATR but not log-phase ATR. EnvZ, the known cognate sensor kinase, and the porin genes known to be controlled by OmpR, ompC and ompF, were not required for stationary-phase ATR. However, the alternate phosphodonor acetyl phosphate appears to play a crucial role in OmpR-mediated stationary-phase ATR and in the OmpR-dependent acid induction of ompC. This conclusion was based on finding that a mutant form of OmpR, which is active even though it cannot be phosphorylated, was able to suppress the acid-sensitive phenotype of an ack pta mutant lacking acetyl phosphate. The data also revealed that acid shock increases the level of ompR message and protein in stationary-phase cells. Thus, it appears that acid shock induces the production of OmpR, which in its phosphorylated state can trigger expression of genes needed for acid-induced stationary-phase acid tolerance.
Collapse
Affiliation(s)
- I S Bang
- Graduate School of Biotechnology, Korea University, Seoul 136701, Korea
| | | | | | | |
Collapse
|
135
|
Hajnsdorf E, Régnier P. Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc Natl Acad Sci U S A 2000; 97:1501-5. [PMID: 10677490 PMCID: PMC26463 DOI: 10.1073/pnas.040549897] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/1999] [Accepted: 12/15/1999] [Indexed: 11/18/2022] Open
Abstract
Current evidence suggests that the length of poly(A) tails of bacterial mRNAs result from a competition between poly(A) polymerase and exoribonucleases that attack the 3' ends of RNAs. Here, we show that host factor Hfq is also involved in poly(A) tail metabolism. Inactivation of the hfq gene reduces the length of poly(A) tails synthesized at the 3' end of the rpsO mRNA by poly(A) polymerase I in vivo. In vitro, Hfq stimulates synthesis of long tails by poly(A) polymerase I. The strong binding of Hfq to oligoadenylated RNA probably explains why it stimulates elongation of primers that already harbor tails of 20-35 A. Polyadenylation becomes processive in the presence of Hfq. The similar properties of Hfq and the PABPII poly(A) binding protein, which stimulates poly(A) tail elongation in mammals, indicates that similar mechanisms control poly(A) tail synthesis in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- E Hajnsdorf
- Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | |
Collapse
|
136
|
Schuppli D, Georgijevic J, Weber H. Synergism of mutations in bacteriophage Qbeta RNA affecting host factor dependence of Qbeta replicase. J Mol Biol 2000; 295:149-54. [PMID: 10623514 DOI: 10.1006/jmbi.1999.3373] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that Escherichia coli cells deficient in Hfq protein (i.e. the Qbeta "host factor") support bacteriophage Qbeta replication inefficiently, but that the phage evolves rapidly in the mutant host to become essentially host factor independent. An identical set of four point mutations was identified as being responsible for the adapted phenotype in each of three independent adaptation experiments. Here we report the effects of the single mutations and of some of their combinations on host factor dependence of phage multiplication in vivo and of phage RNA replication by Qbeta replicase in vitro. We find that each single substitution produces only small effects, but that in combination the four mutations synergistically account for most of the observed adaptation of the evolved phages. Surprisingly, a reanalysis of the 3'-terminal sequence of the adapted phages resulted in the discovery of a fifth mutation in all three independently evolved phage populations, namely, a C to U residue transition at nucleotide 4214. This mutation had been missed previously because of its location only three nucleotides from the 3'-end. It appears to contribute little to the Hfq independence but may enhance RNA stability by re-establishing the possibility of forming a long-range base-pairing interaction involving the immediate 3'-terminal sequence.
Collapse
Affiliation(s)
- D Schuppli
- Universit]at Z]urich, Z]urich, 8057, Switzerland
| | | | | |
Collapse
|
137
|
Takada A, Wachi M, Nagai K. Negative regulatory role of the Escherichia coli hfq gene in cell division. Biochem Biophys Res Commun 1999; 266:579-83. [PMID: 10600545 DOI: 10.1006/bbrc.1999.1863] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found that the hfq::cat mutant strain produced minicells at high frequency. Minicell production by the mutant strain was more prominent in poor media and in the stationary phase than in rich media and in the exponentially growing phase. The amount of the cell division protein FtsZ increased up to two- to threefold of the wild-type cells in the hfq::cat mutant in the stationary phase, while such differences were not observed in the exponentially growing phase. Increased ftsZ mRNA levels were also observed in the hfq::cat mutant in the stationary phase. These results suggest a negative regulatory role of the DNA-, RNA-binding protein Hfq in cell division in the stationary phase.
Collapse
Affiliation(s)
- A Takada
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | | | | |
Collapse
|
138
|
Abstract
The bacteriophage Mu mom gene encodes a novel DNA modification that protects the viral genome against a wide variety of restriction endonucleases. Expression of mom is subject to a series of unusual regulatory controls. Transcription requires the action of a phage-encoded protein, C, which binds (probably as a dimer) the mom promoter from -33 to -52 (with respect to the transcription start site) in two adjacent DNA major grooves on one face of the helix. No apparent direct interaction between C and the host RNA polymerase (RNAP) is evident; however, C binding alters mom DNA conformation. In the absence of C, RNAP binds the mom promoter at a site that results in transcription in a direction away from the mom gene. The function of this transcription is unknown. An additional layer of transcriptional regulation complexity is due to the fact that the host Dam DNA-(N6-adenine)methyltransferase is required. Dam methylation of three closely spaced upstream GATC sequences is necessary to prevent binding by the host protein, OxyR, which acts as a repressor. Repression is not mediated by inhibition of C binding, but rather through interference with C-mediated recruitment of RNAP to the correct site. Translation of mom is regulated by the phage Com protein. Com is only 62 amino acids long and contains a zinc finger-like structure (coordinated by four cysteine residues) in the amino terminal domain. Com binds mom mRNA 5' to the mom open reading frame, whose translation start signals are contained in a stem-loop translation-inhibition-structure. Com binding to its target site (5' to and adjacent to the translation-inhibition-structure) results in a stable change in RNA secondary structure that exposes the translation start signals.
Collapse
Affiliation(s)
- S Hattman
- Department of Biology, University of Rochester, NY 14627-0211, USA.
| |
Collapse
|
139
|
Azam TA, Ishihama A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 1999; 274:33105-13. [PMID: 10551881 DOI: 10.1074/jbc.274.46.33105] [Citation(s) in RCA: 366] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of Escherichia coli is composed of a single molecule of circular DNA with the length of about 47,000 kilobase pairs, which is associated with about 10 major DNA-binding proteins, altogether forming the nucleoid. We expressed and purified 12 species of the DNA-binding protein, i.e. CbpA (curved DNA-binding protein A), CbpB or Rob (curved DNA-binding protein B or right arm of the replication origin binding protein), DnaA (DNA-binding protein A), Dps (DNA-binding protein from starved cells), Fis (factor for inversion stimulation), Hfq (host factor for phage Q(beta)), H-NS (histone-like nucleoid structuring protein), HU (heat-unstable nucleoid protein), IciA (inhibitor of chromosome initiation A), IHF (integration host factor), Lrp (leucine-responsive regulatory protein), and StpA (suppressor of td(-) phenotype A). The sequence specificity of DNA binding was determined for all the purified nucleoid proteins using gel-mobility shift assays. Five proteins (CbpB, DnaA, Fis, IHF, and Lrp) were found to bind to specific DNA sequences, while the remaining seven proteins (CbpA, Dps, Hfq, H-NS, HU, IciA, and StpA) showed apparently sequence-nonspecific DNA binding activities. Four proteins, CbpA, Hfq, H-NS, and IciA, showed the binding preference for the curved DNA. From the apparent dissociation constant (K(d)) determined using the sequence-specific or nonspecific DNA probes, the order of DNA binding affinity were determined to be: HU > IHF > Lrp > CbpB(Rob) > Fis > H-NS > StpA > CbpA > IciA > Hfq/Dps, ranging from 25 nM (HU binding to the non-curved DNA) to 250 nM (Hfq binding to the non-curved DNA), under the assay conditions employed.
Collapse
Affiliation(s)
- T A Azam
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
140
|
Robertson GT, Roop RM. The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 1999; 34:690-700. [PMID: 10564509 DOI: 10.1046/j.1365-2958.1999.01629.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Brucella abortus is a facultative intracellular pathogen that causes abortion and infertility in domestic animals and a severe debilitating febrile illness in humans. The mechanisms that this highly successful intracellular pathogen uses to adapt to, and survive within, the harsh intracellular environment of the host macrophage are presently unknown. Maintenance of the stationary phase growth state has been proposed to be critical for the virulence of several mammalian pathogens, but analysis of this relationship for the brucellae has not been undertaken. In order to evaluate this relationship, we examined the in vitro and in vivo characteristics of an isogenic hfq mutant constructed from virulent Brucella abortus 2308. In Escherichia coli, the hfq gene product is an RNA-binding protein that participates in the regulation of stationary phase stress resistance, at least partly by enhancing translation of the stationary phase-specific sigma factor RpoS. As expected, the Brucella abortus hfq mutant, designated Hfq3, showed increased sensitivity to H2O2, and decreased survival under acidic conditions (pH 4.0), during stationary phase growth compared with 2308. Hfq3 was also less able to withstand prolonged starvation than 2308. The Brucella abortus hfq mutant, unlike its parental strain 2308, fails to replicate in cultured murine macrophages, and is rapidly cleared from the spleens and livers of experimentally infected BALB/c mice. These findings suggest that the Brucella abortus hfq gene product makes an essential contribution to pathogenesis in mice, probably by allowing the brucellae to adapt appropriately to the harsh environmental conditions encountered within the host macrophage.
Collapse
Affiliation(s)
- G T Robertson
- Department of Microbiology and Immunology, Louisiana State University Medical Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
141
|
Wachi M, Takada A, Nagai K. Overproduction of the outer-membrane proteins FepA and FhuE responsible for iron transport in Escherichia coli hfq::cat mutant. Biochem Biophys Res Commun 1999; 264:525-9. [PMID: 10529396 DOI: 10.1006/bbrc.1999.1537] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found that 82- and 76-kDa proteins in the outer-membrane fractions were overproduced in the hfq::cat mutant cells when grown in synthetic media. Expression of these proteins was repressed by addition of FeCl(3) in the mutant as well as in the wild type. It was revealed that these are FepA and FhuE proteins involved in iron transport. The hfq::cat mutant was more susceptible to killing by hydrogen peroxide, probably due to the excess incorporation of iron, which potentially generates hydroxyl radicals. Increased incorporation of iron in the hfq::cat mutant was also confirmed by the suppressive effect on the ftsH1 mutation. These results suggest that the hfq gene product is involved in the defense mechanism against oxidative stress.
Collapse
Affiliation(s)
- M Wachi
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| | | | | |
Collapse
|
142
|
Webb C, Moreno M, Wilmes-Riesenberg M, Curtiss R, Foster JW. Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium. Mol Microbiol 1999; 34:112-23. [PMID: 10540290 DOI: 10.1046/j.1365-2958.1999.01581.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella typhimurium responds to a variety of environmental stresses by accumulating the alternative sigma factor sigmaS. The repertoire of sigmaS -dependent genes that are subsequently expressed confers tolerance to a variety of potentially lethal conditions including low pH and stationary phase. The mechanism(s) responsible for triggering sigmaS accumulation are of considerable interest, because they help to ensure survival of the organism during encounters with suboptimal environments. Two genes associated with regulating sigmaS levels in S. typhimurium have been identified. The first is clpP, encoding the protease known to be responsible for degrading sigmaS in Escherichia coli. The second is dksA, encoding a protein of unknown function not previously associated with regulating sigmaS levels. As predicted, clpP mutants accumulated large amounts of sigmaS even in log phase. However, dksA mutants failed to accumulate sigmaS in stationary phase and exhibited lower accumulation during acid shock in log phase. DksA appears to be required for the optimal translation of rpoS based upon dksA mutant effects on rpoS transcriptional and translational lacZ fusions. The region of rpoS mRNA between codons 8 and 73 is required to see the effects of dksA mutations. This distinguishes the role of DksA from that of HF-I (hfq ) in rpoS translation, as the HF-I target area occurs well upstream of the rpoS start codon. DksA appears to be involved in the expression of several genes in addition to rpoS based on two-dimensional SDS-PAGE analysis of whole-cell proteins. As a result of their effects on gene expression, mutations in clpP and dksA decreased the virulence of S. typhimurium in mice, consistent with a role for sigmaS in pathogenesis.
Collapse
Affiliation(s)
- C Webb
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, USA
| | | | | | | | | |
Collapse
|
143
|
Wang L, Wilson S, Elliott T. A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J Bacteriol 1999; 181:6033-41. [PMID: 10498716 PMCID: PMC103631 DOI: 10.1128/jb.181.19.6033-6041.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HemA enzyme (glutamyl-tRNA reductase) catalyzes the first committed step in heme biosynthesis in the enteric bacteria. HemA is mainly regulated by conditional protein stability; it is stable and, consequently, more abundant in heme-limited cells but unstable and less abundant in normally growing cells. Both the Lon and ClpAP energy-dependent proteases contribute to HemA turnover in vivo. Here we report that the addition of two positively charged lysine residues to the third and fourth positions at the HemA N terminus resulted in complete stabilization of the protein. By contrast, the addition of an N-terminal myc epitope tag did not affect turnover. This result confirms the importance of the N-terminal sequence for proteolysis of HemA. This region of the protein also contains a proline flanked by hydrophobic residues, a motif that has been suggested to be important for Lon-mediated proteolysis of UmuD. However, mutation of this motif did not affect the turnover of HemA protein. Cells expressing the stabilized HemA[KK] mutant protein display substantial defects in heme regulation.
Collapse
Affiliation(s)
- L Wang
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
144
|
Cunning C, Elliott T. RpoS synthesis is growth rate regulated in Salmonella typhimurium, but its turnover is not dependent on acetyl phosphate synthesis or PTS function. J Bacteriol 1999; 181:4853-62. [PMID: 10438755 PMCID: PMC93972 DOI: 10.1128/jb.181.16.4853-4862.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RpoS sigma factor of enteric bacteria is either required for or augments the expression of a number of genes that are induced during nutrient limitation, growth into stationary phase, or in response to stresses, including high osmolarity. RpoS is regulated at multiple levels, including posttranscriptional control of its synthesis, protein turnover, and mechanisms that affect its activity directly. Here, the control of RpoS stability was investigated in Salmonella typhimurium by the isolation of a number of mutants specifically defective in RpoS turnover. These included 20 mutants defective in mviA, the ortholog of Escherichia coli rssB/sprE, and 13 mutants defective in either clpP or clpX which encode the protease active on RpoS. An hns mutant was also defective in RpoS turnover, thus confirming that S. typhimurium and E. coli have identical genetic requirements for this process. Some current models predict the existence of a kinase to phosphorylate the response regulator MviA, but no mutants affecting a kinase were recovered. An mviA mutant carrying the D58N substitution altering the predicted phosphorylation site is substantially defective, suggesting that phosphorylation of MviA on D58 is important for its function. No evidence was obtained to support models in which acetyl phosphate or the PTS system contributes to MviA phosphorylation. However, we did find a significant (fivefold) elevation of RpoS during exponential growth on acetate as the carbon and energy source. This behavior is due to growth rate-dependent regulation which increases RpoS synthesis at slower growth rates. Growth rate regulation operates at the level of RpoS synthesis and is mainly posttranscriptional but, surprisingly, is independent of hfq function.
Collapse
Affiliation(s)
- C Cunning
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
145
|
Hengge-Aronis R. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 1999; 2:148-52. [PMID: 10322169 DOI: 10.1016/s1369-5274(99)80026-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under various stress conditions, two sigma subunits of RNA polymerase, sigmaS and sigma70, coexist in Escherichia coli cells. In contrast to sigma70, sigmaS is subject to intricate regulation and coordinates an emergency reaction to stress as well as long term stress adaptation. In vivo, the two sigma factors clearly control different genes. Yet, they are structurally and functionally very similar and basically recognize the same promoter sequences. Recent data suggest that sigma factor specificity at stress-activated promoters is affected by the interplay of the two RNA polymeraseholoenzymes with additional regulatory factors, such as H-NS, Lrp, CRP, IHF or Fis, that differentially affect transcription initiation by sigmaS or sigma70 in a promoter-specific manner.
Collapse
Affiliation(s)
- R Hengge-Aronis
- Institute of Plant Physiology and Microbiology, Department of Biology, Free University of Berlin, Königin-Luise-Str 12-16a, 14195, Berlin, Germany.
| |
Collapse
|
146
|
Chuang DY, Kyeremeh AG, Gunji Y, Takahara Y, Ehara Y, Kikumoto T. Identification and cloning of an Erwinia carotovora subsp. carotovora bacteriocin regulator gene by insertional mutagenesis. J Bacteriol 1999; 181:1953-7. [PMID: 10074096 PMCID: PMC93602 DOI: 10.1128/jb.181.6.1953-1957.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avirulent Erwinia carotovora subsp. carotovora CGE234-M403 produces two types of bacteriocin. For the purpose of cloning the bacteriocin genes of strain CGE234M403, a spontaneous rifampin-resistant mutant of this strain, M-rif-11-2, was isolated. By Tn5 insertional mutagenesis using M-rif-11-2, a mutant, TM01A01, which produces the high-molecular-weight bacteriocin but not the low-molecular-weight bacteriocin was obtained. By thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of a contiguous 1,280-bp region were determined. One complete open reading frame (ORF), designated ORF2, was identified within the sequenced fragment. The 3' end of another ORF, ORF1, was located upstream of ORF2. A noncoding region and a putative promoter were located between ORF1 and ORF2. Downstream from ORF2, the 5' end of another ORF (ORF3) was found. Deduction from the nucleotide sequence indicated that ORF2 encodes a protein of 99 amino acids, which showed high homology with Yersinia enterocolitica Yrp, a regulator of enterotoxin (Y-ST) production; Escherichia coli host factor 1, required for Qbeta-replicase; and Azorhizobium caulinodans NrfA, required for the expression of nifA. ORF2 was designated brg, bacteriocin regulator gene. A fragment containing ORF2 and its promoter was amplified and cloned into pBR322 and pHSG415r, and the recombinant plasmids, pBYL1 and pHYL1, were transferred into E. coli DH5. Plasmid pBYL1 was reisolated and transferred into the insertion mutant TM01A01. Transformants carrying the plasmid, which was reisolated and designated pBYL1, re-produced the low-molecular-weight bacteriocin.
Collapse
Affiliation(s)
- D Y Chuang
- Institute of Genetic Ecology, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
147
|
Ishihama A. Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival. Genes Cells 1999; 4:135-43. [PMID: 10320479 DOI: 10.1046/j.1365-2443.1999.00247.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Upon sensing an impending saturation level of their population density, Escherichia coli cells enter into the stationary phase. We have identified structural and functional modulations of the nucleoid, the transcription apparatus and the translation machinery occurring during the transition from exponential growth to stationary phase. The major DNA-binding proteins, Fis, HU and Hfq, in the exponential-phase nucleoid are replaced by a single stationary-phase protein Dps, thereby compacting the nucleoid and ultimately leading to silencing of the DNA functions. The transcription apparatus is modified by replacing the major promoter recognition subunit, sigma70, with sigmaS. A stationary-phase protein, Rsd (Regulator of Sigma D), with the binding activity of sigma70 is involved in the efficient replacement of sigma and/or the storage of unused sigma70. Changes in cytoplasmic composition also differentially influence the activity of Esigma70 and EsigmaS holoenzymes. Together, these effects may result in the preferential transcription of stationary-phase specific genes. The translation machinery is also modulated in stationary phase, by the formation of translationally incompetent 100S ribosomes. A small stationary-phase protein, RMF (Ribosome Modulation Factor), is involved in the dimerization of 70S ribosome monomers.
Collapse
Affiliation(s)
- A Ishihama
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
148
|
Jones DR, Leffak M. A bifunctional regulatory element of the human ApoA-I gene responsive to a distal enhancer. DNA Cell Biol 1999; 18:107-19. [PMID: 10073570 DOI: 10.1089/104454999315493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoter elements located up to 2 kb upstream of the apolipoprotein A-I (apoA-I) gene are necessary for apoA-I expression in liver and intestine cells in tissue culture. In transgenic mice, a distal enhancer located between the apoA-IV and apoC-III genes is additionally necessary for tissue-specific expression of apoA-I in liver and intestine. We have identified a previously uncharacterized regulatory element between 746 and 856 nucleotides 5' of the apoA-I transcription start site that differentially affects the expression of apoA-I reporter plasmids in intestine cells dependent on the presence of the distal apolipoprotein enhancer. Deletion of the -856/-746 sequence strongly repressed transcription in the presence of the apolipoprotein enhancer, but in the absence of the enhancer, deletion of the -856/-746 element increased transcription. By contrast, in liver cells, deletion of the -856/-746 element strongly repressed transcription in the presence of the distal enhancer but had no detectable effect on transcription in the absence of the distal enhancer. Electrophoretic mobility shift analysis revealed tissue-specific and sequence-specific protein-DNA complexes formed by the -856/-746 element in intestine, liver, and HeLa cell nuclear extracts. The complexes formed by extracts of intestinal cells differed from those of liver and HeLa cells by their sensitivity to DNase digestion and their pattern of protein footprints. Collectively, the data suggest that the -856/-746 sequence is a composite regulatory element that interacts with multiple proteins and the apolipoprotein distal enhancer to achieve tissue-specific expression of apoA-I.
Collapse
MESH Headings
- Apolipoprotein A-I/genetics
- Base Sequence
- Cell Nucleus/metabolism
- Cell-Free System/metabolism
- Chloramphenicol O-Acetyltransferase/genetics
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- DNA-Binding Proteins/metabolism
- Deoxyribonucleases/metabolism
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- Protein Binding
- Recombinant Fusion Proteins/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Deletion
- Transcription, Genetic
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- D R Jones
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
149
|
Paesold G, Krause M. Analysis of rpoS mRNA in Salmonella dublin: identification of multiple transcripts with growth-phase-dependent variation in transcript stability. J Bacteriol 1999; 181:1264-8. [PMID: 9973354 PMCID: PMC93505 DOI: 10.1128/jb.181.4.1264-1268.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella dublin, rpoS encodes an alternative sigma factor of the RNA polymerase that activates a variety of stationary-phase-induced genes, including some virulence-associated genes. In this work, we studied the regulation and transcriptional organization of rpoS during growth. We found two transcripts, 2.3 and 1.6 kb in length, that represent the complete rpoS sequence. The 2.3-kb transcript is a polycistronic message that also includes the upstream nlpD gene. It is driven by a weak promoter with increasing activity when cells enter early stationary growth. The 1.6-kb message includes 566 bp upstream of the rpoS start codon. It is transcribed from a strong sigma70 RNA polymerase-dependent promoter which is independent of growth. The decay of this transcript decreases substantially in early stationary growth, resulting in a significant net increase in rpoS mRNA levels. These levels are approximately 10-fold higher than the levels of the 2.3-kb mRNA, indicating that the 1.6-kb message is mainly responsible for RpoS upregulation. In addition to the 2.3- and 1.6-kb transcripts, two smaller 1.0- and 0.4-kb RNA species are produced from the nlpD-rpoS locus. They do not allow translation of full-length RpoS; hence their significance for rpoS regulation remains unclear. We conclude that of four transcripts arising from the nlpD-rpoS locus, only one plays a significant role in rpoS expression in S. dublin. Its upregulation when cells enter stationary growth is due primarily to an increase in transcript stability.
Collapse
Affiliation(s)
- G Paesold
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland.
| | | |
Collapse
|
150
|
Vytvytska O, Jakobsen JS, Balcunaite G, Andersen JS, Baccarini M, von Gabain A. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc Natl Acad Sci U S A 1998; 95:14118-23. [PMID: 9826663 PMCID: PMC24336 DOI: 10.1073/pnas.95.24.14118] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stability of the ompA mRNA depends on the bacterial growth rate. The 5' untranslated region is the stability determinant of this transcript and the target of the endoribonuclease, RNase E, the key player of mRNA degradation. An RNA-binding protein with affinity for the 5' untranslated region ompA was purified and identified as Hfq, a host factor initially recognized for its function in phage Qbeta replication. The ompA RNA-binding activity parallels the amount of Hfq, which is elevated in bacteria cultured at slow growth rate, a condition leading to facilitated degradation of the ompA mRNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has no affinity for the lpp transcript whose degradation, like that of bulk mRNA, is not affected by bacterial growth rate. Compatible with our results, we found that the intracellular concentration of RNase E and its associated degradosome components is independent of bacterial growth rate. Thus our results suggest a regulatory role for Hfq that specifically facilitates the ompA mRNA degradation in a growth rate-dependent manner.
Collapse
Affiliation(s)
- O Vytvytska
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|