101
|
Pier GB, Coleman F, Grout M, Franklin M, Ohman DE. Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 2001; 69:1895-901. [PMID: 11179370 PMCID: PMC98099 DOI: 10.1128/iai.69.3.1895-1901.2001] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Establishment and maintenance of chronic lung infections with mucoid Pseudomonas aeruginosa in patients with cystic fibrosis (CF) require that the bacteria avoid host defenses. Elaboration of the extracellular, O-acetylated mucoid exopolysaccharide, or alginate, is a major microbial factor in resistance to immune effectors. Here we show that O acetylation of alginate maximizes the resistance of mucoid P. aeruginosa to antibody-independent opsonic killing and is the molecular basis for the resistance of mucoid P. aeruginosa to normally nonopsonic but alginate-specific antibodies found in normal human sera and sera of infected CF patients. O acetylation of alginate appears to be critical for P. aeruginosa resistance to host immune effectors in CF patients.
Collapse
Affiliation(s)
- G B Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115-5804, USA.
| | | | | | | | | |
Collapse
|
102
|
Noone D, Howell A, Collery R, Devine KM. YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J Bacteriol 2001; 183:654-63. [PMID: 11133960 PMCID: PMC94922 DOI: 10.1128/jb.183.2.654-663.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HtrA-type serine proteases participate in folding and degradation of aberrant proteins and in processing and maturation of native proteins. Mutation of the corresponding genes often confers a pleiotropic phenotype that can include temperature sensitivity, sensitivity to osmotic and oxidative stress, and attenuated virulence. There are three HtrA-type serine proteases, YkdA, YvtA, and YycK, encoded in the Bacillus subtilis genome. In this report we show that YkdA and YvtA display many similarities: their expression profiles during the growth cycle in wild-type and mutant backgrounds are very alike, with expression being directed by very similar promoters. Both are induced by temperature upshift and by heterologous amylases at the transition phase of the growth cycle. These characteristics are quite different for YycK, suggesting that it has a cellular function distinct from that of the other two proteases or that it performs the same function but under different conditions. We also show that inactivation of either ykdA or yvtA results in compensating overexpression of the other gene, especially during stress conditions, with a concomitant increase in resistance to heat and hydrogen peroxide stresses. Mutation of both ykdA and yvtA leads to growth defects and to thermosensitivity. The fact that their expression increases dramatically at the transition phase of the growth cycle under certain conditions suggests that the YkdA and YvtA proteases may function in the processing, maturation, or secretion of extracellular enzymes in B. subtilis.
Collapse
Affiliation(s)
- D Noone
- Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
103
|
Cao H, Baldini RL, Rahme LG. Common mechanisms for pathogens of plants and animals. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:259-284. [PMID: 11701866 DOI: 10.1146/annurev.phyto.39.1.259] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The vast evolutionary gulf between plants and animals--in terms of structure, composition, and many environmental factors--would seem to preclude the possibility that these organisms could act as receptive hosts to the same microorganism. However, some pathogens are capable of establishing themselves and thriving in members of both the plant and animal kingdoms. The identification of functionally conserved virulence mechanisms required to infect hosts of divergent evolutionary origins demonstrates the remarkable conservation in some of the underlying virulence mechanisms of pathogenesis and is changing researchers' thinking about the evolution of microbial pathogenesis.
Collapse
Affiliation(s)
- H Cao
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Shriner's Burn Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
104
|
Núñez C, León R, Guzmán J, Espín G, Soberón-Chávez G. Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol 2000; 182:6550-6. [PMID: 11073894 PMCID: PMC111392 DOI: 10.1128/jb.182.23.6550-6556.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Azotobacter vinelandii produces the exopolysaccharide alginate, which is essential for its differentiation to desiccation-resistant cysts. In different bacterial species, the alternative sigma factor sigma(E) regulates the expression of functions related to the extracytoplasmic compartments. In A. vinelandii and Pseudomonas aeruginosa, the sigma(E) factor (AlgU) is essential for alginate production. In both bacteria, the activity of this sigma factor is regulated by the product of the mucA, mucB, mucC, and mucD genes. In this work, we studied the transcriptional regulation of the A. vinelandii algU-mucABCD gene cluster, as well as the role of the mucA and mucC gene products in alginate production. Our results show the existence of AlgU autoregulation and show that both MucA and MucC play a negative role in alginate production.
Collapse
Affiliation(s)
- C Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62251, Mexico
| | | | | | | | | |
Collapse
|
105
|
Rowen DW, Deretic V. Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol Microbiol 2000; 36:314-27. [PMID: 10792719 DOI: 10.1046/j.1365-2958.2000.01830.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The conversion to mucoid phenotype in Pseudomonas aeruginosa during chronic infections in cystic fibrosis (CF) is due to mutations in the algU mucABCD gene cluster. This cluster encodes an extreme stress response system conserved in Gram-negative bacteria. The system includes an ECF sigma factor, AlgU (sigmaE), an inner membrane protein, MucA, which inhibits AlgU activity, and MucB, a periplasmic protein that negatively controls AlgU. In this work, we investigated whether and how these factor interact to transduce signals between different cellular compartments. The mutation mucADeltaG440, which renders a large fraction of P. aeruginosa CF isolates mucoid, did not abrogate AlgU-MucA interactions, although it eliminated MucA-MucB interactions in the yeast two-hybrid system. The mucADeltaG440 truncation of the periplasmic C-terminal tail of MucA destabilized the molecule resulting in low or undetectable steady-state levels in P. aeruginosa. Somewhat reduced levels of MucA were also seen in cells with inactivated mucB or with the mucACF53 allele carrying the missense P184S mutation, which mildly affected interactions with MucB. The events downstream from MucA destabilization were also investigated. AlgU was found to associate with inner membranes in mucA+ cells. In mutants destabilizing MucA, a limited redistribution of AlgU from the membrane to the cytosol was observed. The redistribution was spontaneous in mucADeltaG440 cells, while in mucB and mucACF53 mutants it required additional signals. Despite a large reduction in MucA levels in mucADeltaG440 cells, only a small fraction of AlgU was redistributed to the cytosol and a significant portion of this sigma factor remained membrane bound and behaved as a peripheral inner membrane protein. The fraction of AlgU that depended on MucA for association with the membrane also brought RNA polymerase into this compartment. These results are consistent with a model in which MucB-MucA-AlgU-RNA polymerase interactions at the membrane allow transduction of potentially lethal stress signals with both rapid reaction times of the preassembled complexes and efficient resupply at the membrane from the prebound components.
Collapse
Affiliation(s)
- D W Rowen
- Department of Microbiology and Immunology University of Michigan Medical School Ann Arbor, MI 48109, USA
| | | |
Collapse
|
106
|
Noone D, Howell A, Devine KM. Expression of ykdA, encoding a Bacillus subtilis homologue of HtrA, is heat shock inducible and negatively autoregulated. J Bacteriol 2000; 182:1592-9. [PMID: 10692364 PMCID: PMC94456 DOI: 10.1128/jb.182.6.1592-1599.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/1999] [Accepted: 12/22/1999] [Indexed: 11/20/2022] Open
Abstract
There are three members of the HtrA family of serine proteases, YkdA, YvtA, and YyxA, encoded in the chromosome of Bacillus subtilis. In this study, we report on the promoter structure and regulation of ykdA expression. The ykdA gene is heat inducible, exhibiting a biphasic pattern of expression during a 60-min interval after heat shock. Increased expression after heat shock occurs at the transcriptional level. The heat-shock-inducible promoter has a single mismatch with a SigA-type -10 motif, but does not exhibit similarity to a SigA -35 region. There are six octamer repeats with a consensus TTTTCACA positioned at, and upstream of, the normal position of a -35 region. While repeats V and VI appear dispensable, repeat IV is essential for normal thermoinducible expression. This promoter structure is also found in the control region of yvtA, encoding a second member of this family of proteases. Expression of ykdA is negatively autoregulated both during the growth cycle and during heat shock. Our evidence suggests that YkdA protease activity is not required for this form of regulation. Null mutants of ykdA display increased tolerance to heat and are 80-fold more resistant to 10 mM hydrogen peroxide than wild-type cells. However, ykdA expression is not induced by hydrogen peroxide. These results indicate that the regulon to which YkdA belongs is linked to the oxidative stress response in B. subtilis.
Collapse
Affiliation(s)
- D Noone
- Department of Genetics, Smurfit Institute, Dublin 2, Ireland
| | | | | |
Collapse
|
107
|
Xu Y, Singh KV, Qin X, Murray BE, Weinstock GM. Analysis of a gene cluster of Enterococcus faecalis involved in polysaccharide biosynthesis. Infect Immun 2000; 68:815-23. [PMID: 10639451 PMCID: PMC97210 DOI: 10.1128/iai.68.2.815-823.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we described a gene cluster of Enterococcus faecalis OG1RF that produced an antigenic polysaccharide when cloned in Escherichia coli. The polysaccharide antigen was not detectable in E. faecalis strains, however. Here, we show by reverse transcriptase-PCR that the 16 genes in this region are transcribed in OG1RF. Gene disruption of orfde4, encoding a putative glycosyl transferase, and orfde6, a putative dTDP-rhamnose biosynthesis gene, generated two OG1RF mutants. The mutants showed delayed killing and a higher 50% lethal dose in a mouse peritonitis model. In addition, two mucoid E. faecalis isolates from patients with chronic urinary tract infections were found to produce the polysaccharide antigen.
Collapse
Affiliation(s)
- Y Xu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
108
|
Keith LM, Bender CL. AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 1999; 181:7176-84. [PMID: 10572118 PMCID: PMC103677 DOI: 10.1128/jb.181.23.7176-7184.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa and the phytopathogen P. syringae produce the exopolysaccharide alginate, which is a copolymer of D-mannuronic and L-guluronic acids. One of the key regulatory genes controlling alginate biosynthesis in P. aeruginosa is algT, which encodes the alternate sigma factor, sigma(22). In the present study, the algT gene product from P. syringae pv. syringae showed 90% amino acid identity with its P. aeruginosa counterpart, and sequence analysis of the region flanking algT in P. syringae revealed the presence of nadB, mucA, and mucB in an arrangement virtually identical to that of P. aeruginosa. An algT mutant of P. syringae was defective in alginate production but could be complemented with wild-type algT from P. syringae or P. aeruginosa when expressed in trans. The algT mutant also displayed increased sensitivity to heat, paraquat, and hydrogen peroxide (H(2)O(2)); the latter two compounds are known to generate reactive oxygen intermediates. Signals for activation of algT gene expression in P. syringae were investigated with an algT::uidA transcriptional fusion. Like that in P. aeruginosa, algT transcription in P. syringae was activated by heat shock. However, algT expression in P. syringae was also stimulated by osmotic stress and by exposure to paraquat, H(2)O(2), and copper sulfate. The latter two compounds are frequently encountered during colonization of plant tissue and may be unique signals for algT activation in P. syringae.
Collapse
Affiliation(s)
- L M Keith
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | |
Collapse
|
109
|
Abstract
A mechanism for regulating gene expression at the level of transcription utilizes an antagonist of the sigma transcription factor known as the anti-sigma (anti-sigma) factor. The cytoplasmic class of anti-sigma factors has been well characterized. The class includes AsiA form bacteriophage T4, which inhibits Escherichia coli sigma 70; FlgM, present in both gram-positive and gram-negative bacteria, which inhibits the flagella sigma factor sigma 28; SpoIIAB, which inhibits the sporulation-specific sigma factor, sigma F and sigma G, of Bacillus subtilis; RbsW of B. subtilis, which inhibits stress response sigma factor sigma B; and DnaK, a general regulator of the heat shock response, which in bacteria inhibits the heat shock sigma factor sigma 32. In addition to this class of well-characterized cytoplasmic anti-sigma factors, a new class of homologous, inner-membrane-bound anti-sigma factors has recently been discovered in a variety of eubacteria. This new class of anti-sigma factors regulates the expression of so-called extracytoplasmic functions, and hence is known as the ECF subfamily of anti-sigma factors. The range of cell processes regulated by anti-sigma factors is highly varied and includes bacteriophage phage growth, sporulation, stress response, flagellar biosynthesis, pigment production, ion transport, and virulence.
Collapse
Affiliation(s)
- K T Hughes
- Department of Microbiology, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
110
|
Woolwine SC, Wozniak DJ. Identification of an Escherichia coli pepA homolog and its involvement in suppression of the algB phenotype in mucoid Pseudomonas aeruginosa. J Bacteriol 1999; 181:107-16. [PMID: 9864319 PMCID: PMC103538 DOI: 10.1128/jb.181.1.107-116.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1998] [Accepted: 10/17/1998] [Indexed: 11/20/2022] Open
Abstract
Strains of Pseudomonas aeruginosa isolated from the respiratory tracts of patients with cystic fibrosis often display a mucoid morphology due to high levels of expression of the exopolysaccharide alginate. The response regulator AlgB is required for full transcription of the alginate biosynthetic operon. Repeated attempts to demonstrate a direct interaction between AlgB and the promoter region of algD, the first gene in the alginate operon, have thus far been unsuccessful. The possibility that AlgB exerts its effect on algD indirectly exists. To identify putative genes under the control of AlgB which affect algD transcription, transposon mutagenesis of nonmucoid algB derivatives of the mucoid strain FRD1 was employed. Of approximately 3,000 transposon mutants screened, 6 were found to display phenotypes which were mucoid relative to the phenotype of the parental algB strain. The phenotypes of these mutants ranged from being only slightly mucoid to being indistinguishable from that of the original FRD1 strain. One of the particularly mucoid transposon mutants was chosen for further study. This strain was found to be disrupted in a previously uncharacterized open reading frame with 56% amino acid identity to PepA of Escherichia coli. PepA is classified as a leucine aminopeptidase, and homologs have been detected in a number of bacterial, plant, and animal species. This novel gene has been designated phpA (P. aeruginosa homolog of pepA). The insertional inactivation of phpA was found to correlate with the mucoid phenotype and an increase in algD transcription in the algB strain. Expression of phpA from an ectopic chromosomal locus compensated for the transposon insertion in the native phpA gene, restoring algD transcription to levels similar to those observed in the parental algB strain. While phpA expression did not appear to be under the control of AlgB at the transcriptional level, this study demonstrates that loss of phpA in an algB genetic background had a positive effect on alginate expression and, more specifically, on transcription of the alginate biosynthetic operon.
Collapse
Affiliation(s)
- S C Woolwine
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
111
|
Gacesa P. Bacterial alginate biosynthesis--recent progress and future prospects. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1133-1143. [PMID: 9611788 DOI: 10.1099/00221287-144-5-1133] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The extracellular polysaccharide alginate has been widely associated with chronic Pseudomonas aeruginosa infections in the cystic fibrosis lung. However, it is clear that alginate biosynthesis is a more widespread phenomenon. Alginate plays a key role as a virulence factor of plant-pathogenic pseudomonads, in the formation of biofilms and with the encystment process of Azotobacter spp.
Collapse
Affiliation(s)
- Peter Gacesa
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Extension, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
112
|
|
113
|
Yu H, Boucher J, Deretic V. 7.5 Molecular Analysis of Pseudomonas Aeruginosa Virulence. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70299-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
114
|
Fanning AS, Anderson JM. PDZ domains and the formation of protein networks at the plasma membrane. Curr Top Microbiol Immunol 1997; 228:209-33. [PMID: 9401208 DOI: 10.1007/978-3-642-80481-6_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A S Fanning
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8019, USA
| | | |
Collapse
|
115
|
Hirono I, Kato M, Aoki T. Identification of major antigenic proteins of Pasteurella piscicida. Microb Pathog 1997; 23:371-80. [PMID: 9441863 DOI: 10.1006/mpat.1997.0165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two different antigenic protein-coding clones (PPA1 and PPA2) were isolated using anti-Pasteurella piscicida rabbit serum from a genomic DNA library of P. piscicida strain KP9038. The PPA1 and PPA2 expressed 7 kDa and 45 kDa proteins in Escherichia coli, respectively, and the molecular sizes of these expressed proteins are the same as these of the major antigenic proteins of P. piscicida. PPA1 encodes a protein of 83 amino acids residues, which is similar to the bacterial lipoprotein. Comparison of the predicted amino acid sequence of the PPA1-encoded 7 kDa protein of P. piscicida with previously reported bacterial lipoprotein sequence data revealed that it shares about 40% amino acid sequence identity. PPA2 has two large open reading frame (ORFs). The larger ORF (encoding 452 amino acid residues) encodes a homolog of DegQ protease, and the smaller ORF (371 amino acid residues) encodes a homolog of DegS protease. The antibodies reacted with the larger ORF-encoded 45 kDa DegQ homolog protein. The DegQ and DegS homolog proteins contain an export signal and a serine protease active site. The structural features of the PPA2-coding locus are similar to those of the loci in E. coli for the degQ and degS serine protease genes. A sequence in the 3' non-coding region of Vibrio hollisae thermostable hemolysin gene that is highly homologous with a similar located sequence in the Pseudomonas putida p-cresol methylhydroxylase gene is also found in the 3' non-coding region of the degS homolog gene of the PPA2.
Collapse
Affiliation(s)
- I Hirono
- Laboratory of Genetics and Biochemistry, Department of Aquatic Biosciences, Tokyo University of Fisheries, Konan 4-5-7, Minato-ku, Tokyo, 108, Japan
| | | | | |
Collapse
|
116
|
Ghani M, Soothill JS. Ceftazidime, gentamicin, and rifampicin, in combination, kill biofilms of mucoid Pseudomonas aeruginosa. Can J Microbiol 1997; 43:999-1004. [PMID: 9436304 DOI: 10.1139/m97-144] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In continuous flow biofilm cultures in medium resembling cystic fibrosis bronchial secretions, Pseudomonas aeruginosa was not eradicated from biofilms by 1 week of treatment with high concentrations of ceftazidime and gentamicin, to which the strains were sensitive on conventional testing. The addition of rifampicin, which has little activity against the strains as measured by the minimum inhibitory concentration, led to the apparent elimination of the bacteria from the biofilms. The effect was not strain specific.
Collapse
Affiliation(s)
- M Ghani
- Department of Pathological Sciences, Manchester Royal Infirmary, U.K
| | | |
Collapse
|
117
|
Boucher JC, Schurr MJ, Yu H, Rowen DW, Deretic V. Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3473-3480. [PMID: 9387225 DOI: 10.1099/00221287-143-11-3473] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alginate production in Pseudomonas aeruginosa and the associated mucoid phenotype of isolates from cystic fibrosis patients are under the control of the algU mucABCD cluster. This group of genes encodes AlgU, the P. aeruginosa equivalent of the extreme heat shock sigma factor sigma E in Gram-negative bacteria, the AlgU-cognate anti-sigma factor MucA, the periplasmic protein MucB and a serine protease homologue, MucD. While mucA, mucB or mucD act as negative regulators of AlgU, the function of mucC is not known. In this study the role of mucC in P. aeruginosa physiology and alginate production has been addressed. Insertional inactivation of mucC in the wild-type P. aeruginosa strain PAO1 did not cause any overt effects on alginate synthesis. However, it affected growth of P. aeruginosa under conditions of combined elevated temperature and increased ionic strength or osmolarity. Inactivation of mucC in mucA or mucB mutant backgrounds resulted in a mucoid phenotype when the cells were grown under combined stress conditions of elevated temperature and osmolarity. Each of the stress factors tested separately did not cause comparable effects. The combined stress factors were not sufficient to cause phenotypically appreciable enhancement of alginate production in mucA or mucB mutants unless mucC was also inactivated. These findings support a negative regulatory role of mucC in alginate production by P. aeruginosa, indicate additive effects of muc genes in the regulation of mucoidy in this organism and suggest that multiple stress signals and recognition systems participate in the regulation of algU-dependent functions.
Collapse
Affiliation(s)
- J C Boucher
- Department of Microbiology and Immunology, University of Michigan, Medical School, Ann Arbor, Ml 48109-0620, USA
| | - M J Schurr
- Department of Microbiology and Immunology, University of Michigan, Medical School, Ann Arbor, Ml 48109-0620, USA
| | - H Yu
- Department of Microbiology and Immunology, University of Michigan, Medical School, Ann Arbor, Ml 48109-0620, USA
| | - D W Rowen
- Department of Microbiology and Immunology, University of Michigan, Medical School, Ann Arbor, Ml 48109-0620, USA
| | - V Deretic
- Department of Microbiology and Immunology, University of Michigan, Medical School, Ann Arbor, Ml 48109-0620, USA
| |
Collapse
|
118
|
Boucher JC, Yu H, Mudd MH, Deretic V. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 1997; 65:3838-46. [PMID: 9284161 PMCID: PMC175548 DOI: 10.1128/iai.65.9.3838-3846.1997] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A distinguishing feature of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients is their mucoid, exopolysaccharide alginate-overproducing phenotype. One mechanism of conversion to mucoidy is based on mutations in the algU mucABCD cluster, encoding the stress sigma factor AlgU and its regulators. However, conversion to mucoidy in laboratory strains can be achieved via mutations in other chromosomal sites. Here, we investigated mechanisms of the emergence of mucoid P. aeruginosa in CF by analyzing the status of mucA in a collection of mucoid P. aeruginosa isolates from 53 CF patients. This negative regulator of algU, when inactivated under laboratory conditions, causes conversion to mucoidy. The overall frequency of mucA alterations in mucoid CF isolates was 84%. Nucleotide sequence analyses revealed that the majority of the alterations caused premature termination of the mucA coding sequence. Comparison of paired nonmucoid and mucoid P. aeruginosa isolates from three CF patients indicated the presence of mucA mutations only in the mucoid strains. Interestingly, mucoid P. aeruginosa isolates from urinary tract infections also had mutations in the mucA gene. Clearance of CF isolates from the murine lung was investigated in an aerosol infection model with C57BL/6J, BALB/c, and DBA/2NHsd mice. Two CF strains, selected for further study based on the dependence of their alginate production on the concentration of salt in the medium, were used to examine the effects of mucoidy on pulmonary clearance. Statistically significant improvement in recovery from the murine lung of viable mucoid P. aeruginosa cells relative to the nonmucoid bacteria was observed in the majority of mouse strains tested. Collectively, the results reported here suggest that mucA is most likely the preferential site for conversion to mucoidy in CF and that alginate overproduction in mucA-mutant P. aeruginosa improves its resistance to the innate clearance mechanisms in the lung.
Collapse
Affiliation(s)
- J C Boucher
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | | | |
Collapse
|
119
|
Mathee K, McPherson CJ, Ohman DE. Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 1997; 179:3711-20. [PMID: 9171421 PMCID: PMC179169 DOI: 10.1128/jb.179.11.3711-3720.1997] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas aeruginosa strains associated with cystic fibrosis are often mucoid due to the copious production of alginate, an exopolysaccharide and virulence factor. Alginate gene expression is transcriptionally controlled by a gene cluster at 68 min on the chromosome: algT (algU)-mucA-mucB (algN)-mucC (algM)-mucD (algY). The algT gene encodes a 22-kDa alternative sigma factor (sigma22) that autoregulates its own promoter (PalgT) as well as the promoters of algR, algB, and algD. The other genes in the algT cluster appear to regulate the expression or activity of sigma22. The goal of this study was to better understand the functional interactions between sigma22 and its antagonist regulators during alginate production. Nonmucoid strain PAO1 was made to overproduce alginate (indicating high algD promoter activity) through increasing sigma22 in the cell by introducing a plasmid clone containing algT from mucA22(Def) strain FRD1. However, the bacterial cells remained nonmucoid if the transcriptionally coupled mucB on the clone remained intact. This suggested that a stoichiometric relationship between sigma22 and MucB may be required to control sigma factor activity. When the transcription and translational initiation of algT were measured with lacZ fusions, alginate production correlated with only about a 1.2- to 1.7-fold increase in algT-lacZ activity, respectively. An algR-lacZ transcriptional fusion showed a 2.8-fold increase in transcription with alginate production under the same conditions. A Western blot analysis of total cell extracts showed that sigma22 was approximately 10-fold higher in strains that overproduced alginate, even though algT expression increased less than 2-fold. This suggested that a post-transcriptional mechanism may exist to destabilize sigma22 in order to control certain sigma22-dependent promoters like algD. By Western blotting and phoA fusion analyses, the MucB antagonist of sigma22 was found to localize to the periplasm of the cell. Similar experiments suggest that MucA localizes to the inner membrane via one transmembrane domain with amino- and carboxy-terminal domains in the cytoplasm and periplasm, respectively. These data were used to propose a model in which MucB-MucA-sigma22 interact via an inner membrane complex that controls the stability of sigma22 protein in order to control alginate biosynthesis.
Collapse
Affiliation(s)
- K Mathee
- Department of Microbiology and Immunology, University of Tennessee, Veterans Affairs Medical Center, Memphis 38163, USA
| | | | | |
Collapse
|
120
|
Pogliano J, Lynch AS, Belin D, Lin EC, Beckwith J. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 1997; 11:1169-82. [PMID: 9159398 DOI: 10.1101/gad.11.9.1169] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We show that the two-component signal transduction system of Escherichia coli, CpxA-CpxR, controls the expression of genes encoding cell envelope proteins involved in protein folding and degradation. These findings are based on three lines of evidence. First, activation of the Cpx pathway induces 5- to 10-fold the synthesis of DsbA, required for disulfide bond formation, and DegP, a major periplasmic protease. Second, using electrophoretic mobility shift and DNase I protection assays, we have shown that phosphorylated CpxR binds to elements upstream of the transcription start sites of dsbA, degP, and ppiA (rotA), the latter coding for a peptidyl-prolyl cis/trans isomerase. Third, we have demonstrated increased in vivo transcription of all three genes, dsbA, degP, and ppiA, when the Cpx pathway is activated. We have identified a putative CpxR consensus binding site that is found upstream of a number of other E. coli genes. These findings suggest a potentially extensive Cpx regulon including genes transcribed by sigma70 and sigma(E), which encode factors involved in protein folding as well as other cellular functions.
Collapse
Affiliation(s)
- J Pogliano
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
121
|
Wu QL, Kong D, Lam K, Husson RN. A mycobacterial extracytoplasmic function sigma factor involved in survival following stress. J Bacteriol 1997; 179:2922-9. [PMID: 9139909 PMCID: PMC179055 DOI: 10.1128/jb.179.9.2922-2929.1997] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extracytoplasmic function (ECF) sigma factors constitute a diverse group of alternative sigma factors that have been demonstrated to regulate gene expression in response to environmental conditions in several bacterial species. Genes encoding an ECF sigma factor of Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium smegmatis, designated sigE, were cloned and analyzed. Southern blot analysis demonstrated the presence of a single copy of this gene in these species and in Mycobacterium bovis BCG, Mycobacterium leprae, and Mycobacterium fortuitum. Sequence analysis showed the sigE gene to be highly conserved among M. tuberculosis, M. avium, M. smegmatis, and M. leprae. Recombinant M. tuberculosis SigE, when combined with core RNA polymerase from M. smegmatis, reconstituted specific RNA polymerase activity on sigE in vitro, demonstrating that this gene encodes a functional sigma factor. Two in vivo transcription start sites for sigE were also identified in M. smegmatis and M. bovis BCG. Comparison of wild-type M. smegmatis with a sigE mutant strain demonstrated decreased survival of the mutant under conditions of high-temperature heat shock, acidic pH, exposure to detergent, and oxidative stress. An inducible protective response to oxidative stress present in the wild type was absent in the mutant. The mycobacterial SigE protein, although nonessential for viability in vitro, appears to play a role in the ability of these organisms to withstand a variety of stresses.
Collapse
Affiliation(s)
- Q L Wu
- Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
122
|
Yu H, Mudd M, Boucher JC, Schurr MJ, Deretic V. Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J Bacteriol 1997; 179:187-93. [PMID: 8981997 PMCID: PMC178678 DOI: 10.1128/jb.179.1.187-193.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alginate production in mucoid Pseudomonas aeruginosa isolates from cystic fibrosis patients is under direct control by AlgU, the P. aeruginosa equivalent of the extreme heat shock sigma factor sigma(E) in gram-negative bacteria, and AlgR, a response regulator from the superfamily of two-component signal transduction systems. In this report, we describe the identification of the algZ gene, located immediately upstream of algR, which is involved in the control of alginate production. The predicted product of the algZ gene showed similarity to a subset of sensory components from the superfamily of signal transduction systems but lacked several of the highly conserved motifs typical of histidine protein kinases. Inactivation of algZ in the wild-type standard genetic strain PAO1 did not affect its nonmucoid morphology. However, inactivation of algZ in a mucoid mutant P. aeruginosa strain, which had AlgU freed from control by the anti-sigma factor MucA, resulted in increased alginate production under growth conditions which did not permit expression of mucoidy in the parental algZ+ strain. The observed effects were abrogated when algR was inactivated in the algZ::Tc(r) background. These findings indicate that algZ plays a regulatory role in alginate production, possibly interacting with AlgR, and that it may have negative effects on expression of the mucoid phenotype under the conditions tested. The presented results suggest that elements of negative regulation exist at the levels of both the alternative sigma factor AlgU and the transcriptional activator AlgR which, once relieved from that suppression, cooperate to bring about the expression of the alginate system.
Collapse
Affiliation(s)
- H Yu
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | | | | | |
Collapse
|
123
|
Elzer PH, Phillips RW, Robertson GT, Roop RM. The HtrA stress response protease contributes to resistance of Brucella abortus to killing by murine phagocytes. Infect Immun 1996; 64:4838-41. [PMID: 8890248 PMCID: PMC174454 DOI: 10.1128/iai.64.11.4838-4841.1996] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Compared with virulent Brucella abortus 2308, the isogenic htrA mutant PHE1 shows decreased resistance to killing by cultured murine neutrophils and macrophages and significant attenuation during the early stages of infection in the BALB/c mouse model. These findings further define the contributions of the htrA gene product to the pathogenesis of B. abortus infections.
Collapse
Affiliation(s)
- P H Elzer
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | |
Collapse
|
124
|
Baynham PJ, Wozniak DJ. Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol Microbiol 1996; 22:97-108. [PMID: 8899712 DOI: 10.1111/j.1365-2958.1996.tb02659.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transcriptional activation of the Pseudomonas aeruginosa algD gene results in high-level synthesis of the capsular polysaccharide alginate, an important P. aeruginosa virulence factor expressed in cystic fibrosis (CF) patients with chronic pulmonary disease. In this study, electrophoretic mobility-shift assays were used to identify a novel protein (AlgZ), which binds specifically to a sequence located 280 bp upstream of the algD promoter. While AlgZ-binding activity did not require the response regulators AlgB or AlgR, expression of AlgZ was found to be absolutely dependent on the alternative sigma factor AlgT. Electrophoretic mobility-shift assays and copper-phenanthroline footprinting localized AlgZ binding to a 36 bp algD region, which includes several helical repeats. A collection of alginate-producing (mucoid) and non-mucoid P. aeruginosa strains, derived from CF patients, was characterized for AlgZ-binding activity. In all cases, AlgZ binding to algD sequences was observed when extracts derived from mucoid P. aeruginosa CF isolates were examined. However, this binding activity was not present when extracts from non-mucoid P. aeruginosa CF isolates were tested. Oligonucleotide mutagenesis was employed to create an algD allele with a 4 bp mutation in the predicted AlgZ-binding site (algD38) and a heterologous substitution allele (algD40), in which the entire AlgZ-binding site was replaced with a non-specific DNA sequence of identical size. When the algD38 mutation was cloned into an algD-cat transcriptional fusion, this resulted in a 28-fold reduction in algD expression, whereas the algD40 mutation abolished algD transcription, indicating that AlgZ acts as an activator of algD transcription. These results support the hypothesis that activation of algD involves the formation of a high-order looped structure allowing for multivalent contacts between AlgZ, AlgR and RNA polymerase containing the alternative sigma factor AlgT. Characterization of the molecular details of algD activation will provide insights into the control of other prokaryotic and eukaryotic promoters that utilize multiple activators.
Collapse
Affiliation(s)
- P J Baynham
- Department of Microbiology and Immunology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
125
|
Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60:539-74. [PMID: 8840786 PMCID: PMC239456 DOI: 10.1128/mr.60.3.539-574.1996] [Citation(s) in RCA: 854] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
Collapse
Affiliation(s)
- J R Govan
- Department of Medical Microbiology, University of Edinburgh Medical School, Scotland
| | | |
Collapse
|
126
|
Schurr MJ, Yu H, Martinez-Salazar JM, Boucher JC, Deretic V. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 1996; 178:4997-5004. [PMID: 8759866 PMCID: PMC178285 DOI: 10.1128/jb.178.16.4997-5004.1996] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The alternative sigma factor AlgU (Pseudomonas aeruginosa sigma E) is required for full resistance of P. aeruginosa to oxidative stress and extreme temperatures. AlgU also controls conversion of P. aeruginosa to the mucoid, alginate-overproducing phenotype associated with lethal infections in cystic fibrosis patients. Mutations that cause conversion to mucoidy in cystic fibrosis isolates occur frequently in mucA, the second gene within the algU mucABCD gene cluster. Here we analyze the biochemical basis of conversion to mucoidy. MucA was shown to act as an anti-sigma factor by binding to AlgU and inhibiting its activity. MucB, another negative regulator of AlgU, was localized in the periplasm. MucB exerts its function from this compartment, since deletion of the leader peptide and the cytoplasmic location of MucB abrogated its ability to inhibit mucoidy. These data support a model in which a multicomponent system, encompassing an anti-delta factor and elements in the periplasmic compartment, modulates activity of AlgU. Since factors controlling AlgU are conserved in other gram-negative bacteria, the processes controlling conversion to mucoidy in P. aeruginosa may be applicable to the regulation of AlgU (sigma E) equivalents in other organisms.
Collapse
Affiliation(s)
- M J Schurr
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | | | | | |
Collapse
|
127
|
Yu H, Boucher JC, Hibler NS, Deretic V. Virulence properties of Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (sigmaE). Infect Immun 1996; 64:2774-81. [PMID: 8698507 PMCID: PMC174138 DOI: 10.1128/iai.64.7.2774-2781.1996] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A discerning feature of Pseudomonas aeruginosa strains causing chronic endobronchial infections in cystic fibrosis is their conversion into the mucoid, exopolysaccharide alginate-overproducing phenotype. This morphologically prominent change is caused by mutations which upregulate AlgU (sigma(E)), a novel extreme-stress sigma factor with functional equivalents in gram-negative organisms. In this work, we investigated the role of algU in P. aeruginosa sensitivity to reactive oxygen intermediates, killing by phagocytic cells, and systemic virulence of this bacterium. Inactivation of algU in P. aeruginosa PA01 increased its susceptibility to killing by chemically or enzymatically generated halogenated reactive oxygen intermediates and reduced its survival in bactericidal assays with J774 murine macrophages and human neutrophils. Surprisingly, inactivation of algU caused increased systemic virulence of P. aeruginosa in mouse models of acute infection. The increased lethality of the algU-deficient strain was also observed in the endotoxin-resistant C3H/HeJ mice. Only minor differences between algU+ and algU mutant cells in their sensitivity to human serum were observed, and no differences in their lipopolysaccharide profiles were detected. Intriguingly, while inactivation of algU downregulated five polypeptides it also upregulated the expression of seven polypeptides as determined by two-dimensional gel analyses, suggesting that algU plays both a positive and a negative role in gene expression in P. aeruginosa. While the observation that algU inactivation increases systemic virulence in P. aeruginosa requires further explanation, this phenomenon contrasts with the apparent selection for strains with upregulated AlgU during colonization of the cystic fibrosis lung and suggests opposing roles for this system in chronic and acute infections.
Collapse
Affiliation(s)
- H Yu
- Department of Microbiology, University of Texas Health Science Center at San Antonio, Texas 78284-7758, USA
| | | | | | | |
Collapse
|
128
|
Martínez-Salazar JM, Moreno S, Nájera R, Boucher JC, Espín G, Soberón-Chávez G, Deretic V. Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 1996; 178:1800-8. [PMID: 8606151 PMCID: PMC177872 DOI: 10.1128/jb.178.7.1800-1808.1996] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The study of the biosynthesis of alginate, the exopolysaccharide produced by Azotobacter vinelandii and Pseudomonas aeruginosa, has biotechnological and medical significance. We report here the identification of the A. vinelandii genes coding for the putative sigma factor AlgU and its negative regulators MucA and MucB through the suppression of the highly mucoid phenotype of an A. vinelandii strain by a plasmid encoding MucA and MucB. The sequences of the A. vinelandii algU, mucA, and mucB genes are highly homologous to those of the corresponding P. aeruginosa genes, AlgU shows 93% identity, and MucA and MucB are 64.4 and 63.9% identical, respectively. Forming part of the same operon as algU, mucA, and mucB, two additional genes (mucC and mucD) were identified and sequenced; the product of the former gene is homologous to ORF4 of Photobacterium sp. strain SS9, and that of the latter gene belongs to the HtrA serine protease family. Interestingly, the nonmucoid A. vinelandii UW136 had a 0.9-kb insertion within the algU gene. A strong correlation between AlgU activity and alginate production by A. vinelandii was also found, as reflected in the level of algD transcription.
Collapse
Affiliation(s)
- J M Martínez-Salazar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Morelos, México
| | | | | | | | | | | | | |
Collapse
|