101
|
Kjeldsen KR, Nielsen J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 2009; 102:583-97. [PMID: 18985611 DOI: 10.1002/bit.22067] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A genome-scale metabolic model of the Gram-positive bacteria Corynebacterium glutamicum ATCC 13032 was constructed comprising 446 reactions and 411 metabolites, based on the annotated genome and available biochemical information. The network was analyzed using constraint based methods. The model was extensively validated against published flux data, and flux distribution values were found to correlate well between simulations and experiments. The split pathway of the lysine synthesis pathway of C. glutamicum was investigated, and it was found that the direct dehydrogenase variant gave a higher lysine yield than the alternative succinyl pathway at high lysine production rates. The NADPH demand of the network was not found to be critical for lysine production until lysine yields exceeded 55% (mmol lysine (mmol glucose)(-1)). The model was validated during growth on the organic acids acetate and lactate. Comparable flux values between in silico model and experimental values were seen, although some differences in the phenotypic behavior between the model and the experimental data were observed.
Collapse
Affiliation(s)
- Kjeld Raunkjaer Kjeldsen
- Center for Microbial Biotechnology, DTU Biosys, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
102
|
Lasaosa M, Delmotte N, Huber CG, Melchior K, Heinzle E, Tholey A. A 2D reversed-phase × ion-pair reversed-phase HPLC-MALDI TOF/TOF-MS approach for shotgun proteome analysis. Anal Bioanal Chem 2008; 393:1245-56. [DOI: 10.1007/s00216-008-2539-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/13/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
103
|
Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C. Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology (Reading) 2008; 154:3917-3930. [DOI: 10.1099/mic.0.2008/021204-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jens O. Krömer
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| | - Christoph J. Bolten
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| | - Elmar Heinzle
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| | | | - Christoph Wittmann
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| |
Collapse
|
104
|
Buchinger S, Strösser J, Rehm N, Hänssler E, Hans S, Bathe B, Schomburg D, Krämer R, Burkovski A. A combination of metabolome and transcriptome analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator AmtR. J Biotechnol 2008; 140:68-74. [PMID: 19041910 DOI: 10.1016/j.jbiotec.2008.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/30/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
The effects of a deletion of the amtR gene, encoding the master regulator of nitrogen control in Corynebacterium glutamicum, were investigated by metabolome and transcriptome analyses. Compared to the wild type, different metabolite patterns were observed in respect to glycolysis, pentose phosphate pathway, citric acid cycle, and most amino acid pools. Not all of these alterations could be attributed to changes at the level of mRNA and must be caused by posttranscriptional regulatory processes. However, subsequently carried out transcriptome analyses, which were confirmed by gel retardation experiments, revealed two new targets of AmtR, the dapD gene, encoding succinylase involved in m-diaminopimelate synthesis, and the mez gene, coding for malic enzyme. The regulation of dapD connects the AmtR-dependent nitrogen control with l-lysine biosynthesis, the regulation of mez with carbon metabolism. An increased l-glutamine pool in the amtR mutant compared to the wild type was correlated with deregulated expression of the AmtR-regulated glnA gene and an increased glutamine synthetase activity. The glutamate pool was decreased in the mutant and also glutamate excretion was impaired.
Collapse
|
105
|
Schaub J, Reuss M. In vivodynamics of glycolysis inEscherichia colishows need for growth-rate dependent metabolome analysis. Biotechnol Prog 2008; 24:1402-7. [DOI: 10.1002/btpr.59] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
106
|
Han SO, Inui M, Yukawa H. Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology (Reading) 2008; 154:3073-3083. [DOI: 10.1099/mic.0.2008/019828-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Sung Ok Han
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), Kyoto 619-0292, Japan
| | - Masayuki Inui
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), Kyoto 619-0292, Japan
| |
Collapse
|
107
|
Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 2008; 19:454-60. [PMID: 18760356 DOI: 10.1016/j.copbio.2008.08.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 07/23/2008] [Accepted: 08/01/2008] [Indexed: 11/23/2022]
Abstract
Microorganisms capable of efficient production of amino acids have traditionally been developed by random mutation and selection method, which might cause unwanted physiological changes in cellular metabolism. Rational genome-wide metabolic engineering based on systems and synthetic biology tools, which is termed 'systems metabolic engineering', is rising as an alternative to overcome these problems. Recently, several amino acid producers have been successfully developed by systems metabolic engineering, where the metabolic engineering procedures were performed within a systems biology framework, and entire metabolic networks, including complex regulatory circuits, were engineered in an integrated manner. Here we review the current status of systems metabolic engineering successfully applied for developing amino acid producing strains and discuss future prospects.
Collapse
|
108
|
Kashiwagi A, Sakurai T, Tsuru S, Ying BW, Mori K, Yomo T. Construction of Escherichia coli gene expression level perturbation collection. Metab Eng 2008; 11:56-63. [PMID: 18790072 DOI: 10.1016/j.ymben.2008.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/22/2008] [Accepted: 08/14/2008] [Indexed: 01/20/2023]
Abstract
We generated 61 strains of Escherichia coli in which the expression level of a specific single gene can be changed continuously over a physiologically significant range. In each strain, one auxotrophic gene was deleted from its original position and reinserted at a specific position on the chromosome under the control of the tetA promoter. Therefore, the level of expression of the target gene can be controlled easily by altering the concentrations of inducers, e.g., anhydrotetracycline and doxycycline, in the medium. Protein and mRNA levels and changes in proliferation rate were examined in some of the strains in our collection to determine the ability to control the level of target gene expression over a physiologically significant range. These strains will be useful for extracting omics data sets and for the construction of genome-scale mathematical models, because causality between perturbations in gene expression level and their consequences can be clearly determined.
Collapse
Affiliation(s)
- Akiko Kashiwagi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
109
|
Sanchez S, Demain AL. Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 2008; 1:283-319. [PMID: 21261849 PMCID: PMC3815394 DOI: 10.1111/j.1751-7915.2007.00015.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/04/2007] [Accepted: 10/23/2007] [Indexed: 12/01/2022] Open
Abstract
Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well-known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum-derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and important target genes and to quantify metabolic activities necessary for further strain improvement.
Collapse
Affiliation(s)
- Sergio Sanchez
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Arnold L. Demain
- Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ 07940, USA
| |
Collapse
|
110
|
Becker J, Klopprogge C, Wittmann C. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb Cell Fact 2008; 7:8. [PMID: 18339202 PMCID: PMC2322953 DOI: 10.1186/1475-2859-7-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 03/13/2008] [Indexed: 11/30/2022] Open
Abstract
Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS) and phosphoenolpyruvate carboxylase (PEPC), whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA) cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield) which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC) to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic flux analysis performed illustrates the high flexibility of the metabolic network of C. glutamicum to compensate for external perturbation. The organism could almost maintain its growth and production performance through a local redirection of the metabolic flux, thereby fulfilling all anabolic and catabolic needs. The formation of the undesired overflow metabolites dihydroxyacetone and glycerol, in the deletion mutant, however, indicates a limiting capacity of the metabolism down-stream of their common precursor glyceraldehyde 3-phosphate and opens possibilities for further strain engineering.
Collapse
Affiliation(s)
- Judith Becker
- Biotechnology Department, Institute for Biochemistry, Westfalian Wilhelms University Münster, Germany.
| | | | | |
Collapse
|
111
|
Zara G, Bardi L, Belviso S, Farris G, Zara S, Budroni M. Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains. J Appl Microbiol 2008; 104:906-14. [DOI: 10.1111/j.1365-2672.2007.03608.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
112
|
van der Werf MJ, Overkamp KM, Muilwijk B, Koek MM, van der Werff-van der Vat BJC, Jellema RH, Coulier L, Hankemeier T. Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources. MOLECULAR BIOSYSTEMS 2008; 4:315-27. [PMID: 18354785 DOI: 10.1039/b717340g] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolomics is an emerging, powerful, functional genomics technology that involves the comparative non-targeted analysis of the complete set of metabolites in an organism. We have set-up a robust quantitative metabolomics platform that allows the analysis of 'snapshot' metabolomes. In this study, we have applied this platform for the comprehensive analysis of the metabolite composition of Pseudomonas putida S12 grown on four different carbon sources, i.e. fructose, glucose, gluconate and succinate. This paper focuses on the microbial aspects of analyzing comprehensive metabolomes, and demonstrates that metabolomes can be analyzed reliably. The technical (i.e. sample work-up and analytical) reproducibility was on average 10%, while the biological reproducibility was approximately 40%. Moreover, the energy charge values of the microbial samples generated were determined, and indicated that no biotic or abiotic changes had occurred during sample work-up and analysis. In general, the metabolites present and their concentrations were very similar after growth on the different carbon sources. However, specific metabolites showed large differences in concentration, especially the intermediates involved in the degradation of the carbon sources studied. Principal component discriminant analysis was applied to identify metabolites that are specific for, i.e. not necessarily the metabolites that show those largest differences in concentration, cells grown on either of these four carbon sources. For selected enzymatic reactions, i.e. the glucose-6-phosphate isomerase, triosephosphate isomerase and phosphoglyceromutase reactions, the apparent equilibrium constants (K(app)) were calculated. In several instances a carbon source-dependent deviation between the apparent equilibrium constant (K(app)) and the thermodynamic equilibrium constant (K(eq)) was observed, hinting towards a potential point of metabolic regulation or towards bottlenecks in biosynthesis routes. For glucose-6-phosphate isomerase and phosphoglyceromutase, the K(app) was larger than K(eq), and the results suggested that the specific enzymatic activities of these two enzymes were too low to reach the thermodynamic equilibrium in growing cells. In contrast, with triosephosphate isomerase the K(app) was smaller than K(eq), and the results suggested that this enzyme is kinetically controlled.
Collapse
|
113
|
Iwatani S, Yamada Y, Usuda Y. Metabolic flux analysis in biotechnology processes. Biotechnol Lett 2008; 30:791-9. [DOI: 10.1007/s10529-008-9633-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 11/28/2022]
|
114
|
de Graaf AA, Venema K. Gaining insight into microbial physiology in the large intestine: a special role for stable isotopes. Adv Microb Physiol 2007; 53:73-168. [PMID: 17707144 DOI: 10.1016/s0065-2911(07)53002-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of the human large intestine for nutrition, health, and disease, is becoming increasingly realized. There are numerous indications of a distinct role for the gut in such important issues as immune disorders and obesity-linked diseases. Research on this long-neglected organ, which is colonized by a myriad of bacteria, is a rapidly growing field that is currently providing fascinating new insights into the processes going on in the colon, and their relevance for the human host. This review aims to give an overview of studies dealing with the physiology of the intestinal microbiota as it functions within and in interaction with the host, with a special focus on approaches involving stable isotopes. We have included general aspects of gut microbial life as well as aspects specifically relating to genomic, proteomic, and metabolomic studies. A special emphasis is further laid on reviewing relevant methods and applications of stable isotope-aided metabolic flux analysis (MFA). We argue that linking MFA with the '-omics' technologies using innovative modeling approaches is the way to go to establish a truly integrative and interdisciplinary approach. Systems biology thus actualized will provide key insights into the metabolic regulations involved in microbe-host mutualism and their relevance for health and disease.
Collapse
Affiliation(s)
- Albert A de Graaf
- Wageningen Center for Food Sciences, PO Box 557, 6700 AN Wageningen, The Netherlands
| | | |
Collapse
|
115
|
Gaigalat L, Schlüter JP, Hartmann M, Mormann S, Tauch A, Pühler A, Kalinowski J. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol 2007; 8:104. [PMID: 18005413 PMCID: PMC2222622 DOI: 10.1186/1471-2199-8-104] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 11/15/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major uptake system responsible for the transport of fructose, glucose, and sucrose in Corynebacterium glutamicum ATCC 13032 is the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The genes encoding PTS components, namely ptsI, ptsH, and ptsF belong to the fructose-PTS gene cluster, whereas ptsG and ptsS are located in two separate regions of the C. glutamicum genome. Due to the localization within and adjacent to the fructose-PTS gene cluster, two genes coding for DeoR-type transcriptional regulators, cg2118 and sugR, are putative candidates involved in the transcriptional regulation of the fructose-PTS cluster genes. RESULTS Four transcripts of the extended fructose-PTS gene cluster that comprise the genes sugR-cg2116, ptsI, cg2118-fruK-ptsF, and ptsH, respectively, were characterized. In addition, it was shown that transcription of the fructose-PTS gene cluster is enhanced during growth on glucose or fructose when compared to acetate. Subsequently, the two genes sugR and cg2118 encoding for DeoR-type regulators were mutated and PTS gene transcription was found to be strongly enhanced in the presence of acetate only in the sugR deletion mutant. The SugR regulon was further characterized by microarray hybridizations using the sugR mutant and its parental strain, revealing that also the PTS genes ptsG and ptsS belong to this regulon. Binding of purified SugR repressor protein to a 21 bp sequence identified the SugR binding site as an AC-rich motif. The two experimentally identified SugR binding sites in the fructose-PTS gene cluster are located within or downstream of the mapped promoters, typical for transcriptional repressors. Effector studies using electrophoretic mobility shift assays (EMSA) revealed the fructose PTS-specific metabolite fructose-1-phosphate (F-1-P) as a highly efficient, negative effector of the SugR repressor, acting in the micromolar range. Beside F-1-P, other sugar-phosphates like fructose-1,6-bisphosphate (F-1,6-P) and glucose-6-phosphate (G-6-P) also negatively affect SugR-binding, but in millimolar concentrations. CONCLUSION In C. glutamicum ATCC 13032 the DeoR-type regulator SugR acts as a pleiotropic transcriptional repressor of all described PTS genes. Thus, in contrast to most DeoR-type repressors described, SugR is able to act also on the transcription of the distantly located genes ptsG and ptsS of C. glutamicum. Transcriptional repression of the fructose-PTS gene cluster is observed during growth on acetate and transcription is derepressed in the presence of the PTS sugars glucose and fructose. This derepression of the fructose-PTS gene cluster is mainly modulated by the negative effector F-1-P, but reduced sensitivity to the other effectors, F-1,6-P or G-6-P might cause differential transcriptional regulation of genes of the general part of the PTS (ptsI, ptsH) and associated genes encoding sugar-specific functions (ptsF, ptsG, ptsS).
Collapse
Affiliation(s)
- Lars Gaigalat
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany.
| | | | | | | | | | | | | |
Collapse
|
116
|
Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J Biotechnol 2007; 132:99-109. [PMID: 17624457 DOI: 10.1016/j.jbiotec.2007.05.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 05/15/2007] [Accepted: 05/25/2007] [Indexed: 11/18/2022]
Abstract
In the present work, metabolic flux engineering of Corynebacterium glutamicum was carried out to increase lysine production. The strategy focused on engineering of the pentose phosphate pathway (PPP) flux by different genetic modifications. Over expression of the zwf gene, encoding G6P dehydrogenase, in the feedback-deregulated lysine-producing strain C. glutamicum ATCC 13032 lysC(fbr) resulted in increased lysine production on different carbon sources including the two major industrial sugars, glucose and sucrose. The additional introduction of the A243T mutation into the zwf gene and the over expression of fructose 1,6-bisphosphatase resulted in a further successive improvement of lysine production. Hereby the point mutation resulted in higher affinity of G6P dehydrogenase towards NADP and reduced sensitivity against inhibition by ATP, PEP and FBP. Overall, the lysine yield increased up to 70% through the combination of the different genetic modifications. Through strain engineering formation of trehalose was reduced by up to 70% due to reduced availability of its precursor G6P. Metabolic flux analysis revealed a 15% increase of PPP flux in response to over expression of the zwf gene. Overall a strong apparent NADPH excess resulted. Redox balancing indicated that this excess is completely oxidized by malic enzyme.
Collapse
Affiliation(s)
- Judith Becker
- Biochemical Engineering, Saarland University, Im Stadtwald, 66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
117
|
Teixeira AP, Carinhas N, Dias JML, Cruz P, Alves PM, Carrondo MJT, Oliveira R. Hybrid semi-parametric mathematical systems: bridging the gap between systems biology and process engineering. J Biotechnol 2007; 132:418-25. [PMID: 17870200 DOI: 10.1016/j.jbiotec.2007.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/22/2007] [Accepted: 08/03/2007] [Indexed: 01/23/2023]
Abstract
Systems biology is an integrative science that aims at the global characterization of biological systems. Huge amounts of data regarding gene expression, proteins activity and metabolite concentrations are collected by designing systematic genetic or environmental perturbations. Then the challenge is to integrate such data in a global model in order to provide a global picture of the cell. The analysis of these data is largely dominated by nonparametric modelling tools. In contrast, classical bioprocess engineering has been primarily founded on first principles models, but it has systematically overlooked the details of the embedded biological system. The full complexity of biological systems is currently assumed by systems biology and this knowledge can now be taken by engineers to decide how to optimally design and operate their processes. This paper discusses possible methodologies for the integration of systems biology and bioprocess engineering with emphasis on applications involving animal cell cultures. At the mathematical systems level, the discussion is focused on hybrid semi-parametric systems as a way to bridge systems biology and bioprocess engineering.
Collapse
Affiliation(s)
- Ana P Teixeira
- IBET/ITQB, Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
118
|
Sekiyama Y, Kikuchi J. Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. PHYTOCHEMISTRY 2007; 68:2320-9. [PMID: 17532017 DOI: 10.1016/j.phytochem.2007.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/30/2007] [Accepted: 04/08/2007] [Indexed: 05/08/2023]
Abstract
Novel technologies for measuring biological systems and methods for visualizing data have led to a revolution in the life sciences. Nuclear magnetic resonance (NMR) techniques can provide information on metabolite structure and metabolic dynamics at the atomic level. We have been developing a new method for measuring the dynamic metabolic network of crude extracts that combines [(13)C(6)]glucose stable isotope labeling of Arabidopsis thaliana and multi-dimensional heteronuclear NMR analysis, whereas most conventional metabolic flux analyses examine proteinogenic amino acids that are specifically labeled with partially labeled substrates such as [2-(13)C(1)]glucose or 10% [(13)C(6)]glucose. To show the validity of our method, we investigated how to obtain information about biochemical reactions, C-C bond formation, and the cleavage of the main metabolites, such as free amino acids, in crude extracts based on the analysis of the (13)C-(13)C coupling pattern in 2D-NMR spectra. For example, the combination of different extraction solvents allows one to distinguish complicated (13)C-(13)C fine couplings at the C2 position of amino acids. As another approach, f1-f3 projection of the HCACO spectrum also helps in the analysis of (13)C-(13)C connectivities. Using these new methods, we present an example that involves monitoring the incorporation profile of [(13)C(6)]glucose into A. thaliana and its metabolic dynamics, which change in a time-dependent manner with atmospheric (12)CO(2) assimilation.
Collapse
Affiliation(s)
- Yasuyo Sekiyama
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi 235-0045, Japan
| | | |
Collapse
|
119
|
Plassmeier J, Barsch A, Persicke M, Niehaus K, Kalinowski J. Investigation of central carbon metabolism and the 2-methylcitrate cycle in Corynebacterium glutamicum by metabolic profiling using gas chromatography–mass spectrometry. J Biotechnol 2007; 130:354-63. [PMID: 17586079 DOI: 10.1016/j.jbiotec.2007.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/18/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
The 2-methylcitrate cycle as the primary way to metabolize propionate was investigated using metabolic profiling. For this purpose, a fast harvesting procedure was applied in which cells growing in liquid minimal medium were harvested by a short centrifugation and freeze-dried. Subsequently, gas chromatography-mass spectrometry of polar extracts derivatized by MSTFA was employed for metabolite characterization. Routinely more than 300 different peaks were obtained in the chromatograms, and 74 substances were identified unequivocally by using pure standards. The procedure provided reliable data which closely relate to prior knowledge on flux distributions during growth on glucose and acetate as carbon sources. Propionate degradation via the 2-methylcitrate cycle was demonstrated on the metabolite level by the detection of the intermediates 2-methylcitrate and 2-methylisocitrate. Further characterization of the 2-methylcitrate cycle was carried out by comparing different mutant strains of this pathway. The growth deficit of a prpD2-mutant strain observed when propionate is added to a culture growing on acetate indicates that the toxic effect of propionate is based on the accumulation of 2-methylcitrate. It could also be shown that the 2-methylcitrate cycle is active in the absence of propionate and might fulfill house-keeping functions in the degradation of fatty acids or branched-chain amino acids.
Collapse
Affiliation(s)
- Jens Plassmeier
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, D-33594 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
120
|
Banta S, Vemula M, Yokoyama T, Jayaraman A, Berthiaume F, Yarmush ML. Contribution of gene expression to metabolic fluxes in hypermetabolic livers induced through burn injury and cecal ligation and puncture in rats. Biotechnol Bioeng 2007; 97:118-37. [PMID: 17009336 PMCID: PMC3199956 DOI: 10.1002/bit.21200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe injury activates many stress-related and inflammatory pathways that can lead to a systemic hypermetabolic state. Prior studies using perfused hypermetabolic rat livers have identified intrinsic metabolic flux changes that were not dependent upon the continual presence of elevated stress hormones and substrate loads. We investigated the hypothesis that such changes may be due to persistent alterations in gene expression. A systemic hypermetabolic response was induced in rats by applying a moderate burn injury followed 2 days later by cecum ligation and puncture (CLP) to produce sepsis. Control animals received a sham-burn followed by CLP, or a sham-burn followed by sham-CLP. Two days after CLP, livers were analyzed for gene expression changes using DNA microarrays and for metabolism alterations by ex vivo perfusion coupled with Metabolic Flux Analysis. Burn injury prior to CLP increased fluxes while decreases in gene expression levels were observed. Conversely, CLP alone significantly increased metabolic gene expression, but decreased many of the corresponding metabolic fluxes. Burn injury combined with CLP led to the most dramatic changes, where concurrent changes in fluxes and gene expression levels occurred in about 1/3 of the reactions. The data are consistent with the notion that in this model, burn injury prior to CLP increased fluxes through post-translational mechanisms with little contribution of gene expression, while CLP treatment up-regulated the metabolic machinery by transcriptional mechanisms. Overall, these data show that mRNA changes measured at a single time point by DNA microarray analysis do not reliably predict metabolic flux changes in perfused livers.
Collapse
Affiliation(s)
- Scott Banta
- Center for Engineering in Medicine, Shriners Hospital for Children, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
121
|
Park JH, Lee KH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 2007; 104:7797-802. [PMID: 17463081 PMCID: PMC1857225 DOI: 10.1073/pnas.0702609104] [Citation(s) in RCA: 413] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The L-valine production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement based on transcriptome analysis and gene knockout simulation of the in silico genome-scale metabolic network. Feedback inhibition of acetohydroxy acid synthase isoenzyme III by L-valine was removed by site-directed mutagenesis, and the native promoter containing the transcriptional attenuator leader regions of the ilvGMEDA and ilvBN operon was replaced with the tac promoter. The ilvA, leuA, and panB genes were deleted to make more precursors available for L-valine biosynthesis. This engineered Val strain harboring a plasmid overexpressing the ilvBN genes produced 1.31 g/liter L-valine. Comparative transcriptome profiling was performed during batch fermentation of the engineered and control strains. Among the down-regulated genes, the lrp and ygaZH genes, which encode a global regulator Lrp and L-valine exporter, respectively, were overexpressed. Amplification of the lrp, ygaZH, and lrp-ygaZH genes led to the enhanced production of L-valine by 21.6%, 47.1%, and 113%, respectively. Further improvement was achieved by using in silico gene knockout simulation, which identified the aceF, mdh, and pfkA genes as knockout targets. The VAMF strain (Val DeltaaceF Deltamdh DeltapfkA) overexpressing the ilvBN, ilvCED, ygaZH, and lrp genes was able to produce 7.55 g/liter L-valine from 20 g/liter glucose in batch culture, resulting in a high yield of 0.378 g of L-valine per gram of glucose. These results suggest that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification, transcriptome profiling, and systems-level in silico analysis.
Collapse
Affiliation(s)
- Jin Hwan Park
- *Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), BioProcess Engineering Research Center
- Center for Systems and Synthetic Biotechnology, Institute for the Biocentury, and
| | - Kwang Ho Lee
- *Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), BioProcess Engineering Research Center
- Center for Systems and Synthetic Biotechnology, Institute for the Biocentury, and
- R & D Center for Bioproducts, CJ Corporation, Seoul 157-724, Korea
| | - Tae Yong Kim
- *Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), BioProcess Engineering Research Center
- Center for Systems and Synthetic Biotechnology, Institute for the Biocentury, and
| | - Sang Yup Lee
- *Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), BioProcess Engineering Research Center
- Center for Systems and Synthetic Biotechnology, Institute for the Biocentury, and
- Department of BioSystems and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
122
|
Çakır T, Kırdar B, Önsan Zİ, Ülgen KÖ, Nielsen J. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2007; 1:18. [PMID: 17408508 PMCID: PMC1855933 DOI: 10.1186/1752-0509-1-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 03/27/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Control effective flux (CEF) of a reaction is the weighted sum of all fluxes through that reaction, derived from elementary flux modes (EFM) of a metabolic network. Change in CEFs under different environmental conditions has earlier been proven to be correlated with the corresponding changes in the transcriptome. Here we use this to investigate the degree of transcriptional regulation of fluxes in the metabolism of Saccharomyces cerevisiae. We do this by quantifying correlations between changes in CEFs and changes in transcript levels for shifts in carbon source, i.e. between the fermentative carbon source glucose and nonfermentative carbon sources like ethanol, acetate, and lactate. The CEF analysis is based on a simple stoichiometric model that includes reactions of the central carbon metabolism and the amino acid metabolism. RESULTS The effect of the carbon shift on the metabolic fluxes was investigated for both batch and chemostat cultures. For growth on glucose in batch (respiro-fermentative) cultures, EFMs with no by-product formation were removed from the analysis of the CEFs, whereas those including any by-products (ethanol, glycerol, acetate, succinate) were omitted in the analysis of growth on glucose in chemostat (respiratory) cultures. This resulted in improved correlations between CEF changes and transcript levels. A regression correlation coefficient of 0.60 was obtained between CEF changes and gene expression changes in the central carbon metabolism for the analysis of 5 different perturbations. Out of 45 data points there were no more than 6 data points deviating from the correlation. Additionally, up- or down-regulation of at least 75% of the genes were in qualitative agreement with the CEF changes for all perturbations studied. CONCLUSION The analysis indicates that changes in carbon source are associated with a high degree of hierarchical regulation of metabolic fluxes in the central carbon metabolism as the change in fluxes are correlating directly with the change in transcript levels of genes encoding their corresponding enzymes. For amino acid biosynthesis there was, however, not found to exist a similar correlation, and this may point to either post-transcriptional and/or metabolic regulation, or be due to the absence of a direct perturbation on the amino acid pathways in these experiments.
Collapse
Affiliation(s)
- Tunahan Çakır
- Boğaziçi University, Department of Chemical Engineering, 34342, Bebek, Istanbul, Turkey
| | - Betül Kırdar
- Boğaziçi University, Department of Chemical Engineering, 34342, Bebek, Istanbul, Turkey
| | - Z İlsen Önsan
- Boğaziçi University, Department of Chemical Engineering, 34342, Bebek, Istanbul, Turkey
| | - Kutlu Ö Ülgen
- Boğaziçi University, Department of Chemical Engineering, 34342, Bebek, Istanbul, Turkey
| | - Jens Nielsen
- Center for Microbial Biotechnology, Biocentrum-DTU, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
123
|
Abstract
Fluxome analysis aims at the quantitative analysis of in vivo carbon fluxes in metabolic networks, i. e. intracellular activities of enzymes and pathways. It allows investigating the effects of genetic or environmental modifications and thus precisely provides a global perspective on the integrated genetic and metabolic regulation within the intact metabolic network. The experimental and computational approaches developed in this area have revealed fascinating insights into metabolic properties of various biological systems. Most of the comprehensive approaches for metabolic flux studies today involve isotopic tracer studies and GC-MS for measurement of the labeling pattern of metabolites. Initially developed and applied mainly in the field of biomedicine these GC-MS based metabolic flux approaches have been substantially extended and optimized during recent years and today display a key technology in metabolic physiology and biotechnology.
Collapse
Affiliation(s)
- Christoph Wittmann
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
124
|
Singh OV. Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 2007; 6:5481-92. [PMID: 16972298 DOI: 10.1002/pmic.200600200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microbial-mediated attenuation of toxic aromatic pollutants offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. However, incomplete biological information regarding the regulation of growth and metabolism in many microbial communities restricts progress in the site-specific mineralization process. In the postgenomic era, recent advances in MS have allowed enormous progress in proteomics and elucidated many complex biological interactions. These research forefronts are now expanding toward the analysis of low-molecular-weight primary and secondary metabolites analysis, i.e., metabolomics. The advent of 2-DE in conjunction with MS offers a promising approach to address the molecular mechanisms of bioremediation. The two fields of proteomics and metabolomics have thus far worked separately to identify proteins and primary and secondary metabolites during bioremediation. A simultaneous study combining functional proteomics and metabolomics, i.e., proteometabolomics would create a system-wide approach to studying site-specific microorganisms during active mineralization processes. This article deals with advances in environmental proteomics and metabolomics and advocates the simultaneous study of both technologies to implement cell-free bioremediation.
Collapse
Affiliation(s)
- Om V Singh
- Department of Pediatrics, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
125
|
Schluesener D, Rögner M, Poetsch A. Evaluation of two proteomics technologies used to screen the membrane proteomes of wild-type Corynebacterium glutamicum and an L-lysine-producing strain. Anal Bioanal Chem 2007; 389:1055-64. [PMID: 17221235 DOI: 10.1007/s00216-006-0997-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/17/2006] [Accepted: 11/07/2006] [Indexed: 11/24/2022]
Abstract
The membrane proteomes of a wild-type Corynebacterium glutamicum and an L-lysine-producing strain were quantitatively analyzed by two complementary proteomics techniques -- anion exchange chromatography AIEC/SDS-PAGE and 16BAC-PAGE/SDS-PAGE -- and the results were compared. Although both techniques allow for the fast screening of differences in protein abundance, AIEC/SDS-PAGE was superior to 16BAC-PAGE/SDS-PAGE with respect to protein separation, it was more suitable for relative protein quantification, and allowed more differentially regulated proteins to be detected (the succinate dehydrogenase complex, an ABC-type cobalamin/Fe(3+) siderophore transport system, the maltose binding protein, and a subunit of the cytochrome bc-aa(3) supercomplex were upregulated, while a periplasmic component of an ABC-type transporter and an iron-regulated ABC-type transporter were downregulated in the producer). The results indicate the important role of tricarboxylic acid cycle enzymes as well as the adaptation of transport processes in L-lysine-producing cells. Since the only genetic differences between the wild type and the L-lysine producer occur between four central metabolic enzymes in the cytoplasm, our study illustrates the complex effects of metabolic engineering on cell physiology and the power of the new AIEC/SDS-PAGE proteomics approach to detect these effects.
Collapse
Affiliation(s)
- Daniela Schluesener
- Lehrstuhl für Biochemie der Pflanzen, Ruhr Universität Bochum, 44780, Bochum, Germany
| | | | | |
Collapse
|
126
|
De Keersmaecker SCJ, Thijs IMV, Vanderleyden J, Marchal K. Integration of omics data: how well does it work for bacteria? Mol Microbiol 2006; 62:1239-50. [PMID: 17040488 DOI: 10.1111/j.1365-2958.2006.05453.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the current omics era, innovative high-throughput technologies allow measuring temporal and conditional changes at various cellular levels. Although individual analysis of each of these omics data undoubtedly results into interesting findings, it is only by integrating them that gaining a global insight into cellular behaviour can be aimed at. A systems approach thus is predicated on data integration. However, because of the complexity of biological systems and the specificities of the data-generating technologies (noisiness, heterogeneity, etc.), integrating omics data in an attempt to reconstruct signalling networks is not trivial. Developing its methodologies constitutes a major research challenge. Besides for their intrinsic value towards health care, environment and industry, prokaryotes are ideal model systems to further develop these methods because of their lower regulatory complexity compared with eukaryotes, and the ease with which they can be manipulated. Several successful examples outlined in this review already show the potential of the systems approach for both fundamental and industrial applications, which would be time-consuming or impossible to develop solely through traditional reductionist approaches.
Collapse
Affiliation(s)
- Sigrid C J De Keersmaecker
- Centre of Microbial and Plant Genetics (CMPG) Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Belgium
| | | | | | | |
Collapse
|
127
|
Schilling O, Frick O, Herzberg C, Ehrenreich A, Heinzle E, Wittmann C, Stülke J. Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: transcription regulation is important but not sufficient to account for metabolic adaptation. Appl Environ Microbiol 2006; 73:499-507. [PMID: 17122393 PMCID: PMC1796986 DOI: 10.1128/aem.02084-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Bacillus subtilis can use sugars or organic acids as sources of carbon and energy. These nutrients are metabolized by glycolysis, the pentose phosphate pathway, and the Krebs citric acid cycle. While the response of B. subtilis to the availability of sugars is well understood, much less is known about the changes in metabolism if organic acids feeding into the Krebs cycle are provided. If B. subtilis is supplied with succinate and glutamate in addition to glucose, the cells readjust their metabolism as determined by transcriptome and metabolic flux analyses. The portion of glucose-6-phosphate that feeds into the pentose phosphate pathway is significantly increased in the presence of organic acids. Similarly, important changes were detected at the level of pyruvate and acetyl coenzyme A (acetyl-CoA). In the presence of organic acids, oxaloacetate formation is strongly reduced, whereas the formation of lactate is significantly increased. The alsSD operon required for acetoin formation is strongly induced in the presence of organic acids; however, no acetoin formation was observed. The recently discovered phosphorylation of acetolactate decarboxylase may provide an additional level of control of metabolism. In the presence of organic acids, both types of analyses suggest that acetyl-CoA was catabolized to acetate rather than used for feeding the Krebs cycle. Our results suggest that future work has to concentrate on the posttranslational mechanisms of metabolic regulation.
Collapse
Affiliation(s)
- Oliver Schilling
- Abteilung Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
128
|
Iwatani S, Van Dien S, Shimbo K, Kubota K, Kageyama N, Iwahata D, Miyano H, Hirayama K, Usuda Y, Shimizu K, Matsui K. Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 2006; 128:93-111. [PMID: 17055605 DOI: 10.1016/j.jbiotec.2006.09.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 08/16/2006] [Accepted: 09/08/2006] [Indexed: 12/01/2022]
Abstract
Metabolic flux analysis using (13)C-labeled substrates is a well-developed method for investigating cellular behavior in steady-state culture condition. To extend its application, in particular to typical industrial conditions, such as batch and fed-batch cultivations, a novel method of (13)C metabolic flux analysis is proposed. An isotopomer balancing model was developed to elucidate flux distributions in the central metabolism and all amino acids synthetic pathways. A lysine-producing strain of Escherichia coli was cultivated by fed-batch mode in a growth medium containing yeast extract. Mass distribution data was derived from both intracellular free amino acids and proteinogenic amino acids measured by LC-MS/MS, and a correction parameter for the protein turnover effect on the mass distributions of intracellular amino acids was introduced. Metabolic flux distributions were determined in both exponential and stationary phases. Using this new approach, a culture phase-dependent metabolic shift was detected in the fed-batch culture. The approach presented here has great potential for investigating cellular behavior in industrial processes, independent of cultivation modes, metabolic phase and growth medium.
Collapse
Affiliation(s)
- Shintaro Iwatani
- Systems Biology Group, Institute of Life Sciences, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Ehrenreich A. DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol 2006; 73:255-73. [PMID: 17043830 DOI: 10.1007/s00253-006-0584-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
DNA microarrays have found widespread use as a flexible tool to investigate bacterial metabolism. Their main advantage is the comprehensive data they produce on the transcriptional response of the whole genome to an environmental or genetic stimulus. This allows the microbiologist to monitor metabolism and to define stimulons and regulons. Other fields of application are the identification of microorganisms or the comparison of genomes. The importance of this technology increases with the number of sequenced genomes and the falling prices for equipment and oligonucleotides. Knowledge of DNA microarrays is of rising relevance for many areas in microbiological research. Much literature has been published on various specific aspects of this technique that can be daunting to the casual user and beginner. This article offers a comprehensive outline of microarray technology for transcription analysis in microbiology. It shortly discusses the types of DNA microarrays available, the printing of custom arrays, common labeling strategies for targets, hybridization, scanning, normalization, and clustering of expression data.
Collapse
Affiliation(s)
- Armin Ehrenreich
- Institute of Microbiology and Genetics, Georg August University, 37077 Göttingen, Germany.
| |
Collapse
|
130
|
Stephan S, Heinzle E, Wenzel SC, Krug D, Müller R, Wittmann C. Metabolic physiology of Pseudomonas putida for heterologous production of myxochromide. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
131
|
Krömer JO, Wittmann C, Schröder H, Heinzle E. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 2006; 8:353-69. [PMID: 16621639 DOI: 10.1016/j.ymben.2006.02.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 12/21/2005] [Accepted: 02/01/2006] [Indexed: 11/23/2022]
Abstract
Metabolic pathway analysis was carried out to predict the metabolic potential of Corynebacterium glutamicum and Escherichia coli for the production of L-methionine. Based on detailed stoichiometric models for these organisms, this allowed the calculation of the theoretically optimal methionine yield and related metabolic fluxes for various scenarios involving different mutants and process conditions. The theoretical optimal methionine yield on the substrates glucose, sulfate and ammonia for the wildtype of C. glutamicum is 0.49 (C-mol) (C-mol)(-1), whereas the E. coli wildtype exhibits an even higher potential of 0.52 (C-mol) (C-mol)(-1). Both strains showed completely different optimal flux distributions. C. glutamicum has a high flux through the pentose phosphate pathway (PPP), whereas the TCA cycle flux is very low. Additionally, it recruits a metabolic cycle, which involves 2-oxoglutarate and glutamate. In contrast, E. coli does minimize the flux through the PPP, and the flux through the TCA cycle is high. The improved potential of the E. coli wildtype is due to its membrane-bound transhydrogenase and its glycine cleavage system as shown by additional simulations with theoretical mutants. A key point for maximizing methionine yield is the choice of the sulfur source. Replacing sulfate by thiosulfate or sulfide increased the maximal theoretical yield in C. glutamicum up to 0.68 (C-mol) (C-mol)(-1). A further increase is possible by the application of additional C1 sources. The highest theoretical potential was obtained for C. glutamicum applying methanethiol as combined source for C1 carbon and sulfur (0.91 (C-mol) (C-mol)(-1)). Substrate requirement for maintenance purposes reduces theoretical methionine yields. In the case of sulfide used as sulfur source a maintenance requirement of 9.2 mmol ATP g(-1) h(-1), as was observed under stress conditions, would reduce the maximum theoretical yield from 67.8% to 47% at a methionine production rate of 0.65 mmol g(-1) h(-1). The enormous capability of both organisms encourages the development of biotechnological methionine production, whereby the use of metabolic pathway analysis, as shown, provides valuable advice for future strategies in strain and process improvement.
Collapse
Affiliation(s)
- Jens Olaf Krömer
- Biochemical Engineering, Saarland University, Saarbrücken, Germany
| | | | | | | |
Collapse
|
132
|
Papa R, Glagla S, Danchin A, Schweder T, Marino G, Duilio A. Proteomic identification of a two-component regulatory system in Pseudoalteromonas haloplanktis TAC125. Extremophiles 2006; 10:483-91. [PMID: 16791470 DOI: 10.1007/s00792-006-0525-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
The capability of microorganisms to utilize different carbohydrates as energy source reflects the availability of these substrates in their habitat. Investigation of the proteins involved in carbohydrate usage, in parallel with analysis of their expression, is then likely to provide information on the interaction between microorganisms and their ecosystem. We analysed the growth behaviour of the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in the presence and in the absence of different carbon source. A marked increase in the optical density was detected when L: -malate was added to the growth medium. Bacterial proteins differently expressed in the presence of L: -malate were identified by proteomic profiling experiments. On the basis of their relative increase, six proteins were selected for further analyses. Among these, the expression of a putative outer membrane porin was demonstrated to be heavily induced by L: -malate. The presence of a functionally active two-component regulatory system very likely controlled by L: -malate was found in the upstream region of the porin gene. A non functional genomic porin mutant was then constructed showing a direct involvement of the protein in the uptake of L: -malate. To the best of our knowledge, the occurrence of such a regulatory system has never been reported in Pseudoalteromonads so far and might constitute a key step in the development of an effective inducible cold expression system.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Organic Chemistry and Biochemistry, Federico II University of Naples, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
133
|
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W. Emerging Corynebacterium glutamicum systems biology. J Biotechnol 2006; 124:74-92. [PMID: 16406159 DOI: 10.1016/j.jbiotec.2005.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 10/12/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
Corynebacterium glutamicum is widely used for the biotechnological production of amino acids. Amino acid producing strains have been improved classically by mutagenesis and screening as well as in a rational manner using recombinant DNA technology. Metabolic flux analysis may be viewed as the first systems approach to C. glutamicum physiology since it combines isotope labeling data with metabolic network models of the biosynthetic and central metabolic pathways. However, only the complete genome sequence of C. glutamicum and post-genomics methods such as transcriptomics and proteomics have allowed characterizing metabolic and regulatory properties of this bacterium on a truly global level. Besides transcriptomics and proteomics, metabolomics and modeling approaches have now been established. Systems biology, which uses systematic genomic, proteomic and metabolomic technologies with the final aim of constructing comprehensive and predictive models of complex biological systems, is emerging for C. glutamicum. We will present current developments that advanced our insight into fundamental biology of C. glutamicum and that in the future will enable novel biotechnological applications for the improvement of amino acid production.
Collapse
|
134
|
Krömer JO, Heinzle E, Schröder H, Wittmann C. Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J Bacteriol 2006; 188:609-18. [PMID: 16385051 PMCID: PMC1347288 DOI: 10.1128/jb.188.2.609-618.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present work, the metabolic consequences of the deletion of the methionine and cysteine biosynthesis repressor protein (McbR) in Corynebacterium glutamicum, which releases almost all enzymes of methionine biosynthesis and sulfate assimilation from transcriptional regulation (D. A. Rey, A. Pühler, and J. Kalinowski, J. Biotechnol. 103:51-65, 2003), were studied. C. glutamicum ATCC 13032 DeltamcbR showed no overproduction of methionine. Metabolome analysis revealed drastic accumulation of a single metabolite, which was not present in the wild type. It was identified by isotopic labeling studies and gas chromatography/mass spectrometry as L-homolanthionine {S-[(3S)-3-amino-3-carboxypropyl]-L-homocysteine}. The accumulation of homolanthionine to an intracellular concentration of 130 mM in the DeltamcbR strain was accompanied by an elevated intracellular homocysteine level. It was shown that cystathionine-gamma-synthase (MetB) produced homolanthionine as a side reaction. MetB showed higher substrate affinity for cysteine (Km = 260 microM) than for homocysteine (Km = 540 microM). The cell is able to cleave homolanthionine at low rates via cystathionine-beta-lyase (MetC). This cleavage opens a novel threonine-independent pathway for isoleucine biosynthesis via 2-oxobutanoate formed by MetC. In fact, the deletion mutant exhibited an increased intracellular isoleucine level. Metabolic flux analysis of C. glutamicum DeltamcbR revealed that only 24% of the O-acetylhomoserine at the entry of the methionine pathway is utilized for methionine biosynthesis; the dominating fraction is either stored as homolanthionine or redirected towards the formation of isoleucine. Deletion of metB completely prevents homolanthionine accumulation, which is regarded as an important step in the development of C. glutamicum strains for biotechnological methionine production.
Collapse
Affiliation(s)
- Jens Olaf Krömer
- Biochemical Engineering, Saarland University, P.O. Box 151150, 66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
135
|
Affiliation(s)
- Dong-Eun Chang
- Advanced Center for Genome Technology, The University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
136
|
Vemuri GN, Aristidou AA. Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiol Mol Biol Rev 2006; 69:197-216. [PMID: 15944454 PMCID: PMC1197421 DOI: 10.1128/mmbr.69.2.197-216.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of regulatory control in metabolic processes is widely acknowledged, and several enquiries (both local and global) are being made in understanding regulation at various levels of the metabolic hierarchy. The wealth of biological information has enabled identifying the individual components (genes, proteins, and metabolites) of a biological system, and we are now in a position to understand the interactions between these components. Since phenotype is the net result of these interactions, it is immensely important to elucidate them not only for an integrated understanding of physiology, but also for practical applications of using biological systems as cell factories. We present some of the recent "-omics" approaches that have expanded our understanding of regulation at the gene, protein, and metabolite level, followed by analysis of the impact of this progress on the advancement of metabolic engineering. Although this review is by no means exhaustive, we attempt to convey our ideology that combining global information from various levels of metabolic hierarchy is absolutely essential in understanding and subsequently predicting the relationship between changes in gene expression and the resulting phenotype. The ultimate aim of this review is to provide metabolic engineers with an overview of recent advances in complementary aspects of regulation at the gene, protein, and metabolite level and those involved in fundamental research with potential hurdles in the path to implementing their discoveries in practical applications.
Collapse
Affiliation(s)
- Goutham N Vemuri
- Center for Molecular BioEngineering, Drifmier Engineering Center, University of Georgia, Athens, 30605, USA
| | | |
Collapse
|
137
|
Vertès AA, Inui M, Yukawa H. Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol 2006; 71:7633-42. [PMID: 16332735 PMCID: PMC1317429 DOI: 10.1128/aem.71.12.7633-7642.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alain A Vertès
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizu, Soraku, Kyoto 619-0292, Japan
| | | | | |
Collapse
|
138
|
Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 2006; 71:8587-96. [PMID: 16332851 PMCID: PMC1317465 DOI: 10.1128/aem.71.12.8587-8596.2005] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The overexpression of fructose 1,6-bisphosphatase (FBPase) in Corynebacterium glutamicum leads to significant improvement of lysine production on different sugars. Amplified expression of FBPase via the promoter of the gene encoding elongation factor TU (EFTU) increased the lysine yield in the feedback-deregulated lysine-producing strain C. glutamicum lysCfbr by 40% on glucose and 30% on fructose or sucrose. Additionally formation of the by-products glycerol and dihydroxyacetone was significantly reduced in the PEFTUfbp mutant. As revealed by 13C metabolic flux analysis on glucose the overexpression of FBPase causes a redirection of carbon flux from glycolysis toward the pentose phosphate pathway (PPP) and thus leads to increased NADPH supply. Normalized to an uptake flux of glucose of 100%, the relative flux into the PPP was 56% for C. glutamicum lysCfbr PEFTUfbp and 46% for C. glutamicum lysCfbr. The flux for NADPH supply was 180% in the PEFTUfbp strain and only 146% in the parent strain. Amplification of FBPase increases the production of lysine via an increased supply of NADPH. Comparative studies with another mutant containing the sod promoter upstream of the fbp gene indicate that the expression level of FBPase relates to the extent of the metabolic effects. The overexpression of FBPase seems useful for starch- and molasses-based industrial lysine production with C. glutamicum. The redirection of flux toward the PPP should also be interesting for the production of other NADPH-demanding compounds as well as for products directly stemming from the PPP.
Collapse
Affiliation(s)
- Judith Becker
- Biochemical Engineering, Saarland University, Im Stadtwald, 66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
139
|
Ratcliffe RG, Shachar-Hill Y. Measuring multiple fluxes through plant metabolic networks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:490-511. [PMID: 16441345 DOI: 10.1111/j.1365-313x.2005.02649.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fluxes through metabolic networks are crucial for cell function, and a knowledge of these fluxes is essential for understanding and manipulating metabolic phenotypes. Labeling provides the key to flux measurement, and in network flux analysis the measurement of multiple fluxes allows a flux map to be superimposed on the metabolic network. The principles and practice of two complementary methods, dynamic and steady-state labeling, are described, emphasizing best practice and illustrating their contribution to network flux analysis with examples taken from the plant and microbial literature. The principal analytical methods for the detection of stable isotopes are also described, as well as the procedures for obtaining flux maps from labeling data. A series of boxes summarizing the key concepts of network flux analysis is provided for convenience.
Collapse
Affiliation(s)
- R G Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | |
Collapse
|
140
|
Wang QZ, Wu CY, Chen T, Chen X, Zhao XM. Integrating metabolomics into a systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Appl Microbiol Biotechnol 2006; 70:151-61. [PMID: 16395543 DOI: 10.1007/s00253-005-0277-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/20/2005] [Accepted: 11/27/2005] [Indexed: 12/14/2022]
Abstract
As an important functional genomic tool, metabolomics has been illustrated in detail in recent years, especially in plant science. However, the microbial category also has the potential to benefit from integration of metabolomics into system frameworks. In this article, we first examine the concepts and brief history of metabolomics. Next, we summarize metabolomic research processes and analytical platforms in strain improvements. The application cases of metabolomics in microorganisms answer what the metabolomics can do in strain improvements. The position of metabolomics in this systems biology framework and the real cases of integrating metabolomics into a system framework to explore the microbial metabolic complexity are also illustrated in this paper.
Collapse
Affiliation(s)
- Qing-Zhao Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, People's Republic of China
| | | | | | | | | |
Collapse
|
141
|
Krömer JO, Heinzle E, Wittmann C. Quantification of S-adenosyl Methionine in Microbial Cell Extracts. Biotechnol Lett 2006; 28:69-71. [PMID: 16369687 DOI: 10.1007/s10529-005-4947-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/26/2005] [Accepted: 10/31/2005] [Indexed: 11/27/2022]
Abstract
A sensitive method for quantification of S-adenosyl methionine (SAM) in microbial cell extracts was developed and applied to Corynebacterium glutamicum. The method is based on SAM being completely hydrolyzed into (18)O-homoserine when extracted in boiling H(2) (18)O and thus can be clearly distinguished by GC-MS analysis from naturally labeled homoserine present in the cell extract. Additional quantification of the total homoserine pool, representing both SAM and homoserine, via HPLC allows separate determination of both metabolites.
Collapse
Affiliation(s)
- Jens Olaf Krömer
- Biochemical Engineering, Saarland University, Saarbruecken, Germany
| | | | | |
Collapse
|
142
|
Bölling C, Fiehn O. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. PLANT PHYSIOLOGY 2005; 139:1995-2005. [PMID: 16306140 PMCID: PMC1310576 DOI: 10.1104/pp.105.071589] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A metabolite profiling technique for Chlamydomonas reinhardtii cells for multiparallel analysis of low-molecular weight polar compounds was developed. The experimental protocol was optimized to quickly inactivate enzymatic activity, achieve maximum extraction capacity, and process large sample quantities. As a result of the rapid sampling, extraction, and analysis by gas chromatography coupled to time-of-flight mass spectrometry, more than 800 analytes from a single sample could be measured, of which more than 100 could be identified. Analyte responses could be determined mostly with ses less than 10%. Wild-type cells of C. reinhardtii strain CC-125 subjected to nitrogen-, phosphorus-, sulfur-, or iron-depleted growth conditions develop highly distinctive metabolite profiles. Individual metabolites undergo marked changes in their steady-state levels. Compared to control conditions, sulfur-depleted cells accumulated 4-hydroxyproline more than 50-fold, whereas the amount of 2-ketovaline was reduced to 2% of control levels. The contribution of each compound to the differences observed in the metabolic phenotypes is summarized in a quantitatively rigorous way by principal component analysis, which clearly discriminates the cells from different growth regimes and indicates that phosphorus-depleted conditions induce a deficiency syndrome quite different from the response to nitrogen, sulfur, or iron starvation.
Collapse
Affiliation(s)
- Christian Bölling
- Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam, Germany.
| | | |
Collapse
|
143
|
Rochfort S. Metabolomics reviewed: a new "omics" platform technology for systems biology and implications for natural products research. JOURNAL OF NATURAL PRODUCTS 2005; 68:1813-20. [PMID: 16378385 DOI: 10.1021/np050255w] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Metabolomics is the study of global metabolite profiles in a system (cell, tissue, or organism) under a given set of conditions. The analysis of the metabolome is particularly challenging due to the diverse chemical nature of metabolites. Metabolites are the result of the interaction of the system's genome with its environment and are not merely the end product of gene expression but also form part of the regulatory system in an integrated manner. Metabolomics has its roots in early metabolite profiling studies but is now a rapidly expanding area of scientific research in its own right. Metabolomics (or metabonomics) has been labeled one of the new "omics", joining genomics, transcriptomics, and proteomics as a science employed toward the understanding of global systems biology. Metabolomics is fast becoming one of the platform sciences of the "omics", with the majority of the papers in this field having been published only in the last two years. In this review metabolomic methodologies are discussed briefly followed by a more detailed review of the use of metabolomics in integrated applications where metabolomics information has been combined with other "omic" data sets (proteomics, transcriptomics) to enable greater understanding of a biological system. The potential of metabolomics for natural product drug discovery and functional food analysis, primarily as incorporated into broader "omic" data sets, is discussed.
Collapse
Affiliation(s)
- Simone Rochfort
- Environmental Health and Chemistry, Department of Primary Industries, Primary Industries Research Victoria--Werribee Centre, Victoria, Australia.
| |
Collapse
|
144
|
Park SJ, Lee SY, Cho J, Kim TY, Lee JW, Park JH, Han MJ. Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl Microbiol Biotechnol 2005; 68:567-79. [PMID: 16041571 DOI: 10.1007/s00253-005-0081-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
Through metabolic engineering, scientists seek to modify the metabolic pathways of living organisms to facilitate optimized, efficient production of target biomolecules. During the past decade, we have seen notable improvements in biotechnology, many of which have been based on metabolically engineered microorganisms. Recent developments in the fields of functional genomics, transcriptomics, proteomics, and metabolomics have changed metabolic engineering strategies from the local pathway level to the whole system level. This article focuses on recent advances in the field of metabolic engineering, which have been powered by the combined approaches of the various "omics" that allow us to understand the microbial metabolism at a global scale and to develop more effectively redesigned metabolic pathways for the enhanced production of target bioproducts.
Collapse
Affiliation(s)
- S J Park
- Corporate R&D, LG Chem, Ltd./Research Park, Yuseong-gu, Daejeon, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
145
|
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 2005; 244:259-66. [PMID: 15766777 DOI: 10.1016/j.femsle.2005.01.053] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/29/2004] [Accepted: 01/28/2005] [Indexed: 10/25/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 has four enzyme II (EII) genes of the phosphotransferase system in its genome encoding transporters for sucrose, glucose, fructose, and an unidentified EII. To analyze the function of these EII genes, they were inactivated via homologous recombination and the resulting mutants characterized for sugar utilization. Whereas the sucrose EII was the only transport system for sucrose in C. glutamicum, fructose and glucose were each transported by a second transporter in addition to their corresponding EII. In addition, the ptsF ptsG double mutant carrying deletions in the EII genes for fructose and glucose accumulated fructose in the culture broth when growing on sucrose. As no fructokinase gene exists in the C. glutamicum genome, the fructokinase gene from Clostridium acetobutylicum was expressed in C. glutamicum and resulted in the direct phosphorylation of fructose without any fructose efflux. Accordingly, since fructokinase could direct fructose flux to the pentose phosphate pathway for the supply of NADPH, fructokinase expression may be a potential strategy for enhancing amino acid production.
Collapse
Affiliation(s)
- Min-Woo Moon
- Laboratory of Microbial Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-600, Korea
| | | | | | | | | | | | | |
Collapse
|
146
|
Lee SY, Lee DY, Kim TY. Systems biotechnology for strain improvement. Trends Biotechnol 2005; 23:349-58. [PMID: 15923052 DOI: 10.1016/j.tibtech.2005.05.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 02/28/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
Various high-throughput experimental techniques are routinely used for generating large amounts of omics data. In parallel, in silico modelling and simulation approaches are being developed for quantitatively analyzing cellular metabolism at the systems level. Thus informative high-throughput analysis and predictive computational modelling or simulation can be combined to generate new knowledge through iterative modification of an in silico model and experimental design. On the basis of such global cellular information we can design cells that have improved metabolic properties for industrial applications. This article highlights the recent developments in these systems approaches, which we call systems biotechnology, and discusses future prospects.
Collapse
Affiliation(s)
- Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea.
| | | | | |
Collapse
|
147
|
Wu L, van Winden WA, van Gulik WM, Heijnen JJ. Application of metabolome data in functional genomics: A conceptual strategy. Metab Eng 2005; 7:302-10. [PMID: 16043375 DOI: 10.1016/j.ymben.2005.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 05/11/2005] [Accepted: 05/17/2005] [Indexed: 11/22/2022]
Abstract
A gene with yet unknown physiological function can be studied by changing its expression level followed by analysis of the resulting phenotype. This type of functional genomics study can be complicated by the occurrence of 'silent mutations', the phenotypes of which are not easily observable in terms of metabolic fluxes (e.g., the growth rate). Nevertheless, genetic alteration may give rise to significant yet complicated changes in the metabolome. We propose here a conceptual functional genomics strategy based on microbial metabolome data, which identifies changes in in vivo enzyme activities in the mutants. These predicted changes are used to formulate hypotheses to infer unknown gene functions. The required metabolome data can be obtained solely from high-throughput mass spectrometry analysis, which provides the following in vivo information: (1) the metabolite concentrations in the reference and the mutant strain; (2) the metabolic fluxes in both strains and (3) the enzyme kinetic parameters of the reference strain. We demonstrate in silico that changes in enzyme activities can be accurately predicted by this approach, even in 'silent mutants'.
Collapse
Affiliation(s)
- Liang Wu
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | | | | | | |
Collapse
|
148
|
Koffas M, Stephanopoulos G. Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr Opin Biotechnol 2005; 16:361-6. [PMID: 15961038 DOI: 10.1016/j.copbio.2005.04.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 03/15/2005] [Accepted: 04/28/2005] [Indexed: 11/22/2022]
Abstract
A central goal of systems biology is the elucidation of cell function and physiology through the integrated use of broad based genomic and physiological data. Such systemic approaches have been employed extensively in the past, as they are a central element of metabolic flux analysis, the distribution of kinetic control in pathways, and the key differentiating characteristic of metabolic engineering. In one case study, these tools have been applied to the improvement of lysine-producing strains of Corynebacterium glutamicum. The systematic study of the physiology of this organism allowed the identification of specific metabolic targets and subsequently led to significant improvements in product yield and productivity. This case study can serve as a guide for the development of systems biology tools for the utilization of large volumes of cell- and genome-wide transcriptional and physiological data.
Collapse
Affiliation(s)
- Mattheos Koffas
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 904 Furnas Hall, Buffalo, New York 14260, USA.
| | | |
Collapse
|
149
|
Krömer JO, Fritz M, Heinzle E, Wittmann C. In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal Biochem 2005; 340:171-3. [PMID: 15802143 DOI: 10.1016/j.ab.2005.01.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Indexed: 10/25/2022]
Affiliation(s)
- Jens Olaf Krömer
- Biochemical Engineering Institute, Saarland University, P.O.B. 151150, 66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
150
|
Smid EJ, Molenaar D, Hugenholtz J, de Vos WM, Teusink B. Functional ingredient production: application of global metabolic models. Curr Opin Biotechnol 2005; 16:190-7. [PMID: 15831386 DOI: 10.1016/j.copbio.2005.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biotechnology industry continuously explores new ways to improve the performance of microbial strains in fermentation processes. Recent focus has been on new genome-wide modelling approaches in functional genomics, which aim to take full advantage of genome sequence data, transcription profiling, proteomics and metabolite profiling for strain improvement. The integration of global metabolic models with genetic and regulatory models will be essential for the practice of metabolic engineering for strain improvement to move forward, simply because we cannot rely on our intuition to grasp the complexity of the biological systems involved.
Collapse
Affiliation(s)
- Eddy J Smid
- Wageningen Centre for Food Sciences, PO Box 557, 6700 AN Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|