101
|
Functional and Structural Characterization of P[19] Rotavirus VP8* Interaction with Histo-blood Group Antigens. J Virol 2016; 90:9758-9765. [PMID: 27535055 DOI: 10.1128/jvi.01566-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 01/12/2023] Open
Abstract
Rotaviruses (RVs) of species A (RVA) are a major causative agent of acute gastroenteritis. Recently, histo-blood group antigens (HBGAs) have been reported to interact with human RVA VP8* proteins. Human P[19] is a rare P genotype of porcine origin that infects humans sporadically. The functional and structural characteristics of P[19] VP8* interaction with HBGAs are unknown. In this study, we expressed and purified the VP8* proteins of human and porcine P[19] RVs. In oligosaccharide and saliva binding assays, P[19] VP8* proteins showed obvious binding to A-, B-, and O-type saliva samples irrespective of the secretor status, implying broad binding patterns. However, they did not display specific binding to any of the oligosaccharides tested. In addition, we solved the structure of human P[19] VP8* at 2.4 Å, which revealed a typical galectin-like fold. The structural alignment demonstrated that P[19] VP8* was most similar to that of P[8], which was consistent with the phylogenetic analysis. Structure superimposition revealed the basis for the lack of binding to the oligosaccharides. Our study indicates that P[19] RVs may bind to other oligosaccharides or ligands and may have the potential to spread widely among humans. Thus, it is necessary to place the prevalence and evolution of P[19] RVs under surveillance. IMPORTANCE Human P[19] is a rare P genotype of porcine origin. Based on phylogenetic analysis of VP8* sequences, P[19] was classified in the P[II] genogroup, together with P[4], P[6], and P[8], which have been reported to interact with HBGAs in a genotype-dependent manner. In this study, we explored the functional and structural characteristics of P[19] VP8* interaction with HBGAs. P[19] VP8* showed binding to A-, B-, and O-type saliva samples, as well as saliva of nonsecretors. This implies that P[19] has the potential to spread among humans with a broad binding range. Careful attention should be paid to the evolution and prevalence of P[19] RVs. Furthermore, we solved the structure of P[19] VP8*. Structure superimposition indicated that P[19] may bind to other oligosaccharides or ligands using potential binding sites, suggesting that further investigation of the specific cell attachment factors is warranted.
Collapse
|
102
|
P[8] and P[4] Rotavirus Infection Associated with Secretor Phenotypes Among Children in South China. Sci Rep 2016; 6:34591. [PMID: 27708367 PMCID: PMC5052604 DOI: 10.1038/srep34591] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses are known to recognize human histo-blood group antigens (HBGAs) as a host ligand that is believed to play an important role in rotavirus host susceptibility and host range. In this study, paired fecal and saliva samples collected from children with viral gastroenteritis, as well as paired serum and saliva samples collected from the general population in south China were studied to evaluate potential association between rotavirus infections and human HBGA phenotypes. Rotavirus was detected in 75 (28%) of 266 fecal samples and P[8] rotaviruses were found to be the predominant genotype. The HBGA phenotypes of the rotavirus-infected children were determined through their saliva samples. Secretor statuses were found to correlate with the risk of rotavirus infection and all P[8]/P[4] rotavirus infected children were secretors. Accordingly, recombinant VP8* proteins of the P[8]/P[4] rotaviruses bound saliva samples from secretor individuals. Furthermore, correlation between serum P[8]/P[4]-specific IgG and host Lewis and secretor phenotypes has been found among 206 studied serum samples. Our study supported the association between rotavirus infection and the host HBGA phenotypes, which would help further understanding of rotavirus host range and epidemiology.
Collapse
|
103
|
Mandal P, Mullick S, Nayak MK, Mukherjee A, Ganguly N, Niyogi P, Panda S, Chawla-Sarkar M. Complete genotyping of unusual species A rotavirus G12P[11] and G10P[14] isolates and evidence of frequent in vivo reassortment among the rotaviruses detected in children with diarrhea in Kolkata, India, during 2014. Arch Virol 2016; 161:2773-85. [PMID: 27447463 DOI: 10.1007/s00705-016-2969-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Abstract
Species A rotaviruses (RVA) are the most important cause of acute gastroenteritis in the young of humans and many animal species globally. G1P[8], G2P[4], G3P[8], G4P[8], G9P[6/8] and G12P[6/8] are the predominantly isolated genotypes throughout the world including India. Unusual genotypes from different host species such as G5, G6, G8, G10 and G11 have also been reported in humans with low frequency. In the present study, among >650 RVA positive stool samples collected from children with diarrhea in Kolkata, India, during 2014, two isolates each of the genotype G12P[11] and G10P[14] were obtained and their genomes completely sequenced. The full genotype constellations were G12-P[11]-I1-R1-C1-M2-A1-N1-T2-E1-H1 and G12-P[11]-I1-R1-C1-M1-A5-N1-T1-E1-H1 for G12P[11] viruses, suggesting several reassortments between Wa- and DS-1-like human RVA strains, including possible reassortment of a simian NSP1 gene. The G10P[14] viruses (G10-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3) were found to contain multiple genes closely related to RVAs of artiodactyl origin, highlighting the role of inter-host species transmissions of RVAs. From the G/P constellation of all RVA isolates, it could be concluded that approximately one quarter had likely arisen from reassortment events in vivo among RVAs of 'usual' genotypes.
Collapse
Affiliation(s)
- Paulami Mandal
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Satarupa Mullick
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Mukti Kant Nayak
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Anupam Mukherjee
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | | | | | - Samiran Panda
- National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700010, West Bengal, India.
| |
Collapse
|
104
|
Delogu R, Ianiro G, Morea A, Chironna M, Fiore L, Ruggeri FM. Molecular characterization of two rare human G8P[14] rotavirus strains, detected in Italy in 2012. INFECTION GENETICS AND EVOLUTION 2016; 44:303-312. [PMID: 27449953 DOI: 10.1016/j.meegid.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis. We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012. Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed. These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines.
Collapse
Affiliation(s)
- Roberto Delogu
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Morea
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Fiore
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Franco M Ruggeri
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
105
|
De Grazia S, Dóró R, Bonura F, Marton S, Cascio A, Martella V, Bányai K, Giammanco GM. Complete genome analysis of contemporary G12P[8] rotaviruses reveals heterogeneity within Wa-like genomic constellation. INFECTION GENETICS AND EVOLUTION 2016; 44:85-93. [PMID: 27353490 DOI: 10.1016/j.meegid.2016.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
G12 rotaviruses are globally emergent rotaviruses causing severe childhood gastroenteritis. Little is known about the evolution and diversity of G12P[8] rotaviruses and the possible role that widespread vaccine use, globally, has had on their emergence. In Sicily, Italy, surveillance activity for rotaviruses has been conducted uninterruptedly since 1985, thus representing a unique observatory for the study of human rotaviruses in the pre- and post-vaccine era. G12 rotaviruses were first detected only in 2012 and between 2012 and 2014 they accounted for 8.7% of all rotavirus-associated infections among children, with peaks of 27.8% in 2012/2013 and 21% in 2014. We determined and analyzed the full-genome of 22 G12P[8] rotaviruses collected during the 2012-2014. Although all G12P[8] rotaviruses exhibited a typical Wa-like genotype constellation (G12P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), phylogenetic analysis allowed distinguishing either two or three (sub)lineages in each genome segment. On the basis of the segregation patterns into lineages/sublineages, 20 G12P[8] rotaviruses could be grouped into three stable major genomic sub-constellations, whilst two strains displayed unique genome architectures, likely due to ressortment with co-circulating strains. Altogether, these findings indicate that the onset and prolonged circulation of G12 rotaviruses was due to repeated introductions of different G12 rotaviruses circulating globally. Importantly, as regional rotavirus vaccination was initiated in 2012 reaching a 45% coverage in newborns in 2014, a correlation between the appearance and spread of G12 rotaviruses and the enacted vaccination program could not be drawn. Constant epidemiologic surveillance remains important to monitor the epidemiological dynamics of human rotaviruses.
Collapse
Affiliation(s)
- Simona De Grazia
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Renáta Dóró
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Floriana Bonura
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Szilvia Marton
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio Cascio
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Giovanni M Giammanco
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
106
|
Ward ML, Mijatovic-Rustempasic S, Roy S, Rungsrisuriyachai K, Boom JA, Sahni LC, Baker CJ, Rench MA, Wikswo ME, Payne DC, Parashar UD, Bowen MD. Molecular characterization of the first G24P[14] rotavirus strain detected in humans. INFECTION GENETICS AND EVOLUTION 2016; 43:338-42. [PMID: 27237948 DOI: 10.1016/j.meegid.2016.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 11/15/2022]
Abstract
Here we report the genome of a novel rotavirus A (RVA) strain detected in a stool sample collected during routine surveillance by the Centers for Disease Control and Prevention's New Vaccine Surveillance Network. The strain, RVA/human-wt/USA/2012741499/2012/G24P[14], has a genomic constellation of G24-P[14]-I2-R2-C2-M2-A3-N2-T9-E2-H3. The VP2, VP3, VP7 and NSP3 genes cluster phylogenetically with bovine strains. The other genes occupy mixed clades containing animal and human strains. Strain RVA/human-wt/USA/2012741499/2012/G24P[14] most likely is the product of interspecies transmission and reassortment events. This is the second report of the G24 genotype and the first report of the G24P[14] genotype combination in humans.
Collapse
Affiliation(s)
- M Leanne Ward
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Slavica Mijatovic-Rustempasic
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Sunando Roy
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Kunchala Rungsrisuriyachai
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Julie A Boom
- Texas Children's Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA.
| | | | - Carol J Baker
- Texas Children's Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA.
| | - Marcia A Rench
- Texas Children's Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA.
| | - Mary E Wikswo
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Daniel C Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
107
|
Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus. Sci Rep 2016; 6:25735. [PMID: 27194006 PMCID: PMC4872161 DOI: 10.1038/srep25735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV), rotavirus (RV), and astrovirus (AstV) are important pathogens that transmit through a common fecal-oral route, causing hepatitis (HEV) and gastroenteritis (RV and AstV) respectively in humans. In this study, we developed and evaluated two subunit vaccine candidates that consisted of the same protruding or spike protein antigens of the three viruses in two formats, a fusion of the three antigens into one molecule (fused vaccine) vs. a mixture of the three free antigens together (mixed vaccine). Both vaccines were easily made via E. coli expression system. Mouse immunization experiments showed that the fused vaccine elicited significantly higher antibody responses against the three viral antigens than those induced by the mixed vaccine. In addition, the mouse post-immune antisera of the fused vaccine revealed significantly higher neutralizing titers against HEV infection in cell culture, as well as significantly higher 50% blocking titers (BT50) against RV VP8-HBGA receptor interactions than those of the post-immune antisera after immunization of the mixed vaccine. Thus, the fused vaccine is a promising trivalent vaccine candidate against HEV, RV, and AstV, which is worth for further development.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
108
|
Theuns S, Conceição-Neto N, Zeller M, Heylen E, Roukaerts IDM, Desmarets LMB, Van Ranst M, Nauwynck HJ, Matthijnssens J. Characterization of a genetically heterogeneous porcine rotavirus C, and other viruses present in the fecal virome of a non-diarrheic Belgian piglet. INFECTION GENETICS AND EVOLUTION 2016; 43:135-45. [PMID: 27184192 PMCID: PMC7172746 DOI: 10.1016/j.meegid.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
Next-generation sequencing (NGS) technologies are becoming increasingly accessible, leading to an expanded interest in the composition of the porcine enteric virome. In the present study, the fecal virome of a non-diarrheic Belgian piglet was determined. Although the virome of only a single piglet was analyzed, some interesting data were obtained, including the second complete genome of a pig group C rotavirus (RVC). This Belgian strain was only distantly related to the only other completely characterized pig RVC strain, Cowden. Its relatedness to RVC strains from other host species was also analyzed and the porcine strain found in our study was only distantly related to RVCs detected in humans and cows. The gene encoding the outer capsid protein VP7 belonged to the rare porcine G3 genotype, which might be serologically distinct from most other pig RVC strains. A putative novel RVC VP6 genotype was identified as well. A group A rotavirus strain also present in this fecal sample contained the rare pig genotype combination G11P[27], but was only partially characterized. Typical pig RVA genotypes I5, A8, and T7 were found for the viral proteins VP6, NSP1, and NSP3, respectively. Interestingly, the fecal virome of the piglet also contained an astrovirus and an enterovirus, of which the complete genomes were characterized. Results of the current study indicate that many viruses may be present simultaneously in fecal samples of non-diarrheic piglets. In this study, these viruses could not be directly associated with any disease, but still they might have had a potential subclinical impact on pig growth performance. The fast evolution of NGS will be a powerful tool for future diagnostics in veterinary practice. Its application will certainly lead to better insights into the relevance of many (sub)clinical enteric viral infections, that may have remained unnoticed using traditional diagnostic techniques. This will stimulate the development of new and durable prophylactic measures to improve pig health and production. The virome of a non-diarrheic Belgian piglet was determined. Porcine group C and A rotaviruses, and an astrovirus and enterovirus were found. The second complete genome of a pig group C rotavirus was fully characterized. The Belgian rotavirus C strain was only distantly related to pig strain Cowden. A putative novel genotype of VP6 of the RVC strains was detected.
Collapse
Affiliation(s)
- Sebastiaan Theuns
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium.
| | - Nádia Conceição-Neto
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, B-3000, Leuven, Belgium
| | - Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| | - Inge D M Roukaerts
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Lowiese M B Desmarets
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Marc Van Ranst
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, B-3000, Leuven, Belgium
| | - Hans J Nauwynck
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke B-9820, Belgium
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000 Leuven, Belgium
| |
Collapse
|
109
|
Abstract
A growing body of evidence warrants a revision of the received/conventional wisdom of rotavirus infection as synonymous with acute gastroenteritis. Rotavirus vaccines have boosted our interest and knowledge of this virus, but also importantly, they may have changed the landscape of the disease. Extraintestinal spread of rotavirus is well documented, and the clinical spectrum of the disease is widening. Furthermore, the positive impact of current rotavirus vaccines in reducing seizure hospitalization rates should prompt a reassessment of the actual burden of extraintestinal manifestations of rotavirus diseases. This article discusses current knowledge of the systemic extraintestinal manifestations of rotavirus infection and their underlying mechanisms, and aims to pave the way for future clinical, public health and research questions.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - José Gómez-Rial
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain.
| |
Collapse
|
110
|
Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol 2016; 5:38-62. [PMID: 27175349 PMCID: PMC4861870 DOI: 10.5501/wjv.v5.i2.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines.
Collapse
|
111
|
Ramani S, Hu L, Venkataram Prasad B, Estes MK. Diversity in Rotavirus-Host Glycan Interactions: A "Sweet" Spectrum. Cell Mol Gastroenterol Hepatol 2016; 2:263-273. [PMID: 28090561 PMCID: PMC5042371 DOI: 10.1016/j.jcmgh.2016.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 12/17/2022]
Abstract
Interaction with cellular glycans is a critical initial step in the pathogenesis of many infectious agents. Technological advances in glycobiology have expanded the repertoire of studies delineating host glycan-pathogen interactions. For rotavirus, the VP8* domain of the outer capsid spike protein VP4 is known to interact with cellular glycans. Sialic acid was considered the key cellular attachment factor for rotaviruses for decades. Although this is true for many rotavirus strains causing infections in animals, glycan array screens show that many human rotavirus strains bind nonsialylated glycoconjugates, called histo-blood group antigens, in a strain-specific manner. The expression of histo-blood group antigens is determined genetically and is regulated developmentally. Variations in glycan binding between different rotavirus strains are biologically relevant and provide new insights into multiple aspects of virus pathogenesis such as interspecies transmission, host range restriction, and tissue tropism. The genetics of glycan expression may affect susceptibility to different rotavirus strains and vaccine viruses, and impact the efficacy of rotavirus vaccination in different populations. A multidisciplinary approach to understanding rotavirus-host glycan interactions provides molecular insights into the interaction between microbial pathogens and glycans, and opens up new avenues to translate findings from the bench to the human population.
Collapse
Key Words
- GlcNAc, N-acetylglucosamine
- Glycans
- HBGA, histo-blood group antigen
- HIE, human intestinal enteroid
- Histo-Blood Group Antigens
- LNT, lacto-N-tetraose
- LNnT, lacto-N-neotetraose
- LacNAc, N-acetyllactosamine
- Le, Lewis
- NMR, nuclear magnetic resonance
- Neu5Ac, N-acetylneuraminic acid
- Neu5Gc, N-glycolylneuraminic acid
- RBC, red blood cell
- Rotavirus
- Sia
- Sia, sialic acid
- VP, viral protein
- VP8*
Collapse
Affiliation(s)
- Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas,Correspondence Address correspondence to: Sasirekha Ramani, PhD, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030. fax: (713) 798-3586.Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexas 77030
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
112
|
Günaydın G, Nordgren J, Sharma S, Hammarström L. Association of elevated rotavirus-specific antibody titers with HBGA secretor status in Swedish individuals: The FUT2 gene as a putative susceptibility determinant for infection. Virus Res 2016; 211:64-8. [PMID: 26454189 DOI: 10.1016/j.virusres.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
Abstract
The histo-blood group antigens (HBGAs) have recently been suggested to serve as attachment factors for rotavirus VP8* (P-genotype) in vitro and associated with susceptibility in vivo. We thus investigated whether rotavirus antibody titers and genotype specific neutralization titers correlate with HBGA status in Swedish individuals. We investigated the effect of inactivating mutations in the secretor FUT2 (rs601338) and Lewis FUT3 genes (rs28362459, rs3894326, rs812936 and rs778986) on serum IgG antibody titers and neutralizing antibody titers to rotavirus strains of the P[8] and P[6] genotypes in Swedish healthy blood donors and patients with IgA deficiency using genotyping, enzyme linked immunosorbent assay and a neutralization assay. Rotavirus-specific serum IgG and neutralizing antibody titers to the Wa strain (G1P[8]), but not to the ST3 (G4P[6]) strain, were significantly higher in secretors (with at least one functional FUT2 gene) than in non-secretors (P<0.001) (with homozygous nonsense mutation in the FUT2 gene). Thus, our results represent that secretors show elevated rotavirus specific serum antibodies, suggesting a higher susceptibility to rotavirus infections, as compared to non-secretors in Sweden.
Collapse
Affiliation(s)
- Gökçe Günaydın
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Johan Nordgren
- Department of Clinical and Experimental Medicine, Division of Molecular Virology, Medical Faculty, Linköping University, SE-58185 Linköping, Sweden
| | - Sumit Sharma
- Department of Clinical and Experimental Medicine, Division of Molecular Virology, Medical Faculty, Linköping University, SE-58185 Linköping, Sweden
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden.
| |
Collapse
|
113
|
Arias C, Silva-Ayala D, Isa P, Díaz-Salinas M, López S. Rotavirus Attachment, Internalization, and Vesicular Traffic. VIRAL GASTROENTERITIS 2016:103-119. [DOI: 10.1016/b978-0-12-802241-2.00006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
114
|
|
115
|
Kambhampati A, Payne DC, Costantini V, Lopman BA. Host Genetic Susceptibility to Enteric Viruses: A Systematic Review and Metaanalysis. Clin Infect Dis 2016; 62:11-18. [PMID: 26508510 PMCID: PMC4679673 DOI: 10.1093/cid/civ873] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Norovirus and rotavirus are prominent enteric viruses responsible for severe acute gastroenteritis disease burden around the world. Both viruses recognize and bind to histo-blood group antigens, which are expressed by the fucosyltransferase 2 (FUT2) gene. Individuals with a functional FUT2 gene are termed "secretors." FUT2 polymorphisms may influence viral binding patterns and, therefore, may influence host susceptibility to infection by these viruses. METHODS We performed a systematic review of the published literature on this topic. Data were abstracted and compiled for descriptive analyses and metaanalyses. We estimated pooled odds ratios (ORs) for infection using random-effects models. RESULTS We found that secretors were 9.9 times (95% confidence interval [CI], 3.9-24.8) as likely to be infected with genogroup II.4 noroviruses and 2.2 times as likely to be infected with genogroup II non-4 noroviruses (95% CI, 1.2-4.2) compared with nonsecretors. Secretors were also 26.6 times more susceptible to infections from P[8]-type rotaviruses compared with nonsecretors (95% CI, 8.3-85.0). CONCLUSIONS Our analyses indicate that host genetic susceptibility to norovirus and rotavirus infection may be strain specific. As strain distribution and the proportion of genetic phenotypes vary in different countries, future studies should focus on differences in susceptibility among various ethnicities. Knowledge of innate susceptibility to rotavirus and norovirus can lead to improved understanding of both vaccine performance and individual risk of disease.
Collapse
Affiliation(s)
- Anita Kambhampati
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
- Oak Ridge Institute for Science and Education, Tennessee
| | - Daniel C Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Veronica Costantini
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Benjamin A Lopman
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
116
|
Theuns S, Vyt P, Desmarets LMB, Roukaerts IDM, Heylen E, Zeller M, Matthijnssens J, Nauwynck HJ. Presence and characterization of pig group A and C rotaviruses in feces of Belgian diarrheic suckling piglets. Virus Res 2015; 213:172-183. [PMID: 26677793 DOI: 10.1016/j.virusres.2015.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 10/22/2022]
Abstract
The importance of group A and C rotaviruses (RVA and RVC) in the pathogenesis of diarrhea in Belgian suckling pigs is poorly investigated, and it is not known which strains are circulating in the Belgian suckling pig population. Obtaining better insights in the occurrence of both viral species in the swine population is essential in order to develop accurate diagnostic, therapeutic and prophylactic strategies to protect suckling pigs against diarrhea in a durable manner. In the present study, viral loads of RVA and RVC were quantified in diarrhea samples of suckling piglets less than 2 weeks old, collected on 36 different Belgian farms. On 22 of 36 farms tested (61%), high viral loads of RVA (6.96-11.95 log10 copies/g feces) and/or RVC (5.40-11.63 log10 copies/g feces) were detected. Seventeen RVA isolates were genotyped for their outer capsid proteins VP7 and VP4. Four different G-genotypes (G3, G4, G5 and G9) for VP7 were found together with 4 different P-genotypes (P[6], P[7], P[13] and P[23]) for VP4, in 8 different G/P combinations. All characterized RVC strains belonged to genotype G6 (VP7), except for one strain possessing the G1 genotype. VP4 genes of Belgian RVC strains were genetically heterogeneous, but were classified in the genotype P5. Most rotavirus positive samples also contained Escherichia coli, whereas Clostridium perfringens infections were mainly detected in rotavirus negative samples. Results of the present study offer better insights in the occurrence of RVA and RVC infections in Belgian diarrheic suckling piglets. As a conclusion, routine diagnostic testing for both viral species in cases of diarrhea in suckling pigs is highly recommended. Furthermore, the present findings also offer valuable information for the development of new prophylactic measures against rotavirus. Finally, the relatedness between RVC strains from pigs and other host species is described, and their possible implications in interspecies transmission events are discussed.
Collapse
Affiliation(s)
- Sebastiaan Theuns
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, B-9820, Merelbeke, Belgium.
| | | | - Lowiese M B Desmarets
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, B-9820, Merelbeke, Belgium
| | - Inge D M Roukaerts
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, B-9820, Merelbeke, Belgium
| | - Elisabeth Heylen
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Mark Zeller
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Hans J Nauwynck
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, B-9820, Merelbeke, Belgium.
| |
Collapse
|
117
|
Payne DC, Currier RL, Staat MA, Sahni LC, Selvarangan R, Halasa NB, Englund JA, Weinberg GA, Boom JA, Szilagyi PG, Klein EJ, Chappell J, Harrison CJ, Davidson BS, Mijatovic-Rustempasic S, Moffatt MD, McNeal M, Wikswo M, Bowen MD, Morrow AL, Parashar UD. Epidemiologic Association Between FUT2 Secretor Status and Severe Rotavirus Gastroenteritis in Children in the United States. JAMA Pediatr 2015; 169:1040-5. [PMID: 26389824 PMCID: PMC4856001 DOI: 10.1001/jamapediatrics.2015.2002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE A genetic polymorphism affecting FUT2 secretor status in approximately one-quarter of humans of European descent affects the expression of histo-blood group antigens on the mucosal epithelia of human respiratory, genitourinary, and digestive tracts. These histo-blood group antigens serve as host receptor sites necessary for attachment and infection of some pathogens, including norovirus. OBJECTIVE We investigated whether an association exists between FUT2 secretor status and laboratory-confirmed rotavirus infections in US children. DESIGN, SETTING, AND PARTICIPANTS Multicenter case-control observational study involving active surveillance at 6 US pediatric medical institutions in the inpatient and emergency department clinical settings. We enrolled 1564 children younger than 5 years with acute gastroenteritis (diarrhea and/or vomiting) and 818 healthy controls frequency matched by age and month, from December 1, 2011, through March 31, 2013. MAIN OUTCOMES AND MEASURES Paired fecal-saliva specimens were tested for rotavirus and for secretor status. Comparisons were made between rotavirus test-positive cases and healthy controls stratified by ethnicity and vaccination status. Adjusted multivariable analyses assessed the preventive association of secretor status against severe rotavirus gastroenteritis. RESULTS One (0.5%) of 189 rotavirus test-positive cases was a nonsecretor, compared with 188 (23%) of 818 healthy control participants (P < .001). Healthy control participants of Hispanic ethnicity were significantly less likely to be nonsecretors (13%) compared with healthy children who were not of Hispanic ethnicity (25%) (P < .001). After controlling for vaccination and other factors, children with the nonsecretor FUT2 polymorphism appeared statistically protected (98% [95% CI, 84%-100%]) against severe rotavirus gastroenteritis. CONCLUSIONS AND RELEVANCE Severe rotavirus gastroenteritis was virtually absent among US children who had a genetic polymorphism that inactivates FUT2 expression on the intestinal epithelium. We observed a strong epidemiologic association among children with rotavirus gastroenteritis compared with healthy control participants. The exact cellular mechanism behind this epidemiologic association remains unclear, but evidence suggests that it may be rotavirus genotype specific. The lower prevalence of nonsecretors among Hispanic children may translate to an enhanced burden of rotavirus gastroenteritis among this group. Our findings may have bearing on our full understanding of rotavirus infections and the effects of vaccination in diverse populations.
Collapse
Affiliation(s)
- Daniel C Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Mary A Staat
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | | | - Geoffrey A Weinberg
- University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Julie A Boom
- Texas Children's Hospital, Houston8Baylor College of Medicine, Houston, Texas
| | - Peter G Szilagyi
- University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | - James Chappell
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Slavica Mijatovic-Rustempasic
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary D Moffatt
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Monica McNeal
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mary Wikswo
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
118
|
Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. J Virol 2015; 90:43-56. [PMID: 26446608 DOI: 10.1128/jvi.01930-15] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures.
Collapse
|
119
|
Dóró R, Farkas SL, Martella V, Bányai K. Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther 2015; 13:1337-1350. [PMID: 26428261 DOI: 10.1586/14787210.2015.1089171] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Group A rotavirus (Rotavirus A, RVA) is the main cause of acute dehydrating diarrhea in humans and numerous animal species. RVA shows vast diversity and a variety of human strains share genetic and antigenic features with animal origin RVA strains. This finding suggests that interspecies transmission is an important mechanism of rotavirus evolution and contributes to the diversity of human RVA strains. RVA is responsible for half a million deaths and several million hospitalizations worldwide. Globally, two rotavirus vaccines are available for routine use in infants. These vaccines show a great efficacy profile and induce protective immunity against various rotavirus strains. However, little is known about the long-term evolution and epidemiology of RVA strains under selective pressure related to vaccine use. Continuous strain surveillance in the post-vaccine licensure era is needed to help better understand mechanisms that may affect vaccine effectiveness.
Collapse
Affiliation(s)
- Renáta Dóró
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Szilvia L Farkas
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Vito Martella
- b 2 Department of Veterinary Public Health, University of Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | - Krisztián Bányai
- a 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| |
Collapse
|
120
|
Coulson BS. Expanding diversity of glycan receptor usage by rotaviruses. Curr Opin Virol 2015; 15:90-6. [PMID: 26363995 DOI: 10.1016/j.coviro.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022]
Abstract
Rotaviruses are major etiologic agents of severe gastroenteritis in human and animals, infecting the mature intestinal epithelium. Their attachment to host cell glycans is mediated through the virion spike protein. This is considered to be crucial for successful host cell invasion by rotaviruses. Recent studies have greatly expanded our understanding of the diversity of glycans commonly recognized by rotaviruses, to include the ganglioside GM1a and histo-blood group antigens. Here, these new findings are integrated with advances in knowledge of spike protein structure, rotavirus entry mechanisms and innate intestinal immunity to provide an overview of the variety of rotavirus glycan receptors and their roles in cell penetration, host tropism and pathogenesis.
Collapse
Affiliation(s)
- Barbara S Coulson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, Victoria 3000, Australia.
| |
Collapse
|
121
|
Yu X, Mishra R, Holloway G, von Itzstein M, Coulson BS, Blanchard H. Substantial Receptor-induced Structural Rearrangement of Rotavirus VP8*: Potential Implications for Cross-Species Infection. Chembiochem 2015; 16:2176-81. [PMID: 26250751 DOI: 10.1002/cbic.201500360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 11/06/2022]
Abstract
Rotavirus-cell binding is the essential first step in rotavirus infection. This binding is a major determinant of rotavirus tropism, as host cell invasion is necessary to initiate infection. Initial rotavirus-cell interactions are mediated by carbohydrate-recognizing domain VP8* of the rotavirus capsid spike protein VP4. Here, we report the first observation of significant structural rearrangement of VP8* from human and animal rotavirus strains upon glycan receptor binding. The structural adaptability of rotavirus VP8* delivers important insights into how human and animal rotaviruses utilize the wider range of cellular glycans identified as VP8* binding partners. Furthermore, our studies on rotaviruses with atypical genetic makeup provide information expected to be critical for understanding the mechanisms of animal rotavirus gene emergence in humans and support implementation of epidemiologic surveillance of animal reservoirs as well as future vaccination schemes.
Collapse
Affiliation(s)
- Xing Yu
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, 4222, Australia.
| | - Rahul Mishra
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, 4222, Australia
| | - Gavan Holloway
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, 4222, Australia
| | - Barbara S Coulson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Helen Blanchard
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, 4222, Australia.
| |
Collapse
|
122
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
123
|
Bucardo F, Nordgren J. Impact of vaccination on the molecular epidemiology and evolution of group A rotaviruses in Latin America and factors affecting vaccine efficacy. INFECTION GENETICS AND EVOLUTION 2015; 34:106-13. [PMID: 26079278 DOI: 10.1016/j.meegid.2015.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Despite high rotavirus (RV) vaccine coverage (∼83%) and good effectiveness (∼77%) against RV-diarrhea hospitalization, RV is still contributing to the burden of diarrhea that persists in hospital settings in several Latin American countries, where RV vaccination is being implemented. Due to the extensive genomic and antigenic diversity, among co-circulating human RV, a major concern has been that the introduction of RV vaccination could exert selection pressure leading to higher prevalence of strains not included in the vaccines and/or emergence of new strains, thus, reducing the efficacy of vaccination. Here we review the molecular epidemiology of RV in Latin America and explore issues of RV evolution and selection in light of vaccination. We further explore etiologies behind the large burden of diarrhea remaining after vaccination in some countries and discuss plausible reasons for vaccine failures.
Collapse
Affiliation(s)
- Filemón Bucardo
- Department of Microbiology, National Autonomous University of León, Nicaragua (UNAN-León), Nicaragua.
| | - Johan Nordgren
- Division of Molecular Virology, Clinical and Experimental Medicine, Medical Faculty University of Linköping, 581 85 Linköping, Sweden
| |
Collapse
|
124
|
Full genomic characterization and phylogenetic analysis of a zoonotic human G8P[14] rotavirus strain detected in a sample from Guatemala. INFECTION GENETICS AND EVOLUTION 2015; 33:206-11. [PMID: 25952569 DOI: 10.1016/j.meegid.2015.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 02/02/2023]
Abstract
We report the genomic characterization of a rare human G8P[14] rotavirus strain, identified in a stool sample from Guatemala (GTM) during routine rotavirus surveillance. This strain was designated as RVA/Human-wt/GTM/2009726790/2009/G8P[14], with a genomic constellation of G8-P[14]-I2-R2-C2-M2-A13-N2-T6-E2-H3. The VP4 gene occupied lineage VII within the P[14] genotype. Phylogenetic analysis of each genome segment revealed close relatedness to several zoonotic simian, guanaco and bovine strains. Our findings suggest that strain RVA/Human-wt/GTM/2009726790/2009/G8P[14] is an example of a direct zoonotic transmission event. The results of this study reinforce the potential role of interspecies transmission and reassortment in generating novel and rare rotavirus strains which infect humans.
Collapse
|
125
|
Neofunctionalization of the Sec1 α1,2fucosyltransferase paralogue in leporids contributes to glycan polymorphism and resistance to rabbit hemorrhagic disease virus. PLoS Pathog 2015; 11:e1004759. [PMID: 25875017 PMCID: PMC4398370 DOI: 10.1371/journal.ppat.1004759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/21/2015] [Indexed: 12/13/2022] Open
Abstract
RHDV (rabbit hemorrhagic disease virus), a virulent calicivirus, causes high mortalities in European rabbit populations (Oryctolagus cuniculus). It uses α1,2fucosylated glycans, histo-blood group antigens (HBGAs), as attachment factors, with their absence or low expression generating resistance to the disease. Synthesis of these glycans requires an α1,2fucosyltransferase. In mammals, there are three closely located α1,2fucosyltransferase genes rSec1, rFut2 and rFut1 that arose through two rounds of duplications. In most mammalian species, Sec1 has clearly become a pseudogene. Yet, in leporids, it does not suffer gross alterations, although we previously observed that rabbit Sec1 variants present either low or no activity. Still, a low activity rSec1 allele correlated with survival to an RHDV outbreak. We now confirm the association between the α1,2fucosyltransferase loci and survival. In addition, we show that rabbits express homogenous rFut1 and rFut2 levels in the small intestine. Comparison of rFut1 and rFut2 activity showed that type 2 A, B and H antigens recognized by RHDV strains were mainly synthesized by rFut1, and all rFut1 variants detected in wild animals were equally active. Interestingly, rSec1 RNA levels were highly variable between individuals and high expression was associated with low binding of RHDV strains to the mucosa. Co-transfection of rFut1 and rSec1 caused a decrease in rFut1-generated RHDV binding sites, indicating that in rabbits, the catalytically inactive rSec1 protein acts as a dominant-negative of rFut1. Consistent with neofunctionalization of Sec1 in leporids, gene conversion analysis showed extensive homogenization between Sec1 and Fut2 in leporids, at variance with its limited degree in other mammals. Gene conversion additionally involving Fut1 was also observed at the C-terminus. Thus, in leporids, unlike in most other mammals where it became extinct, Sec1 evolved a new function with a dominant-negative effect on rFut1, contributing to fucosylated glycan diversity, and allowing herd protection from pathogens such as RHDV. There are three members of the α1,2fucosyltransferases gene family in mammalian genomes, Fut1, Fut2 and Sec1. The encoded fucosyltransferases are key enzymes for the synthesis of glycans that can be used as ligands by pathogens. However, the polymorphism of expression of these fucosylated glycans on epithelial cell types contributes to protection at the species level. In most mammalian species Sec1 is a pseudogene and in humans, genetic variation of α1,2fucosylated glycans is provided by FUT2 polymorphisms. Rabbit haemorrhagic disease virus (RHDV) uses α1,2fucosylated glycans as attachment factors. It induces an acute disease with very high mortalities in rabbit populations. We now confirm an association between genetic markers in the rabbit Sec1-Fut2 genomic region and survival to RHDV. We show that the Fut1 gene is the main contributor to the synthesis of RHDV binding sites although individual variation is not achieved by Fut1 polymorphisms but by variation in levels of Sec1 transcription. The Sec1 protein acting as a dominant-negative of Fut1, high Sec1 expression leads to a decreased number of RHDV binding sites. Thus, unlike in other mammals, in rabbits Sec1 underwent neofunctionalization. It contributes to generate diversity of fucosylated glycans, a key mechanism for escaping pathogens such as RHDV.
Collapse
|
126
|
Malasao R, Saito M, Suzuki A, Imagawa T, Nukiwa-Soma N, Tohma K, Liu X, Okamoto M, Chaimongkol N, Dapat C, Kawamura K, Kayama Y, Masago Y, Omura T, Oshitani H. Human G3P[4] rotavirus obtained in Japan, 2013, possibly emerged through a human-equine rotavirus reassortment event. Virus Genes 2015; 50:129-33. [PMID: 25352228 PMCID: PMC4349953 DOI: 10.1007/s11262-014-1135-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/16/2014] [Indexed: 12/19/2022]
Abstract
Two novel G3P[4] rotavirus strains were detected from children with acute diarrhea in Sendai, Japan, identified as a G3-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 genotype constellation by whole-genome sequence analysis. The VP7 gene of the two strains displayed the highest nucleotide sequence identity (91 %) and showed a close genetic relationship (99 % bootstrap value) to an equine rotavirus reported in India. The other gene segments were related to human group A rotaviruses. This report suggests a possible reassortment event between human and equine rotaviruses.
Collapse
Affiliation(s)
- Rungnapa Malasao
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Akira Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
- Virus Research Center, Sendai Medical Center, Sendai, Japan
| | - Toshifumi Imagawa
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Nao Nukiwa-Soma
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Kentaro Tohma
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Xiaofang Liu
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Natthawan Chaimongkol
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Clyde Dapat
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | | | | | - Yoshifumi Masago
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Tatsuo Omura
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Seiryo-cho 2-1, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| |
Collapse
|
127
|
Medici MC, Tummolo F, Bonica MB, Heylen E, Zeller M, Calderaro A, Matthijnssens J. Genetic diversity in three bovine-like human G8P[14] and G10P[14] rotaviruses suggests independent interspecies transmission events. J Gen Virol 2015; 96:1161-1168. [PMID: 25614586 DOI: 10.1099/vir.0.000055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
The group A rotavirus (RVA) P[14] genotype has been detected sporadically in humans and is thought to be acquired through zoonotic transmission. The present study describes the full-length genome analysis of two G8P[14] and one G10P[14] human RVAs detected in Italy. The strains possessed the typical bovine-like I2-R2-C2-M2-A3/A11-N2-T6-E2-H3 genotype constellation. All the segments of the two G8P[14] RVAs were most closely related to bovine(-like) strains but were relatively distant to each other, suggesting two independent interspecies transmission events. Likewise, the G10P[14] RVA gene segments were most similar to bovine(-like) RVAs but distinct from the G8 strains. The history of these strains probably involved the interspecies transmission of these viruses to humans from an as-yet-unidentified animal host, without evidence of reassortment events involving human RVAs. These results reinforce the potential of animal viruses to cross the host-species barrier, causing disease and increased viral genetic diversity in humans.
Collapse
Affiliation(s)
- Maria Cristina Medici
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Fabio Tummolo
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Melisa Berenice Bonica
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Adriana Calderaro
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| |
Collapse
|
128
|
Böhm R, Fleming FE, Maggioni A, Dang VT, Holloway G, Coulson BS, von Itzstein M, Haselhorst T. Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion. Nat Commun 2015; 6:5907. [PMID: 25556995 DOI: 10.1038/ncomms6907] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/20/2014] [Indexed: 12/16/2022] Open
|
129
|
Correlates of protection against human rotavirus disease and the factors influencing protection in low-income settings. Mucosal Immunol 2015; 8:1-17. [PMID: 25465100 DOI: 10.1038/mi.2014.114] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 10/16/2014] [Indexed: 02/04/2023]
Abstract
Rotaviruses (RV) are the leading cause of gastroenteritis in infants and children worldwide and are associated with high mortality predominately in low-income settings. The virus is classified into G and P serotypes and further into P genotypes based on differences in the surface-exposed proteins VP7 and VP4, respectively. Infection results in a variable level of protection from subsequent reinfection and disease. This protection is predominantly homotypic in some settings, whereas broader heterotypic protection is reported in other cohorts. Two antigenically distinct oral RV vaccines are licensed and are being rolled out widely, including in resource-poor setting, with funding provided by the GAVI alliance. First is a monovalent vaccine derived from a live-attenuated human RV strain, whereas the second is a pentavalent bovine-human reassortment vaccine. Both vaccines are highly efficacious in high-income settings, but greatly reduced levels of protection are reported in low-income countries. Here, the current challenges facing mucosal immunologists and vaccinologists aiming to define immunological correlates and to understand the variable levels of protection conferred by these vaccines in humans is considered. Such understanding is critical to maximize the public health impact of the current vaccines and also to the development of the next generation of RV vaccines, which are needed.
Collapse
|
130
|
Ramani S, Atmar RL. Acute Gastroenteritis Viruses. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
131
|
Complete genome characterization of recent and ancient Belgian pig group A rotaviruses and assessment of their evolutionary relationship with human rotaviruses. J Virol 2014; 89:1043-57. [PMID: 25378486 DOI: 10.1128/jvi.02513-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Group A rotaviruses (RVAs) are an important cause of diarrhea in young pigs and children. An evolutionary relationship has been suggested to exist between pig and human RVAs. This hypothesis was further investigated by phylogenetic analysis of the complete genomes of six recent (G2P[27], G3P[6], G4P[7], G5P[7], G9P[13], and G9P[23]) and one historic (G1P[7]) Belgian pig RVA strains and of all completely characterized pig RVAs from around the globe. In contrast to the large diversity of genotypes found for the outer capsid proteins VP4 and VP7, a relatively conserved genotype constellation (I5-R1-C1-M1-A8-N1-T7-E1-H1) was found for the other 9 genes in most pig RVA strains. VP1, VP2, VP3, NSP2, NSP4, and NSP5 genes of porcine RVAs belonged to genotype 1, which is shared with human Wa-like RVAs. However, for most of these gene segments, pig strains clustered distantly from human Wa-like RVAs, indicating that viruses from both species have entered different evolutionary paths. However, VP1, VP2, and NSP3 genes of some archival human strains were moderately related to pig strains. Phylogenetic analysis of the VP6, NSP1, and NSP3 genes, as well as amino acid analysis of the antigenic regions of VP7, further confirmed this evolutionary segregation. The present results also indicate that the species barrier is less strict for pig P[6] strains but that chances for successful spread of these strains in the human population are hampered by the better adaptation of pig RVAs to pig enterocytes. However, future surveillance of pig and human RVA strains is warranted. IMPORTANCE Rotaviruses are an important cause of diarrhea in many species, including pigs and humans. Our understanding of the evolutionary relationship between rotaviruses from both species is limited by the lack of genomic data on pig strains. In this study, recent and ancient Belgian pig rotavirus isolates were sequenced, and their evolutionary relationship with human Wa-like strains was investigated. Our data show that Wa-like human and pig strains have entered different evolutionary paths. Our data indicate that pig P[6] strains form the most considerable risk for interspecies transmission to humans. However, efficient spread of pig strains in the human population is most likely hampered by the adaptation of some crucial viral proteins to the cellular machinery of pig enterocytes. These data allow a better understanding of the risk for direct interspecies transmission events and the emergence of pig rotaviruses or pig-human reassortants in the human population.
Collapse
|
132
|
Abstract
Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus-glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus-glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus-glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications.
Collapse
|
133
|
Full genomic characterization of a novel genotype combination, G4P[14], of a human rotavirus strain from Barbados. INFECTION GENETICS AND EVOLUTION 2014; 28:524-9. [PMID: 25251674 DOI: 10.1016/j.meegid.2014.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 11/21/2022]
Abstract
Since 2004, the Pan American Health Organization (PAHO) has carried out rotavirus surveillance in Latin America and the Caribbean. Here we report the characterization of human rotavirus with the novel G-P combination of G4P[14], detected through PAHO surveillance in Barbados. Full genome sequencing of strain RVA/Human-wt/BRB/CDC1133/2012/G4P[14] revealed that its genotype is G4-P[14]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The possession of a Genogroup 1 (Wa-like) backbone distinguishes this strain from other P[14] rotavirus strains. Phylogenetic analyses suggested that this strain was likely generated by genetic reassortment between human, porcine and possibly other animal rotavirus strains and identified 7 lineages within the P[14] genotype. The results of this study reinforce the potential role of interspecies transmission in generating human rotavirus diversity through reassortment. Continued surveillance is important to determine if rotavirus vaccines will protect against strains that express the P[14] rotavirus genotype.
Collapse
|
134
|
Nordgren J, Sharma S, Bucardo F, Nasir W, Günaydın G, Ouermi D, Nitiema LW, Becker-Dreps S, Simpore J, Hammarström L, Larson G, Svensson L. Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin Infect Dis 2014; 59:1567-73. [PMID: 25097083 DOI: 10.1093/cid/ciu633] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The live oral rotavirus (RV) vaccines have shown a reduced efficacy in Africa. Recent in vitro studies have shown binding of the RV surface protein (VP4) to histo-blood group antigens (HBGAs) in an RV genotype-dependent manner, suggesting them to be putative receptors for RV. The diversity of HBGA phenotypes in different ethnic populations, combined with prevalence/absence of specific RV genotypes, led us to hypothesize whether the genetic variations in HBGAs in a population limit susceptibility to certain RV genotypes, plausibly leading to reduced vaccine efficacy. METHODS Association between HBGAs status and susceptibility to RV P genotypes was investigated in children in Burkina Faso and Nicaragua. In total, 242 children with diarrhea in Burkina Faso and Nicaragua were investigated, 93 of whom were RV positive. RESULTS In Burkina Faso, the P[8] RV strains (n = 27) infected only Lewis- and secretor-positive children (27/27; P < .0001), but no Lewis-negative children. In contrast, the P[6] strains (n = 27) infected predominantly Lewis-negative children (n = 18; P < .0001) but also Lewis-positive children, irrespective of their secretor status. The results from Nicaragua confirmed that all P[8]-infected children (n = 22) were secretor Lewis positive. CONCLUSIONS As VP4 of genotype P[8] is a component of current RV vaccines, our finding that Lewis-negative children are resistant to P[8] strains provides a plausible explanation for the reduced vaccine efficacy in populations with a high percentage of Lewis-negative individuals, such as in Africa. Furthermore, our findings provide a plausible explanation as to why P[6] RV strains are more common in Africa.
Collapse
Affiliation(s)
- Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Sweden
| | - Sumit Sharma
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Sweden
| | | | - Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg
| | - Gökçe Günaydın
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Djeneba Ouermi
- Centre de Recherche Biomoléculaire Pietro Annigoni Saint Camille CERBA/LABIOGENE, Université de Ouagadougou, Burkina Faso
| | - Leon W Nitiema
- Centre de Recherche Biomoléculaire Pietro Annigoni Saint Camille CERBA/LABIOGENE, Université de Ouagadougou, Burkina Faso
| | - Sylvia Becker-Dreps
- Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill
| | - Jacques Simpore
- Centre de Recherche Biomoléculaire Pietro Annigoni Saint Camille CERBA/LABIOGENE, Université de Ouagadougou, Burkina Faso
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Sweden
| |
Collapse
|
135
|
Host–pathogen co-evolution and glycan interactions. Curr Opin Virol 2014; 7:88-94. [PMID: 25000207 DOI: 10.1016/j.coviro.2014.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
|
136
|
Abstract
Noroviruses (NoVs) are important pathogens causing epidemic acute gastroenteritis affecting millions of people worldwide. Due to the inability to cultivate NoVs, current NoV vaccine development relies on bioengineering technologies to produce virus-like particles (VLPs) and other subviral particles of NoVs as subunit vaccines. The first VLP vaccine has reached phase II clinical trials and several others are under development in pre-clinical research. Several subviral complexes made from the protruding (P) domains of NoV capsid share common features of easy production, high stability and high immunogenicity and thus are candidates for low cost vaccines. These P domain complexes can also be used as vaccine platforms to present foreign antigens for potential dual vaccines against NoVs and other pathogens. Development of NoV vaccines also faces other challenges, including genetic diversity of NoVs, limit understanding of NoV immunology and evolution, and lack of an efficient NoV animal model for vaccine assessment, which are discussed in this article.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA; Department of Pediatrics; University of Cincinnati College of Medicine; Cincinnati, OH USA
| | - Xi Jiang
- Division of Infectious Diseases; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA; Department of Pediatrics; University of Cincinnati College of Medicine; Cincinnati, OH USA
| |
Collapse
|
137
|
Imbert-Marcille BM, Barbé L, Dupé M, Le Moullac-Vaidye B, Besse B, Peltier C, Ruvoën-Clouet N, Le Pendu J. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J Infect Dis 2014; 209:1227-30. [PMID: 24277741 DOI: 10.1093/infdis/jit655] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Attachment to carbohydrates of the histo-blood group type of several human Rotavirus strains (RVA) has recently been described. Synthesis of these ligands requires a functional FUT2 enzyme, suggesting that FUT2 null homozygote (ie, nonsecretor) individuals may not be recognized by most human RVA strains. Whereas such individuals represent 20% of the control population, this retrospective study determined that none of 51 patients infected by P[8] rotavirus strains were nonsecretors. The lack of α1,2fucosylated carbohydrate motifs in the gut surface mucosa is thus associated with resistance to symptomatic infection and virus attachment to such motifs is essential to the infection process.
Collapse
|
138
|
Rotavirus antigenemia in children is associated with more severe clinical manifestations of acute gastroenteritis. Pediatr Infect Dis J 2014; 33:366-71. [PMID: 24136370 DOI: 10.1097/inf.0000000000000118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rotavirus (RV) antigenemia and RNAemia are common findings in rotavirus-infected children. Sporadic associations between RV antigenemia and extraintestinal manifestations of RV infection have been observed. We examined the clinical severity of RV gastroenteritis in patients with and without RV antigenemia or RNAemia. METHODS Stool, serum and whole blood samples were collected from children seen with acute gastroenteritis in Tampere University Hospital and studied for RV using reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Only exclusively RV-positive specimens were included into this study. The patients were divided into groups according to RV findings from stool, serum and blood specimens. Clinical manifestations were graded according to 20-point Vesikari scoring system. RESULTS Of 374 children, 155 (41%) had RV in their stools. Of these 155 children, 105 (67%) were found to have RV RNA in the serum; of those, 94 (90%) had also RV enzyme-linked immunosorbent assay antigen. Thus antigenemia occurred in 61% (94 cases) of RV-infected children all of whom had concomitant RNAemia. Neither antigenemia nor RNAemia were detected in 85 patients with non-RV gastroenteritis. Patients who had RV RNA and RV antigen in both serum and stools were more likely to have a higher level of fever and more severe vomiting than patients who had RV only in stools. G1 genogroup RV was more often associated with RNAemia and antigenemia than other genogroups combined. CONCLUSION Rotavirus antigenemia and viremia are commonly detected in children hospitalized for RV gastroenteritis and may be associated with increased severity of fever and vomiting.
Collapse
|
139
|
Identification of novel bovine group A rotavirus G15P[14] strain from epizootic diarrhea of adult cows by de novo sequencing using a next-generation sequencer. Vet Microbiol 2014; 171:66-73. [PMID: 24725447 PMCID: PMC7127257 DOI: 10.1016/j.vetmic.2014.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 12/13/2022]
Abstract
There are few reports describing diarrhea of adult cattle caused by group A rotaviruses. Here, we report the identification of a novel bovine group A rotavirus from diarrhea of adult cows. A group A rotavirus was detected from an epizootic outbreak of diarrhea in adult cows with a decrease in milk production in Japan in 2013. The comprehensive genomic analyses from fecal samples by viral metagenomics using a next-generation sequencer revealed that it had an unreported genotype combination G15P[14]. The genome constellation of this strain, namely, RVA/Cow-wt/JPN/Tottori-SG/2013/G15P[14] was G15-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3 representing VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5, respectively. Each gene segment of Tottori-SG was most closely related to Japanese bovine group A rotaviruses suggesting that Tottori-SG might have derived from multiple reassortment events from group A rotavirus strains circulating among Japanese cattle. No other diarrhea pathogen of adult cattle was detected by routine diagnosis and metagenomics. Viral metagenomics, using a next-generation sequencer, is useful to characterize group A rotaviruses from fecal samples and offers unbiased comprehensive investigations of pathogen.
Collapse
|
140
|
Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Rev Mol Med 2014; 16:e5. [PMID: 24606759 DOI: 10.1017/erm.2014.2] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noroviruses (NoVs) and rotaviruses (RVs), the two most important causes of viral acute gastroenteritis, are found to recognise histo-blood group antigens (HBGAs) as receptors or ligands for attachment. Human HBGAs are highly polymorphic containing ABO, secretor and Lewis antigens. In addition, both NoVs and RVs are highly diverse in how they recognise these HBGAs. Structural analysis of the HBGA-binding interfaces of NoVs revealed a conserved central binding pocket (CBP) interacting with a common major binding saccharide (MaBS) of HBGAs and a variable surrounding region interacting with additional minor binding saccharides. The conserved CBP indicates a strong selection of NoVs by the host HBGAs, whereas the variable surrounding region explains the diverse recognition patterns of different HBGAs by NoVs and RVs as functional adaptations of the viruses to human HBGAs. Diverse recognition of HBGAs has also been found in bacterial pathogen Helicobacter pylori. Thus, exploratory research into whether such diverse recognitions also occur for other viral and bacterial pathogens that recognise HBGAs is warranted.
Collapse
|
141
|
Association between norovirus and rotavirus infection and histo-blood group antigen types in Vietnamese children. J Clin Microbiol 2014; 52:1366-74. [PMID: 24523471 DOI: 10.1128/jcm.02927-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Norovirus and rotavirus are the two most important causes of acute gastroenteritis in children worldwide. Both norovirus and rotavirus recognize human histo-blood group antigens (HBGAs), and multiple binding patterns for HBGAs have been reported. To explore the role of HBGAs in host susceptibility to norovirus and rotavirus, we conducted a cross-sectional study in children hospitalized with diarrhea in northern Vietnam from September 2010 through September 2012. Of 260 children with paired stool and saliva samples, 158 (61%) were classified as HBGA secretors (Lea-b+), 31 (12%) were nonsecretors (Lea+b-), and 71 (27%) were partial secretors (Lea+b+). Norovirus was detected in 50 patients (19%), with viral genotypes GII.3 (n=28) and GII.4 (n=22) being the most common. All children infected with norovirus strains of genotype GII.4 were either HBGA secretors or partial secretors. Of the 28 GII.3 cases, 12 involved HBGA secretors, 11 partial secretors, and 5 nonsecretors. A total of 85 children tested positive for rotavirus, 74 of whom were infected with genotype P[8], 5 with P[4], and 6 with P[6]; all were HBGA secretors or partial secretors. This is the first epidemiological study demonstrating in a population that HBGA phenotype is a key susceptibility factor for both norovirus and rotavirus infections in children.
Collapse
|
142
|
Rotaviruses reach late endosomes and require the cation-dependent mannose-6-phosphate receptor and the activity of cathepsin proteases to enter the cell. J Virol 2014; 88:4389-402. [PMID: 24501398 DOI: 10.1128/jvi.03457-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Rotaviruses (RVs) enter cells through different endocytic pathways. Bovine rotavirus (BRV) UK uses clathrin-mediated endocytosis, while rhesus rotavirus (RRV) employs an endocytic process independent of clathrin and caveolin. Given the differences in the cell internalization pathway used by these viruses, we tested if the intracellular trafficking of BRV UK was the same as that of RRV, which is known to reach maturing endosomes (MEs) to infect the cell. We found that BRV UK also reaches MEs, since its infectivity depends on the function of Rab5, the endosomal sorting complex required for transport (ESCRT), and the formation of endosomal intraluminal vesicles (ILVs). However, unlike RRV, the infectivity of BRV UK was inhibited by knocking down the expression of Rab7, indicating that it has to traffic to late endosomes (LEs) to infect the cell. The requirement for Rab7 was also shared by other RV strains of human and porcine origin. Of interest, most RV strains that reach LEs were also found to depend on the activities of Rab9, the cation-dependent mannose-6-phosphate receptor (CD-M6PR), and cathepsins B, L, and S, suggesting that cellular factors from the trans-Golgi network (TGN) need to be transported by the CD-M6PR to LEs to facilitate RV cell infection. Furthermore, using a collection of UK × RRV reassortant viruses, we found that the dependence of BRV UK on Rab7, Rab9, and CD-M6PR is associated with the spike protein VP4. These findings illustrate the elaborate pathway of RV entry and reveal a new process (Rab9/CD-M6PR/cathepsins) that could be targeted for drug intervention. IMPORTANCE Rotavirus is an important etiological agent of severe gastroenteritis in children. In most instances, viruses enter cells through an endocytic pathway that delivers the viral particle to vesicular organelles known as early endosomes (EEs). Some viruses reach the cytoplasm from EEs, where they start to replicate their genome. However, other viruses go deeper into the cell, trafficking from EEs to late endosomes (LEs) to disassemble and reach the cytoplasm. In this work, we show that most RV strains have to traffic to LEs, and the transport of endolysosomal proteases from the Golgi complex to LEs, mediated by the mannose-6-phosphate receptor, is necessary for the virus to exit the vesicular compartment and efficiently start viral replication. We also show that this deep journey into the cell is associated with the virus spike protein VP4. These findings illustrate the elaborate pathway of RV entry that could be used for drug intervention.
Collapse
|
143
|
McNeal MM, Bernstein DI. Rotaviruses. VIRAL INFECTIONS OF HUMANS 2014:713-732. [DOI: 10.1007/978-1-4899-7448-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
144
|
Carbohydrate recognition by rotaviruses. ACTA ACUST UNITED AC 2013; 15:101-6. [DOI: 10.1007/s10969-013-9167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/13/2013] [Indexed: 02/04/2023]
|
145
|
Poly-LacNAc as an age-specific ligand for rotavirus P[11] in neonates and infants. PLoS One 2013; 8:e78113. [PMID: 24244290 PMCID: PMC3823915 DOI: 10.1371/journal.pone.0078113] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 01/13/2023] Open
Abstract
Rotavirus (RV) P[11] is an unique genotype that infects neonates. The mechanism of such age-specific host restriction remains unknown. In this study, we explored host mucosal glycans as a potential age-specific factor for attachment of P[11] RVs. Using in vitro binding assays, we demonstrated that VP8* of a P[11] RV (N155) could bind saliva of infants (60.3%, N = 151) but not of adults (0%, N = 48), with a significantly negative correlation between binding of VP8* and ages of infants (P<0.01). Recognition to the infant saliva did not correlate with the ABO, secretor and Lewis histo-blood group antigens (HBGAs) but with the binding of the lectin Lycopersicon esculentum (LEA) that is known to recognize the oligomers of N-acetyllactosamine (LacNAc), a precursor of human HBGAs. Direct evidence of LacNAc involvement in P[11] binding was obtained from specific binding of VP8* with homopolymers of LacNAc in variable lengths through a glycan array analysis of 611 glycans. These results were confirmed by strong binding of VP8* to the Lec2 cell line that expresses LacNAc oligomers but not to the Lec8 cell line lacking the LacNAc. In addition, N155 VP8* and authentic P[11] RVs (human 116E and bovine B223) hemagglutinated human red blood cells that are known to express poly-LacNAc. The potential role of poly-LacNAc in host attachment and infection of RVs has been obtained by abrogation of 116E replication by the PAA-conjugated poly-LacNAc, human milk, and LEA positive infant saliva. Overall, our results suggested that the poly-LacNAc could serve as an age-specific receptor for P[11] RVs and well explained the epidemiology that P[11] RVs mainly infect neonates and young children.
Collapse
|
146
|
|
147
|
The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans. J Virol 2013; 87:7255-64. [PMID: 23616650 DOI: 10.1128/jvi.03518-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Naturally occurring bovine-human reassortant rotaviruses with a P[11] VP4 genotype exhibit a tropism for neonates. Interaction of the VP8* domain of the spike protein VP4 with sialic acid was thought to be the key mediator for rotavirus infectivity. However, recent studies have indicated a role for nonsialylated glycoconjugates, including histo-blood group antigens (HBGAs), in the infectivity of human rotaviruses. We sought to determine if the bovine rotavirus-derived VP8* of a reassortant neonatal G10P[11] virus interacts with hitherto uncharacterized glycans. In an array screen of >600 glycans, VP8* P[11] showed specific binding to glycans with the Galβ1-4GlcNAc motif, which forms the core structure of type II glycans and is the precursor of H type II HBGA. The specificity of glycan binding was confirmed through hemagglutination assays; GST-VP8* P[11] hemagglutinates type O, A, and B red blood cells as well as pooled umbilical cord blood erythrocytes. Further, G10P[11] infectivity was significantly enhanced by the expression of H type II HBGA in CHO cells. The bovine-origin VP4 was confirmed to be essential for this increased infectivity, using laboratory-derived reassortant viruses generated from sialic acid binding rotavirus SA11-4F and a bovine G10P[11] rotavirus, B223. The binding to a core glycan unit has not been reported for any rotavirus VP4. Core glycan synthesis is constitutive in most cell types, and modification of these glycans is thought to be developmentally regulated. These studies provide the first molecular basis for understanding neonatal rotavirus infections, indicating that glycan modification during neonatal development may mediate the age-restricted infectivity of neonatal viruses.
Collapse
|
148
|
Abstract
Norovirus (NoV) are the most common cause of acute gastroenteritidis in humans worldwide. They are transmitted through consumption of contaminated food, or mostly by direct person-to-person contact. However, susceptibility to NoV infection is variable. NoVs recognize carbohydrate ligand, including A, B, H and Lewis histoblood group antigen (HBGAs) for attachment to human epithelial cells. Synthesis of these HBGAs requires various glycosyltransferase encoded by the ABO, FUT2, FUT3 genes. The presence of distinct carbohydrates structures dependent upon the combined polymorphism at the FUT2, FUT3 and ABO loci influences susceptibility to NoV infection. NoV-glycan interactions studies show that different strains recognize specific HBGAs. Together with herd immunity, HBGAs play a major role in the epidemiology and evolution of NoVs.
Collapse
Affiliation(s)
- N Ruvoën
- Unité de maladies réglementées - zoonoses, Oniris - École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes Atlantique, site de la Chantrerie, 44307 Nantes, France.
| | | |
Collapse
|
149
|
Díaz-Salinas MA, Romero P, Espinosa R, Hoshino Y, López S, Arias CF. The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells. J Virol 2013; 87:1658-63. [PMID: 23175367 PMCID: PMC3554179 DOI: 10.1128/jvi.02086-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses are internalized into MA104 cells by endocytosis, with different endocytic pathways used depending on the virus strain. The bovine rotavirus UK strain enters cells through a clathrin-mediated endocytic process, while the simian rhesus rotavirus (RRV) strain uses a poorly defined endocytic pathway that is clathrin and caveolin independent. The viral surface protein VP7 and the spike protein VP4 interact with cellular receptors during cell binding and penetration. To determine the viral protein that defines the mechanism of internalization, we used a panel of UK × RRV reassortant viruses having different combinations of the viral structural proteins. Characterization of the infectivities of these reassortants in MA104 cells either transfected with a small interfering RNA (siRNA) against the heavy chain of clathrin or incubated with hypertonic medium that destabilizes the clathrin coat clearly showed that VP4 determines the pathway of virus entry. Of interest, the characterization of Nar3, a sialic acid-independent variant of RRV, showed that a single amino acid change in VP4 shifts the route of entry from being clathrin dependent to clathrin independent. Furthermore, characterizations of several additional rotavirus strains that differ in their use of cellular receptors showed that all entered cells by clathrin-mediated endocytosis, suggesting that diverse VP4-cell surface interactions can lead to rotavirus cell entry through this endocytic pathway.
Collapse
Affiliation(s)
- Marco A. Díaz-Salinas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Pedro Romero
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Rafaela Espinosa
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Yasutaka Hoshino
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Carlos F. Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| |
Collapse
|
150
|
Abstract
Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis--the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3-sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry.
Collapse
|