101
|
Small molecules targeting hepatitis C virus-encoded NS5A cause subcellular redistribution of their target: insights into compound modes of action. J Virol 2011; 85:6353-68. [PMID: 21507963 DOI: 10.1128/jvi.00215-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The current standard of care for hepatitis C virus (HCV)-infected patients consists of lengthy treatment with interferon and ribavirin. To increase the effectiveness of HCV therapy, future regimens will incorporate multiple direct-acting antiviral (DAA) drugs. Recently, the HCV-encoded NS5A protein has emerged as a promising DAA target. Compounds targeting NS5A exhibit remarkable potency in vitro and demonstrate early clinical promise, suggesting that NS5A inhibitors could feature in future DAA combination therapies. Since the mechanisms through which these molecules operate are unknown, we have used NS5A inhibitors as tools to investigate their modes of action. Analysis of replicon-containing cells revealed dramatic phenotypic alterations in NS5A localization following treatment with NS5A inhibitors; NS5A was redistributed from the endoplasmic reticulum to lipid droplets. The NS5A relocalization did not occur in cells treated with other classes of HCV inhibitors, and NS5A-targeting molecules did not cause similar alterations in the localization of other HCV-encoded proteins. Time course analysis of the redistribution of NS5A revealed that the transfer of protein to lipid droplets was concomitant with the onset of inhibition, as judged by the kinetic profiles for these compounds. Furthermore, analysis of the kinetic profile of inhibition for a panel of test molecules permitted the separation of compounds into different kinetic classes based on their modes of action. Results from this approach suggested that NS5A inhibitors perturbed the function of new replication complexes, rather than acting on preformed complexes. Taken together, our data reveal novel biological consequences of NS5A inhibition, which may help enable the development of future assay platforms for the identification of new and/or different NS5A inhibitors.
Collapse
|
102
|
A respiratory syncytial virus replicon that is noncytotoxic and capable of long-term foreign gene expression. J Virol 2011; 85:4792-801. [PMID: 21389127 DOI: 10.1128/jvi.02399-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection of most cultured cell lines causes cell-cell fusion and death. Cell fusion is caused by the fusion (F) glycoprotein and is clearly cytopathic, but other aspects of RSV infection may also contribute to cytopathology. To investigate this possibility, we generated an RSV replicon that lacks all three of its glycoprotein genes and so cannot cause cell-cell fusion or virus spread. This replicon includes a green fluorescent protein gene and an antibiotic resistance gene to enable detection and selection of replicon-containing cells. Adaptive mutations in the RSV replicon were not required for replicon maintenance. Cells containing the replicon could be cloned and passaged many times in the absence of antibiotic selection, with 99% or more of the cells retaining the replicon after each cell division. Transient expression of the F and G (attachment) glycoproteins supported the production of virions that could transfer the replicon into most cell lines tested. Since the RSV replicon is not toxic to these cultured cells and does not affect their rate of cell division, none of the 8 internal viral proteins, the viral RNA transcripts, or the host response to these molecules or their activities is cytopathic. However, the level of replicon genome and gene expression is controlled in some manner well below that of complete virus and, as such, might avoid cytotoxicity. RSV replicons could be useful for cytoplasmic gene expression in vitro and in vivo and for screening for compounds active against the viral polymerase.
Collapse
|
103
|
Wilson JA, Zhang C, Huys A, Richardson CD. Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation. J Virol 2011; 85:2342-50. [PMID: 21177824 PMCID: PMC3067765 DOI: 10.1128/jvi.02046-10] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/14/2010] [Indexed: 12/14/2022] Open
Abstract
MicroRNA 122 (miR-122) increases the accumulation and translation of hepatitis C virus (HCV) RNA in infected cells through direct interactions with homologous sequences in the 5' untranslated region (UTR) of the HCV genome. Argonaute 2 (Ago2) is a component of the RNA-induced silencing complex (RISC) and mediates small interfering RNA (siRNA)-directed mRNA cleavage and microRNA translational suppression. We investigated the function of Ago2 in HCV replication to determine whether it plays a role in enhancing the synthesis and translation of HCV RNA that is associated with miR-122. siRNA-mediated depletion of Ago2 in human hepatoma cells reduced HCV RNA accumulation in transient HCV replication assays. The treatment did not adversely affect cell viability, as assessed by cell proliferation, capped translation, and interferon assays. These data are consistent with complementary roles for Ago2 and miR-122 in enhancing HCV RNA amplification. By using a transient HCV replication assay that is dependent on an exogenously provided mutant miR-122, we determined that Ago2 depletion still reduced luciferase expression and HCV RNA accumulation, independently of miR-122 biogenesis. miR-122 has previously been found to stimulate HCV translation. Similarly, Ago2 knockdown also reduced HCV translation, and its depletion reduced the ability of miR-122 to stimulate viral translation. These data suggest a direct role for Ago2 in miR-122-mediated translation. Finally, Ago2 was also necessary for efficient miR-122 enhancement of HCV RNA accumulation. These data support a model in which miR-122 functions within an Ago2-containing protein complex to augment both HCV RNA accumulation and translation.
Collapse
Affiliation(s)
- Joyce A Wilson
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | |
Collapse
|
104
|
A comprehensive structure-function comparison of hepatitis C virus strain JFH1 and J6 polymerases reveals a key residue stimulating replication in cell culture across genotypes. J Virol 2011; 85:2565-81. [PMID: 21209117 DOI: 10.1128/jvi.02177-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hepatitis C virus (HCV) genotype 2a isolate JFH1 represents the only cloned HCV wild-type sequence capable of efficient replication in cell culture as well as in vivo. Previous reports have pointed to NS5B, the viral RNA-dependent RNA polymerase (RdRp), as a major determinant for efficient replication of this isolate. To understand the contribution of the JFH1 NS5B gene at the molecular level, we aimed at conferring JFH1 properties to NS5B from the closely related J6 isolate. We created intragenotypic chimeras in the NS5B regions of JFH1 and J6 and compared replication efficiency in cell culture and RdRp activity of the purified proteins in vitro, revealing more than three independent mechanisms conferring the role of JFH1 NS5B in efficient RNA replication. Most critical was residue I405 in the thumb domain of the polymerase, which strongly stimulated replication in cell culture by enhancing overall de novo RNA synthesis. A structural comparison of JFH1 and J6 at high resolution indicated a clear correlation of a closed-thumb conformation of the RdRp and the efficiency of the enzyme at de novo RNA synthesis, in accordance with the proposal that I405 enhances de novo initiation. In addition, we identified several residues enhancing replication independent of RdRp activity in vitro. The functional properties of JFH1 NS5B could be restored by a few single-nucleotide substitutions to the J6 isolate. Finally, we were able to enhance the replication efficiency of a genotype 1b isolate with the I405 mutation, indicating that this mechanism of action is conserved across genotypes.
Collapse
|
105
|
Diegelmann J, Beigel F, Zitzmann K, Kaul A, Göke B, Auernhammer CJ, Bartenschlager R, Diepolder HM, Brand S. Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus. PLoS One 2010; 5:e15200. [PMID: 21170333 PMCID: PMC2999541 DOI: 10.1371/journal.pone.0015200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/31/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. METHODOLOGY/PRINCIPAL FINDINGS Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. CONCLUSIONS/SIGNIFICANCE IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV.
Collapse
Affiliation(s)
- Julia Diegelmann
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Florian Beigel
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Kathrin Zitzmann
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Artur Kaul
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Göke
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Christoph J. Auernhammer
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Helmut M. Diepolder
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Stephan Brand
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| |
Collapse
|
106
|
Bailey J. An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 2. Alternative Replacement Methods. Altern Lab Anim 2010; 38:471-94. [DOI: 10.1177/026119291003800602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of chimpanzees in hepatitis C virus (HCV) research was examined in the report associated with this paper ( 1: Validity of the Chimpanzee Model), in which it was concluded that claims of past necessity of chimpanzee use were exaggerated, and that claims of current and future indispensability were unjustifiable. Furthermore, given the serious scientific and ethical issues surrounding chimpanzee experimentation, it was proposed that it must now be considered redundant — particularly in light of the demonstrable contribution of alternative methods to past and current scientific progress, and the future promise that these methods hold. This paper builds on this evidence, by examining the development of alternative approaches to the investigation of HCV, and by reviewing examples of how these methods have contributed, and are continuing to contribute substantially, to progress in this field. It augments the argument against chimpanzee use by demonstrating the comprehensive nature of these methods and the valuable data they deliver. The entire life-cycle of HCV can now be investigated in a human (and much more relevant) context, without recourse to chimpanzee use. This also includes the testing of new therapies and vaccines. Consequently, there is no sound argument against the changes in public policy that propose a move away from chimpanzee use in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA, USA
| |
Collapse
|
107
|
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver diseases, including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is well known for its restricted tropism and it does not replicate well in animal species other than humans and chimpanzees. Since classical in vitro propagation of natural HCV isolates is not possible, a protocol for the rescue of infectious virus from cDNA clones (genotype 1a pH77S and genotype 2a pJFH-1) transfected as RNA into permissive cells is described here. Because these two molecular clones behave differently in their ability to propagate and produce infectious virus, different methods for propagation of these two viral strains are described. Methods for infectious virus titration, which can be accomplished by counting foci of infected cells following immunostaining for viral antigen expression in cells infected with serial dilutions of a virus harvest (focus forming unit, or FFU, assay), are also provided.
Collapse
Affiliation(s)
- MinKyung Yi
- The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
108
|
DEB025 (Alisporivir) inhibits hepatitis C virus replication by preventing a cyclophilin A induced cis-trans isomerisation in domain II of NS5A. PLoS One 2010; 5:e13687. [PMID: 21060866 PMCID: PMC2965138 DOI: 10.1371/journal.pone.0013687] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/05/2010] [Indexed: 01/27/2023] Open
Abstract
DEB025/Debio 025 (Alisporivir) is a cyclophilin (Cyp)-binding molecule with potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. It is currently being evaluated in phase II clinical trials. DEB025 binds to CypA, a peptidyl-prolyl cis-trans isomerase which is a crucial cofactor for HCV replication. Here we report that it was very difficult to select resistant replicons (genotype 1b) to DEB025, requiring an average of 20 weeks (four independent experiments), compared to the typically <2 weeks with protease or polymerase inhibitors. This indicates a high genetic barrier to resistance for DEB025. Mutation D320E in NS5A was the only mutation consistently selected in the replicon genome. This mutation alone conferred a low-level (3.9-fold) resistance. Replacing the NS5A gene (but not the NS5B gene) from the wild type (WT) genome with the corresponding sequence from the DEB025res replicon resulted in transfer of resistance. Cross-resistance with cyclosporine A (CsA) was observed, whereas NS3 protease and NS5B polymerase inhibitors retained WT-activity against DEB025res replicons. Unlike WT, DEB025res replicon replicated efficiently in CypA knock down cells. However, DEB025 disrupted the interaction between CypA and NS5A regardless of whether the NS5A protein was derived from WT or DEB025res replicon. NMR titration experiments with peptides derived from the WT or the DEB025res domain II of NS5A corroborated this observation in a quantitative manner. Interestingly, comparative NMR studies on two 20-mer NS5A peptides that contain D320 or E320 revealed a shift in population between the major and minor conformers. These data suggest that D320E conferred low-level resistance to DEB025 probably by reducing the need for CypA-dependent isomerisation of NS5A. Prolonged DEB025 treatment and multiple genotypic changes may be necessary to generate significant resistance to DEB025, underlying the high barrier to resistance.
Collapse
|
109
|
Lee B, Kim KB, Oh S, Choi JS, Park JS, Min DH, Kim DE. Suppression of hepatitis C virus genome replication in cells with RNA-cleaving DNA enzymes and short-hairpin RNA. Oligonucleotides 2010; 20:285-96. [PMID: 20863235 DOI: 10.1089/oli.2010.0256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A class of antisense oligodeoxyribozymes, known as the 10-23 DNA enzymes (DNAzyme), has been shown to efficiently cleave target RNA at purine-pyrimidine junctions in vitro. Herein we have utilized a strategy to identify accessible cleavage sites for DNAzyme in the target RNA, the hepatitis C virus nonstructural gene 3 (HCV NS3) RNA that encodes viral helicase and protease, from a pool of randomized DNAzyme library. The screening procedure identified 18 potential cleavage sites in the target RNA. Corresponding DNAzymes were constructed for the selected target sites and were tested for RNA cleavage in vitro. Using positively charged dendrimer nanoparticles, the target RNA-cleaving DNAzymes that are 31-mer oliogonucleotides are delivered into the human hepatoma cells harboring the HCV subgenomic replicon RNA. DNAzymes introduced into the cells efficiently inhibited HCV RNA replication by reducing the expression of HCV NS3. In addition, we designed short-hairpin RNA (shRNA) that targets the same cleavage site for the selected DNAzyme and confirmed that the shRNA also inhibited HCV NS3 gene expression in the HCV replicon cells. These selected DNAzyme and shRNA may be a viable therapeutic intervention to inhibit HCV replication in hepatic cells. We suggest that the method used in this study can be applicable for identification of available sites in any target RNA for antisense oligonucleotides and siRNAs.
Collapse
Affiliation(s)
- Bokhui Lee
- WCU Program, Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
110
|
Yang G, Huang M. Evaluation of Compound Activity Against Hepatitis C Virus in Replicon Systems. ACTA ACUST UNITED AC 2010; Chapter 13:Unit 13B.1. [DOI: 10.1002/0471141755.ph13b01s50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
111
|
Uprichard SL. Hepatitis C virus experimental model systems and antiviral drug research. Virol Sin 2010; 25:227-45. [PMID: 20960298 PMCID: PMC2963037 DOI: 10.1007/s12250-010-3134-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/18/2010] [Indexed: 12/27/2022] Open
Abstract
An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics.
Collapse
Affiliation(s)
- Susan L Uprichard
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
112
|
Chen YJ, Chen YH, Chow LP, Tsai YH, Chen PH, Huang CYF, Chen WT, Hwang LH. Heat shock protein 72 is associated with the hepatitis C virus replicase complex and enhances viral RNA replication. J Biol Chem 2010; 285:28183-90. [PMID: 20601427 DOI: 10.1074/jbc.m110.118323] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The NS5A protein of the hepatitis C virus (HCV) is an integral component of the viral replicase. It also modulates cellular signaling and perturbs host interferon responses. The multifunctional characteristics of NS5A are mostly attributed to its ability to interact with various cellular proteins. This study aimed to identify the novel cellular factors that interact with NS5A and decipher the significance of this interaction in viral replication. The NS5A-interacting proteins were purified by the tandem affinity purification (TAP) procedure from cells expressing NS5A and identified by mass spectrometry. The chaperone protein Hsp72 was identified herein. In vivo protein-protein interaction was verified by co-immunoprecipitation and an in situ proximity ligation assay. In addition to NS5A, Hsp72 was also associated with other members of the replicase complex, NS3 and NS5B, suggesting that it might be directly involved in the HCV replication complex. Hsp72 plays a positive regulatory role in HCV RNA replication by increasing levels of the replicase complex, which was attributed either to the increased stability of the viral proteins in the replicase complex or to the enhanced translational activity of the internal ribosome entry site of HCV. The fact that the host chaperone protein Hsp72 is involved in HCV RNA replication may represent a therapeutic target for controlling virus production.
Collapse
Affiliation(s)
- Yin-Ju Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Replication of subgenomic hepatitis C virus replicons in mouse fibroblasts is facilitated by deletion of interferon regulatory factor 3 and expression of liver-specific microRNA 122. J Virol 2010; 84:9170-80. [PMID: 20592082 DOI: 10.1128/jvi.00559-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hepatitis C virus (HCV) infection causes significant morbidity, and efficient mouse models would greatly facilitate virus studies and the development of effective vaccines and new therapeutic agents. Entry factors, innate immunity, and host factors needed for viral replication represent the initial barriers that restrict HCV infection of mouse cells. Experiments in this paper consider early postentry steps of viral infection and investigate the roles of interferon regulatory factors (IRF-3 and IRF-9) and microRNA (miR-122) in promoting HCV replication in mouse embryo fibroblasts (MEFs) that contain viral subgenomic replicons. While wild-type murine fibroblasts are restricted for HCV RNA replication, deletion of IRF-3 alone can facilitate replicon activity in these cells. This effect is thought to be related to the inactivation of the type I interferon synthesis mediated by IRF-3. Additional deletion of IRF-9 to yield IRF-3(-/-) IRF-9(-/-) MEFs, which have blocked type I interferon signaling, did not increase HCV replication. Expression of liver-specific miR-122 in MEFs further stimulated the synthesis of HCV replicons in the rodent fibroblasts. The combined effects of miR-122 expression and deletion of IRF-3 produced a cooperative stimulation of HCV subgenome replication. miR-122 and IRF-3 are independent host factors that are capable of influencing HCV replication, and our findings could help to establish mouse models and other cell systems that support HCV growth and particle formation.
Collapse
|
114
|
Resistance analysis of the hepatitis C virus NS5A inhibitor BMS-790052 in an in vitro replicon system. Antimicrob Agents Chemother 2010; 54:3641-50. [PMID: 20585111 DOI: 10.1128/aac.00556-10] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BMS-790052 is the most potent hepatitis C virus (HCV) inhibitor reported to date, with 50% effective concentrations (EC(50)s) of < or = 50 pM against genotype 1 replicons. This exceptional potency translated to rapid viral load declines in a phase I clinical study. By targeting NS5A, BMS-790052 is distinct from most HCV inhibitors in clinical evaluation. As an initial step toward correlating in vitro and in vivo resistances, multiple cell lines and selective pressures were used to identify BMS-790052-resistant variants in genotype 1 replicons. Similarities and differences were observed between genotypes 1a and 1b. For genotype 1b, L31F/V, P32L, and Y93H/N were identified as primary resistance mutations. L23F, R30Q, and P58S acted as secondary resistance substitutions, enhancing the resistance of primary mutations but themselves not conferring resistance. For genotype 1a, more sites of resistance were identified, and substitutions at these sites (M28T, Q30E/H/R, L31M/V, P32L, and Y93C/H/N) conferred higher levels of resistance. For both subtypes, combining two resistance mutations markedly decreased inhibitor susceptibility. Selection studies with a 1b/1a hybrid replicon highlighted the importance of the NS5A N-terminal region in determining genotype-specific inhibitor responses. As single mutations, Q30E and Y93N in genotype 1a conferred the highest levels of resistance. For genotype 1b, BMS-790052 retained subnanomolar potency against all variants with single amino acid substitutions, suggesting that multiple mutations will likely be required for significant in vivo resistance in this genetic background. Importantly, BMS-790052-resistant variants remained fully sensitive to alpha interferon and small-molecule inhibitors of HCV protease and polymerase.
Collapse
|
115
|
Najda-Bernatowicz A, Krawczyk M, Stankiewicz-Drogoń A, Bretner M, Boguszewska-Chachulska AM. Studies on the anti-hepatitis C virus activity of newly synthesized tropolone derivatives: identification of NS3 helicase inhibitors that specifically inhibit subgenomic HCV replication. Bioorg Med Chem 2010; 18:5129-36. [PMID: 20579888 DOI: 10.1016/j.bmc.2010.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
We synthesized new tropolone derivatives substituted with cyclic amines: piperidine, piperazine or pyrrolidine. The most active anti-helicase compound (IC50=3.4 microM), 3,5,7-tri[(4'-methylpiperazin-1'-yl)methyl]tropolone (2), inhibited RNA replication by 50% at 46.9 microM (EC50) and exhibited the lowest cytotoxicity (CC50)>1 mM resulting in a selectivity index (SI=CC50/EC50)>21. The most efficient replication inhibitor, 3,5,7-tri[(4'-methylpiperidin-1'-yl)methyl]tropolone (6), inhibited RNA replication with an EC50 of 32.0 microM and a SI value of 17.4, whereas 3,5,7-tri[(3'-methylpiperidin-1'-yl)methyl]tropolone (7) exhibited a slightly lower activity with an EC50 of 35.6 microM and a SI of 9.8.
Collapse
|
116
|
Novel hepatitis C virus reporter replicon cell lines enable efficient antiviral screening against genotype 1a. Antimicrob Agents Chemother 2010; 54:3099-106. [PMID: 20516274 DOI: 10.1128/aac.00289-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hepatitis C virus (HCV) subgenomic replicon is the primary tool for evaluating the activity of anti-HCV compounds in drug discovery research. Despite the prevalence of HCV genotype 1a (approximately 70% of U.S. HCV patients), few genotype 1a reporter replicon cell lines have been described; this is presumably due to the low replication capacity of such constructs in available Huh-7 cells. In this report, we describe the selection of highly permissive Huh-7 cell lines that support robust replication of genotype 1a subgenomic replicons harboring luciferase reporter genes. These novel cell lines support the replication of multiple genotype 1a replicons (including the H77 and SF9 strains), are significantly more permissive to genotype 1a HCV replication than parental Huh7-Lunet cells, and maintain stable genotype 1a replication levels suitable for antiviral screening. We found that the sensitivity of genotype 1a luciferase replicons to known antivirals was highly consistent between individual genotype 1a clonal cell lines but could vary significantly between genotypes 1a and 1b. Sequencing of the nonstructural region of 12 stable replicon cell clones suggested that the enhanced permissivity is likely due to cellular component(s) in these new cell lines rather than the evolution of novel adaptive mutations in the replicons. These new reagents will enhance drug discovery efforts targeting genotype 1a and facilitate the profiling of compound activity among different HCV genotypes and subtypes.
Collapse
|
117
|
von Hahn T, Steinmann E, Ciesek S, Pietschmann T. Know your enemy: translating insights about the molecular biology of hepatitis C virus into novel therapeutic approaches. Expert Rev Gastroenterol Hepatol 2010; 4:63-79. [PMID: 20136590 DOI: 10.1586/egh.09.74] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Identified in 1989 as the cause of what was then known as hepatitis non-A non-B, the hepatitis C virus (HCV) continues to be a significant global public health threat, given that an estimated 123 million individuals are chronically infected and, thus, at risk for cirrhosis and hepatocellular carcinoma. After 20 years of basic and clinical research into HCV infection, the backbone of therapy has remained interferon, a drug that - in a different formulation - was already being employed before HCV was even identified. Nonetheless, research has overcome many obstacles that stood in the way of studying this pre-eminent human pathogen. Hard-won insights into its molecular biology have identified promising therapeutic targets, and we are now on the verge of an era where rationally designed therapeutics, also referred to as specifically targeted antiviral therapy for HCV, will reshape the treatment of hepatitis C. This article describes recent insights on the molecular biology of HCV and the efforts to translate them into clinical applications.
Collapse
Affiliation(s)
- Thomas von Hahn
- Division of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) & the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | | | | | | |
Collapse
|
118
|
Abstract
Using a cell-based replicon screen, we identified a class of compounds with a thiazolidinone core structure as inhibitors of hepatitis C virus (HCV) replication. The concentration of one such compound, BMS-824, that resulted in a 50% inhibition of HCV replicon replication was approximately 5 nM, with a therapeutic index of >10,000. The compound showed good specificity for HCV, as it was not active against several other RNA and DNA viruses. Replicon cells resistant to BMS-824 were isolated, and mutations were identified. A combination of amino acid substitutions of leucine to valine at residue 31 (L31V) and glutamine to leucine at residue 54 (Q54L) in NS5A conferred resistance to this chemotype, as did a single substitution of tyrosine to histidine at amino acid 93 (Y93H) in NS5A. To further explore the region(s) of NS5A involved in inhibitor sensitivity, genotype-specific NS5A inhibitors were used to evaluate a series of genotype 1a/1b hybrid replicons. Our results showed that, consistent with resistance mapping, the inhibitor sensitivity domain also mapped to the N terminus of NS5A, but it could be distinguished from the key resistance sites. In addition, we demonstrated that NS5A inhibitors, as well as an active-site inhibitor that specifically binds NS3 protease, could block the hyperphosphorylation of NS5A, which is believed to play an essential role in the viral life cycle. Clinical proof of concept has recently been achieved with derivatives of these NS5A inhibitors, indicating that small molecules targeting a nontraditional viral protein like NS5A, without any known enzymatic activity, can also have profound antiviral effects on HCV-infected subjects.
Collapse
|
119
|
Boonstra A, van der Laan LJW, Vanwolleghem T, Janssen HLA. Experimental models for hepatitis C viral infection. Hepatology 2009; 50:1646-55. [PMID: 19670425 DOI: 10.1002/hep.23138] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease. The majority of infected individuals develop a persistent infection, which is associated with a high risk of liver cirrhosis and hepatocellular carcinoma. Since its discovery 20 years ago, progress in our understanding of this virus has been suboptimal due to the lack of good model systems. However, in the past decade this has greatly accelerated with the development of various in vitro cell culture systems and in vivo small-animal models. These systems have made a major impact on the field of HCV research, and have provided important breakthroughs in our understanding of HCV infection and replication. Importantly, the in vitro cell culture systems and the small-animal models have allowed preclinical testing of numerous novel antiviral compounds for the treatment of chronic HCV infection. In this article, we give an overview of current models, discuss their limitations, and provide future perspectives for research directed at the prevention and cure of hepatitis C.
Collapse
Affiliation(s)
- Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
120
|
Structural and functional analysis of hepatitis C virus strain JFH1 polymerase. J Virol 2009; 83:11926-39. [PMID: 19740982 DOI: 10.1128/jvi.01008-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hepatitis C virus (HCV) isolate JFH1 represents the only cloned wild-type sequence capable of efficient replication in cell culture, as well as in chimpanzees. Previous reports have pointed to the viral polymerase NS5B as a major determinant for efficient replication of this isolate. To understand the underlying mechanisms, we expressed and purified NS5B of JFH1 and of the closely related isolate J6, which replicates below the limit of detection in cell culture. The JFH1 enzyme exhibited a 5- to 10-fold-higher specific activity in vitro, consistent with the polymerase activity itself contributing to efficient replication of JFH1. The higher in vitro activity of the JFH1 enzyme was not due to increased RNA binding, elongation rate, or processivity of the polymerase but to higher initiation efficiency. By using homopolymeric and heteropolymeric templates, we found that purified JFH1 NS5B was significantly more efficient in de novo initiation of RNA synthesis than the J6 counterpart, particularly at low GTP concentrations, probably representing an important prerequisite for the rapid replication kinetics of JFH1. Furthermore, we solved the crystal structure of JFH1 NS5B, which displays a very closed conformation that is expected to facilitate de novo initiation. Structural analysis shows that this closed conformation is stabilized by a sprinkle of substitutions that together promote extra hydrophobic interactions between the subdomains "thumb" and "fingers." These analyses provide deeper insights into the initiation of HCV RNA synthesis and might help to establish more efficient cell culture models for HCV using alternative isolates.
Collapse
|
121
|
Kang JI, Kim JP, Wakita T, Ahn BY. Cell culture-adaptive mutations in the NS5B gene of hepatitis C virus with delayed replication and reduced cytotoxicity. Virus Res 2009; 144:107-16. [DOI: 10.1016/j.virusres.2009.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/04/2009] [Accepted: 04/07/2009] [Indexed: 12/13/2022]
|
122
|
Abstract
Detailed analysis of hepatitis C virus (HCV) has been hampered by the lack of an appropriate viral culture system and small animal models of infection. My group and others have recently reported the production of infectious virus after full-length HCV RNA transfection into Huh-7 cells. This system depends primarily on isolation of a JFH-1 strain from a patient with fulminant hepatitis. The JFH-1 strain belongs to genotype 2a and has high colony-formation efficiency when tested with a subgenomic replicon system. Here, I describe various protocols for isolation of the JFH-1 strain and construction of the HCV infection system. The HCV infection system contributes to our understanding of HCV virology and may permit development of novel antiviral strategies.
Collapse
Affiliation(s)
- Takaji Wakita
- Second Department of Virology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
123
|
Tellinghuisen TL, Lindenbach BD. Reverse transcription PCR-based sequence analysis of hepatitis C virus replicon RNA. Methods Mol Biol 2009; 510:165-75. [PMID: 19009260 DOI: 10.1007/978-1-59745-394-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the advent of efficient cell-culture methods for HCV replication and, more recently, infection, there has been a need to efficiently sequence the viral RNA in these systems. This need is especially urgent in light of the error-prone nature of HCV RNA replication, which leads to a variety of interesting mutations. The adaptation of hepatitis C replicons to cell culture, which greatly increased their replication capacity, and the subsequent identification of viral point mutations responsible for this adaptation are prime examples of the type of phenotype-genotype connection that viral RNA sequencing methods can provide. More recently, researchers have used similar sequencing methods to identify changes in replicons that represent viral adaptation to engineered mutations, adaptation to a variety of host cells, and viral evasion of antiviral compound susceptibility. Here, we describe the cloning and isolation of HCV replicon-bearing cells, the extraction of total RNA, the generation of cDNA, and the amplification of specific HCV replicon sequences for sequence analysis. The methods we describe permit rapid and robust determination of HCV RNA sequences from cell culture.
Collapse
|
124
|
Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proc Natl Acad Sci U S A 2009; 106:13517-22. [PMID: 19628699 DOI: 10.1073/pnas.0906413106] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inevitably, viruses depend on host factors for their multiplication. Here, we show that hepatitis C virus (HCV) RNA translation and replication depends on Rck/p54, LSm1, and PatL1, which regulate the fate of cellular mRNAs from translation to degradation in the 5'-3'-deadenylation-dependent mRNA decay pathway. The requirement of these proteins for efficient HCV RNA translation was linked to the 5' and 3' untranslated regions (UTRs) of the viral genome. Furthermore, LSm1-7 complexes specifically interacted with essential cis-acting HCV RNA elements located in the UTRs. These results bridge HCV life cycle requirements and highly conserved host proteins of cellular mRNA decay. The previously described role of these proteins in the replication of 2 other positive-strand RNA viruses, the plant brome mosaic virus and the bacteriophage Qss, pinpoint a weak spot that may be exploited to generate broad-spectrum antiviral drugs.
Collapse
|
125
|
Cellular models for the screening and development of anti-hepatitis C virus agents. Pharmacol Ther 2009; 124:1-22. [PMID: 19555718 DOI: 10.1016/j.pharmthera.2009.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes. This review focuses on these different cellular models, their advantages and disadvantages at the biological and experimental levels, and their respective use for evaluating the effect of antiviral molecules on different steps of HCV biology including virus entry, replication, particles generation and excretion, as well as on the modulation by the virus of the host cell response to infection.
Collapse
|
126
|
Pietschmann T, Zayas M, Meuleman P, Long G, Appel N, Koutsoudakis G, Kallis S, Leroux-Roels G, Lohmann V, Bartenschlager R. Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 2009; 5:e1000475. [PMID: 19521536 PMCID: PMC2691593 DOI: 10.1371/journal.ppat.1000475] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 05/14/2009] [Indexed: 02/07/2023] Open
Abstract
With the advent of subgenomic hepatitis C virus (HCV) replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs), previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A), but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I) as well as NS5A (S2204R), whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes. The hepatitis C virus (HCV) is a major cause of acute and chronic liver disease. Unusual for a positive strand RNA virus, HCV has the high propensity to establish persistent infection, which increases the risk for liver cirrhosis and hepatocellular carcinoma. No selective therapy is available thus far and its development has been hampered by the lack of adequate cell culture systems. With the advent of subgenomic replicons, i.e. RNAs containing only the viral replicase genes and that self-amplify in the human liver cell line Huh-7, this hurdle has been overcome to some extent. However, save for a single genotype 2a isolate, efficient replication of all HCV isolates described thus far requires replication enhancing mutations (REMs), but genomes with REMs do not support production of infectious virus particles. In this study we show that except for one mutation in non-structural protein 4B, REMs interfere with the assembly of infectious virus particles, whereas an unaltered HCV genome supports production of cell culture–derived virus that is infectious in vitro and in vivo. Our observations provide an explanation for the attenuation of cell culture adapted HCV genomes and open new perspectives for the development of culture systems for difficult to treat HCV genotypes.
Collapse
Affiliation(s)
- Thomas Pietschmann
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Margarita Zayas
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Philip Meuleman
- Center for Vaccinology, Ghent University and Hospital, Ghent, Belgium
| | - Gang Long
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Nicole Appel
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - George Koutsoudakis
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Stephanie Kallis
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | | | - Volker Lohmann
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
127
|
Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 2009. [PMID: 19521536 DOI: 10.1371/journal.ppat.1000475.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
With the advent of subgenomic hepatitis C virus (HCV) replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs), previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A), but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I) as well as NS5A (S2204R), whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes.
Collapse
|
128
|
Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 2009. [PMID: 19521536 DOI: 10.1371/journal.ppat] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the advent of subgenomic hepatitis C virus (HCV) replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs), previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A), but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I) as well as NS5A (S2204R), whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes.
Collapse
|
129
|
Belon CA, Frick DN. Helicase inhibitors as specifically targeted antiviral therapy for hepatitis C. Future Virol 2009; 4:277-293. [PMID: 20161209 PMCID: PMC2714653 DOI: 10.2217/fvl.09.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hepatitis C virus (HCV) leads to chronic liver disease and affects more than 2% of the world's population. Complications of the disease include fibrosis, cirrhosis and hepatocellular carcinoma. Current therapy for chronic HCV infection, a combination of ribavirin and pegylated IFN-alpha, is expensive, causes profound side effects and is only moderately effective against several common HCV strains. Specifically targeted antiviral therapy for hepatitis C (STAT-C) will probably supplement or replace present therapies. Leading compounds for STAT-C target the HCV nonstructural (NS)5B polymerase and NS3 protease, however, owing to the constant threat of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase domain of the HCV NS3 protein. The HCV helicase uses energy derived from ATP hydrolysis to separate based-paired RNA or DNA. This article discusses unique features of the HCV helicase, recently discovered compounds that inhibit HCV helicase catalyzed reactions and HCV cellular replication, and new methods to monitor helicase action in a high-throughput format.
Collapse
Affiliation(s)
- Craig A Belon
- New York Medical College, Department of Biochemistry & Molecular Biology, Valhalla, NY 10595, USA, Tel.: +1 914 594 3537; Fax: +1 914 594 4058;
| | - David N Frick
- New York Medical College, Department of Biochemistry & Molecular Biology, Valhalla, NY 10595, USA, Tel.: +1 914 594 4190; Fax: +1 914 594 4058;
| |
Collapse
|
130
|
Abstract
BACKGROUND The need for effective treatment for chronic hepatitis C infection has driven the development of novel antiviral agents that target specific steps in the viral replication cycle. AIM To evaluate the current literature concerning investigational agents for chronic hepatitis C virus infection. METHODS Resources used included PubMed, conference proceedings from the American and European Liver Associations' meetings 2005-2008 and the National Institute of Health's clinical trials website (http://www.clinicaltrials.gov). The focus was restricted to investigational agents that have progressed beyond preclinical development. RESULTS Over 50 investigational agents for chronic hepatitis C infection are currently in clinical development. Specifically targeted anti-viral therapy for HCV (STAT-C) shows great promise with NS3/4a protease inhibitors now entering phase 3 programmes. New interferon-alpha and ribavirin formulations aim to optimize anti-viral efficacy yet limit toxicity. Other candidates include novel immunomodulators and therapeutic vaccines. CONCLUSIONS A new era of therapy for chronic hepatitis C beckons, promising increased cure rates with shortened duration of therapy. However, the era will not be without challenges including viral resistance, drug toxicity and the need to optimize combination therapy in the face of a rapidly evolving therapeutic arsenal.
Collapse
Affiliation(s)
- A J V Thompson
- Division of Gastroenterology/Hepatology, Duke Clinical Research Institute, Duke University, Durham, NC 27715, USA
| | | |
Collapse
|
131
|
Adair R, Patel AH, Corless L, Griffin S, Rowlands DJ, McCormick CJ. Expression of hepatitis C virus (HCV) structural proteins in trans facilitates encapsidation and transmission of HCV subgenomic RNA. J Gen Virol 2009; 90:833-842. [PMID: 19223490 DOI: 10.1099/vir.2008.006049-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A characteristic of many positive-strand RNA viruses is that, whilst replication of the viral genome is dependent on the expression of the majority of non-structural proteins in cis, virus particle formation can occur when most or all of the structural proteins are co-expressed in trans. Making use of a recently identified hepatitis C virus (HCV) isolate (JFH1) that can be propagated in tissue culture, this study sought to establish whether this is also the case for hepaciviruses. Stable cell lines containing one of two bicistronic replicons derived from the JFH1 isolate were generated that expressed non-structural proteins NS3-5B or NS2-5B. Release and transmission of these replicons to naïve Huh7 cells could then be demonstrated when baculovirus transduction was used to express the HCV proteins absent from the subgenomic replicons. Transmission could be blocked by a neutralizing antibody targeted at the E2 envelope protein, consistent with this phenomenon occurring via trans-encapsidation of replicon RNA into virus-like particles. Transmission was also dependent on expression of NS2, which was most effective at promoting virus particle formation when expressed in cis on the replicon RNA compared with in trans via baculovirus delivery. Density gradient analysis of the particles revealed the presence of a broad infectious peak between 1.06 and 1.11 g ml(-1), comparable to that seen when propagating full-length virus in tissue culture. In summary, the trans-encapsidation system described offers a complementary and safer approach to study HCV particle formation and transmission in tissue culture.
Collapse
Affiliation(s)
- Richard Adair
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow, UK
| | - Arvind H Patel
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow, UK
| | - Lynsey Corless
- Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen Griffin
- Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David J Rowlands
- Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher J McCormick
- School of Medicine, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
132
|
Advances in genomic research on hepatitis C virus with a useful tool, replicon system. Keio J Med 2009; 57:75-83. [PMID: 18677087 DOI: 10.2302/kjm.57.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research for hepatitis C virus (HCV) has long delayed by missing of in vitro culture system. Since the development of replicon system, a replication system of subgenomic HCV RNAs in a hepatoma cell line, has been reported, many virological and clinical findings have been discovered. Recently, in addition of subgenomic replication system, hepatitis C virus full-length RNA replication has been possible, and a few cell culture systems producing viral particles have been produced. These developments enabled us to investigate the life cycle or intracellular circumstance of HCV production. By screening of newly synthesized drugs with this replicon system, several possible medicines have been established and clinical researches are now running. Among them, VX950 and SCH503034 are nearest to clinical use. Other possible agents for reducing viral replication such as cyclophyllin inhibitors, inhibitors of sphingomyelin synthesis, HMG-CoA reductase inhibitors, or RNA-dependent RNA polymerase inhibitors have been also investigated. Furthermore the mechanism for development of hepatocellular carcinoma in the HCV infected liver has been vigorously studied using the HCV replicon system.
Collapse
|
133
|
Bungyoku Y, Shoji I, Makine T, Adachi T, Hayashida K, Nagano-Fujii M, Ide YH, Deng L, Hotta H. Efficient production of infectious hepatitis C virus with adaptive mutations in cultured hepatoma cells. J Gen Virol 2009; 90:1681-1691. [PMID: 19282429 DOI: 10.1099/vir.0.010983-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Robust production of infectious hepatitis C virus (HCV) in cell culture was realized by using the JFH1 strain and the homologous chimeric J6/JFH1 strain in Huh-7.5 cells, a highly HCV-permissive subclone of Huh-7 cells. In this study, we aimed to establish a more efficient HCV-production system and to gain some insight into the adaptation mechanisms of efficient HCV production. By serial passaging of J6/JFH1-infected Huh-7.5 cells, we obtained culture-adapted J6/JFH1 variants, designated P-27, P-38 and P-47. Sequence analyses revealed that the adaptive mutant viruses P-27, P-38 and P-47 possessed eight mutations [four in E2, two in NS2, one in NS5A and one in NS5B), 10 mutations [two additional mutations in the 5'-untranslated region (5'-UTR) and core] and 11 mutations (three additional mutations in 5'-UTR, core and NS5B), respectively. We introduced amino acid substitutions into the wild-type J6/JFH1 clone, generated recombinant viruses with adaptive mutations and analysed their infectivity and ability to produce infectious viruses. The viruses with the adaptive mutations exhibited higher expression of HCV proteins than did the wild type in Huh-7.5 cells. Moreover, we provide evidence suggesting that the mutation N534H in the E2 glycoprotein of the mutant viruses conferred an advantage at the entry level. We thus demonstrate that an efficient HCV-production system could be obtained by introducing adaptive mutations into the J6/JFH1 genome. The J6/JFH1-derived mutant viruses presented here would be a good tool for producing HCV particles with enhanced infectivity and for studying the molecular mechanism of HCV entry.
Collapse
Affiliation(s)
- Yasuaki Bungyoku
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Ikuo Shoji
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Tatsuhiko Makine
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Tetsuya Adachi
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kazumi Hayashida
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Motoko Nagano-Fujii
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yoshi-Hiro Ide
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Lin Deng
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
134
|
Oniangue-Ndza C, Aus dem Siepen M, Lohmann V, Wiese M, Viazov S, Roggendorf M. In vitro replicative properties of replicons constructed using sequence variants of the hepatitis C virus strain AD78 that caused a single-source outbreak of hepatitis C. Virus Res 2009; 142:1-9. [PMID: 19103237 DOI: 10.1016/j.virusres.2008.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 01/22/2023]
Abstract
For many aspects of HCV research it would be very useful to have a set of replicons in which different genome regions are swapped by corresponding fragments from isolates of the same viral strain that might demonstrate different biological characteristics or bear evolving antigenic determinants. The isolates of the same HCV strain that are necessary for generation of such hybrid replicons might be obtained from a single-source outbreak of HCV infection. One such outbreak caused by the HCV AD78 strain, occurred in Germany due to infection of women by contaminated anti-D globulin. Using a sequential substitution of different segments of the Con1 replicon with the corresponding fragments from the AD78 strain of HCV, a set of chimeric Con1/AD78 subgenomic and full-length, AD78-based genomic replicons were generated. These replicons might be used as a new experimental tool for different aspects of HCV research, including studies of the nature of isolate-specific differences in interactions of the replicon with the host cell and analysis of the mechanisms of HCV resistance to antivirals. The newly generated full-length replicon can also be used for preparation of AD78-specific target cell lines, which may be invaluable for the analysis of the evolution of HCV cellular immune responses in the cohort of patients infected with the HCV AD78 strain.
Collapse
Affiliation(s)
- Cesar Oniangue-Ndza
- Institute of Virology, Essen University Hospital, Hufelandstr. 55, University of Duisburg-Essen, 45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
135
|
Welbourn S, Jirasko V, Breton V, Reiss S, Penin F, Bartenschlager R, Pause A. Investigation of a role for lysine residues in non-structural proteins 2 and 2/3 of the hepatitis C virus for their degradation and virus assembly. J Gen Virol 2009; 90:1071-1080. [PMID: 19264595 DOI: 10.1099/vir.0.009944-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated that both uncleaved, enzymitically inactive NS2/3 and cleaved NS2 proteins are rapidly degraded upon expression in cells, phenomena described to be blocked by the addition of proteasome inhibitors. As this degradation and its regulation potentially constitute an important strategy of the hepatitis C virus (HCV) to regulate the levels of its non-structural proteins, we further investigated the turnover of these proteins in relevant RNA replication systems. A lysine-mutagenesis approach was used in an effort to prevent protein degradation and determine any effect on various steps of the viral replication cycle. We show that, while NS2-lysine mutagenesis of protease-inactive NS2/3 results in a partial stabilization of this protein, the increased NS2/3 levels do not rescue the inability of NS2/3 protease inactive replicons to replicate, suggesting that uncleaved NS2/3 is unable to functionally replace NS3 in RNA replication. Furthermore, we show that the cleaved NS2 protein is rapidly degraded in several transient and stable RNA replicon systems and that NS2 from several different genotypes also has a short half-life, highlighting the potential importance of the regulation of NS2 levels for the viral life cycle. However, in contrast to uncleaved NS2/3, neither ubiquitin nor proteasomal degradation appear to be significantly involved in NS2 degradation. Finally, although NS2 lysine-to-arginine mutagenesis does not affect this protein's levels in a JFH-1 cell culture infection system, several of these residues are identified to be involved in virion assembly, further substantiating the importance of regions of this protein for production of infectious virus.
Collapse
Affiliation(s)
- Sarah Welbourn
- Goodman Cancer Centre and Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Vlastimil Jirasko
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Valérie Breton
- Goodman Cancer Centre and Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Simon Reiss
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Francois Penin
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université de Lyon, IFR128 BioSciences Gerland-Lyon Sud, F-69367 Lyon Cedex 07, France
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Arnim Pause
- Goodman Cancer Centre and Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
136
|
Guo J, Yan R, Xu G, Li W, Zheng C. Construction of the Vero cell culture system that can produce infectious HCV particles. Mol Biol Rep 2009; 36:111-20. [PMID: 17960493 DOI: 10.1007/s11033-007-9158-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
The hepatitis C virus is a major cause of chronic liver disease worldwide. Lack of culture system supporting virus production has been one of the major impediments in HCV research and vaccine development. Here, we use a HCV (1b) full-length cDNA clone that replicates and produces integrated and infectious virus particles in cultured Vero cells. Evidence shows that the replication of virus particles is robust, producing over 10(8) copies of positive RNA per milliliter of the culture cells within 48 h. Sucrose density gradient centrifugation of the cell lysate reveals that the HCV virions have a density of about 1.17 g/ml and a spherical morphology with an average diameter of about 55 nm. Secreted virus is infectious for Huh7 cells and can be neutralized by CD81- and E2-specific antibodies. This system establishes a powerful framework for studying the virus life cycle and developing vaccine research.
Collapse
Affiliation(s)
- Jia Guo
- College of Life Sciences, Wuhan University, Luojia Mountain, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
137
|
Progress on New Hepatitis C Virus Targets: NS2 and NS5A. NATO SCIENCE FOR PEACE AND SECURITY SERIES A: CHEMISTRY AND BIOLOGY 2009. [DOI: 10.1007/978-90-481-2339-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
138
|
Hao W, Duggal R. High-throughput screening of HCV RNA replication inhibitors by means of a reporter replicon system. Methods Mol Biol 2009; 510:243-250. [PMID: 19009266 DOI: 10.1007/978-1-59745-394-3_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Efforts to find effective treatment for hepatitis C virus (HCV) have been hampered by the lack of a robust in vitro infectious tissue-culture system for this virus. A subgenomic replicon system was first developed in 1999 and has since been extensively optimized to accommodate the need for conveniently measuring HCV replication in vitro and widely adopted in HCV drug-discovery efforts. Here we describe the adaptation of a modified replicon system for a high-throughput screening (HTS) in anti-HCV drug discovery. In this system, the antiviral activity and cytotoxicity of any experimental compound are measured from a single well. This duplex measurement greatly increases the efficiency of the HTS while lowering the cost. The usefulness of this approach has been supported by the recent discovery of many new lead compounds from our HTS efforts in the past two years.
Collapse
Affiliation(s)
- Weidong Hao
- Pfizer Global Research and Development, Pfizer Inc., San Diego, CA, USA
| | | |
Collapse
|
139
|
Abstract
Since the molecular cloning of the hepatitis C virus (HCV) genome for the first time in 1989, there has been tremendous progress in our understanding of the multiple facets of the replication cycle of this virus. Key to this progress has been the development of systems to propagate the virus in cell culture, which turned out to be a notoriously difficult task. A major breakthrough has been the construction of subgenomic replicons that self-amplify in cultured human hepatoma cells. These RNAs recapitulate the intracellular steps of the HCV replication cycle and have been instrumental to decipher details of the RNA amplification steps including the identification of key host cell factors. However, reproduction of the complete viral replication cycle only became possible with the advent of a particular molecular HCV clone designated JFH-1 that replicates to very high levels and supports the production of infectious virus particles. The availability of this new culture system raises the question, whether the use of replicons is still justified. In this review, we will discuss the pros and cons of both systems.
Collapse
|
140
|
Abstract
Subgenomic replicons have been the first efficient cell-culture system for HCV and still are a valuable tool for studying different aspects of RNA replication. A variety of replicons based on different viral isolates and vector designs have been established. Here, I give a brief overview of viral isolates, applicable host-cell lines, replicon structures, and general considerations regarding replicon experiments, supplemented by basic protocols for in vitro transcription, electroporation, selection of replicon cells, transient replication assays, and northern hybridization.
Collapse
|
141
|
Marcotrigiano J, Tellinghuisen T. Purification and crystallization of NS5A domain I of hepatitis C virus. Methods Mol Biol 2009; 510:85-94. [PMID: 19009255 DOI: 10.1007/978-1-59745-394-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The NS5A protein of HCV is an essential component of the viral RNA replication machinery and may also function in modulation of the host cell environment. The exact function of NS5A in these processes remains unknown. NS5A is a large hydrophilic phosphoprotein protein consisting of three domains. The amino-terminal domain, designated domain I, coordinates a single zinc atom that is required for virus replication. We have determined the X-ray crystallographic structure of the domain I region of NS5A, and the structure sheds some light on the previously reported RNA binding activity observed for NS5A and suggests that the protein functions as a dimer. Here we describe the bacterial expression, purification, crystallization, and structural determination of the amino-terminal domain I of NS5A. The methods described herein should be of use for the generation of domain I for biochemical studies as well as future crystallization studies as antiviral compounds directed against this region of NS5A become available.
Collapse
Affiliation(s)
- Joseph Marcotrigiano
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | | |
Collapse
|
142
|
Debio 025, a cyclophilin binding molecule, is highly efficient in clearing hepatitis C virus (HCV) replicon-containing cells when used alone or in combination with specifically targeted antiviral therapy for HCV (STAT-C) inhibitors. Antimicrob Agents Chemother 2008; 53:967-76. [PMID: 19104013 DOI: 10.1128/aac.00939-08] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Debio 025 is a potent inhibitor of hepatitis C virus (HCV) replication (J. Paeshuyse et al., Hepatology 43:761-770, 2006). In phase I clinical studies, monotherapy (a Debio 025 dose of 1,200 mg twice a day) resulted in a mean maximal decrease in the viral load of 3.6 log(10) units (R. Flisiak et al., Hepatology 47:817-826, 2008), whereas a reduction of 4.6 log(10) units was obtained in phase II studies when Debio 025 was combined with interferon (R. Flisiak et al., J. Hepatol., 48:S62, 2008). We here report on the particular characteristics of the in vitro anti-HCV activities of Debio 025. The combination of Debio 025 with either ribavirin or specifically targeted antiviral therapy for HCV (STAT-C) inhibitors (NS3 protease or NS5B [nucleoside and nonnucleoside] polymerase inhibitors) resulted in additive antiviral activity in short-term antiviral assays. Debio 025 has the unique ability to clear hepatoma cells from their HCV replicon when it is used alone or in combination with interferon and STAT-C inhibitors. Debio 025, when it was used at concentrations that have been observed in human plasma (0.1 or 0.5 muM), was able to delay or prevent the development of resistance to HCV protease inhibitors as well as to nucleoside and nonnucleoside polymerase inhibitors. Debio 025 forms an attractive drug candidate for the treatment of HCV infections in combination with standard interferon-based treatment and treatments that directly target the HCV polymerase and/or protease.
Collapse
|
143
|
Selection and characterization of hepatitis C virus replicons dually resistant to the polymerase and protease inhibitors HCV-796 and boceprevir (SCH 503034). Antimicrob Agents Chemother 2008; 53:401-11. [PMID: 18936191 DOI: 10.1128/aac.01081-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HCV-796 is a nonnucleoside inhibitor of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase, and boceprevir is an inhibitor of the NS3 serine protease. The emergence of replicon variants resistant to the combination of HCV-796 and boceprevir was evaluated. Combining the inhibitors greatly reduced the frequency with which resistant colonies arose; however, some resistant replicon cells could be isolated by the use of low inhibitor concentrations. These replicons were approximately 1,000-fold less susceptible to HCV-796 and 9-fold less susceptible to boceprevir. They also exhibited resistance to anthranilate nonnucleoside inhibitors of NS5B but were fully sensitive to inhibitors of different mechanisms: a pyranoindole, Hsp90 inhibitors, an NS5B nucleoside inhibitor, and pegylated interferon (Peg-IFN). The replicon was cleared from the combination-resistant cells by extended treatment with Peg-IFN. Mutations known to confer resistance to HCV-796 (NS5B C316Y) and boceprevir (NS3 V170A) were present in the combination-resistant replicons. These changes could be selected together and coexist in the same genome. The replicon bearing both changes exhibited reduced sensitivity to inhibition by HCV-796 and boceprevir but had a reduced replicative capacity.
Collapse
|
144
|
Gottwein JM, Bukh J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 2008; 71:51-133. [PMID: 18585527 DOI: 10.1016/s0065-3527(08)00002-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.
Collapse
Affiliation(s)
- Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
145
|
A genetic interaction between hepatitis C virus NS4B and NS3 is important for RNA replication. J Virol 2008; 82:10671-83. [PMID: 18715921 DOI: 10.1128/jvi.00875-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 4B (NS4B), a poorly characterized integral membrane protein, is thought to function as a scaffold for replication complex assembly; however, functional interactions with the other HCV nonstructural proteins within this complex have not been defined. We report that a Con1 chimeric subgenomic replicon containing the NS4B gene from the closely related H77 isolate is defective for RNA replication in a transient assay, suggesting that H77 NS4B is unable to productively interact with the Con1 replication machinery. The H77 NS4B sequences that proved detrimental for Con1 RNA replication resided in the predicted N- and C-terminal cytoplasmic domains as well as the central transmembrane region. Selection for Con1 derivatives that could utilize the entire H77 NS4B or hybrid Con1-H77 NS4B proteins yielded mutants containing single amino acid substitutions in NS3 and NS4A. The second-site mutations in NS3 partially restored the replication of Con1 chimeras containing the N-terminal or transmembrane domains of H77 NS4B. In contrast, the deleterious H77-specific sequences in the C terminus of NS4B, which mapped to a cluster of four amino acids, were completely suppressed by second-site substitutions in NS3. Collectively, these results provide the first evidence for a genetic interaction between NS4B and NS3 important for productive HCV RNA replication.
Collapse
|
146
|
Comparative in vitro anti-hepatitis C virus activities of a selected series of polymerase, protease, and helicase inhibitors. Antimicrob Agents Chemother 2008; 52:3433-7. [PMID: 18625766 DOI: 10.1128/aac.01534-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We report here a comparative study of the anti-hepatitis C virus (HCV) activities of selected (i) nucleoside polymerase, (ii) nonnucleoside polymerase, (iii) alpha,gamma-diketo acid polymerase, (iv) NS3 protease, and (v) helicase inhibitors, as well as (vi) cyclophilin binding molecules and (vii) alpha 2b interferon in four different HCV genotype 1b replicon systems.
Collapse
|
147
|
Inubushi S, Nagano-Fujii M, Kitayama K, Tanaka M, An C, Yokozaki H, Yamamura H, Nuriya H, Kohara M, Sada K, Hotta H. Hepatitis C virus NS5A protein interacts with and negatively regulates the non-receptor protein tyrosine kinase Syk. J Gen Virol 2008; 89:1231-1242. [PMID: 18420802 DOI: 10.1099/vir.0.83510-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatitis C virus (HCV) is the major causative agent of hepatocellular carcinoma. However, the precise mechanism underlying the carcinogenesis is yet to be elucidated. It has recently been reported that Syk, a non-receptor protein tyrosine kinase, functions as a potent tumour suppressor in human breast carcinoma. This study first examined the possible effect of HCV infection on expression of Syk in vivo. Immunohistochemical analysis revealed that endogenous Syk, which otherwise was expressed diffusely in the cytoplasm of normal hepatocytes, was localized near the cell membrane with a patchy pattern in HCV-infected hepatocytes. The possible interaction between HCV proteins and Syk in human hepatoma-derived Huh-7 cells was then examined. Immunoprecipitation analysis revealed that NS5A interacted strongly with Syk. Deletion-mutation analysis revealed that an N-terminal portion of NS5A (aa 1-175) was involved in the physical interaction with Syk. An in vitro kinase assay demonstrated that NS5A inhibited the enzymic activity of Syk and that, in addition to the N-terminal 175 residues, a central portion of NS5A (aa 237-302) was required for inhibition of Syk. Moreover, Syk-mediated phosphorylation of phospholipase C-gamma1 was downregulated by NS5A. An interaction of NS5A with Syk was also detected in Huh-7.5 cells harbouring an HCV RNA replicon or infected with HCV. In conclusion, these results demonstrated that NS5A interacts with Syk resulting in negative regulation of its kinase activity. The results indicate that NS5A may be involved in the carcinogenesis of hepatocytes through the suppression of Syk kinase activities.
Collapse
Affiliation(s)
- Sachiko Inubushi
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motoko Nagano-Fujii
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kikumi Kitayama
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motofumi Tanaka
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Chunying An
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroshi Yokozaki
- Division of Surgical Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hirohei Yamamura
- Hyogo Laboratory, Hyogo Prefectural Institute of Public Health and Environmental Sciences, Kobe 652-0032, Japan
| | - Hideko Nuriya
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | - Kiyonao Sada
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
148
|
Silberstein E, Taylor DR. Overcoming hurdles in hepatitis C virus research: efficient production of infectious virus in cell culture. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2008; 4:82-8. [PMID: 23675072 PMCID: PMC3614688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/29/2022]
Abstract
Hepatitis C virus is a flavivirus that infects nearly 2% of the world population. There is no vaccine available and current therapy with interferon and ribavirin is expensive, not well tolerated and effective in only 60% of patients. HCV research has been hampered by the lack of a robust tissue culture system, but recent advances have made virus growth in culture possible. Here we review the current state-of-the-art and the molecular hurdles that have been met and those that still need to be overcome.
Collapse
Affiliation(s)
- Erica Silberstein
- Laboratory of Hepatitis and Related Emerging Agents, Center for Biologics Evaluation and Research, US Food and Drug Administration
| | | |
Collapse
|
149
|
McGarvey MJ, Iqbal M, Nastos T, Karayiannis P. Restricted quasispecies variation following infection with the GB virus B. Virus Res 2008; 135:181-6. [PMID: 18455258 DOI: 10.1016/j.virusres.2008.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 03/19/2008] [Accepted: 03/24/2008] [Indexed: 02/05/2023]
Abstract
The extent of genetic variability following acute infection of tamarins with GB virus B (GBV-B) is not known. In this study we attempted to define the quasispecies variation of GBV-B 17 days post-infection, by PCR amplification of GBV-B RNA extracted from serum and liver. Cloning followed by sequencing revealed a small number of changes in the three regions studied, namely the 5' untranslated region, E2 and NS3. Moreover, there was no region of high amino acid variability in E2, akin to hypervariable region 1 of hepatitis C virus. This was further confirmed by analysing sequences from two additional animals obtained at a similar time point post-infection. Nevertheless, it was apparent that different variants with one or two amino acid substitutions in the region studied had been selected when comparing the sequences from the three animals. This restricted sequence variation of GBV-B during acute hepatitis may explain the infrequent progression of the infection to a chronic stage.
Collapse
Affiliation(s)
- Michael Joseph McGarvey
- Department of Medicine, Imperial College, Faculty of Medicine, St. Mary's Campus, London, United Kingdom
| | | | | | | |
Collapse
|
150
|
Nakamura M, Saito H, Ikeda M, Tada S, Kumagai N, Kato N, Shimotohno K, Hibi T. Possible molecular mechanism of the relationship between NS5B polymorphisms and early clearance of hepatitis C virus during interferon plus ribavirin treatment. J Med Virol 2008; 80:632-9. [PMID: 18297719 DOI: 10.1002/jmv.21125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously reported the relationship between viral polymerase polymorphisms and the initial decline in viral load induced by interferon-alpha and ribavirin therapy in genotype 1b-related chronic hepatitis C patients. The presence of E124K and I85V of NS5B was closely associated with viral clearance at 8 weeks of treatment. The aim of this study was to investigate the mechanisms by which this polymorphism of NS5B protein affects early viral clearance. We used a replicon system derived from strain O, genotype 1b virus. Three mutants (V85I), (K124E), and (V85I/K124E) were introduced to the replicon. OR6c, a derivative of HuH7 cells, was transfected with the replicon including a luciferase reporter gene. Luciferase activities were measured 72 hr post-transfection. All three mutants showed higher luciferase activity than that of the wild type, and the V85I mutant showed the highest activity. This result was also confirmed by neomycin gene-containing replicons with same mutations. All replicons were down-regulated by ribavirin, but the level of reduction in the V85I mutant was the lowest. Our results suggested that this mutation at least partly contributes to resistance to early viral clearance during interferon and ribavirin combination therapy.
Collapse
Affiliation(s)
- Mitsuyasu Nakamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|