101
|
Huen J, Kakihara Y, Ugwu F, Cheung KLY, Ortega J, Houry WA. Rvb1–Rvb2: essential ATP-dependent helicases for critical complexesThis paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:29-40. [DOI: 10.1139/o09-122] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rvb1 and Rvb2 are highly conserved, essential AAA+ helicases found in a wide range of eukaryotes. The versatility of these helicases and their central role in the biology of the cell is evident from their involvement in a wide array of critical cellular complexes. Rvb1 and Rvb2 are components of the chromatin-remodeling complexes INO80, Swr-C, and BAF. They are also members of the histone acetyltransferase Tip60 complex, and the recently identified R2TP complex present in Saccharomyces cerevisiae and Homo sapiens; a complex that is involved in small nucleolar ribonucleoprotein (snoRNP) assembly. Furthermore, in humans, Rvb1 and Rvb2 have been identified in the URI prefoldin-like complex. In Drosophila, the Polycomb Repressive complex 1 contains Rvb2, but not Rvb1, and the Brahma complex contains Rvb1 and not Rvb2. Both of these complexes are involved in the regulation of growth and development genes in Drosophila. Rvbs are therefore crucial factors in various cellular processes. Their importance in chromatin remodeling, transcription regulation, DNA damage repair, telomerase assembly, mitotic spindle formation, and snoRNP biogenesis is discussed in this review.
Collapse
Affiliation(s)
- Jennifer Huen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Yoshito Kakihara
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Francisca Ugwu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Kevin L. Y. Cheung
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
102
|
E1A interacts with two opposing transcriptional pathways to induce quiescent cells into S phase. J Virol 2010; 84:4050-9. [PMID: 20089639 DOI: 10.1128/jvi.02131-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite data suggesting that the adenovirus E1A protein of 243 amino acids creates an S-phase environment in quiescent cells by overcoming the nucleosomal repression of E2F-regulated genes, the precise mechanisms underlying E1A's ability in this process have not yet been defined at the biochemical level. In this study, we show by kinetic analysis that E1A, as opposed to an E1A mutant failing to bind p130, can temporally eliminate corepressor complexes consisting of p130-E2F4 and HDAC1/2-mSin3B from the promoters of E2F-regulated genes in quiescent cells. Once the complexes are removed, the di-methylation of H3K9 at these promoters becomes dramatically diminished, and this in turn allows for the acetylation of H3K9/14 and the recruitment of activating E2F family members, which is then followed by the transcriptional activity of the E2F-regulated genes. Remarkably, although an E1A mutant that can no longer bind to a histone acetyltransferase (PCAF) is as capable as wild-type E1A in eliminating corepressor complexes and methyl groups from the promoters of these genes, it cannot mediate the acetylation of H3K9/14 or induce their transcription. These findings suggest that corepressors as well as coactivators are acted upon by E1A to derepress E2F-regulated genes in quiescent cells. Thus, our results highlight for the first time a functional relationship between E1A and two transcriptional pathways of differing functions for transitioning cells out of quiescence and into S phase.
Collapse
|
103
|
Schirling C, Heseding C, Heise F, Kesper D, Klebes A, Klein-Hitpass L, Vortkamp A, Hoffmann D, Saumweber H, Ehrenhofer-Murray AE. Widespread regulation of gene expression in the Drosophila genome by the histone acetyltransferase dTip60. Chromosoma 2009; 119:99-113. [PMID: 19949809 DOI: 10.1007/s00412-009-0247-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/10/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
The MYST histone acetyltransferase (HAT) dTip60 is part of a multimeric protein complex that unites both HAT and chromatin remodeling activities. Here, we sought to gain insight into the biological functions of dTip60. Strong ubiquitous dTip60 knock-down in flies was lethal, whereas knock-down in the wing imaginal disk led to developmental defects in the wing. dTip60 localized to the nucleus in early embryos and was present in a large number of interbands on polytene chromosomes. Genome-wide expression analysis upon depletion of dTip60 in cell culture showed that it regulated a large number of genes in Drosophila, among which those with chromatin-related functions were highly enriched. Surprisingly, a significant portion of these genes were upregulated upon dTip60 loss, indicating that dTip60 has repressive as well as activating functions. dTip60 protein was directly located at promoter regions of a subset of repressed genes, suggesting a direct role in gene repression. Comparison of the gene expression signature of dTip60 downregulation with that of histone deacetylase inhibition with trichostatin A revealed a significant correlation, suggesting that the dTip60 complex recruits an HDAC-containing complex to regulate gene expression in the Drosophila genome.
Collapse
Affiliation(s)
- Corinna Schirling
- Abteilung für Genetik, Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, Universitätsstrasse 5, 45117, Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Mutations of the retinoblastoma tumour suppressor gene (RB1) or components regulating the RB pathway have been identified in almost every human malignancy. The E2F transcription factors function in cell cycle control and are intimately regulated by RB. Studies of model organisms have revealed conserved functions for E2Fs during development, suggesting that the cancer-related proliferative roles of E2F family members represent a recent evolutionary adaptation. However, given that some human tumours have concurrent RB1 inactivation and E2F amplification and overexpression, we propose that there are alternative tumour-promoting activities for the E2F family, which are independent of cell cycle regulation.
Collapse
Affiliation(s)
- Hui-Zi Chen
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
105
|
Zhou C, Wawrowsky K, Bannykh S, Gutman S, Melmed S. E2F1 induces pituitary tumor transforming gene (PTTG1) expression in human pituitary tumors. Mol Endocrinol 2009; 23:2000-12. [PMID: 19837943 DOI: 10.1210/me.2009-0161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rb/E2F is dysregulated in murine and human pituitary tumors. Pituitary tumor transforming gene (PTTG1), a securin protein, is required for pituitary tumorigenesis, and PTTG1 deletion attenuates pituitary tumor development in Rb(+/-) mice. E2F1 and PTTG1 were concordantly overexpressed in 29 of 46 Rb(+/-) murine pituitary tissues and also in 45 of 80 human pituitary tumors (P < 0.05). E2F1 specifically bound the hPTTG1 promoter as assessed by chromatin immunoprecipitation and biotin-streptavidin pull-down assay, indicating that hPTTG1 may act as a direct E2F1 target. Transfection of E2F1 and its partner DP1 dose-dependently activated hPTTG1 transcription up to 3-fold in p53-devoid H1299 cells but not in p53-replete HCT116 cells. E2F1 overexpression enhanced endogenous hPTTG1 mRNA and protein levels up to 3-fold in H1299 cells. The presence of endogenous p53/p21 constrained the induction, whereas knocking down either p53 or p21 in HCT116 cells restored E2F1-induced hPTTG1 transactivation and expression. Moreover, suppressing Rb by small interfering RNA concordantly elevated E2F1 and hPTTG1 protein levels. In contrast, transfection of E2F1 small interfering RNA lowered hPTTG1 levels 24 h later in HCT116 than in H1299 cells, indicating that p53 delays E2F1 action on hPTTG1. These results elucidate a mechanism for abundant tumor hPTTG1 expression, whereby Rb inactivation releases E2F1 to induce hPTTG1. This signaling pathway may underlie the requirement of PTTG1 for pituitary tumorigenesis.
Collapse
Affiliation(s)
- Cuiqi Zhou
- Department of Medicine, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|
106
|
UHRF1 recruits the histone acetyltransferase Tip60 and controls its expression and activity. Biochem Biophys Res Commun 2009; 390:523-8. [PMID: 19800870 DOI: 10.1016/j.bbrc.2009.09.131] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 09/30/2009] [Indexed: 12/24/2022]
Abstract
Tat-interactive protein, 60kDa (Tip60) is a histone acetyltransferase with specificity toward lysine 5 of histone H2A (H2AK5) and plays multiple roles in chromatin remodeling processes. Co-immunoprecipitation experiments performed on Jurkat cells, showed that Tip60 is present in the same macro-molecular complex as UHRF1 (Ubiquitin-like containing PHD and RING domain 1), DNMT1 (DNA methyltransferase 1), and HDAC1 (histone deacetylase 1). Furthermore, immunocytochemistry experiments confirmed that Tip60 co-localizes with the UHRF1/DNMT1 complex. Although down-regulation of UHRF1 by RNA interference enhanced Tip60 expression, a significant decrease of the level of acetylated H2AK5 was observed. Consistently, we have observed that down-regulation of Tip60 and DNMT1 by RNA interference, dramatically reduced the levels of acetylated H2AK5. Altogether, these results suggest that Tip60 is a novel partner of the epigenetic integration platform interplayed by UHRF1, DNMT1 and HDAC1 involved in the epigenetic code replication.
Collapse
|
107
|
Lu PY, Lévesque N, Kobor MS. NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and componentsThis paper is one of a selection of papers published in this Special Issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2009; 87:799-815. [DOI: 10.1139/o09-062] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin structure is important for the compaction of eukaryotic genomes, thus chromatin modifications play a fundamental role in regulating many cellular processes. The coordinated activities of various chromatin-remodelling and -modifying complexes are crucial in maintaining distinct chromatin neighbourhoods, which in turn ensure appropriate gene expression, as well as DNA replication, repair, and recombination. SWR1-C is an ATP-dependent histone deposition complex for the histone variant H2A.Z, whereas NuA4 is a histone acetyltransferase for histones H4, H2A, and H2A.Z. Together the NuA4 and SWR1-C chromatin-modifying complexes alter the chromatin structure through 3 distinct modifications in yeast: post-translational addition of chemical groups, ATP-dependent chromatin remodelling, and histone variant incorporation. These 2 multi-protein complexes share 4 subunits and function together to regulate the circuitry of H2A.Z biology. The components and functions of both multi-protein complexes are evolutionarily conserved and play important roles in multi-cellular development and cellular differentiation in higher eukaryotes. This review will summarize recent findings about NuA4 and SWR1-C and will focus on the connection between these complexes by investigating their physical and functional interactions through eukaryotic evolution.
Collapse
Affiliation(s)
- Phoebe Y.T. Lu
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nancy Lévesque
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
108
|
Tominaga K, Tominaga E, Ausserlechner MJ, Pereira-Smith OM. The cell senescence inducing gene product MORF4 is regulated by degradation via the ubiquitin/proteasome pathway. Exp Cell Res 2009; 316:92-102. [PMID: 19769966 DOI: 10.1016/j.yexcr.2009.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/07/2009] [Accepted: 09/15/2009] [Indexed: 12/22/2022]
Abstract
After undergoing several rounds of divisions normal human fibroblasts enter a terminally non-dividing state referred to as cellular or replicative senescence. We cloned MORF4 (mortality factor on human chromosome 4), as a cellular senescence inducing gene that caused immortal cells assigned to complementation group B for indefinite division to stop dividing. To facilitate analyses of this gene, which is toxic to cells at low levels, we obtained stable clones of HeLa cells expressing a tetracycline-induced MORF4 construct that could be induced by doxycycline in a dose-dependent manner. MORF4 induction resulted in reduced colony formation after 14 days of culture, as previously observed. We determined that MORF4 protein was unstable and that addition of the proteasome inhibitor MG132 resulted in the accumulation of the protein. Following removal of MG132 the protein was rapidly degraded. Subcellular fractionation following MG132 treatment demonstrated that the protein accumulates primarily in the cytoplasm with some amounts present in the nucleus. It is therefore possible that MORF4 protein, which escapes degradation in the cytoplasm, is transported to the nucleus where it is functional. The results suggest that levels of MORF4 in cells must be tightly controlled and one mechanism involves stability of the protein.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Sam and Ann Barshop Institute for Longevity and Aging Studies UTHSCSA, STCBM, San Antonio, TX 78245, USA.
| | | | | | | |
Collapse
|
109
|
Manzo F, Tambaro FP, Mai A, Altucci L. Histone acetyltransferase inhibitors and preclinical studies. Expert Opin Ther Pat 2009; 19:761-74. [PMID: 19473103 DOI: 10.1517/13543770902895727] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drugs able to regulate the histone modifier enzymes are very promising tools for the treatment of several diseases, such as cancer. Histone acetyltransferase (HAT) inhibitors are compounds able to inhibit the catalytic activity of HATs reported to be active in cancer, or in several other diseases, such as Alzheimer (AD), diabetes and hyperlipidaemia. OBJECTIVES Here we review the status and the rationale for the use of HAT inhibitors in the treatment of various diseases. METHODS Patents have been found on the espacenet database; the clinical trials have been reported as in the clinicaltrial.gov website. RESULTS AND CONCLUSION Despite the fact that other drugs able to regulate the histone modifier enzymes (such as histone deacetylase inhibitors) have been already approved for the treatment of cancer, HAT inhibitors seem promising for the treatment of human diseases such as AD and diabetes, although side effects and toxicity need to be investigated.
Collapse
Affiliation(s)
- Fabio Manzo
- Dipartimento di Patologia generale, Seconda Università degli Studi di Napoli, Vico L. De Crecchio 7, 80138, Napoli, IT.
| | | | | | | |
Collapse
|
110
|
Abstract
The retinoblastoma gene, Rb, was originally identified as the tumor suppressor gene mutated in a rare childhood cancer called retinoblastoma (reviewed in [1]). Subsequent studies showed that Rb functions in a pathway that is often functionally inactivated in a large majority of human cancers. Interestingly, recent studies showed that in certain types of cancers, Rb function is actually required for cancer development. The intimate link between the Rb pathway and cancer development suggests that the status of Rb activity can potentially be used to develop targeted therapy. However, a prerequisite will be to understand the role of Rb and its interaction with other signaling pathways in cancer development. In this review, we will discuss the roles of Rb in proliferation, apoptosis and differentiation by reviewing the recent findings in both mammalian systems and different model organisms. In addition, we will discuss strategies that can be employed that specifically target cancer cells based on the status of the Rb pathway.
Collapse
Affiliation(s)
- W Du
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
111
|
Jha S, Dutta A. RVB1/RVB2: running rings around molecular biology. Mol Cell 2009; 34:521-33. [PMID: 19524533 PMCID: PMC2733251 DOI: 10.1016/j.molcel.2009.05.016] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/25/2009] [Accepted: 05/20/2009] [Indexed: 12/31/2022]
Abstract
RVB1/RVB2 (also known as Pontin/Reptin, TIP49/TIP48, RuvbL1/RuvbL2, ECP54/ECP51, INO80H/INO80J, TIH1/TIH2, and TIP49A/TIP49B) are two highly conserved members of the AAA+ family that are present in different protein and nucleoprotein complexes. Recent studies implicate the RVB-containing complexes in many cellular processes such as transcription, DNA damage response, snoRNP assembly, cellular transformation, and cancer metastasis. In this review, we discuss recent advances in our understanding of RVB-containing complexes and their role in these pathways.
Collapse
Affiliation(s)
- Sudhakar Jha
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Jordan 1240, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Jordan 1240, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| |
Collapse
|
112
|
Svotelis A, Gévry N, Gaudreau L. Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem Cell Biol 2009; 87:179-88. [PMID: 19234533 DOI: 10.1139/o08-138] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian genome is organized into a structure of DNA and proteins known as chromatin. In general, chromatin presents a barrier to gene expression that is regulated by several pathways, namely by the incorporation of histone variants into the nucleosome. In yeast, H2A.Z is an H2A histone variant that is incorporated into nucleosomes as an H2A.Z/H2B dimer by the Swr1 complex and by the SRCAP and p400/Tip60 complexes in mammalian cells. H2A.Z has been associated with the poising of genes for transcriptional activation in the yeast model system, and is essential for development in higher eukaryotes. Recent studies in our laboratory have demonstrated a p400-dependent deposition of H2A.Z at the promoter of p21WAF1/CIP1, a consequence that prevents the activation of the gene by p53, thereby inhibiting p53-dependent replicative senescence, a form of cell-cycle arrest crucial in the prevention of carcinogenic transformation of cells. Moreover, H2A.Z is overexpressed in several different types of cancers, and its overexpression has been associated functionally with the proliferation state of cells. Therefore, we suggest that H2A.Z is an important regulator of gene expression, and its deregulation may lead to the increased proliferation of mammalian cells.
Collapse
Affiliation(s)
- Amy Svotelis
- Departement de biologie, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | | | | |
Collapse
|
113
|
PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage-induced apoptosis. Neoplasia 2009; 11:345-54. [PMID: 19308289 DOI: 10.1593/neo.81524] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/01/2009] [Accepted: 02/03/2009] [Indexed: 12/21/2022] Open
Abstract
Tip60 is a histone acetyltransferase (HAT) involved in the acetyltransferase activity and the cellular response to DNA damage. Here, we show that programmed cell death 5 (PDCD5), a human apoptosis-related protein, binds to Tip60 and enhances the stability of Tip60 protein in unstressed conditions. The binding amount of PDCD5 and Tip60 is significantly increased after UV irradiation. Further, PDCD5 enhances HAT activity of Tip60 and Tip60-dependent histone acetylation in both basal and UV-induced levels. We also find that PDCD5 increases Tip60-dependent K120 acetylation of p53 and participates in the p53-dependent expression of apoptosis-related genes, such as Bax. Moreover, we demonstrate the biological significance of the PDCD5-Tip60 interaction; that is, they function in cooperation to accelerate DNA damage-induced apoptosis and knockdown of PDCD5 or Tip60 impairs their apoptosis-accelerating activity, mutually. Consistent with this, PDCD5 levels increase significantly on DNA damage in U2OS cells, as does Tip60. Together, our findings indicate that PDCD5 may play a dual role in the Tip60 pathway. Specifically, under normal growth conditions, PDCD5 contributes to maintaining a basal pool of Tip60 and its HAT activity. After DNA damage, PDCD5 functions as a Tip60 coactivator to promote apoptosis.
Collapse
|
114
|
Mattera L, Escaffit F, Pillaire MJ, Selves J, Tyteca S, Hoffmann JS, Gourraud PA, Chevillard-Briet M, Cazaux C, Trouche D. The p400/Tip60 ratio is critical for colorectal cancer cell proliferation through DNA damage response pathways. Oncogene 2009; 28:1506-17. [PMID: 19169279 DOI: 10.1038/onc.2008.499] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Tip60 histone acetyltransferase belongs to a multimolecular complex that contains many chromatin remodeling enzymes including the ATPase p400, a protein involved in nucleosomal incorporation of specific histone variants and that can directly or indirectly repress some Tip60-dependent pathways. Tip60 activity is critical for the cellular response to DNA damage and is affected during cancer progression. Here, we found that the ratio between Tip60 and p400 mRNAs is affected in most colorectal carcinoma. Strikingly, reversing the p400/Tip60 imbalance by Tip60 overexpression or the use of siRNAs resulted in increased apoptosis and decreased proliferation of colon-cancer-derived cells, suggesting that this ratio defect is important for cancer progression. Furthermore, we demonstrate that the p400/Tip60 ratio controls the oncogene-induced DNA damage response, a known anticancer barrier. Finally, we found that it is also critical for the response to 5-fluorouracil, a first-line treatment against colon cancer. Together, our data indicate that the p400/Tip60 ratio is critical for colon cancer cells proliferation and response to therapeutic drugs through the control of stress-response pathways.
Collapse
|
115
|
Penzo M, Massa PE, Olivotto E, Bianchi F, Borzi RM, Hanidu A, Li X, Li J, Marcu KB. Sustained NF-kappaB activation produces a short-term cell proliferation block in conjunction with repressing effectors of cell cycle progression controlled by E2F or FoxM1. J Cell Physiol 2009; 218:215-27. [PMID: 18803232 PMCID: PMC2581928 DOI: 10.1002/jcp.21596] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
NF-kappaB transcription factors induce a host of genes involved in pro-inflammatory/stress-like responses; but the collateral effects and consequences of sustained NF-kappaB activation on other cellular gene expression programming remain less well understood. Here enforced expression of a constitutively active IKKbeta T-loop mutant (IKKbetaca) drove murine fibroblasts into transient growth arrest that subsided within 2-3 weeks of continuous culture. Proliferation arrest was associated with a G1/S phase block in immortalized and primary early passage MEFs. Molecular analysis in immortalized MEFs revealed that inhibition of cell proliferation in the initial 1-2 weeks after their IKKbetaca retroviral infection was linked to the transient, concerted repression of essential cell cycle effectors that are known targets of either E2F or FoxM1. Co-expression of a phosphorylation resistant IkappaBalpha super repressor and IKKbetaca abrogated growth arrest and cell cycle effector repression, thereby linking IKKbetaca's effects to canonical NF-kappaB activation. Transient growth arrest of IKKbetaca cells was associated with enhanced p21 (cyclin-dependent kinase inhibitor 1A) protein expression, due in part to transcriptional activation by NF-kappaB and also likely due to strong repression of Skp2 and Csk1, both of which are FoxM1 direct targets mediating proteasomal dependent p21 turnover. Ablation of p21 in immortalized MEFs reduced their IKKbetaca mediated growth suppression. Moreover, trichostatin A inhibition of HDACs alleviated the repression of E2F and FoxM1 targets induced by IKKbetaca, suggesting chromatin mediated gene silencing in IKKbetaca's short term repressive effects on E2F and FoxM1 target gene expression.
Collapse
Affiliation(s)
- Marianna Penzo
- Centro Ricerca Biomedica Applicata (CRBA), S. Orsola-Malpighi University Hospital, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
- Vita-Salute San Raffaele University, DIBIT-S. Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy
| | - Paul E. Massa
- Centro Ricerca Biomedica Applicata (CRBA), S. Orsola-Malpighi University Hospital, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
- Biochemistry and Cell Biology Dept., Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | - Eleonora Olivotto
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesca Bianchi
- Cardiology Institute, S. Orsola-Malpighi University Hospital, University of Bologna
| | - Rosa Maria Borzi
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Adedayo Hanidu
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877-0368
| | - Xiang Li
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877-0368
| | - Jun Li
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877-0368
| | - Kenneth B. Marcu
- Centro Ricerca Biomedica Applicata (CRBA), S. Orsola-Malpighi University Hospital, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
- Biochemistry and Cell Biology Dept., Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| |
Collapse
|
116
|
Wu J, Xie N, Wu Z, Zhang Y, Zheng YG. Bisubstrate Inhibitors of the MYST HATs Esa1 and Tip60. Bioorg Med Chem 2008; 17:1381-6. [PMID: 19114310 DOI: 10.1016/j.bmc.2008.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/30/2008] [Accepted: 12/07/2008] [Indexed: 01/03/2023]
Abstract
Esa1 (essential Sas2-related acetyltransferase 1) and Tip60 (HIV-1 TAT-interactive protein, 60 kDa) are key members of the MYST family of histone acetyltransferases (HATs) and play important functions in many cellular processes. In this work, we designed, synthesized and evaluated a series of substrate-based analogs for the inhibition of Esa1 and Tip60. The structures of these analogs feature that coenzyme A is covalently linked to the side chain amino group of the acetyl lysine residues in the histone peptide substrates. These bisubstrate analogs exhibit stronger potency in the inhibition of Esa1 and Tip60 compared to the small molecules curcumin and anacardic acid. In particular, H4K16CoA was tested as one of the most potent inhibitors for both Esa1 and Tip60. These substrate-based analog inhibitors will be useful mechanistic tools for analyzing biochemical mechanisms of Esa1 and Tip60, defining their functional roles in particular biological pathways, and facilitating protein crystallization and structural determination.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Chemistry, Georgia State University, PO Box 4098, Atlanta, GA 30302, USA
| | | | | | | | | |
Collapse
|
117
|
Sanchez MDLP, Caro E, Desvoyes B, Ramirez-Parra E, Gutierrez C. Chromatin dynamics during the plant cell cycle. Semin Cell Dev Biol 2008; 19:537-46. [PMID: 18707013 DOI: 10.1016/j.semcdb.2008.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 11/30/2022]
Abstract
Cell cycle progression depends on a highly regulated series of events of which transcriptional control plays a major role. In addition, during the S-phase not only DNA but chromatin as a whole needs to be faithfully duplicated. Therefore, both nucleosome dynamics as well as local changes in chromatin organization, including introduction and/or removal of covalent DNA and histone modifications, at genes with a key role in cell proliferation, are of primary relevance. Chromatin duplication during the S-phase and the chromosome segregation during mitosis are cell cycle stages critical for maintenance of epigenetic marks or for allowing the daughter products to acquire a distinct epigenetic landscape and, consequently, a unique cell fate decision. These aspects of chromatin dynamics together with the strict coupling of cell proliferation, cell differentiation and post-embryonic organogenesis have a profound impact on plant growth, development and response to external signals.
Collapse
Affiliation(s)
- María de la Paz Sanchez
- Centro de Biologia Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Nicolas Cabrera 1, Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
118
|
Cvacková Z, Albring KF, Koberna K, Ligasová A, Huber O, Raska I, Stanek D. Pontin is localized in nucleolar fibrillar centers. Chromosoma 2008; 117:487-97. [PMID: 18548265 DOI: 10.1007/s00412-008-0170-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 11/26/2022]
Abstract
Pontin is a multifunctional protein having roles in various cellular processes including regulation of gene expression. Here, we addressed Pontin intracellular localization using two different monoclonal antibodies directed against different Pontin epitopes. For the first time, Pontin was directly visualized in nucleoli where it co-localizes with Upstream Binding Factor and RNA polymerase I. Nucleolar localization of Pontin was confirmed by its detection in nucleolar extracts and by electron microscopy, which revealed Pontin accumulation specifically in the nucleolar fibrillar centers. Pontin localization in the nucleolus was dynamic and Pontin accumulated in large nucleolar dots mainly during S-phase. Pontin concentration in the large nucleolar dots correlated with reduced transcriptional activity of nucleoli. In addition, Pontin was found to associate with RNA polymerase I and to interact in a complex with c-Myc with rDNA sequences indicating that Pontin is involved in the c-Myc-dependent regulation of rRNA synthesis.
Collapse
Affiliation(s)
- Zuzana Cvacková
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
119
|
Araki K, Kawauchi K, Tanaka N. IKK/NF-kappaB signaling pathway inhibits cell-cycle progression by a novel Rb-independent suppression system for E2F transcription factors. Oncogene 2008; 27:5696-705. [PMID: 18542057 DOI: 10.1038/onc.2008.184] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
E2Fs are key regulators of cell-cycle progression, and their transcriptional activities are regulated by histone acetyltransferases (HATs). Retinoblastoma (Rb) family proteins (pRb, p107 and p130) bind to E2Fs and inhibit their transcriptional activities by disrupting HAT binding and recruitment of histone deacetylases. In this study, we show that IkappaB kinases (IKKalpha or IKKbeta) activation inhibits cell growth and E2F-dependent transcription in normal human fibroblasts. The inhibition of E2F by IKKs was not observed in cells lacking nuclear factor (NF)-kappaB/p65; however, it was observed in cells lacking three Rb family genes. p65 disrupted the physical interaction between activator E2Fs (F2F1, E2F2 and E2F3) and the HAT cofactor transactivation/transformation-domain associated protein, resulting in a reduction in E2F-responsive gene expression. Furthermore, IKKalpha and IKKbeta directly phosphorylated E2F4, resulting in nuclear accumulation and enhanced DNA binding of the E2F4/p130 repressor complex. Our study describes a novel growth inhibitory system that functions by Rb-independent suppression of E2Fs by the IKK/NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- K Araki
- Department of Molecular Oncology, Institute of Gerontology, Nippon Medical School, Kanagawa, Japan
| | | | | |
Collapse
|
120
|
Basham B, Sathe M, Grein J, McClanahan T, D'Andrea A, Lees E, Rascle A. In vivo identification of novel STAT5 target genes. Nucleic Acids Res 2008; 36:3802-18. [PMID: 18492722 PMCID: PMC2441806 DOI: 10.1093/nar/gkn271] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
STAT5A and STAT5B proteins belong to the family of signal transducers and activators of transcription. They are encoded by two separate genes with 91% identity in their amino acid sequences. Despite their high degree of conservation, STAT5A and STAT5B exert non-redundant functions, resulting at least in part from differences in target gene activation. To better characterize the differential contribution of STAT5A and STAT5B in gene regulation, we performed single or double knockdown of STAT5A and STAT5B using small interfering RNA. Subsequent gene expression profiling and RT-qPCR analyses of IL-3-stimulated Ba/F3-β cells led to the identification of putative novel STAT5 target genes. Chromatin immunoprecipitation assays analyzing the corresponding gene loci identified unusual STAT5 binding sites compared to conventional STAT5 responsive elements. Some of the STAT5 targets identified are upregulated in several human cancers, suggesting that they might represent potential oncogenes in STAT5-associated malignancies.
Collapse
Affiliation(s)
- Beth Basham
- Schering-Plough Biopharma, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Gurtner A, Fuschi P, Magi F, Colussi C, Gaetano C, Dobbelstein M, Sacchi A, Piaggio G. NF-Y dependent epigenetic modifications discriminate between proliferating and postmitotic tissue. PLoS One 2008; 3:e2047. [PMID: 18431504 PMCID: PMC2295263 DOI: 10.1371/journal.pone.0002047] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 03/13/2008] [Indexed: 02/03/2023] Open
Abstract
The regulation of gene transcription requires posttranslational modifications of histones that, in concert with chromatin remodeling factors, shape the structure of chromatin. It is currently under intense investigation how this structure is modulated, in particular in the context of proliferation and differentiation. Compelling evidence suggests that the transcription factor NF-Y acts as a master regulator of cell cycle progression, activating the transcription of many cell cycle regulatory genes. However, the underlying molecular mechanisms are not yet completely understood. Here we show that NF-Y exerts its effect on transcription through the modulation of the histone "code". NF-Y colocalizes with nascent RNA, while RNA polymerase II is I phosphorylated on serine 2 of the YSPTSPS repeats within its carboxyterminal domain and histones are carrying modifications that represent activation signals of gene expression (H3K9ac and PAN-H4ac). Comparing postmitotic muscle tissue from normal mice and proliferating muscles from mdx mice, we demonstrate by chromatin immunoprecipitation (ChIP) that NF-Y DNA binding activity correlates with the accumulation of acetylated histones H3 and H4 on promoters of key cell cycle regulatory genes, and with their active transcription. Accordingly, p300 is recruited onto the chromatin of NF-Y target genes in a NF-Y-dependent manner, as demonstrated by Re-ChIP. Conversely, the loss of NF-Y binding correlates with a decrease of acetylated histones, the recruitment of HDAC1, and a repressed heterochromatic state with enrichment of histones carrying modifications known to mediate silencing of gene expression (H3K9me3, H3K27me2 and H4K20me3). As a consequence, NF-Y target genes are downregulated in this context. In conclusion, our data indicate a role of NF-Y in modulating the structure and transcriptional competence of chromatin in vivo and support a model in which NF-Y-dependent histone "code" changes contribute to the proper discrimination between proliferating and postmitotic cells in vivo and in vitro.
Collapse
Affiliation(s)
- Aymone Gurtner
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | - Paola Fuschi
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | - Fiorenza Magi
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | - Claudia Colussi
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carlo Gaetano
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), Göttingen, Germany
| | - Ada Sacchi
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
- Rome Oncogenomic Center, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
- * E-mail:
| |
Collapse
|
122
|
Bararia D, Trivedi AK, Zada AAP, Greif PA, Mulaw MA, Christopeit M, Hiddemann W, Bohlander SK, Behre G. Proteomic identification of the MYST domain histone acetyltransferase TIP60 (HTATIP) as a co-activator of the myeloid transcription factor C/EBPalpha. Leukemia 2008; 22:800-7. [PMID: 18239623 DOI: 10.1038/sj.leu.2405101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transcription factor C/EBPalpha (CEBPA) is a key player in granulopoiesis and leukemogenesis. We have previously reported the interaction of C/EBPalpha with other proteins (utilizing mass spectrometry) in transcriptional regulation. In the present study, we characterized the association of the MYST domain histone acetyltransferase Tat-interactive protein (TIP) 60 (HTATIP) with C/EBPalpha. We show in pull-down and co-precipitation experiments that C/EBPalpha and HTATIP interact. A chromatin immunoprecipitation (ChIP) and a confirmatory Re-ChIP assay revealed in vivo occupancy of the C/EBPalpha and GCSF-R promoter by HTATIP. Reporter gene assays showed that HTATIP is a co-activator of C/EBPalpha. The co-activator function of HTATIP is dependent on its intact histone acetyltransferase (HAT) domain and on the C/EBPalpha DNA-binding domain. The resulting balance between histone acetylation and deacetylation at the C/EBPalpha promoter might represent an important mechanism of C/EBPalpha action. We observed a lower expression of HTATIP mRNA in undifferentiated U937 cells compared to retinoic acid-induced differentiated U937 cells, and correlated expression of CEBPA and HTATIP mRNA levels were observed in leukemia samples. These findings point to a functional synergism between C/EBPalpha and HTATIP in myeloid differentiation and suggest that HTATIP might be an important player in leukemogenesis.
Collapse
Affiliation(s)
- D Bararia
- Department of Medicine III, University of Munich and Clinical Cooperative Group, HelmholtzZentrum German Research Center for Environmental Health, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Blais A, Dynlacht BD. E2F-associated chromatin modifiers and cell cycle control. Curr Opin Cell Biol 2007; 19:658-62. [PMID: 18023996 PMCID: PMC3586187 DOI: 10.1016/j.ceb.2007.10.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/05/2007] [Indexed: 12/12/2022]
Abstract
The E2F family of proteins was identified on the basis of its role in promoting the G0 to S phase transition. Research over the past several years has unveiled considerable complexity within the family, with numerous studies pointing to delegation of function for distinct family members. More recent studies highlighted in this review have expanded this picture, suggesting ways in which E2F target gene expression is refined during cell cycle progression by facilitating the acquisition of promoter-specific histone modifications. E2F associated co-activators promote activating histone marks while recruitment of co-repressors associated with E2Fs and the pRB family leads to accretion of inhibitory histone modifications that provoke chromatin compaction.
Collapse
Affiliation(s)
- Alexandre Blais
- Ottawa Institute of Systems Biology and Biochemistry, Microbiology and Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Brian D. Dynlacht
- Department of Pathology and Cancer Institute, New York University School of Medicine, 550 First avenue, New York, NY 10016 USA
| |
Collapse
|
124
|
Petrak J, Myslivcova D, Man P, Cmejlova J, Cmejla R, Vyoral D. Proteomic analysis of erythroid differentiation induced by hexamethylene bisacetamide in murine erythroleukemia cells. Exp Hematol 2007; 35:193-202. [PMID: 17258068 DOI: 10.1016/j.exphem.2006.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/25/2006] [Accepted: 10/10/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Murine erythroleukemia (MEL) cells are transformed erythroid precursors that are arrested in an immature and proliferating state. These leukemic cells can be grown in cell cultures and induced to terminal erythroid differentiation by a treatment with a specific chemical inducer such as N,N'-hexamethylene bisacetamide. MEL cells then re-enter their original erythroid program and differentiate along the erythroid pathway into non-dividing hemoglobin-rich cells resembling orthochromatophilic normoblasts. To deepen our understanding of the molecular mechanisms underlying and erythroid differentiation and leukemia we monitored changes in protein expression in differentiating MEL cells. METHODS In our effort to find new candidate proteins involved in the differentiation of MEL cells, we embraced a proteomic approach. Employing two-dimensional (2D) electrophoresis combined with mass spectrometry, we compared protein expression in non-induced MEL cells with MEL cells exposed to N,N'-hexamethylene bisacetamide for 48 h. RESULTS From 700 proteins spots observed, 31 proteins were differentially expressed. We successfully identified 27 of the differentially expressed molecules by mass spectrometry (MALDI-MS). CONCLUSION In addition to proteins involved in heme biosynthesis, protein metabolism, stress defense and cytoskeletal organization, we identified 3 proteins engaged in regulation of cellular trafficking and 7 proteins important for regulation of gene expression and cell cycle progression including 3 components of chromatin remodeling complexes. Many of the identified molecules are associated with erythroid differentiation or leukemia for the first time. To our knowledge, this is the first study applying a modern proteomic approach to the direct analysis of erythroid differentiation of leukemic cells.
Collapse
Affiliation(s)
- Jiri Petrak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
125
|
Hobbs CA, Wei G, DeFeo K, Paul B, Hayes CS, Gilmour SK. Tip60 protein isoforms and altered function in skin and tumors that overexpress ornithine decarboxylase. Cancer Res 2007; 66:8116-22. [PMID: 16912189 DOI: 10.1158/0008-5472.can-06-0359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated expression of ornithine decarboxylase (ODC) and increased synthesis of polyamines are hallmarks of epithelial tumorigenesis. The skin and tumors of K6/ODC and ODC/Ras transgenic mice, in which overexpression of ODC has been targeted to hair follicles, were found to exhibit intrinsically high histone acetyltransferase (HAT) activity. We identified Tip60 as a candidate enzyme for contributing significantly to this abnormally high HAT activity. Compared with normal littermate controls, the levels of Tip60 protein and an alternative splice variant Tip53 were found to be greater in K6/ODC mouse skin. Furthermore, skin tumors that spontaneously develop in ODC/Ras bigenic mice typically have substantially more Tip60 protein than adjacent non-tumor-bearing skin and exhibit a unique pattern of Tip60 size variants and chemically modified protein isoforms. Steady-state Tip60 and Tip53 mRNA levels were not affected in ODC-overexpressing skin and tumors, implying novel posttranscriptional regulation by polyamines. Given the diverse roles of Tip60, the overabundance of Tip60 protein is predicted to have biological consequences. Compared with normal littermate skin, we detected altered association of Tip60 with E2F1 and a subset of newly identified Tip60-interacting transcription factors in ODC transgenic mouse skin and tumors. E2F1 was shown to be bound in greater amounts to up-regulated target genes in ODC-overexpressing skin. Thus, up-regulation of Tip60 protein, influencing the expression of Tip60-regulated genes, could play a contributing role in polyamine-mediated tumor promotion. (
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | | | | | | | | | | |
Collapse
|
126
|
Transcriptional activation of histone genes requires NPAT-dependent recruitment of TRRAP-Tip60 complex to histone promoters during the G1/S phase transition. Mol Cell Biol 2007; 28:435-47. [PMID: 17967892 DOI: 10.1128/mcb.00607-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transcriptional activation of histone subtypes is coordinately regulated and tightly coupled with the onset of DNA replication during S-phase entry. The underlying molecular mechanisms for such coordination and coupling are not well understood. The cyclin E-Cdk2 substrate NPAT has been shown to play an essential role in the transcriptional activation of histone genes at the G(1)/S-phase transition. Here, we show that NPAT interacts with components of the Tip60 histone acetyltransferase complex through a novel amino acid motif, which is functionally conserved in E2F and adenovirus E1A proteins. In addition, we demonstrate that transformation/transactivation domain-associated protein (TRRAP) and Tip60, two components of the Tip60 complex, associate with histone gene promoters at the G(1)/S-phase boundary in an NPAT-dependent manner. In correlation with the association of the TRRAP-Tip60 complex, histone H4 acetylation at histone gene promoters increases at the G(1)/S-phase transition, and this increase involves NPAT function. Suppression of TRRAP or Tip60 expression by RNA interference inhibits histone gene activation. Thus, our data support a model in which NPAT recruits the TRRAP-Tip60 complex to histone gene promoters to coordinate the transcriptional activation of multiple histone genes during the G(1)/S-phase transition.
Collapse
|
127
|
Updike DL, Mango SE. Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB. Genetics 2007; 177:819-33. [PMID: 17720918 PMCID: PMC2034646 DOI: 10.1534/genetics.107.076653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/31/2007] [Indexed: 01/08/2023] Open
Abstract
FoxA transcription factors are critical regulators of gut development and function. FoxA proteins specify gut fate during early embryogenesis, drive gut differentiation and morphogenesis at later stages, and affect gut function to mediate nutritional responses. The level of FoxA is critical for these roles, yet we know relatively little about regulators for this family of proteins. To address this issue, we conducted a genetic screen for mutants that suppress a partial loss of pha-4, the sole FoxA factor of Caenorhabditis elegans. We identified 55 mutants using either chemical or insertional mutagenesis. Forty-two of these were informational suppressors that affected nonsense-mediated decay, while the remaining 13 were pha-4 suppressors. These 13 alleles defined at least six different loci. On the basis of mutational frequencies for C. elegans and the genetic dominance of four of the suppressors, we predict that many of the suppressors are either unusual loss-of-function mutations in negative regulators or rare gain-of-function mutations in positive regulators. We characterized one dominant suppressor molecularly and discovered the mutation alters a likely cis-regulatory region within pha-4 itself. A second suppressor defined a new locus, the predicted AAA+ helicase ruvb-1. These results indicate that our screen successfully found cis- or trans-acting regulators of pha-4.
Collapse
Affiliation(s)
- Dustin L Updike
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
128
|
Avvakumov N, Côté J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 2007; 26:5395-407. [PMID: 17694081 DOI: 10.1038/sj.onc.1210608] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The histone acetyltransferases (HATs) of the MYST family are highly conserved in eukaryotes and carry out a significant proportion of all nuclear acetylation. These enzymes function exclusively in multisubunit protein complexes whose composition is also evolutionarily conserved. MYST HATs are involved in a number of key nuclear processes and play critical roles in gene-specific transcription regulation, DNA damage response and repair, as well as DNA replication. This suggests that anomalous activity of these HATs or their associated complexes can easily lead to severe cellular malfunction, resulting in cell death or uncontrolled growth and malignancy. Indeed, the MYST family HATs have been implicated in several forms of human cancer. This review summarizes the current understanding of these enzymes and their normal function, as well as their established and putative links to oncogenesis.
Collapse
Affiliation(s)
- N Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Quebec, Canada
| | | |
Collapse
|
129
|
Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 2007; 26:5341-57. [PMID: 17694077 DOI: 10.1038/sj.onc.1210604] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription in eukaryotes is a tightly regulated, multistep process. Gene-specific transcriptional activators, several different co-activators and general transcription factors are necessary to access specific loci to allow precise initiation of RNA polymerase II transcription. As the dense chromatin folding of the genome does not allow the access of these sites by the huge multiprotein transcription machinery, remodelling is required to loosen up the chromatin structure for successful transcription initiation. In the present review, we summarize the recent evolution of our understanding of the function of two histone acetyl transferases (ATs) from metazoan organisms: GCN5 and PCAF. Their overall structure and the multiprotein complexes in which they are carrying out their activities are discussed. Metazoan GCN5 and PCAF are subunits of at least two types of multiprotein complexes, one having a molecular weight of 2 MDa (SPT3-TAF9-GCN5 acetyl transferase/TATA binding protein (TBP)-free-TAF complex/PCAF complexes) and a second type with about a size of 700 kDa (ATAC complex). These complexes possess global histone acetylation activity and locus-specific co-activator functions together with AT activity on non-histone substrates. Thus, their biological functions cover a wide range of tasks and render them indispensable for the normal function of cells. That deregulation of the global and/or specific AT activities of these complexes leads to the cancerous transformation of the cells highlights their importance in cellular processes. The possible effects of GCN5 and PCAF in tumorigenesis are also discussed.
Collapse
Affiliation(s)
- Z Nagy
- Transcription Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, France
| | | |
Collapse
|
130
|
Murr R, Vaissière T, Sawan C, Shukla V, Herceg Z. Orchestration of chromatin-based processes: mind the TRRAP. Oncogene 2007; 26:5358-72. [PMID: 17694078 DOI: 10.1038/sj.onc.1210605] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromatin modifications at core histones including acetylation, methylation, phosphorylation and ubiquitination play an important role in diverse biological processes. Acetylation of specific lysine residues within the N terminus tails of core histones is arguably the most studied histone modification; however, its precise roles in different cellular processes and how it is disrupted in human diseases remain poorly understood. In the last decade, a number of histone acetyltransferases (HATs) enzymes responsible for histone acetylation, has been identified and functional studies have begun to unravel their biological functions. The activity of many HATs is dependent on HAT complexes, the multiprotein assemblies that contain one HAT catalytic subunit, adapter proteins, several other molecules of unknown function and a large protein called TRansformation/tRanscription domain-Associated Protein (TRRAP). As a common component of many HAT complexes, TRRAP appears to be responsible for the recruitment of these complexes to chromatin during transcription, replication and DNA repair. Recent studies have shed new light on the role of TRRAP in HAT complexes as well as mechanisms by which it mediates diverse cellular processes. Thus, TRRAP appears to be responsible for a concerted and context-dependent recruitment of HATs and coordination of distinct chromatin-based processes, suggesting that its deregulation may contribute to diseases. In this review, we summarize recent developments in our understanding of the function of TRRAP and TRRAP-containing HAT complexes in normal cellular processes and speculate on the mechanism underlying abnormal events that may lead to human diseases such as cancer.
Collapse
Affiliation(s)
- R Murr
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | | | | |
Collapse
|
131
|
Sapountzi V, Logan IR, Nelson G, Cook S, Robson CN. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation. Int J Biochem Cell Biol 2007; 40:236-44. [PMID: 17851107 DOI: 10.1016/j.biocel.2007.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 11/24/2022]
Abstract
Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.
Collapse
Affiliation(s)
- Vasileia Sapountzi
- Surgical Oncology Laboratory, Northern Institute for Cancer Research, Paul O'Gorman Building, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
132
|
Wang H, Larris B, Peiris TH, Zhang L, Le Lay J, Gao Y, Greenbaum LE. C/EBPbeta activates E2F-regulated genes in vivo via recruitment of the coactivator CREB-binding protein/P300. J Biol Chem 2007; 282:24679-88. [PMID: 17599912 DOI: 10.1074/jbc.m705066200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The E2F transcription factors play an essential role in regulating the G(1)- to S-phase transition of the cell cycle. Previous studies have identified the importance of interactions between E2Fs and other transcription factors as a mechanism for transcriptional control of a subset of E2F regulated target genes. However, the mechanisms responsible for E2F target gene specificity remain incompletely understood. Here we report that in a mammalian in vivo model of synchronized proliferation, C/EBPbeta occupancy on the promoters of E2F-regulated growth-related genes increases as a function of cell cycle progression. C/EPBbeta binding to these promoters is associated with recruitment of the coactivator CBP/p300, histone H4 acetylation, and maximal activation of E2F target genes. Moreover, binding of CBP/p300 to E2F targets is markedly reduced in C/EBPbeta null mice, resulting in reduced expression of E2F regulated genes. These findings identify C/EBPbeta as a direct activator of E2F target genes in mammalian cell cycle progression through a mechanism that involves recruitment of CBP/p300. The demonstration of a functional link between C/EBPbeta and CBP/p300 for E2F target gene activation provides a potential mechanism for how coactivators such as CBP/p300 can be selectively recruited to E2F target genes in response to tissue-specific growth stimuli.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Ueda T, Watanabe-Fukunaga R, Ogawa H, Fukuyama H, Higashi Y, Nagata S, Fukunaga R. Critical role of the p400/mDomino chromatin-remodeling ATPase in embryonic hematopoiesis. Genes Cells 2007; 12:581-92. [PMID: 17535249 DOI: 10.1111/j.1365-2443.2007.01080.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The SWI2/SNF2 family ATPase, p400/mDomino, is a core subunit of a large chromatin-remodeling complex, and is currently suggested to play a unique function in histone variant exchange, a process by which chromatin structure is altered. Here, we investigated the role of p400/mDomino in mammalian development by generating mutant mice with a targeted deletion of the N-terminal domain of p400/mDomino (referred to as mDom(DeltaN/DeltaN)). The mDom(DeltaN/DeltaN) mice died on embryonic day 11.5 (E11.5), and displayed an anemic appearance and slight deformity of the neural tube. DNA microarray and quantitative RT-PCR analyses revealed that all of the embryonic globin genes and a globin chaperone gene were poorly expressed in the mDom(DeltaN/DeltaN) embryo and yolk sac on E8.5, indicating that primitive erythropoiesis was impaired. A hematopoietic colony assay indicated that the hematopoietic activity of the yolk sac was significantly blocked in the mutant mice. We also found that the expression of a limited set of Hox genes, including Hoxa7, Hoxa9 and Hoxb9, was drastically enhanced in the mDom(DeltaN/DeltaN) yolk sacs. These results suggest that p400/mDomino plays a critical role in embryonic hematopoiesis by regulating the expression of developmentally essential genes such as those in the Hox gene cluster.
Collapse
Affiliation(s)
- Takeshi Ueda
- Laboratory of Genetics (B-3), Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Japan Science and Technology Corporation, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
134
|
Thomas T, Loveland KL, Voss AK. The genes coding for the MYST family histone acetyltransferases, Tip60 and Mof, are expressed at high levels during sperm development. Gene Expr Patterns 2007; 7:657-65. [PMID: 17517537 DOI: 10.1016/j.modgep.2007.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 03/16/2007] [Accepted: 03/23/2007] [Indexed: 11/16/2022]
Abstract
Co-activators of transcription with histone acetyltransferase activity have essential functions in a wide range of cellular and developmental processes. We investigated the expression of the genes coding for two closely related MYST family histone acetyltransferases, Tip60 and Mof, in mouse development and adult organs. The Tip60 and the Mof genes are both very highly expressed in the testes compared to other organs. High-level Tip60 gene expression is restricted to late pachytene and diplotene stages of sperm development. Likewise, the Mof gene is expressed at high levels in late pachytene and diplotene spermatocytes, but in contrast to Tip60, Mof is also expressed at high levels in round spermatids. Expression of both Mof and Tip60 was comparatively low in spermatogonia in adult testes. However Mof, but not Tip60 mRNA, was readily detected in germ cells during embryonic development.
Collapse
Affiliation(s)
- Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research Parkville, Victoria, Australia.
| | | | | |
Collapse
|
135
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007; 2:e430. [PMID: 17487278 PMCID: PMC1855986 DOI: 10.1371/journal.pone.0000430] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/19/2007] [Indexed: 11/19/2022] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Olivier Pichon
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Sylvain Fochesato
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Philippe Ortet
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Marie-Hélène Montané
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
136
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007. [PMID: 17487278 DOI: 10.1371/.pone.0000430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | | | | | | | | | | | | |
Collapse
|
137
|
Flinterman MB, Mymryk JS, Klanrit P, Yousef AF, Lowe SW, Caldas C, Gäken J, Farzaneh F, Tavassoli M. p400 function is required for the adenovirus E1A-mediated suppression of EGFR and tumour cell killing. Oncogene 2007; 26:6863-74. [PMID: 17486071 PMCID: PMC4591001 DOI: 10.1038/sj.onc.1210497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently shown that E1A protein of human adenovirus downregulates epidermal growth factor receptor (EGFR) expression and induces apoptosis in head and neck (HNSCC) and lung cancer cells independently of their p53 status. E1A has five isoforms of which the major ones E1A12S and E1A13S regulate transcription of cellular genes by binding to transcriptional modulators such as pRB, CtBP, p300 and p400. In this study, we have identified E1A12S isoform to have the highest effect on EGFR suppression and induction of apoptosis in HNSCC cells. Similar to Ad5, E1A12S from human adenovirus types 2, 3, 9 and 12 suppressed EGFR, whereas E1A12S of adenovirus types 4 and 40 had no effect on EGFR expression. Using deletion mutants of E1A12S we have shown that interaction of E1A with p400, but not p300 or pRB, is required for EGFR suppression and apoptosis. Inhibition of p400 by short hairpin RNA confirmed that HNSCC cells with reduced p400 expression were less sensitive to E1A-induced suppression of EGFR and apoptosis. p300 function was shown to be dispensable, as cells expressing E1A mutants that are unable to bind p300, or p300 knockout cells, remained sensitive to E1A-induced apoptosis. In summary, this study identifies p400 as an important mediator of E1A-induced downregulation of EGFR and apoptosis.
Collapse
Affiliation(s)
- MB Flinterman
- Head and Neck Oncology Group, King’s College London, London, UK
| | - JS Mymryk
- Departments of Oncology and Microbiology and Immunology, London Regional Cancer Center, University of Western Ontario, London, Ontario, Canada
| | - P Klanrit
- Head and Neck Oncology Group, King’s College London, London, UK
| | - AF Yousef
- Departments of Oncology and Microbiology and Immunology, London Regional Cancer Center, University of Western Ontario, London, Ontario, Canada
| | - SW Lowe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - C Caldas
- Department of Oncology, Cancer Genomics Program, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - J Gäken
- Department of Haematological and Molecular Medicine, King’s College London, London, UK
| | - F Farzaneh
- Department of Haematological and Molecular Medicine, King’s College London, London, UK
| | - M Tavassoli
- Head and Neck Oncology Group, King’s College London, London, UK
| |
Collapse
|
138
|
Nowak K, Killmer K, Gessner C, Lutz W. E2F-1 regulates expression of FOXO1 and FOXO3a. ACTA ACUST UNITED AC 2007; 1769:244-52. [PMID: 17482685 DOI: 10.1016/j.bbaexp.2007.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/28/2007] [Accepted: 04/02/2007] [Indexed: 12/13/2022]
Abstract
E2F and FOXO transcription factors both play a role in neuronal apoptosis. In addition, both E2F-induced apoptosis and FOXO function are inhibited by the kinase Akt. We therefore tested whether FOXO is downstream of E2F-1 during neuronal apoptosis. We found that expression of endogenous FOXO1 and FOXO3a is induced by E2F-1. The presence of putative E2F binding sites in the promoters of both genes suggested that FOXO genes are direct targets of E2F-1. Indeed, a 4-hydroxytamoxifen activated E2F-1-ER fusion protein induced FOXO expression in the presence of cycloheximide. Moreover, E2F-1 activated the FOXO1 promoter in transient reporter assays, and E2F-1-ER as well as endogenous E2F bound to the FOXO1 promoter in vivo. Yet, E2F-1-mediated apoptosis of differentiated PC12 cells after withdrawal of NGF was not accompanied by changes in FOXO expression, indicating that no transcriptional induction of FOXO occurs during E2F-1-dependent neuronal apoptosis. In summary, our data identify E2F-1 as a first transcription factor regulating FOXO expression, providing a link between E2F and FOXO proteins in the control of cell fate.
Collapse
Affiliation(s)
- Katrin Nowak
- Institute of Molecular Biology and Tumor Research (IMT), Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| | | | | | | |
Collapse
|
139
|
Zhang K, Zheng G, Yang YC. Stability of Nmi protein is controlled by its association with Tip60. Mol Cell Biochem 2007; 303:1-8. [PMID: 17406968 DOI: 10.1007/s11010-007-9449-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 03/09/2007] [Indexed: 11/26/2022]
Abstract
Tip60 exerts diverse biological functions through mechanisms that are either dependent or independent on its intrinsic histone acetyltransferase activity. In the present study, we identified Nmi (N-Myc and STATs Interactor) as a novel binding partner for Tip60 by a yeast two-hybrid screen. The association of Tip60 with Nmi was further confirmed by coimmunoprecipitation in mammalian cells. The zinc finger domain of Tip60 interacts with the NID repeats of Nmi, a region essential for the cytoplamic localization and homo- and heterodimerization of Nmi. We further showed that Nmi is an unstable protein and is targeted for proteasome-mediated degradation. The stability of Nmi can be enhanced by its association with Tip60, a process that is dependent on histone acetyltransferase activity of Tip60. The stabilization of Nmi by Tip60 is in part mediated by the translocation of Tip60 into cytoplasm to form distinct large cytoplasmic speckles. Our finding that Tip60 stabilizes Nmi through the formation of distinct cytoplasmic speckles provides a new mechanism to modulate Nmi-mediated functions.
Collapse
Affiliation(s)
- Keman Zhang
- Department of Pharmacology and Cancer Center, School of Medicine, Case Western Reserve University, W353, Cleveland, OH 44106-4965, USA
| | | | | |
Collapse
|
140
|
Gallant P. Control of transcription by Pontin and Reptin. Trends Cell Biol 2007; 17:187-92. [PMID: 17320397 DOI: 10.1016/j.tcb.2007.02.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/24/2007] [Accepted: 02/09/2007] [Indexed: 11/26/2022]
Abstract
Pontin and Reptin are two closely related members of the AAA+ family of DNA helicases. They have roles in diverse cellular processes, including the response to DNA double-strand breaks and the control of gene expression. The two proteins share residence in different multiprotein complexes, such as the Tip60, Ino80, SRCAP and Uri1 complexes in animals, which are involved (directly or indirectly) in transcriptional regulation, but they also function independently from each other. Both Reptin and Pontin repress certain transcriptional targets of Myc, but only Reptin is required for the repression of specific beta-catenin and nuclear factor-kappaB targets. Here, I review recent studies that have addressed the mechanisms of transcriptional control by Pontin and Reptin.
Collapse
Affiliation(s)
- Peter Gallant
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
141
|
Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, Day ML. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res 2007; 66:11897-906. [PMID: 17178887 DOI: 10.1158/0008-5472.can-06-2497] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of E2F transcription factors, through disruption of the retinoblastoma (Rb) tumor-suppressor gene, is a key event in the development of many human cancers. Previously, we showed that homozygous deletion of Rb in a prostate tissue recombination model exhibits increased E2F activity, activation of E2F-target genes, and increased susceptibility to hormonal carcinogenesis. In this study, we examined the expression of E2F1 in 667 prostate tissue cores and compared it with the expression of the androgen receptor (AR), a marker of prostate epithelial differentiation, using tissue microarray analysis. We show that E2F1 expression is low in benign and localized prostate cancer, modestly elevated in metastatic lymph nodes from hormone-naïve patients, and significantly elevated in metastatic tissues from hormone-resistant prostate cancer patients (P = 0.0006). In contrast, strong AR expression was detected in benign prostate (83%), localized prostate cancer (100%), and lymph node metastasis (80%), but decreased to 40% in metastatic hormone-resistant prostate cancer (P = 0.004). Semiquantitative reverse transcription-PCR analysis showed elevated E2F1 mRNA levels and increased levels of the E2F-target genes dihyrofolate reductase and proliferating cell nuclear antigen in metastatic hormone-independent prostate cancer cases compared with benign tissues. To identify a role of E2F1 in hormone-independent prostate cancer, we examined whether E2F1 can regulate AR expression. We show that exogenous expression of E2F1 significantly inhibited AR mRNA and AR protein levels in prostate epithelial cells. E2F1 also inhibited an AR promoter-luciferase construct that was dependent on the transactivation domain of E2F1. Furthermore, using chromatin immunoprecipitation assays, we show that E2F1 and the pocket protein family members p107 and p130 bind to the AR promoter in vivo. Taken together, these results show that elevated E2F1, through its ability to repress AR transcription, may contribute to the progression of hormone-independent prostate cancer.
Collapse
Affiliation(s)
- Joanne N Davis
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Nagl NG, Wang X, Patsialou A, Van Scoy M, Moran E. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J 2007; 26:752-63. [PMID: 17255939 PMCID: PMC1794396 DOI: 10.1038/sj.emboj.7601541] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 12/04/2006] [Indexed: 12/28/2022] Open
Abstract
The mammalian SWI/SNF chromatin remodeling complex is becoming increasingly recognized for its role in tumor suppression, based on its ability to regulate accessibility of proliferation-associated genes to transcription factors. However, understanding the biological role of the complex is complicated because the same complex seemingly plays both positive and negative roles in gene expression. Work described here reveals that a choice between two independently encoded, closely related variants of a major subunit of the ARID protein family determines whether the SWI/SNF complex forms further associations with activator versus repressor complexes. The choice distinguishes assemblies with opposite effects on cell-cycle activity. The specific complexes control access of factors such as E2F1, Tip60, and HDAC1/2/3 to the promoters of various cell-cycle-specific genes, with c-Myc emerging as a particularly critical target.
Collapse
Affiliation(s)
- Norman G Nagl
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Xiaomei Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Antonia Patsialou
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Michael Van Scoy
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Elizabeth Moran
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA. Tel.: +1 215 707 7313; Fax: +1 215 707 6989; E-mail:
| |
Collapse
|
143
|
Abstract
Growth regulatory functions of Rb2/p130, which aim at a sustained arrest such as in quiescent or differentiated cells, qualify the protein also to act as a central regulator of growth arrest in cellular senescence. In this respect, Rb2/p130 functions are connected to signaling pathways induced by p53, which is a master regulator in cellular senescence. Here, we summarize the pathways, which specify pRb2/p130 to control this arrest program and distinguish its functions from those of pRb/p105.
Collapse
Affiliation(s)
- H Helmbold
- Heinrich-Pette-Institute for Experimental Virology and Immunology at the University of Hamburg, Martinistr, Hamburg, Germany
| | | | | |
Collapse
|
144
|
Macaluso M, Montanari M, Giordano A. Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes. Oncogene 2006; 25:5263-7. [PMID: 16936746 DOI: 10.1038/sj.onc.1209680] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pRb family proteins (pRb1/105, p107, pRb2/p130), collectively referred to as pocket proteins, are believed to function primarily as regulators of the mammalian cell cycle progression, and suppressors of cellular growth and proliferation. In addition, different studies suggest that these pocket proteins are also involved in development and differentiation of various tissues. Several lines of evidence indicate that generally pRb-family proteins function through their effect on the transcription of E2F-regulated genes. In fact, each of Rb family proteins binds to distinct members of the E2F transcription factors, which regulate the expression of genes whose protein products are necessary for cell proliferation and to drive cell-cycle progression. Nevertheless, pocket proteins can affect the G1/S transition through E2F-independent mechanisms. More recently, a broad range of evidences indicate that pRb-family proteins associate with a wide variety of transcription factors and chromatin remodeling enzymes forming transcriptional repressor complexes that control gene expression. This review focuses on the complex regulatory mechanisms by which pRb-family proteins tell genes when to switch on and off.
Collapse
Affiliation(s)
- M Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | | | |
Collapse
|
145
|
Leoncini L, Bellan C, De Falco G. Retinoblastoma gene family expression in lymphoid tissues. Oncogene 2006; 25:5309-14. [PMID: 16936752 DOI: 10.1038/sj.onc.1209619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It appears more and more clear that retinoblastoma (RB) family of proteins represents key molecules in tumour suppression. This family consists of pRb/p105, p107 and pRb2/p130, which participate in a gene regulatory network that governs the cellular response to antimitogenic signals, and whose deregulation constitutes one of the hallmarks of cancer. Irrespective of their structural and biochemical similarities, RB proteins carry out different functional tasks. The expression of RB gene family in the reactive lymphoid tissues again confirms the different role of each member in cell cycle control and differentiation of normal cells. These different functional properties appear to be maintained in tumours lymphoid tissues, where alterations of the RB/p105 gene appear to be relatively rare. In this review, we will summarize the current knowledge about the role of the RB proteins in reactive and neoplastic lymphoid tissue.
Collapse
Affiliation(s)
- L Leoncini
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy.
| | | | | |
Collapse
|
146
|
Abstract
The retinoblastoma gene Rb was the first tumor suppressor gene cloned, and it is well known as a negative regulator of the cell cycle through its ability to bind the transcription factor E2F and repress transcription of genes required for S phase. Although over 100 other proteins have been reported to interact with Rb, in most cases these interactions are much less well characterized. Therefore, this review will primarily focus on Rb and E2F interactions. In addition to cell cycle regulation, studies of Rb and E2F proteins in animal models have revealed important roles for these proteins in apoptosis and differentiation. Recent screens of Rb/E2F target genes have identified new targets in all these areas. In addition, the mechanisms determining how different subsets of target genes are regulated under different conditions have only begun to be addressed and offer exciting possibilities for future research.
Collapse
Affiliation(s)
- W Du
- Ben May Institute for Cancer Research and Center for Molecular Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
147
|
Hayashi R, Goto Y, Ikeda R, Yokoyama KK, Yoshida K. CDCA4 is an E2F transcription factor family-induced nuclear factor that regulates E2F-dependent transcriptional activation and cell proliferation. J Biol Chem 2006; 281:35633-48. [PMID: 16984923 DOI: 10.1074/jbc.m603800200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The TRIP-Br1/p34(SEI-1) family proteins participate in cell cycle progression by coactivating E2F1- or p53-dependent transcriptional activation. Here, we report the identification of human CDCA4 (also know as SEI-3/Hepp) as a novel target gene of transcription factor E2F and as a repressor of E2F-dependent transcriptional activation. Analysis of CDCA4 promoter constructs showed that an E2F-responsive sequence in the vicinity of the transcription initiation site is necessary for the E2F1-4-induced activation of CDCA4 gene transcription. Chromatin immunoprecipitation analysis demonstrated that E2F1 and E2F4 bound to an E2F-responsive sequence of the human CDCA4 gene. Like TRIP-Br1/p34(SEI-1) and TRIP-Br2 (SEI-2), the transactivation domain of CDCA4 was mapped within C-terminal acidic region 175-241. The transactivation function of the CDCA4 protein was inhibited by E2F1-4 and DP2, but not by E2F5-8. Inhibition of CDCA4 transactivation activity by E2F1 partially interfered with retinoblastoma protein overexpression. Conversely, CDCA4 suppressed E2F1-3-induced reporter activity. CDCA4 (but not acidic region-deleted CDCA4) suppressed E2F1-regulated gene promoter activity. These findings suggest that the CDCA4 protein functions as a suppressor at the E2F-responsive promoter. Small interfering RNA-mediated knockdown of CDCA4 expression in cancer cells resulted in up-regulation of cell growth rates and DNA synthesis. The CDCA4 protein was detected in several human cells and was induced as cells entered the G1/S phase of the cell cycle. Taken together, our results suggest that CDCA4 participates in the regulation of cell proliferation, mainly through the E2F/retinoblastoma protein pathway.
Collapse
Affiliation(s)
- Reiko Hayashi
- Laboratory of Molecular and Cellular Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki, Kanagawa 214-8571, Japan
| | | | | | | | | |
Collapse
|
148
|
Squatrito M, Gorrini C, Amati B. Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 2006; 16:433-42. [PMID: 16904321 DOI: 10.1016/j.tcb.2006.07.007] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/05/2006] [Accepted: 07/27/2006] [Indexed: 02/02/2023]
Abstract
The Tip60 histone acetyltransferase is part of an evolutionarily conserved multisubunit complex, NuA4, which is recruited by many transcription factors to their target promoters, where it is thought to participate in histone acetylation and transcriptional activation. These transcription factors include tumor promoters and also tumor suppressors, such as p53, which links Tip60 to DNA damage responses. Tip60 also has transcription-independent roles in DNA damage responses. First, independently from NuA4, Tip60 binds the kinases ataxia-telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and participates in their activation by DNA double-strand breaks. Second, NuA4 is recruited to the chromatin surrounding the breaks and, through a series of chromatin modifications, contributes to the dynamics of DNA repair. These molecular activities might endow Tip60 with multiple and potentially antagonistic biological functions.
Collapse
Affiliation(s)
- Massimo Squatrito
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan 20139, Italy
| | | | | |
Collapse
|
149
|
Abstract
The retinoblastoma susceptibility gene was the first tumor suppressor gene identified in humans and the first tumor suppressor gene knocked out by targeted deletion in mice. RB serves as a transducer between the cell cycle machinery and promoter-specific transcription factors, its most documented activity being the repression of the E2F family of transcription factors, which regulate the expression of genes involved in cell proliferation and survival. Recent investigations of RB function suggest that it works as a fundamental regulator to coordinate pathways of cellular growth and differentiation. In this review, we unravel the novel role of an equally important aspect of RB in downregulating the differentiation inhibitor EID-1 during cellular differentiation by teasing apart the signal, which elicit differentiation and limit cell cycle progression, since the molecular mechanisms relating to RB activation of differentiation is much less understood. We review the various roles for RB in differentiation of neurons, muscle, adipose tissue, and the retina. In addition, we provide an update for the current models of the role of RB in cell cycle to entry and exit, extending the view toward chromatin remodeling and expose the dichotomies in the regulation of RB family members. We conclude with a discussion of a novel RB regulatory network, incorporating the dynamic contribution of EID family proteins.
Collapse
Affiliation(s)
- L Khidr
- Department of Biological Chemistry, University of California-Irvine Med Sci 1, Irvine, CA 92697, USA
| | | |
Collapse
|
150
|
Baluchamy S, Sankar N, Navaraj A, Moran E, Thimmapaya B. Relationship between E1A binding to cellular proteins, c-myc activation and S-phase induction. Oncogene 2006; 26:781-7. [PMID: 16862175 DOI: 10.1038/sj.onc.1209825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We recently showed that p300/CREB-binding protein (CBP) plays an important role in maintaining cells in G0/G1 phase by keeping c-myc in a repressed state. Consistent with this, adenovirus E1A oncoprotein induces c-myc in a p300-dependent manner, and the c-myc induction is linked to S-phase induction. The induction of S phase by E1A is dependent on its binding to and inactivating several host proteins including p300/CBP. To determine whether there is a correlation between the host proteins binding to the N-terminal region of E1A, activation of c-myc and induction of S phase, we assayed the c-myc and S-phase induction in quiescent human cells by infecting them with Ad N-terminal E1A mutants with mutations that specifically affect binding to different chromatin-associated proteins including pRb, p300, p400 and p300/CBP-associated factor (PCAF). We show that the mutants that failed to bind to p300 or pRb were severely defective for c-myc and S-phase induction. The induction of c-myc and S phase was only moderately affected when E1A failed to bind to p400. Furthermore, analysis of the E1A mutants that fail to bind to p300, and both p300 and PCAF suggests that PCAF may also play a role in c-myc repression, and that the two chromatin-associated proteins may repress c-myc independently. In summary, these results suggest that c-myc deregulation by E1A through its interaction with these chromatin-associated proteins is an important step in the E1A-mediated cell cycle deregulation and possibly in cell transformation.
Collapse
Affiliation(s)
- S Baluchamy
- Department of Microbiology-Immunology Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|