101
|
Bagge J, Oestergaard VH, Lisby M. Functions of TopBP1 in preserving genome integrity during mitosis. Semin Cell Dev Biol 2020; 113:57-64. [PMID: 32912640 DOI: 10.1016/j.semcdb.2020.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
TopBP1/Rad4/Dpb11 is an essential eukaryotic protein with important roles in DNA replication, DNA repair, DNA damage checkpoint activation, and chromosome segregation. TopBP1 serves as a scaffold to assemble protein complexes in a phosphorylation-dependent manner via its multiple BRCT-repeats. Recently, it has become clear that TopBP1 is repurposed to scaffold different processes dependent on cell cycle regulated changes in phosphorylation of client proteins. Here we review the functions of human TopBP1 in maintaining genome integrity during mitosis.
Collapse
Affiliation(s)
- Jonas Bagge
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
102
|
Clear AD, Manthey GM, Lewis O, Lopez IY, Rico R, Owens S, Negritto MC, Wolf EW, Xu J, Kenjić N, Perry JJP, Adamson AW, Neuhausen SL, Bailis AM. Variants of the human RAD52 gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast. ACTA ACUST UNITED AC 2020; 7:270-285. [PMID: 33015141 PMCID: PMC7517009 DOI: 10.15698/mic2020.10.732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, HsRAD52 in rad52 mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that HsRAD52 supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery. In this study we report that naturally occurring variants of HsRAD52, one of which suppresses the pathogenicity of BRCA2 mutations, were unable to suppress the IR sensitivity and HRR defects of rad52 mutant yeast cells, but fully suppressed a defect in DSB repair by single-strand annealing (SSA). This failure to suppress both IR sensitivity and the HRR defect correlated with an inability of HsRAD52 protein to associate with and drive an interaction between genomic sequences during DSB repair by HRR. These results suggest that HsRAD52 supports multiple, distinct DSB repair apparatuses in budding yeast cells and help further define its mechanism of action in HRR. They also imply that disruption of HsRAD52-dependent HRR in BRCA2-defective human cells may contribute to protection against tumorigenesis and provide a target for killing BRCA2-defective cancers.
Collapse
Affiliation(s)
- Alissa D Clear
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.,bioStrategies Group, Chicago, IL, USA
| | - Glenn M Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Olivia Lewis
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,Barbara Bush Houston Literacy Foundation, Houston, TX, USA
| | - Isabelle Y Lopez
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,California State Polytechnic University at Pomona, Pomona, CA, USA
| | - Rossana Rico
- City of Hope - Duarte High School NIH Science Education Partnership Award Program, Duarte, CA, USA.,Henry Samueli School of Engineering and Applied Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Shannon Owens
- Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, CA, USA
| | | | - Elise W Wolf
- Molecular Biology Program, Pomona College, Claremont, CA, USA.,Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - Jason Xu
- Molecular Biology Program, Pomona College, Claremont, CA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikola Kenjić
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - J Jefferson P Perry
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Adam M Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.,College of Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
103
|
Reginato G, Cejka P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair (Amst) 2020; 91-92:102869. [PMID: 32480356 DOI: 10.1016/j.dnarep.2020.102869] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
When DNA breaks, the ends need to be stabilized and processed to facilitate subsequent repair, which can occur by either direct but error-prone end-joining with another broken DNA molecule or a more accurate homology-directed repair by the recombination machinery. At the same time, the presence of broken DNA triggers a signaling cascade that regulates the repair events and cellular progression through the cell cycle. The MRE11 nuclease, together with RAD50 and NBS1 forms a complex termed MRN that participates in all these processes. Although MRE11 was first identified more than 20 years ago, deep insights into its mechanism of action and regulation are much more recent. Here we review how MRE11 functions within MRN, and how the complex is further regulated by CtIP and its phosphorylation in a cell cycle dependent manner. We describe how RAD50, NBS1 and CtIP convert MRE11, exhibiting per se a 3'→5' exonuclease activity, into an ensemble that instead degrades primarily the 5'-terminated strand by endonucleolytic cleavage at DNA break sites to generate 3' overhangs, as required for the initiation of homologous recombination. The unique mechanism of DNA end resection by MRN-CtIP makes it a very flexible toolkit to process DNA breaks with a variety of secondary structures and protein blocks. Such a block can also be the Ku heterodimer, and emerging evidence suggests that MRN-CtIP may often need to remove Ku from DNA ends before initiating homologous recombination. Misregulation of DNA break repair results in mutations and chromosome rearrangements that can drive cancer development. Therefore, a detailed understanding of the underlying processes is highly relevant for human health.
Collapse
Affiliation(s)
- Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
104
|
Tsai L, Lopezcolorado F, Bhargava R, Mendez-Dorantes C, Jahanshir E, Stark J. RNF8 has both KU-dependent and independent roles in chromosomal break repair. Nucleic Acids Res 2020; 48:6032-6052. [PMID: 32427332 PMCID: PMC7293022 DOI: 10.1093/nar/gkaa380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Chromosomal double strand breaks (DSBs) can initiate several signaling events, such as ubiquitination, however the precise influence of such signaling on DSB repair outcomes remains poorly understood. With an RNA interference screen, we found that the E3 ubiquitin ligase RNF8 suppresses a deletion rearrangement mediated by canonical non-homologous end joining (C-NHEJ). We also found that RNF8 suppresses EJ without insertion/deletion mutations, which is a hallmark of C-NHEJ. Conversely, RNF8 promotes alternative EJ (ALT-EJ) events involving microhomology that is embedded from the edge of the DSB. These ALT-EJ events likely require limited end resection, whereas RNF8 is not required for single-strand annealing repair involving extensive end resection. Thus, RNF8 appears to specifically facilitate repair events requiring limited end resection, which we find is dependent on the DSB end protection factor KU. However, we also find that RNF8 is important for homology-directed repair (HDR) independently of KU, which appears linked to promoting PALB2 function. Finally, the influence of RNF8 on EJ is distinct from 53BP1 and the ALT-EJ factor, POLQ. We suggest that RNF8 mediates both ALT-EJ and HDR, but via distinct mechanisms, since only the former is dependent on KU.
Collapse
Affiliation(s)
- Linda Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
105
|
Cleary JM, Aguirre AJ, Shapiro GI, D'Andrea AD. Biomarker-Guided Development of DNA Repair Inhibitors. Mol Cell 2020; 78:1070-1085. [PMID: 32459988 PMCID: PMC7316088 DOI: 10.1016/j.molcel.2020.04.035] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Anti-cancer drugs targeting the DNA damage response (DDR) exploit genetic or functional defects in this pathway through synthetic lethal mechanisms. For example, defects in homologous recombination (HR) repair arise in cancer cells through inherited or acquired mutations in BRCA1, BRCA2, or other genes in the Fanconi anemia/BRCA pathway, and these tumors have been shown to be particularly sensitive to inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP). Recent work has identified additional genomic and functional assays of DNA repair that provide new predictive and pharmacodynamic biomarkers for these targeted therapies. Here, we examine the development of selective agents targeting DNA repair, including PARP inhibitors; inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM); and inhibitors of classical non-homologous end joining (cNHEJ) and alternative end joining (Alt EJ). We also review the biomarkers that guide the use of these agents and current clinical trials with these therapies.
Collapse
Affiliation(s)
- James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alan D D'Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
106
|
Burgio G. Gene conversion following CRISPR/Cas9 DNA cleavage: an overlooked effect. Gene Ther 2020; 27:245-246. [PMID: 32341482 DOI: 10.1038/s41434-020-0154-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Gaetan Burgio
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
107
|
Mejías-Navarro F, Rodríguez-Real G, Ramón J, Camarillo R, Huertas P. ALC1/eIF4A1-mediated regulation of CtIP mRNA stability controls DNA end resection. PLoS Genet 2020; 16:e1008787. [PMID: 32392243 PMCID: PMC7241833 DOI: 10.1371/journal.pgen.1008787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/21/2020] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
During repair of DNA double-strand breaks, resection of DNA ends influences how these lesions will be repaired. If resection is activated, the break will be channeled through homologous recombination; if not, it will be simply ligated using the non-homologous end-joining machinery. Regulation of resection relies greatly on modulating CtIP, which can be done by modifying: i) its interaction partners, ii) its post-translational modifications, or iii) its cellular levels, by regulating transcription, splicing and/or protein stability/degradation. Here, we have analyzed the role of ALC1, a chromatin remodeler previously described as an integral part of the DNA damage response, in resection. Strikingly, we found that ALC1 affects resection independently of chromatin remodeling activity or its ability to bind damaged chromatin. In fact, it cooperates with the RNA-helicase eIF4A1 to help stabilize the most abundant splicing form of CtIP mRNA. This function relies on the presence of a specific RNA sequence in the 5' UTR of CtIP. Therefore, we describe an additional layer of regulation of CtIP-at the level of mRNA stability through ALC1 and eIF4A1.
Collapse
Affiliation(s)
- Fernando Mejías-Navarro
- Department of Genetics, University of Seville, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Guillermo Rodríguez-Real
- Department of Genetics, University of Seville, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Javier Ramón
- Department of Genetics, University of Seville, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Rosa Camarillo
- Department of Genetics, University of Seville, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Pablo Huertas
- Department of Genetics, University of Seville, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- * E-mail:
| |
Collapse
|
108
|
Krais JJ, Johnson N. Ectopic RNF168 expression promotes break-induced replication-like DNA synthesis at stalled replication forks. Nucleic Acids Res 2020; 48:4298-4308. [PMID: 32182354 PMCID: PMC7192614 DOI: 10.1093/nar/gkaa154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 01/26/2023] Open
Abstract
The RNF168 E3 ubiquitin ligase is activated in response to double stranded DNA breaks (DSBs) where it mono-ubiquitinates γH2AX (ub-H2AX). RNF168 protein expression and ubiquitin signaling are finely regulated during the sensing, repair and resolution of DNA damage in order to avoid excessive spreading of ubiquitinated chromatin. Supra-physiological RNF168 protein expression levels have been shown to block DNA end resection at DSBs and increase PARP inhibitor (PARPi) sensitivity. In this study, we examined the impact of ectopic RNF168 overexpression on hydroxyurea (HU)-induced stalled replication forks in the setting of BRCA1 deficiency. Surprisingly, RNF168 overexpression resulted in the extension of DNA fibers, despite the presence of HU, in BRCA1 deficient cells. Mechanistically, RNF168 overexpression recruited RAD18 to ub-H2AX at HU-induced DNA breaks. Subsequently, a RAD18-SLF1 axis was responsible for initiating DNA synthesis in a manner that also required the break-induced replication (BIR) factors RAD52 and POLD3. Strikingly, the presence of wild-type BRCA1 blocked RNF168-induced DNA synthesis. Notably, BIR-like repair has previously been linked with tandem duplication events found in BRCA1-mutated genomes. Thus, in the absence of BRCA1, excessive RNF168 expression may drive BIR, and contribute to the mutational signatures observed in BRCA1-mutated cancers.
Collapse
Affiliation(s)
- John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
109
|
Dibitetto D, Sims JR, Ascenção CFR, Feng K, Kim D, Oberly S, Freire R, Smolka MB. Intrinsic ATR signaling shapes DNA end resection and suppresses toxic DNA-PKcs signaling. NAR Cancer 2020; 2:zcaa006. [PMID: 32743550 PMCID: PMC7380482 DOI: 10.1093/narcan/zcaa006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Most cancer cells experience oncogene-induced replication stress and, as a result, exhibit high intrinsic activation of the ATR kinase. Although cancer cells often become more dependent on ATR for survival, the precise mechanism by which ATR signaling ensures cancer cell fitness and viability remains incompletely understood. Here, we find that intrinsic ATR signaling is crucial for the ability of cancer cells to promote DNA end resection, the first step in homology-directed DNA repair. Inhibition of ATR over multiple cell division cycles depletes the pool of pro-resection factors and prevents the engagement of RAD51 as well as RAD52 at nuclear foci, leading to toxic DNA-PKcs signaling and hypersensitivity to PARP inhibitors. The effect is markedly distinct from acute ATR inhibition, which blocks RAD51-mediated repair but not resection and engagement of RAD52. Our findings reveal a key pro-resection function for ATR and define how ATR inhibitors can be used for effective manipulation of DNA end resection capacity and DNA repair outcomes in cancer cells.
Collapse
Affiliation(s)
- Diego Dibitetto
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Carolline F R Ascenção
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kevin Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dongsung Kim
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Susannah Oberly
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, 38320 La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.,Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
110
|
Lu K, Wei W, Hu J, Wen D, Ma B, Liu W, Wang Y, Lu Z. Apoptosis Activation in Thyroid Cancer Cells by Jatrorrhizine-Platinum(II) Complex via Downregulation of PI3K/AKT/Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit 2020; 26:e922518. [PMID: 32341329 PMCID: PMC7201896 DOI: 10.12659/msm.922518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Thyroid cancer, which is the most common endocrine cancer, has shown a drastic increase in incidence globally over the past decade. The present study investigated the thyroid cancer-inhibitory potential of jatrorrhizine-platinum(II) complex (JR-P(II) in vitro and in vivo. Material/Methods The JR-P(II)-mediated cytotoxicity in thyroid carcinoma cells was determined by using MTT assay. Assessment of acetylated histones, tubulin, and DNA repair proteins was made by Western blot assays. Flow cytometry was used for apoptosis and ROS accumulation measurement. Results The JR-P(II) suppressed proliferative capacity of SW1736, BHP7-13, and 8305C cells. JR-P(II) treatment markedly promoted expression of acetylated histone H3, H4, and tubulin in a dose-dependent manner. Treatment with JR-P(II) significantly elevated the proportion of cells in sub-G1 and promoted cleaved caspase-3 and -9. In JR-P(II)-treated cells, DCFH-DA fluorescence was much higher relative to control cells. The JR-P(II) treatment consistently suppressed expression of pS6, p-ERK1/2, p-4E-BP1, and p-AKT, and increased p-H2AX expression and suppressed KU70 and KU80 protein levels. The level of RAD51 was repressed in JR-P(II)-treated cells. JR-P(II) administration in mice caused no significant change in body weight, and it inhibited SW1736 tumor growth in mice. Conclusions The JR-P(II) induced cytotoxicity in thyroid cancer cells by inhibiting the mechanism responsible for repair of double-stranded DNA. The in vivo data also revealed that JR-P(II) effectively inhibits thyroid tumor growth by inducing DNA damage. Thus, our results suggest that further evaluation of JR-P(II) as a therapeutic candidate for thyroid cancer is warranted.
Collapse
Affiliation(s)
- KeBin Lu
- Department of General Surgery, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang, CA, China (mainland)
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Jiaqian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Duo Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Wanlin Liu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Medical College, Fudan University, Shanghai, China (mainland)
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Zhongwu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
111
|
Adamson AW, Ding YC, Mendez-Dorantes C, Bailis AM, Stark JM, Neuhausen SL. The RAD52 S346X variant reduces risk of developing breast cancer in carriers of pathogenic germline BRCA2 mutations. Mol Oncol 2020; 14:1124-1133. [PMID: 32175645 PMCID: PMC7266271 DOI: 10.1002/1878-0261.12665] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 01/16/2023] Open
Abstract
Women who carry pathogenic mutations in BRCA1 and BRCA2 have a lifetime risk of developing breast cancer of up to 80%. However, risk estimates vary in part due to genetic modifiers. We investigated the association of the RAD52 S346X variant as a modifier of the risk of developing breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2. The RAD52 S346X allele was associated with a reduced risk of developing breast cancer in BRCA2 carriers [per‐allele hazard ratio (HR) = 0.69, 95% confidence interval (CI) 0.56–0.86; P = 0.0008] and to a lesser extent in BRCA1 carriers (per‐allele HR = 0.78, 95% CI 0.64–0.97, P = 0.02). We examined how this variant affected DNA repair. Using a reporter system that measures repair of DNA double‐strand breaks (DSBs) by single‐strand annealing (SSA), expression of hRAD52 suppressed the loss of this repair in Rad52−/− mouse embryonic stem cells. When hRAD52 S346X was expressed in these cells, there was a significantly reduced frequency of SSA. Interestingly, expression of hRAD52 S346X also reduced the stimulation of SSA observed upon depletion of BRCA2, demonstrating the reciprocal roles for RAD52 and BRCA2 in the control of DSB repair by SSA. From an immunofluorescence analysis, we observed little nuclear localization of the mutant protein as compared to the wild‐type; it is likely that the reduced nuclear levels of RAD52 S346X explain the diminished DSB repair by SSA. Altogether, we identified a genetic modifier that protects against breast cancer in women who carry pathogenic mutations in BRCA2 (P = 0.0008) and to a lesser extent BRCA1 (P = 0.02). This RAD52 mutation causes a reduction in DSB repair by SSA, suggesting that defects in RAD52‐dependent DSB repair are linked to reduced tumor risk in BRCA2‐mutation carriers.
Collapse
Affiliation(s)
- Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Adam M Bailis
- College of Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
112
|
Current Understanding of RAD52 Functions: Fundamental and Therapeutic Insights. Cancers (Basel) 2020; 12:cancers12030705. [PMID: 32192055 PMCID: PMC7140074 DOI: 10.3390/cancers12030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
In this Special Issue, we would like to focus on the various functions of the RAD52 helicase-like protein and the current implications of such findings for cancer treatment. Over the last few years, various laboratories have discovered particular activities of mammalian RAD52—both in S and M phase—that are distinct from the auxiliary role of yeast RAD52 in homologous recombination. At DNA double-strand breaks, RAD52 was demonstrated to spur alternative pathways to compensate for the loss of homologous recombination functions. At collapsed replication forks, RAD52 activates break-induced replication. In the M phase, RAD52 promotes the finalization of DNA replication. Its compensatory role in the resolution of DNA double-strand breaks has put RAD52 in the focus of synthetic lethal strategies, which is particularly relevant for cancer treatment.
Collapse
|
113
|
Ho V, Chung L, Singh A, Lea V, Abubakar A, Lim SH, Chua W, Ng W, Lee M, Roberts TL, de Souza P, Lee CS. Aberrant Expression of RAD52, Its Prognostic Impact in Rectal Cancer and Association with Poor Survival of Patients. Int J Mol Sci 2020; 21:ijms21051768. [PMID: 32143539 PMCID: PMC7084626 DOI: 10.3390/ijms21051768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022] Open
Abstract
The DNA damage response enables cells to survive and maintain genome integrity. RAD52 is a DNA-binding protein involved in the homologous recombination in DNA repair, and is important for the maintenance of tumour genome integrity. We investigated possible correlations between RAD52 expression and cancer survival and response to preoperative radiotherapy. RAD52 expression was examined in tumour samples from 179 patients who underwent surgery for rectal cancer, including a sub-cohort of 40 patients who were treated with neoadjuvant therapy. A high score for RAD52 expression in the tumour centre was significantly associated with worse disease-free survival (DFS; p = 0.045). In contrast, reduced RAD52 expression in tumour centre samples from patients treated with neoadjuvant therapy (n = 40) significantly correlated with poor DFS (p = 0.025) and overall survival (OS; p = 0.048). Our results suggested that RAD52 may have clinical value as a prognostic marker of tumour response to neoadjuvant radiation and both disease-free status and overall survival in patients with rectal cancer.
Collapse
Affiliation(s)
- Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Correspondence: ; Tel.: +61-2-4620-3845; Fax: +61-2-4520-3116
| | - Liping Chung
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
| | - Amandeep Singh
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (A.S.); (V.L.)
| | - Vivienne Lea
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (A.S.); (V.L.)
| | - Askar Abubakar
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
| | - Stephanie H. Lim
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, NSW 2560, Australia
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Wei Chua
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Weng Ng
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Mark Lee
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Tara L. Roberts
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (A.S.); (V.L.)
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
114
|
|
115
|
Stefanovie B, Hengel SR, Mlcouskova J, Prochazkova J, Spirek M, Nikulenkov F, Nemecek D, Koch BG, Bain FE, Yu L, Spies M, Krejci L. DSS1 interacts with and stimulates RAD52 to promote the repair of DSBs. Nucleic Acids Res 2020; 48:694-708. [PMID: 31799622 PMCID: PMC6954417 DOI: 10.1093/nar/gkz1052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
The proper repair of deleterious DNA lesions such as double strand breaks prevents genomic instability and carcinogenesis. In yeast, the Rad52 protein mediates DSB repair via homologous recombination. In mammalian cells, despite the presence of the RAD52 protein, the tumour suppressor protein BRCA2 acts as the predominant mediator during homologous recombination. For decades, it has been believed that the RAD52 protein played only a back-up role in the repair of DSBs performing an error-prone single strand annealing (SSA). Recent studies have identified several new functions of the RAD52 protein and have drawn attention to its important role in genome maintenance. Here, we show that RAD52 activities are enhanced by interacting with a small and highly acidic protein called DSS1. Binding of DSS1 to RAD52 changes the RAD52 oligomeric conformation, modulates its DNA binding properties, stimulates SSA activity and promotes strand invasion. Our work introduces for the first time RAD52 as another interacting partner of DSS1 and shows that both proteins are important players in the SSA and BIR pathways of DSB repair.
Collapse
Affiliation(s)
- Barbora Stefanovie
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Sarah R Hengel
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Jarmila Mlcouskova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Jana Prochazkova
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Mario Spirek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Fedor Nikulenkov
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | | | - Brandon G Koch
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Fletcher E Bain
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Liping Yu
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
- NMR Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Lumir Krejci
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
116
|
Bhargava R, Lopezcolorado FW, Tsai LJ, Stark JM. The canonical non-homologous end joining factor XLF promotes chromosomal deletion rearrangements in human cells. J Biol Chem 2020; 295:125-137. [PMID: 31753920 PMCID: PMC6952595 DOI: 10.1074/jbc.ra119.010421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/20/2019] [Indexed: 02/05/2023] Open
Abstract
Clastogen exposure can result in chromosomal rearrangements, including large deletions and inversions that are associated with cancer development. To examine such rearrangements in human cells, here we developed a reporter assay based on endogenous genes on chromosome 12. Using the RNA-guided nuclease Cas9, we induced two DNA double-strand breaks, one each in the GAPDH and CD4 genes, that caused a deletion rearrangement leading to CD4 expression from the GAPDH promoter. We observed that this GAPDH-CD4 deletion rearrangement activates CD4+ cells that can be readily detected by flow cytometry. Similarly, double-strand breaks in the LPCAT3 and CD4 genes induced an LPCAT3-CD4 inversion rearrangement resulting in CD4 expression. Studying the GAPDH-CD4 deletion rearrangement in multiple cell lines, we found that the canonical non-homologous end joining (C-NHEJ) factor XLF promotes these rearrangements. Junction analysis uncovered that the relative contribution of C-NHEJ appears lower in U2OS than in HEK293 and A549 cells. Furthermore, an ATM kinase inhibitor increased C-NHEJ-mediated rearrangements only in U2OS cells. We also found that an XLF residue that is critical for an interaction with the C-NHEJ factor X-ray repair cross-complementing 4 (XRCC4), and XRCC4 itself are each important for promoting both this deletion rearrangement and end joining without insertion/deletion mutations. In summary, a reporter assay based on endogenous genes on chromosome 12 reveals that XLF-dependent C-NHEJ promotes deletion rearrangements in human cells and that cell type-specific differences in the contribution of C-NHEJ and ATM kinase inhibition influence these rearrangements.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | - L Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010.
| |
Collapse
|
117
|
Callen E, Zong D, Wu W, Wong N, Stanlie A, Ishikawa M, Pavani R, Dumitrache LC, Byrum AK, Mendez-Dorantes C, Martinez P, Canela A, Maman Y, Day A, Kruhlak MJ, Blasco MA, Stark JM, Mosammaparast N, McKinnon PJ, Nussenzweig A. 53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. Mol Cell 2020; 77:26-38.e7. [PMID: 31653568 PMCID: PMC6993210 DOI: 10.1016/j.molcel.2019.09.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/17/2019] [Accepted: 09/20/2019] [Indexed: 01/28/2023]
Abstract
53BP1 activity drives genome instability and lethality in BRCA1-deficient mice by inhibiting homologous recombination (HR). The anti-recombinogenic functions of 53BP1 require phosphorylation-dependent interactions with PTIP and RIF1/shieldin effector complexes. While RIF1/shieldin blocks 5'-3' nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here, we show that mutation of the PTIP interaction site in 53BP1 (S25A) allows sufficient DNA2-dependent end resection to rescue the lethality of BRCA1Δ11 mice, despite increasing RIF1 "end-blocking" at DNA damage sites. However, double-mutant cells fail to complete HR, as excessive shieldin activity also inhibits RNF168-mediated loading of PALB2/RAD51. As a result, BRCA1Δ1153BP1S25A mice exhibit hallmark features of HR insufficiency, including premature aging and hypersensitivity to PARPi. Disruption of shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study therefore reveals a critical function of shieldin post-resection that limits the loading of RAD51.
Collapse
Affiliation(s)
- Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Andre Stanlie
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Momoko Ishikawa
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lavinia C Dumitrache
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrea K Byrum
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Paula Martinez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Center, Madrid 28029, Spain
| | - Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Center, Madrid 28029, Spain
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
118
|
Li P, Xu Y, Zhang Q, Li Y, Jia W, Wang X, Xie Z, Liu J, Zhao D, Shao M, Chen S, Mo N, Jiang Z, Li L, Liu R, Huang W, Chang L, Chen S, Li H, Zuo W, Li J, Zhang R, Yang X. Evaluating the role of RAD52 and its interactors as novel potential molecular targets for hepatocellular carcinoma. Cancer Cell Int 2019; 19:279. [PMID: 31719794 PMCID: PMC6836504 DOI: 10.1186/s12935-019-0996-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Radiation sensitive 52 (RAD52) is an important protein that mediates DNA repair in tumors. However, little is known about the impact of RAD52 on hepatocellular carcinoma (HCC). We investigated the expression of RAD52 and its values in HCC. Some proteins that might be coordinated with RAD52 in HCC were also analyzed. Methods Global RAD52 mRNA levels in HCC were assessed using The Cancer Genome Atlas (TCGA) database. RAD52 expression was analyzed in 70 HCC tissues and adjacent tissues by quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemistry. The effect of over-expressed RAD52 in Huh7 HCC cells was investigated. The String database was then used to perform enrichment and functional analysis of RAD52 and its interactome. Cytoscape software was used to create a protein–protein interaction network. Molecular interaction studies with RAD52 and its interactome were performed using the molecular docking tools in Hex8.0.0. Finally, these DNA repair proteins, which interact with RAD52, were also analyzed using the TCGA dataset and were detected by qRT-PCR. Based on the TCGA database, algorithms combining ROC between RAD52 and RAD52 interactors were used to diagnose HCC by binary logistic regression. Results In TCGA, upregulated RAD52 related to gender was obtained in HCC. The area under the receiver operating characteristic curve (AUC) of RAD52 was 0.704. The results of overall survival (OS) and recurrence-free survival (RFS) indicated no difference in the prognosis between patients with high and low RAD52 gene expression. We validated that RAD52 expression was increased at the mRNA and protein levels in Chinese HCC tissues compared with adjacent tissues. Higher RAD52 was associated with older age, without correlation with other clinicopathological factors. In vitro, over-expressed RAD52 significantly promoted the proliferation and migration of Huh7 cells. Furthermore, RAD52 interactors (radiation sensitive 51, RAD51; X-ray repair cross complementing 6, XRCC6; Cofilin, CFL1) were also increased in HCC and participated in some biological processes with RAD52. Protein structure analysis showed that RAD52–RAD51 had the firmest binding structure with the lowest E-total energy (− 1120.5 kcal/mol) among the RAD52–RAD51, RAD52–CFL1, and RAD52–XRCC6 complexes. An algorithm combining ROC between RAD52 and its interactome indicated a greater specificity and sensitivity for HCC screening. Conclusions Overall, our study suggested that RAD52 plays a vital role in HCC pathogenesis and serves as a potential molecular target for HCC diagnosis and treatment. This study’s findings regarding the multigene prediction and diagnosis of HCC are valuable.
Collapse
Affiliation(s)
- Ping Li
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,4College & Hospital of Stomatology Guangxi Medical University, Nanning, Guangxi China.,5Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - YanZhen Xu
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,8Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, The Maternal and Children Health Hospital of Guangxi, Guangxi, China
| | - Yu Li
- Medical Science Laboratory at Liuzhou Worker's Hospital, Liuzhou, Guangxi China
| | - Wenxian Jia
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,6College of Pharmacy, Guangxi Medical University, Nanning, Guangxi China
| | - Xiao Wang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Zhibin Xie
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China
| | - Jiayi Liu
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,4College & Hospital of Stomatology Guangxi Medical University, Nanning, Guangxi China.,5Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Dong Zhao
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China
| | - Mengnan Shao
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China
| | - Suixia Chen
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,8Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi China
| | - Nanfang Mo
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Zhiwen Jiang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Liuyan Li
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Run Liu
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Wanying Huang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Li Chang
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Siyu Chen
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Hongtao Li
- 2Scientific Research Center, Guilin Medical University, Guilin, Guangxi China
| | - Wenpu Zuo
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | - Jiaquan Li
- 3Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi China
| | | | - Xiaoli Yang
- 1Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi China.,2Scientific Research Center, Guilin Medical University, Guilin, Guangxi China
| |
Collapse
|
119
|
Partner Choice in Spontaneous Mitotic Recombination in Wild Type and Homologous Recombination Mutants of Candida albicans. G3-GENES GENOMES GENETICS 2019; 9:3631-3644. [PMID: 31690596 PMCID: PMC6829120 DOI: 10.1534/g3.119.400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans, the most common fungal pathogen, is a diploid with a genome that is rich in repeats and has high levels of heterozygosity. To study the role of different recombination pathways on direct-repeat recombination, we replaced either allele of the RAD52 gene (Chr6) with the URA-blaster cassette (hisG-URA3-hisG), measured rates of URA3 loss as resistance to 5-fluoroorotic acid (5FOAR) and used CHEF Southern hybridization and SNP-RFLP analysis to identify recombination mechanisms and their frequency in wildtype and recombination mutants. FOAR rates varied little across different strain backgrounds. In contrast, the type and frequency of mechanisms underlying direct repeat recombination varied greatly. For example, wildtype, rad59 and lig4 strains all displayed a bias for URA3 loss via pop-out/deletion vs. inter-homolog recombination and this bias was reduced in rad51 mutants. In addition, in rad51-derived 5FOAR strains direct repeat recombination was associated with ectopic translocation (5%), chromosome loss/truncation (14%) and inter-homolog recombination (6%). In the absence of RAD52, URA3 loss was mostly due to chromosome loss and truncation (80–90%), and the bias of retained allele frequency points to the presence of a recessive lethal allele on Chr6B. However, a few single-strand annealing (SSA)-like events were identified and these were independent of either Rad59 or Lig4. Finally, the specific sizes of Chr6 truncations suggest that the inserted URA-blaster could represent a fragile site.
Collapse
|
120
|
Sullivan-Reed K, Bolton-Gillespie E, Dasgupta Y, Langer S, Siciliano M, Nieborowska-Skorska M, Hanamshet K, Belyaeva EA, Bernhardy AJ, Lee J, Moore M, Zhao H, Valent P, Matlawska-Wasowska K, Müschen M, Bhatia S, Bhatia R, Johnson N, Wasik MA, Mazin AV, Skorski T. Simultaneous Targeting of PARP1 and RAD52 Triggers Dual Synthetic Lethality in BRCA-Deficient Tumor Cells. Cell Rep 2019; 23:3127-3136. [PMID: 29898385 PMCID: PMC6082171 DOI: 10.1016/j.celrep.2018.05.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/20/2018] [Accepted: 05/11/2018] [Indexed: 01/02/2023] Open
Abstract
PARP inhibitors (PARPis) have been used to induce synthetic lethality in BRCA-deficient tumors in clinical trials with limited success. We hypothesized that RAD52-mediated DNA repair remains active in PARPi-treated BRCA-deficient tumor cells and that targeting RAD52 should enhance the synthetic lethal effect of PARPi. We show that RAD52 inhibitors (RAD52is) attenuated single-strand annealing (SSA) and residual homologous recombination (HR) in BRCA-deficient cells. Simultaneous targeting of PARP1 and RAD52 with inhibitors or dominant-negative mutants caused synergistic accumulation of DSBs and eradication of BRCA-deficient but not BRCA-proficient tumor cells. Remarkably, Parp1-/-;Rad52-/- mice are normal and display prolonged latency of BRCA1-deficient leukemia compared with Parp1-/- and Rad52-/- counterparts. Finally, PARPi+RAD52i exerted synergistic activity against BRCA1-deficient tumors in immunodeficient mice with minimal toxicity to normal cells and tissues. In conclusion, our data indicate that addition of RAD52i will improve therapeutic outcome of BRCA-deficient malignancies treated with PARPi.
Collapse
Affiliation(s)
- Katherine Sullivan-Reed
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Elisabeth Bolton-Gillespie
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yashodhara Dasgupta
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Samantha Langer
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Micheal Siciliano
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Margaret Nieborowska-Skorska
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kritika Hanamshet
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizaveta A Belyaeva
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102, USA
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jaewong Lee
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA 91016, USA
| | - Morgan Moore
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig-Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, 1090, Austria
| | - Ksenia Matlawska-Wasowska
- Division of Pediatric Research, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA 91016, USA
| | - Smita Bhatia
- Department of Pediatrics, University of Alabama Birmingham, Birmingham, AL 35223, USA
| | - Ravi Bhatia
- Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Tomasz Skorski
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
121
|
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019; 20:698-714. [PMID: 31263220 PMCID: PMC7315405 DOI: 10.1038/s41580-019-0152-0] [Citation(s) in RCA: 948] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
122
|
Toma M, Sullivan-Reed K, Śliwiński T, Skorski T. RAD52 as a Potential Target for Synthetic Lethality-Based Anticancer Therapies. Cancers (Basel) 2019; 11:E1561. [PMID: 31615159 PMCID: PMC6827130 DOI: 10.3390/cancers11101561] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations in DNA repair systems play a key role in the induction and progression of cancer. Tumor-specific defects in DNA repair mechanisms and activation of alternative repair routes create the opportunity to employ a phenomenon called "synthetic lethality" to eliminate cancer cells. Targeting the backup pathways may amplify endogenous and drug-induced DNA damage and lead to specific eradication of cancer cells. So far, the synthetic lethal interaction between BRCA1/2 and PARP1 has been successfully applied as an anticancer treatment. Although PARP1 constitutes a promising target in the treatment of tumors harboring deficiencies in BRCA1/2-mediated homologous recombination (HR), some tumor cells survive, resulting in disease relapse. It has been suggested that alternative RAD52-mediated HR can protect BRCA1/2-deficient cells from the accumulation of DNA damage and the synthetic lethal effect of PARPi. Thus, simultaneous inhibition of RAD52 and PARP1 might result in a robust dual synthetic lethality, effectively eradicating BRCA1/2-deficient tumor cells. In this review, we will discuss the role of RAD52 and its potential application in synthetic lethality-based anticancer therapies.
Collapse
Affiliation(s)
- Monika Toma
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Katherine Sullivan-Reed
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Tomasz Skorski
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
123
|
Kohzaki M, Ootsuyama A, Sun L, Moritake T, Okazaki R. Human RECQL4 represses the RAD52-mediated single-strand annealing pathway after ionizing radiation or cisplatin treatment. Int J Cancer 2019; 146:3098-3113. [PMID: 31495919 DOI: 10.1002/ijc.32670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 11/12/2022]
Abstract
Ionizing radiation (IR) and cisplatin are frequently used cancer treatments, although the mechanisms of error-prone DNA repair-mediated genomic instability after anticancer treatment are not fully clarified yet. RECQL4 mutations mainly in the C-terminal region of the RECQL4 gene lead to the cancer-predisposing Rothmund-Thomson syndrome, but the function of RECQL4ΔC (C-terminus deleted) in error-prone DNA repair remains unclear. We established several RECQL4ΔC cell lines and found that RECQL4ΔC cancer cells, but not RECQL4ΔC nontumorigenic cells, exhibited IR/cisplatin hypersensitivity. Notably, RECQL4ΔC cancer cells presented increased RPA2/RAD52 foci after cancer treatments. RECQL4ΔC HCT116 cells exhibited increased error-prone single-strand annealing (SSA) activity and decreased alternative end-joining activities, suggesting that RECQL4 regulates the DNA repair pathway choice at double-strand breaks. RAD52 depletion by siRNA or RAD52 inhibitors (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside [AICAR], (-)-epigallocatechin [EGC]) or a RAD52-phenylalanine 79 aptamer significantly restrained the growth of RAD52-upregulated RECQL4ΔC HCT116 cells in vitro and in mouse xenografts. Remarkably, compared to single-agent cisplatin or EGC treatment, cisplatin followed by low-concentration EGC had a significant suppressive effect on RECQL4ΔC HCT116 cell growth in vivo. Together, the regimens targeting the RAD52-mediated SSA pathway after anticancer treatment may be applicable for cancer patients with RECQL4 gene mutations.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Lue Sun
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.,Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Moritake
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Ryuji Okazaki
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
124
|
Hu Q, Lu H, Wang H, Li S, Truong L, Li J, Liu S, Xiang R, Wu X. Break-induced replication plays a prominent role in long-range repeat-mediated deletion. EMBO J 2019; 38:e101751. [PMID: 31571254 DOI: 10.15252/embj.2019101751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Repetitive DNA sequences are often associated with chromosomal rearrangements in cancers. Conventionally, single-strand annealing (SSA) is thought to mediate homology-directed repair of double-strand breaks (DSBs) between two repeats, causing repeat-mediated deletion (RMD). In this report, we demonstrate that break-induced replication (BIR) is used predominantly over SSA in mammalian cells for mediating RMD, especially when repeats are far apart. We show that SSA becomes inefficient in mammalian cells when the distance between the DSBs and the repeats is increased to the 1-2 kb range, while BIR-mediated RMD (BIR/RMD) can act over a long distance (e.g., ~ 100-200 kb) when the DSB is close to one repeat. Importantly, oncogene expression potentiates BIR/RMD but not SSA, and BIR/RMD is used more frequently at single-ended DSBs formed at collapsed replication forks than at double-ended DSBs. In contrast to short-range SSA, H2AX is required for long-range BIR/RMD, and sequence divergence strongly suppresses BIR/RMD in a manner partially dependent on MSH2. Our finding that BIR/RMD has a more important role than SSA in mammalian cells has a significant impact on the understanding of repeat-mediated rearrangements associated with oncogenesis.
Collapse
Affiliation(s)
- Qing Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hongyan Lu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,School of Medicine, Nankai University, Tianjin, China
| | - Hongjun Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Lan Truong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jun Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,School of Medicine, Nankai University, Tianjin, China
| | - Shuo Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
125
|
Replication Stress Response Links RAD52 to Protecting Common Fragile Sites. Cancers (Basel) 2019; 11:cancers11101467. [PMID: 31569559 PMCID: PMC6826974 DOI: 10.3390/cancers11101467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Rad52 in yeast is a key player in homologous recombination (HR), but mammalian RAD52 is dispensable for HR as shown by the lack of a strong HR phenotype in RAD52-deficient cells and in RAD52 knockout mice. RAD52 function in mammalian cells first emerged with the discovery of its important backup role to BRCA (breast cancer genes) in HR. Recent new evidence further demonstrates that RAD52 possesses multiple activities to cope with replication stress. For example, replication stress-induced DNA repair synthesis in mitosis (MiDAS) and oncogene overexpression-induced DNA replication are dependent on RAD52. RAD52 becomes essential in HR to repair DSBs containing secondary structures, which often arise at collapsed replication forks. RAD52 is also implicated in break-induced replication (BIR) and is found to inhibit excessive fork reversal at stalled replication forks. These various functions of RAD52 to deal with replication stress have been linked to the protection of genome stability at common fragile sites, which are often associated with the DNA breakpoints in cancer. Therefore, RAD52 has important recombination roles under special stress conditions in mammalian cells, and presents as a promising anti-cancer therapy target.
Collapse
|
126
|
Meghani K, Fuchs W, Detappe A, Drané P, Gogola E, Rottenberg S, Jonkers J, Matulonis U, Swisher EM, Konstantinopoulos PA, Chowdhury D. Multifaceted Impact of MicroRNA 493-5p on Genome-Stabilizing Pathways Induces Platinum and PARP Inhibitor Resistance in BRCA2-Mutated Carcinomas. Cell Rep 2019; 23:100-111. [PMID: 29617652 DOI: 10.1016/j.celrep.2018.03.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/05/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022] Open
Abstract
BRCA1/2-mutated ovarian cancers (OCs) are defective in homologous recombination repair (HRR) of double-strand breaks (DSBs) and thereby sensitive to platinum and PARP inhibitors (PARPis). Multiple PARPis have recently received US Food and Drug Administration (FDA) approval for treatment of OCs, and resistance to PARPis is a major clinical problem. Utilizing primary and recurrent BRCA1/2-mutated carcinomas from OC patients, patient-derived lines, and an in vivo BRCA2-mutated mouse model, we identified a microRNA, miR-493-5p, that induced platinum/PARPi resistance exclusively in BRCA2-mutated carcinomas. However, in contrast to the most prevalent resistance mechanisms in BRCA mutant carcinomas, miR-493-5p did not restore HRR. Expression of miR-493-5p in BRCA2-mutated/depleted cells reduced levels of nucleases and other factors involved in maintaining genomic stability. This resulted in relatively stable replication forks, diminished single-strand annealing of DSBs, and increased R-loop formation. We conclude that impact of miR-493-5p on multiple pathways pertinent to genome stability cumulatively causes PARPi/platinum resistance in BRCA2 mutant carcinomas.
Collapse
Affiliation(s)
- Khyati Meghani
- Department of Radiation Oncology, Division of Radiation and Genome Stability, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Walker Fuchs
- Department of Radiation Oncology, Division of Radiation and Genome Stability, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexandre Detappe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Pascal Drané
- Department of Radiation Oncology, Division of Radiation and Genome Stability, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ewa Gogola
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Laenggassstr. 122, 3012 Bern, Switzerland
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ursula Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth M Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | | | - Dipanjan Chowdhury
- Department of Radiation Oncology, Division of Radiation and Genome Stability, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
127
|
Lucas BE, McPherson MT, Hawk TM, Wilson LN, Kroh JM, Hickman KG, Fitzgerald SR, Disbennett WM, Rollins PD, Hylton HM, Baseer MA, Montgomery PN, Wu JQ, Petreaca RC. An Assay to Study Intra-Chromosomal Deletions in Yeast. Methods Protoc 2019; 2:mps2030074. [PMID: 31454903 PMCID: PMC6789737 DOI: 10.3390/mps2030074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023] Open
Abstract
An accurate DNA damage response pathway is critical for the repair of DNA double-strand breaks. Repair may occur by homologous recombination, of which many different sub-pathways have been identified. Some recombination pathways are conservative, meaning that the chromosome sequences are preserved, and others are non-conservative, leading to some alteration of the DNA sequence. We describe an in vivo genetic assay to study non-conservative intra-chromosomal deletions at regions of non-tandem direct repeats in Schizosaccharomyces pombe. This assay can be used to study both spontaneous breaks arising during DNA replication and induced double-strand breaks created with the S. cerevisiae homothallic endonuclease (HO). The preliminary genetic validation of this assay shows that spontaneous breaks require rad52+ but not rad51+, while induced breaks require both genes, in agreement with previous studies. This assay will be useful in the field of DNA damage repair for studying mechanisms of intra-chromosomal deletions.
Collapse
Affiliation(s)
- Bailey E Lucas
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Matthew T McPherson
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Tila M Hawk
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Lexia N Wilson
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Jacob M Kroh
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Kyle G Hickman
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Sean R Fitzgerald
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | | | - P Daniel Rollins
- Molecular Genetics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah M Hylton
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Mohammed A Baseer
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Paige N Montgomery
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA.
| |
Collapse
|
128
|
Kelso AA, Lopezcolorado FW, Bhargava R, Stark JM. Distinct roles of RAD52 and POLQ in chromosomal break repair and replication stress response. PLoS Genet 2019; 15:e1008319. [PMID: 31381562 PMCID: PMC6695211 DOI: 10.1371/journal.pgen.1008319] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/15/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Disrupting either the DNA annealing factor RAD52 or the A-family DNA polymerase POLQ can cause synthetic lethality with defects in BRCA1 and BRCA2, which are tumor suppressors important for homology-directed repair of DNA double-strand breaks (DSBs), and protection of stalled replication forks. A likely mechanism of this synthetic lethality is that RAD52 and/or POLQ are important for backup pathways for DSB repair and/or replication stress responses. The features of DSB repair events that require RAD52 vs. POLQ, and whether combined disruption of these factors causes distinct effects on genome maintenance, have been unclear. Using human U2OS cells, we generated a cell line with POLQ mutations upstream of the polymerase domain, a RAD52 knockout cell line, and a line with combined disruption of both genes. We also examined RAD52 and POLQ using RNA-interference. We find that combined disruption of RAD52 and POLQ causes at least additive hypersensitivity to cisplatin, and a synthetic reduction in replication fork restart velocity. We also examined the influence of RAD52 and POLQ on several DSB repair events. We find that RAD52 is particularly important for repair using ≥ 50 nt repeat sequences that flank the DSB, and that also involve removal of non-homologous sequences flanking the repeats. In contrast, POLQ is important for repair events using 6 nt (but not ≥ 18 nt) of flanking repeats that are at the edge of the break, as well as oligonucleotide microhomology-templated (i.e., 12-20 nt) repair events requiring nascent DNA synthesis. Finally, these factors show key distinctions with BRCA2, regarding effects on DSB repair events and response to stalled replication forks. These findings indicate that RAD52 and POLQ have distinct roles in genome maintenance, including for specific features of DSB repair events, such that combined disruption of these factors may be effective for genotoxin sensitization and/or synthetic lethal strategies.
Collapse
Affiliation(s)
- Andrew A. Kelso
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| |
Collapse
|
129
|
Jalan M, Olsen KS, Powell SN. Emerging Roles of RAD52 in Genome Maintenance. Cancers (Basel) 2019; 11:E1038. [PMID: 31340507 PMCID: PMC6679097 DOI: 10.3390/cancers11071038] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The maintenance of genome integrity is critical for cell survival. Homologous recombination (HR) is considered the major error-free repair pathway in combatting endogenously generated double-stranded lesions in DNA. Nevertheless, a number of alternative repair pathways have been described as protectors of genome stability, especially in HR-deficient cells. One of the factors that appears to have a role in many of these pathways is human RAD52, a DNA repair protein that was previously considered to be dispensable due to a lack of an observable phenotype in knock-out mice. In later studies, RAD52 deficiency has been shown to be synthetically lethal with defects in BRCA genes, making RAD52 an attractive therapeutic target, particularly in the context of BRCA-deficient tumors.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie S Olsen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
130
|
Lewis TW, Barthelemy JR, Virts EL, Kennedy FM, Gadgil RY, Wiek C, Linka RM, Zhang F, Andreassen PR, Hanenberg H, Leffak M. Deficiency of the Fanconi anemia E2 ubiqitin conjugase UBE2T only partially abrogates Alu-mediated recombination in a new model of homology dependent recombination. Nucleic Acids Res 2019; 47:3503-3520. [PMID: 30715513 PMCID: PMC6468168 DOI: 10.1093/nar/gkz026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The primary function of the UBE2T ubiquitin conjugase is in the monoubiquitination of the FANCI-FANCD2 heterodimer, a central step in the Fanconi anemia (FA) pathway. Genetic inactivation of UBE2T is responsible for the phenotypes of FANCT patients; however, a FANCT patient carrying a maternal duplication and a paternal deletion in the UBE2T loci displayed normal peripheral blood counts and UBE2T protein levels in B-lymphoblast cell lines. To test whether reversion by recombination between UBE2T AluYa5 elements could have occurred in the patient's hematopoietic stem cells despite the defects in homologous recombination (HR) in FA cells, we constructed HeLa cell lines containing the UBE2T AluYa5 elements and neighboring intervening sequences flanked by fluorescent reporter genes. Introduction of a DNA double strand break in the model UBE2T locus in vivo promoted single strand annealing (SSA) between proximal Alu elements and deletion of the intervening color marker gene, recapitulating the reversion of the UBE2T duplication in the FA patient. To test whether UBE2T null cells retain HR activity, the UBE2T genes were knocked out in HeLa cells and U2OS cells. CRISPR/Cas9-mediated genetic knockout of UBE2T only partially reduced HR, demonstrating that UBE2T-independent pathways can compensate for the recombination defect in UBE2T/FANCT null cells.
Collapse
Affiliation(s)
- Todd W Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Joanna R Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Elizabeth L Virts
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Felicia M Kennedy
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rujuta Y Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duüsseldorf, Germany
| | - Rene M Linka
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duüsseldorf, Germany
| | - Feng Zhang
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paul R Andreassen
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Duüsseldorf, Germany
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
131
|
Anand R, Jasrotia A, Bundschuh D, Howard SM, Ranjha L, Stucki M, Cejka P. NBS1 promotes the endonuclease activity of the MRE11-RAD50 complex by sensing CtIP phosphorylation. EMBO J 2019; 38:e101005. [PMID: 30787182 PMCID: PMC6443204 DOI: 10.15252/embj.2018101005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 11/09/2022] Open
Abstract
DNA end resection initiates DNA double-strand break repair by homologous recombination. MRE11-RAD50-NBS1 and phosphorylated CtIP perform the first resection step via MRE11-catalyzed endonucleolytic DNA cleavage. Human NBS1, more than its homologue Xrs2 in Saccharomyces cerevisiae, is crucial for this process, highlighting complex mechanisms that regulate the MRE11 nuclease in higher eukaryotes. Using a reconstituted system, we show here that NBS1, through its FHA and BRCT domains, functions as a sensor of CtIP phosphorylation. NBS1 then activates the MRE11-RAD50 nuclease through direct physical interactions with MRE11. In the absence of NBS1, MRE11-RAD50 exhibits a weaker nuclease activity, which requires CtIP but not strictly its phosphorylation. This identifies at least two mechanisms by which CtIP augments MRE11: a phosphorylation-dependent mode through NBS1 and a phosphorylation-independent mode without NBS1. In support, we show that limited DNA end resection occurs in vivo in the absence of the FHA and BRCT domains of NBS1. Collectively, our data suggest that NBS1 restricts the MRE11-RAD50 nuclease to S-G2 phase when CtIP is extensively phosphorylated. This defines mechanisms that regulate the MRE11 nuclease in DNA metabolism.
Collapse
Affiliation(s)
- Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Arti Jasrotia
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Diana Bundschuh
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Sean Michael Howard
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
132
|
Comparative proteomic study reveals the enhanced immune response with the blockade of interleukin 10 with anti-IL-10 and anti-IL-10 receptor antibodies in human U937 cells. PLoS One 2019; 14:e0213813. [PMID: 30897137 PMCID: PMC6428271 DOI: 10.1371/journal.pone.0213813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 01/25/2023] Open
Abstract
Blocking cytokine interleukin 10 (IL-10) at the time of immunisation enhances vaccine induced T cell responses and improves control of tumour cell growth in vivo. However, the effect of an IL-10 blockade on the biological function of macrophages has not been explored. In the current paper, a macrophage precursor cell line, U937 cells, was selected to investigate the differential expression of proteins and relevant cell signalling pathway changes, when stimulated with lipopolysaccharide (LPS) in the presence of antibodies to IL-10 or IL-10 receptor. We used a quantitative proteomic strategy to investigate variations in protein profiles of U937 cells following the treatments with LPS, LPS plus human anti-IL10 antibody and anti-IL10R antibody in 24hrs, respectively. The LPS treatment significantly activated actin-related cell matrix formation and immune response pathways. The addition of anti-IL10 and anti-IL10R antibody further promoted the immune response and potentially effect macrophage survival through PI3K/AKT signalling; however, the latter appeared to also upregulated oncogene XRCC5 and Cajal body associated processes.
Collapse
|
133
|
Abstract
Homologous Recombination (HR) is a high-fidelity process with a range of biologic functions from generation of genetic diversity to repair of DNA double-strand breaks (DSBs). In mammalian cells, BRCA2 facilitates the polymerization of RAD51 onto ssDNA to form a presynaptic nucleoprotein filament. This filament can then strand invade a homologous dsDNA to form the displacement loop (D-loop) structure leading to the eventual DSB repair. Here, we have found that RAD51 in stoichiometric excess over ssDNA can cause D-loop disassembly in vitro; furthermore, we show that this RAD51 activity is countered by BRCA2. These results demonstrate that BRCA2 may have a previously unexpected activity: regulation of HR at a post-synaptic stage by modulating RAD51-mediated D-loop dissociation. Our in vitro results suggest a mechanistic underpinning of homeostasis between RAD51 and BRCA2, which is an important factor of HR in mammalian cells.
Collapse
|
134
|
O'Brien AR, Wilson LOW, Burgio G, Bauer DC. Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning. Sci Rep 2019; 9:2788. [PMID: 30808944 PMCID: PMC6391469 DOI: 10.1038/s41598-019-39142-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Editing individual nucleotides is a crucial component for validating genomic disease association. It is currently hampered by CRISPR-Cas-mediated "base editing" being limited to certain nucleotide changes, and only achievable within a small window around CRISPR-Cas target sites. The more versatile alternative, HDR (homology directed repair), has a 3-fold lower efficiency with known optimization factors being largely immutable in experiments. Here, we investigated the variable efficiency-governing factors on a novel mouse dataset using machine learning. We found the sequence composition of the single-stranded oligodeoxynucleotide (ssODN), i.e. the repair template, to be a governing factor. Furthermore, different regions of the ssODN have variable influence, which reflects the underlying mechanism of the repair process. Our model improves HDR efficiency by 83% compared to traditionally chosen targets. Using our findings, we developed CUNE (Computational Universal Nucleotide Editor), which enables users to identify and design the optimal targeting strategy using traditional base editing or - for-the-first-time - HDR-mediated nucleotide changes.
Collapse
Affiliation(s)
- Aidan R O'Brien
- CSIRO, Sydney, NSW, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
135
|
Datta A, Brosh RM. Holding All the Cards-How Fanconi Anemia Proteins Deal with Replication Stress and Preserve Genomic Stability. Genes (Basel) 2019; 10:genes10020170. [PMID: 30813363 PMCID: PMC6409899 DOI: 10.3390/genes10020170] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Fanconi anemia (FA) is a hereditary chromosomal instability disorder often displaying congenital abnormalities and characterized by a predisposition to progressive bone marrow failure (BMF) and cancer. Over the last 25 years since the discovery of the first linkage of genetic mutations to FA, its molecular genetic landscape has expanded tremendously as it became apparent that FA is a disease characterized by a defect in a specific DNA repair pathway responsible for the correction of covalent cross-links between the two complementary strands of the DNA double helix. This pathway has become increasingly complex, with the discovery of now over 20 FA-linked genes implicated in interstrand cross-link (ICL) repair. Moreover, gene products known to be involved in double-strand break (DSB) repair, mismatch repair (MMR), and nucleotide excision repair (NER) play roles in the ICL response and repair of associated DNA damage. While ICL repair is predominantly coupled with DNA replication, it also can occur in non-replicating cells. DNA damage accumulation and hematopoietic stem cell failure are thought to contribute to the increased inflammation and oxidative stress prevalent in FA. Adding to its confounding nature, certain FA gene products are also engaged in the response to replication stress, caused endogenously or by agents other than ICL-inducing drugs. In this review, we discuss the mechanistic aspects of the FA pathway and the molecular defects leading to elevated replication stress believed to underlie the cellular phenotypes and clinical features of FA.
Collapse
Affiliation(s)
- Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| |
Collapse
|
136
|
Zhou C, Jin J, Peng C, Wen Q, Wang G, Wei W, Jiang X, Price M, Cui K, Meng Y, Song Z, Li J, Zhang X, Fan Z, Yue B. Comparative genomics sheds light on the predatory lifestyle of accipitrids and owls. Sci Rep 2019; 9:2249. [PMID: 30783131 PMCID: PMC6381159 DOI: 10.1038/s41598-019-38680-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023] Open
Abstract
Raptors are carnivorous birds including accipitrids (Accipitridae, Accipitriformes) and owls (Strigiformes), which are diurnal and nocturnal, respectively. To examine the evolutionary basis of adaptations to different light cycles and hunting behavior between accipitrids and owls, we de novo assembled besra (Accipiter virgatus, Accipitridae, Accipitriformes) and oriental scops owl (Otus sunia, Strigidae, Strigiformes) draft genomes. Comparative genomics demonstrated four PSGs (positively selected genes) (XRCC5, PRIMPOL, MDM2, and SIRT1) related to the response to ultraviolet (UV) radiation in accipitrids, and one PSG (ALCAM) associated with retina development in owls, which was consistent with their respective diurnal/nocturnal predatory lifestyles. We identified five accipitrid-specific and two owl-specific missense mutations and most of which were predicted to affect the protein function by PolyPhen-2. Genome comparison showed the diversification of raptor olfactory receptor repertoires, which may reflect an important role of olfaction in their predatory lifestyle. Comparison of TAS2R gene (i.e. linked to tasting bitterness) number in birds with different dietary lifestyles suggested that dietary toxins were a major selective force shaping the diversity of TAS2R repertoires. Fewer TAS2R genes in raptors reflected their carnivorous diet, since animal tissues are less likely to contain toxins than plant material. Our data and findings provide valuable genomic resources for studying the genetic mechanisms of raptors' environmental adaptation, particularly olfaction, nocturnality and response to UV radiation.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiazheng Jin
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Changjun Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Qinchao Wen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Guannan Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Weideng Wei
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Xue Jiang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Kai Cui
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China.
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
137
|
Yang X, Lu Y, He F, Hou F, Xing C, Xu P, Wang QF. Benzene metabolite hydroquinone promotes DNA homologous recombination repair via the NF-κB pathway. Carcinogenesis 2019; 40:1021-1030. [PMID: 30770924 DOI: 10.1093/carcin/bgy157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/11/2018] [Indexed: 12/29/2022] Open
Abstract
Abstract
Benzene, a widespread environmental pollutant, induces DNA double-strand breaks (DSBs) and DNA repair, which may further lead to oncogenic mutations, chromosomal rearrangements and leukemogenesis. However, the molecular mechanisms underlying benzene-induced DNA repair and carcinogenesis remain unclear. The human osteosarcoma cell line (U2OS/DR-GFP), which carries a GFP-based homologous recombination (HR) repair reporter, was treated with hydroquinone, one of the major benzene metabolites, to identify the potential effects of benzene on DSB HR repair. RNA-sequencing was further employed to identify the potential key pathway that contributed to benzene-initiated HR repair. We found that treatment with hydroquinone induced a significant increase in HR. NF-κB pathway, which plays a critical role in carcinogenesis in multiple tumors, was significantly activated in cells recovered from hydroquinone treatment. Furthermore, the upregulation of NF-κB by hydroquinone was also found in human hematopoietic stem and progenitor cells. Notably, the inhibition of NF-κB activity by small molecule inhibitors (QNZ and JSH-23) significantly reduced the frequency of hydroquinone-initiated HR (−1.36- and −1.77-fold, respectively, P < 0.01). Our results demonstrate an important role of NF-κB activity in promoting HR repair induced by hydroquinone. This finding sheds light on the underlying mechanisms involved in benzene-induced genomic instability and leukemogenesis and may contribute to the larger exploration of the influence of other environmental pollutants on carcinogenesis.
Collapse
Affiliation(s)
- Xuejing Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yedan Lu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fenxia Hou
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Caihong Xing
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peiyu Xu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
138
|
Murthy P, Muggia F. Women's cancers: how the discovery of BRCA genes is driving current concepts of cancer biology and therapeutics. Ecancermedicalscience 2019; 13:904. [PMID: 30915162 PMCID: PMC6411414 DOI: 10.3332/ecancer.2019.904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Over the last two decades, discoveries related to the breast cancer susceptibility genes 1 and 2 (BRCA1 and BRCA2) have profoundly changed our understanding and management of hereditary breast and ovarian cancers. The concept of synthetic lethality, which arises when cells become vulnerable to a combination of deficiencies in DNA repair, has driven the expanding roles of poly (adenosine diphosphate (ADP)-ribose) polymerase inhibitors in breast and ovarian cancers, and prevention strategies are taking into account the tissue specificity, natural history (fallopian tube origin of some high-grade serous ovarian cancers) and hormone sensitivity of BRCA-associated cancers. Current research has focussed on further elucidating the roles of BRCA proteins in DNA repair, investigating other key DNA repair processes and proteins and linking aberrant DNA repair with carcinogenesis. The ultimate goal is to translate this evolving knowledge into improving the clinical care and treatment of patients with pathogenic BRCA variants or other deficiencies in homologous recombination (HR). In this review, we will discuss 1) the role of BRCA proteins in DNA repair; 2) emerging concepts in the biology of HR deficiency and 3) implications for prevention and treatment.
Collapse
Affiliation(s)
- Pooja Murthy
- New York University School of Medicine, New York, NY 10016, USA
- Maimonides Cancer Center, Brooklyn, NY 11220, USA
| | - Franco Muggia
- New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
139
|
Bordelet H, Dubrana K. Keep moving and stay in a good shape to find your homologous recombination partner. Curr Genet 2019; 65:29-39. [PMID: 30097675 PMCID: PMC6342867 DOI: 10.1007/s00294-018-0873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023]
Abstract
Genomic DNA is constantly exposed to damage. Among the lesion in DNA, double-strand breaks (DSB), because they disrupt the two strands of the DNA double helix, are the more dangerous. DSB are repaired through two evolutionary conserved mechanisms: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). Whereas NHEJ simply reseals the double helix with no or minimal processing, HR necessitates the formation of a 3'ssDNA through the processing of DSB ends by the resection machinery and relies on the recognition and pairing of this 3'ssDNA tails with an intact homologous sequence. Despite years of active research on HR, the manner by which the two homologous sequences find each other in the crowded nucleus, and how this modulates HR efficiency, only recently emerges. Here, we review recent advances in our understanding of the factors limiting the search of a homologous sequence during HR.
Collapse
Affiliation(s)
- Hélène Bordelet
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France
| | - Karine Dubrana
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France.
| |
Collapse
|
140
|
The Role of Marek's Disease Virus UL12 and UL29 in DNA Recombination and the Virus Lifecycle. Viruses 2019; 11:v11020111. [PMID: 30696089 PMCID: PMC6409567 DOI: 10.3390/v11020111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and integrates its genome into the telomeres of latently infected cells. MDV encodes two proteins, UL12 and UL29 (ICP8), that are conserved among herpesviruses and could facilitate virus integration. The orthologues of UL12 and UL29 in herpes simplex virus 1 (HSV-1) possess exonuclease and single strand DNA-binding activity, respectively, and facilitate DNA recombination; however, the role of both proteins in the MDV lifecycle remains elusive. To determine if UL12 and/or UL29 are involved in virus replication, we abrogated their expression in the very virulent RB-1B strain. Abrogation of either UL12 or UL29 resulted in a severe impairment of virus replication. We also demonstrated that MDV UL12 can aid in single strand annealing DNA repair, using a well-established reporter cell line. Finally, we assessed the role of UL12 and UL29 in MDV integration and maintenance of the latent virus genome. We could demonstrate that knockdown of UL12 and UL29 does not interfere with the establishment or maintenance of latency. Our data therefore shed light on the role of MDV UL12 and UL29 in MDV replication, DNA repair, and maintenance of the latent virus genome.
Collapse
|
141
|
Spiliotopoulos A, Blokpoel Ferreras L, Densham RM, Caulton SG, Maddison BC, Morris JR, Dixon JE, Gough KC, Dreveny I. Discovery of peptide ligands targeting a specific ubiquitin-like domain-binding site in the deubiquitinase USP11. J Biol Chem 2019; 294:424-436. [PMID: 30373771 PMCID: PMC6333900 DOI: 10.1074/jbc.ra118.004469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/11/2018] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) reverse ubiquitination and regulate virtually all cellular processes. Defined noncatalytic domains in USP4 and USP15 are known to interact with E3 ligases and substrate recruitment factors. No such interactions have been reported for these domains in the paralog USP11, a key regulator of DNA double-strand break repair by homologous recombination. We hypothesized that USP11 domains adjacent to its protease domain harbor unique peptide-binding sites. Here, using a next-generation phage display (NGPD) strategy, combining phage display library screening with next-generation sequencing, we discovered unique USP11-interacting peptide motifs. Isothermal titration calorimetry disclosed that the highest affinity peptides (KD of ∼10 μm) exhibit exclusive selectivity for USP11 over USP4 and USP15 in vitro Furthermore, a crystal structure of a USP11-peptide complex revealed a previously unknown binding site in USP11's noncatalytic ubiquitin-like (UBL) region. This site interacted with a helical motif and is absent in USP4 and USP15. Reporter assays using USP11-WT versus a binding pocket-deficient double mutant disclosed that this binding site modulates USP11's function in homologous recombination-mediated DNA repair. The highest affinity USP11 peptide binder fused to a cellular delivery sequence induced significant nuclear localization and cell cycle arrest in S phase, affecting the viability of different mammalian cell lines. The USP11 peptide ligands and the paralog-specific functional site in USP11 identified here provide a framework for the development of new biochemical tools and therapeutic agents. We propose that an NGPD-based strategy for identifying interacting peptides may be applied also to other cellular targets.
Collapse
Affiliation(s)
- Anastasios Spiliotopoulos
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
- the School of Veterinary Medicine and Science, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD
| | - Lia Blokpoel Ferreras
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Ruth M Densham
- the Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham B15 2TT, and
| | - Simon G Caulton
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Ben C Maddison
- ADAS, School of Veterinary Medicine and Science, Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Joanna R Morris
- the Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham B15 2TT, and
| | - James E Dixon
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Kevin C Gough
- the School of Veterinary Medicine and Science, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD,
| | - Ingrid Dreveny
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD,
| |
Collapse
|
142
|
Abstract
Polyamines, often elevated in cancer cells, have been shown to promote cell growth and proliferation. Whether polyamines regulate other cell functions remains unclear. Here, we explore whether and how polyamines affect genome integrity. When DNA double-strand break (DSB) is induced in hair follicles by ionizing radiation, reduction of cellular polyamines augments dystrophic changes with delayed regeneration. Mechanistically, polyamines facilitate homologous recombination-mediated DSB repair without affecting repair via non-homologous DNA end-joining and single-strand DNA annealing. Biochemical reconstitution and functional analyses demonstrate that polyamines enhance the DNA strand exchange activity of RAD51 recombinase. The effect of polyamines on RAD51 stems from their ability to enhance the capture of homologous duplex DNA and synaptic complex formation by the RAD51-ssDNA nucleoprotein filament. Our work demonstrates a novel function of polyamines in the maintenance of genome integrity via homology-directed DNA repair. The maintenance polyamines homeostasis is important for cell growth, and several cancers harbor elevated levels of polyamines that may contribute to sustained proliferative potential. Here the authors demonstrate that polyamines participate in DNA double-strand break repair through the stimulation of RAD51-mediated homologous DNA pairing and strand exchange.
Collapse
|
143
|
Jimeno S, Mejías-Navarro F, Prados-Carvajal R, Huertas P. Controlling the balance between chromosome break repair pathways. DNA Repair (Amst) 2019; 115:95-134. [DOI: 10.1016/bs.apcsb.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
144
|
Li S, Li R, Ma Y, Zhang C, Huang T, Zhu S. Transcriptome analysis of differentially expressed genes and pathways associated with mitoxantrone treatment prostate cancer. J Cell Mol Med 2018; 23:1987-2000. [PMID: 30592148 PMCID: PMC6378179 DOI: 10.1111/jcmm.14100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
The global physiological function of specifically expressed genes of mitoxantrone (MTX)‐resistant prostate cancer (PCa) is unclear. In this study, gene expression pattern from microarray data was investigated for identifying differentially expressed genes (DEGs) in MTX‐resistant PCa xenografts. Human PCa cell lines DU145 and PC3 were cultured in vitro and xenografted into severe combined immunodeficiency (SCID) mice, treated with MTX intragastrically, three times a week until all mice relapsed. Gene expression profiles of the xenografts from castrated mice were performed with Affymetrix human whole genomic oligonucleotide microarray. The Cytoscape software was used to investigate the relationship between proteins and the signalling transduction network. A total of 355 overlapping genes were differentially expressed in MTX‐resistant DU145R and PC3R xenografts. Of these, 16 genes were selected to be validated by quantitative real‐time PCR (qRT‐PCR) in these xenografts, and further tested in a set of formalin‐fixed, paraffin‐embedded and optimal cutting temperature (OCT) clinical tumour samples. Functional and pathway enrichment analyses revealed that these DEGs were closely related to cellular activity, androgen synthesis, DNA damage and repair, also involved in the ERK/MAPK, PI3K/serine‐threonine protein kinase, also known as protein kinase B, PKB (AKT) and apoptosis signalling pathways. This exploratory analysis provides information about potential candidate genes and may bring new insights into the molecular cascade involvement in MTX‐resistant PCa.
Collapse
Affiliation(s)
- Sanqiang Li
- Key laboratory of Infection and Immunization, Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Medical College, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yu Ma
- Key laboratory of Infection and Immunization, Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Cong Zhang
- Key laboratory of Infection and Immunization, Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Huang
- Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Sha Zhu
- Key laboratory of Infection and Immunization, Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of Cancer Chemoprevention, Zhengzhou, Henan, China
| |
Collapse
|
145
|
Mohni KN, Wessel SR, Zhao R, Wojciechowski AC, Luzwick JW, Layden H, Eichman BF, Thompson PS, Mehta KPM, Cortez D. HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA. Cell 2018; 176:144-153.e13. [PMID: 30554877 DOI: 10.1016/j.cell.2018.10.055] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.
Collapse
Affiliation(s)
- Kareem N Mohni
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah R Wessel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea C Wojciechowski
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jessica W Luzwick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hillary Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Petria S Thompson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
146
|
Viral Proteins U41 and U70 of Human Herpesvirus 6A Are Dispensable for Telomere Integration. Viruses 2018; 10:v10110656. [PMID: 30469324 PMCID: PMC6267051 DOI: 10.3390/v10110656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/24/2022] Open
Abstract
Human herpesvirus-6A and -6B (HHV-6A and -6B) are two closely related betaherpesviruses that infect humans. Upon primary infection they establish a life-long infection termed latency, where the virus genome is integrated into the telomeres of latently infected cells. Intriguingly, HHV-6A/B can integrate into germ cells, leading to individuals with inherited chromosomally-integrated HHV-6 (iciHHV-6), who have the HHV-6 genome in every cell. It is known that telomeric repeats flanking the virus genome are essential for integration; however, the protein factors mediating integration remain enigmatic. We have previously shown that the putative viral integrase U94 is not essential for telomere integration; thus, we set out to assess the contribution of potential viral recombination proteins U41 and U70 towards integration. We could show that U70 enhances dsDNA break repair via a homology-directed mechanism using a reporter cell line. We then engineered cells to produce shRNAs targeting both U41 and U70 to inhibit their expression during infection. Using these cells in our HHV-6A in vitro integration assay, we could show that U41/U70 were dispensable for telomere integration. Furthermore, additional inhibition of the cellular recombinase Rad51 suggested that it was also not essential, indicating that other cellular and/or viral factors must mediate telomere integration.
Collapse
|
147
|
Macaisne N, Kessler Z, Yanowitz JL. Meiotic Double-Strand Break Proteins Influence Repair Pathway Utilization. Genetics 2018; 210:843-856. [PMID: 30242011 PMCID: PMC6218235 DOI: 10.1534/genetics.118.301402] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Double-strand breaks (DSBs) are among the most deleterious lesions DNA can endure. Yet, DSBs are programmed at the onset of meiosis, and are required to facilitate appropriate reduction of ploidy in daughter cells. Repair of these breaks is tightly controlled to favor homologous recombination (HR)-the only repair pathway that can form crossovers. However, little is known about how the activities of alternative repair pathways are regulated at these stages. We discovered an unexpected synthetic interaction between the DSB machinery and strand-exchange proteins. Depleting the Caenorhabditis elegans DSB-promoting factors HIM-5 and DSB-2 suppresses the formation of chromosome fusions that arise in the absence of RAD-51 or other strand-exchange mediators. Our investigations reveal that nonhomologous and theta-mediated end joining (c-NHEJ and TMEJ, respectively) and single strand annealing (SSA) function redundantly to repair DSBs when HR is compromised, and that HIM-5 influences the utilization of TMEJ and SSA.
Collapse
Affiliation(s)
- Nicolas Macaisne
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pennsylvania 15213
| | - Zebulin Kessler
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pennsylvania 15213
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pennsylvania 15213
| |
Collapse
|
148
|
Abdelfattah N, Rajamanickam S, Panneerdoss S, Timilsina S, Yadav P, Onyeagucha BC, Garcia M, Vadlamudi R, Chen Y, Brenner A, Houghton P, Rao MK. MiR-584-5p potentiates vincristine and radiation response by inducing spindle defects and DNA damage in medulloblastoma. Nat Commun 2018; 9:4541. [PMID: 30382096 PMCID: PMC6208371 DOI: 10.1038/s41467-018-06808-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 09/18/2018] [Indexed: 12/24/2022] Open
Abstract
Despite improvements in overall survival, only a modest percentage of patients survives high-risk medulloblastoma. The devastating side effects of radiation and chemotherapy substantially reduce quality of life for surviving patients. Here, using genomic screens, we identified miR-584-5p as a potent therapeutic adjuvant that potentiates medulloblastoma to radiation and vincristine. MiR-584-5p inhibited medulloblastoma growth and prolonged survival of mice in pre-clinical tumor models. MiR-584-5p overexpression caused cell cycle arrest, DNA damage, and spindle defects in medulloblastoma cells. MiR-584-5p mediated its tumor suppressor and therapy-sensitizing effects by targeting HDAC1 and eIF4E3. MiR-584-5p overexpression or HDAC1/eIF4E3 silencing inhibited medulloblastoma stem cell self-renewal without affecting neural stem cell growth. In medulloblastoma patients, reduced expression of miR-584-5p correlated with increased levels of HDAC1/eIF4E3. These findings identify a previously undefined role for miR-584-5p/HDAC1/eIF4E3 in regulating DNA repair, microtubule dynamics, and stemness in medulloblastoma and set the stage for a new way to treat medulloblastoma using miR-584-5p.
Collapse
Affiliation(s)
- Nourhan Abdelfattah
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Subapriya Rajamanickam
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Subbarayalu Panneerdoss
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Santosh Timilsina
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Pooja Yadav
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Benjamin C Onyeagucha
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Michael Garcia
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ratna Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Epidemiology and Statistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Andrew Brenner
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Peter Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
149
|
Findlay S, Heath J, Luo VM, Malina A, Morin T, Coulombe Y, Djerir B, Li Z, Samiei A, Simo-Cheyou E, Karam M, Bagci H, Rahat D, Grapton D, Lavoie EG, Dove C, Khaled H, Kuasne H, Mann KK, Klein KO, Greenwood CM, Tabach Y, Park M, Côté JF, Masson JY, Maréchal A, Orthwein A. SHLD2/FAM35A co-operates with REV7 to coordinate DNA double-strand break repair pathway choice. EMBO J 2018; 37:embj.2018100158. [PMID: 30154076 PMCID: PMC6138439 DOI: 10.15252/embj.2018100158] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.
Collapse
Affiliation(s)
- Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - John Heath
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Vincent M Luo
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abba Malina
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Théo Morin
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, Quebec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Billel Djerir
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Zhigang Li
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Arash Samiei
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Estelle Simo-Cheyou
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Martin Karam
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Halil Bagci
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Dolev Rahat
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Damien Grapton
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Elise G Lavoie
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Christian Dove
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Husam Khaled
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Celia M Greenwood
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, MGill University, Montreal, QC, Canada
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Jean-Francois Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada.,Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montreal, QC, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Quebec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada .,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
150
|
Benitez A, Liu W, Palovcak A, Wang G, Moon J, An K, Kim A, Zheng K, Zhang Y, Bai F, Mazin AV, Pei XH, Yuan F, Zhang Y. FANCA Promotes DNA Double-Strand Break Repair by Catalyzing Single-Strand Annealing and Strand Exchange. Mol Cell 2018; 71:621-628.e4. [PMID: 30057198 PMCID: PMC6097932 DOI: 10.1016/j.molcel.2018.06.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/04/2018] [Accepted: 06/20/2018] [Indexed: 01/24/2023]
Abstract
FANCA is a component of the Fanconi anemia (FA) core complex that activates DNA interstrand crosslink repair by monoubiquitination of FANCD2. Here, we report that purified FANCA protein catalyzes bidirectional single-strand annealing (SA) and strand exchange (SE) at a level comparable to RAD52, while a disease-causing FANCA mutant, F1263Δ, is defective in both activities. FANCG, which directly interacts with FANCA, dramatically stimulates its SA and SE activities. Alternatively, FANCB, which does not directly interact with FANCA, does not stimulate this activity. Importantly, five other patient-derived FANCA mutants also exhibit deficient SA and SE, suggesting that the biochemical activities of FANCA are relevant to the etiology of FA. A cell-based DNA double-strand break (DSB) repair assay demonstrates that FANCA plays a direct role in the single-strand annealing sub-pathway (SSA) of DSB repair by catalyzing SA, and this role is independent of the canonical FA pathway and RAD52.
Collapse
Affiliation(s)
- Anaid Benitez
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wenjun Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anna Palovcak
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Guanying Wang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jaewon Moon
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin An
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anna Kim
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin Zheng
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yu Zhang
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Bai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexander V Mazin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Xin-Hai Pei
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|