101
|
R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 2011; 108:11452-7. [PMID: 21693646 DOI: 10.1073/pnas.1106083108] [Citation(s) in RCA: 703] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Wnt/β-catenin signaling system plays essential roles in embryonic development and in the self-renewal and maintenance of adult stem cells. R-spondins (RSPOs) are a group of secreted proteins that enhance Wnt/β-catenin signaling and have pleiotropic functions in development and stem cell growth. LGR5, an orphan receptor of the G protein-coupled receptor (GPCR) superfamily, is specifically expressed in stem cells of the intestinal crypt and hair follicle. Knockout of LGR5 in the mouse results in neonatal lethality. LGR4, a receptor closely related to LGR5, also has essential roles in development, as its knockout leads to reduced viability and retarded growth. Overexpression of both receptors has been reported in several types of cancer. Here we demonstrate that LGR4 and LGR5 bind the R-spondins with high affinity and mediate the potentiation of Wnt/β-catenin signaling by enhancing Wnt-induced LRP6 phosphorylation. Interestingly, neither receptor is coupled to heterotrimeric G proteins or to β-arrestin when stimulated by the R-spondins, indicating a unique mechanism of action. The findings provide a basis for stem cell-specific effects of Wnt/β-catenin signaling and for the broad range of functions LGR4, LGR5, and the R-spondins have in normal and malignant growth.
Collapse
|
102
|
Yu T, Lan SY, Wu B, Pan QH, Shi L, Huang KH, Lin Y, Chen QK. Musashi1 and hairy and enhancer of split 1 high expression cells derived from embryonic stem cells enhance the repair of small-intestinal injury in the mouse. Dig Dis Sci 2011; 56:1354-1368. [PMID: 21221806 DOI: 10.1007/s10620-010-1441-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 09/19/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Embryonic stem cells have great plasticity. In this study, we repaired impaired small intestine by transplanting putative intestinal epithelial stem cells (Musashi1 and hairy and enhancer of split 1 high expression cells) derived from embryonic stem cells. METHODS The differentiation of definitive endoderm in embryoid bodies, derived from male ES-E14TG2a cells by the hanging-drop method, was monitored to define a time point for maximal induction of putative intestinal epithelial stem cells by epidermal growth factor. Furthermore, to evaluate the regenerative potential of intestinal epithelium, these putative stem cells were engrafted into NOD/SCID mice and female mice with enteritis. Donor cells were located by SRY DNA in situ hybridization. RESULTS The results revealed that definitive endodermal markers were highly expressed in 5-day embryoid bodies. These embryoid body cells were induced into putative intestinal epithelial stem cells on the 5th day of epidermal growth factor administration. Grafts from these cells consisted of adenoid structures and nonspecific structural cells with strong expression of small-intestinal epithelial cell markers. In situ hybridization revealed that the donor cells could specifically locate in damaged intestinal epithelium, contribute to epithelial structures, and enhance regeneration. CONCLUSIONS In conclusion, the Musashi1 and hairy and enhancer of split 1 high expression cells, derived from mouse embryonic stem cells, locate predominantly in impaired small-intestinal epithelium after transplantation and contribute to epithelial regeneration.
Collapse
Affiliation(s)
- Tao Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, 510120, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Mustata RC, Van Loy T, Lefort A, Libert F, Strollo S, Vassart G, Garcia MI. Lgr4 is required for Paneth cell differentiation and maintenance of intestinal stem cells ex vivo. EMBO Rep 2011; 12:558-64. [PMID: 21508962 DOI: 10.1038/embor.2011.52] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 12/27/2022] Open
Abstract
Gene inactivation of the orphan G protein-coupled receptor LGR4, a paralogue of the epithelial-stem-cell marker LGR5, results in a 50% decrease in epithelial cell proliferation and an 80% reduction in terminal differentiation of Paneth cells in postnatal mouse intestinal crypts. When cultured ex vivo, LGR4-deficient crypts or progenitors, but not LGR5-deficient progenitors, die rapidly with marked downregulation of stem-cell markers and Wnt target genes, including Lgr5. Partial rescue of this phenotype is achieved by addition of LiCl to the culture medium, but not Wnt agonists. Our results identify LGR4 as a permissive factor in the Wnt pathway in the intestine and, as such, as a potential target for intestinal cancer therapy.
Collapse
Affiliation(s)
- Roxana C Mustata
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Medicine, Université Libre de Bruxelles, Route de Lennik 808, Brussels 1070, Belgium
| | | | | | | | | | | | | |
Collapse
|
104
|
Vergult S, Krgovic D, Loeys B, Lyonnet S, Liedén A, Anderlid BM, Sharkey F, Joss S, Mortier G, Menten B. Nasal speech and hypothyroidism are common hallmarks of 12q15 microdeletions. Eur J Hum Genet 2011; 19:1032-7. [PMID: 21505450 DOI: 10.1038/ejhg.2011.67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The introduction of array CGH in clinical diagnostics has led to the discovery of many new microdeletion/microduplication syndromes. Most of them are rare and often present with a variable range of clinical anomalies. In this study we report three patients with a de novo overlapping microdeletion of chromosome bands 12q15q21.1. The deletions are ∼2.5 Mb in size, with a 1.34-Mb common deleted region containing six RefSeq genes. All three patients present with learning disability or developmental delay, nasal speech and hypothyroidism. In this paper we will further elaborate on the genotype-phenotype correlation associated with this deletion and compare our patients with previously reported cases.
Collapse
Affiliation(s)
- Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Chai R, Xia A, Wang T, Jan TA, Hayashi T, Bermingham-McDonogh O, Cheng AGL. Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol 2011; 12:455-69. [PMID: 21472479 DOI: 10.1007/s10162-011-0267-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/17/2011] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway is a recurring theme in tissue development and homeostasis. Its specific roles during inner ear development are just emerging, but few studies have characterized Wnt target genes. Lgr5, a member of the G protein-coupled receptor family, is a Wnt target in the gastrointestinal and integumentary systems. Although its function is unknown, its deficiency leads to perinatal lethality due to gastrointestinal distension. In this study, we used a knock-in reporter mouse to examine the spatiotemporal expression of Lgr5 in the cochlear duct during embryonic and postnatal periods. In the embryonic day 15.5 (E15.5) cochlear duct, Lgr5-EGFP is expressed in the floor epithelium and overlapped with the prosensory markers Sox2, Jagged1, and p27(Kip1). Nascent hair cells and supporting cells in the apical turn of the E18.5 cochlear duct express Lgr5-EGFP, which becomes downregulated in hair cells and subsets of supporting cells in more mature stages. In situ hybridization experiments validated the reporter expression, which gradually decreases until the second postnatal week. Only the third row of Deiters' cells expresses Lgr5-EGFP in the mature organ of Corti. Normal cochlear development was observed in Lgr5(EGFP/EGFP) and Lgr5(EGFP/+) mice, which exhibited normal auditory thresholds. The expression pattern of Lgr5 contrasts with another Wnt target gene, Axin2, a feedback inhibitor of the Wnt pathway. Robust Axin2 expression was found in cells surrounding the embryonic cochlear duct and becomes restricted to tympanic border cells below the basilar membrane in the postnatal cochlea. Both Lgr5 and Axin2 act as Wnt targets in the cochlea because purified Wnt3a promoted and Wnt antagonist suppressed their expression. Their differential expression among cell populations highlights the dynamic but complex distribution of Wnt-activated cells in and around the embryonic and postnatal cochlea.
Collapse
Affiliation(s)
- Renjie Chai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Sanders MA, Majumdar APN. Colon cancer stem cells: implications in carcinogenesis. Front Biosci (Landmark Ed) 2011; 16:1651-62. [PMID: 21196254 DOI: 10.2741/3811] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cancer stem cell model was described for hematologic malignancies in 1997 and since then evidence has emerged to support it for many solid tumors as well, including colon cancer. This model proposes that certain cells within the tumor mass are pluripotent and capable of self-renewal and have an enhanced ability to initiate distant metastasis. The cancer stem cell model has important implications for cancer treatment, since most current therapies target actively proliferating cells and may not be effective against the cancer stem cells that are responsible for recurrence. In recent years great progress has been made in identifying markers of both normal and malignant colon stem cells. Proteins proposed as colon cancer stem cell markers include CD133, CD44, CD166, ALDH1A1, Lgr5, and several others. In this review we consider the evidence for these proteins as colon cancer stem cell markers and as prognostic indicators of colon cancer survival. Additionally, we discuss potential functions of these proteins and the implications this may have for development of therapies that target colon cancer stem cells.
Collapse
Affiliation(s)
- Matthew A Sanders
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
107
|
Lewis A, Segditsas S, Deheragoda M, Pollard P, Jeffery R, Nye E, Lockstone H, Davis H, Clark S, Stamp G, Poulsom R, Wright N, Tomlinson I. Severe polyposis in Apc(1322T) mice is associated with submaximal Wnt signalling and increased expression of the stem cell marker Lgr5. Gut 2010; 59:1680-6. [PMID: 20926645 PMCID: PMC3002835 DOI: 10.1136/gut.2009.193680] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Adenomatous polyposis coli (APC) is a tumour suppressor gene mutated in the germline of patients with familial adenomatous polyposis (FAP) and somatically in most colorectal cancers. APC mutations impair β-catenin degradation, resulting in increased Wnt signalling. The most frequent APC mutation is a codon 1309 truncation that is associated with severe FAP. A previous study compared two mouse models of intestinal tumorigenesis, Apc(R850X) (Min) and Apc(1322T) (1322T), the latter a model of human codon 1309 changes. 1322T mice had more severe polyposis but, surprisingly, these tumours had lower levels of nuclear β-catenin than Min tumours. The consequences of these different β-catenin levels were investigated. METHODS Enterocytes were isolated from 1322T and Min tumours by microdissection and gene expression profiling was performed. Differentially expressed Wnt targets and other stem cell markers were validated using quantitative PCR, in situ hybridisation and immunohistochemistry. RESULTS As expected, lower nuclear β-catenin levels in 1322T lesions were associated with generally lower levels of Wnt target expression. However, expression of the Wnt target and stem cell marker Lgr5 was significantly higher in 1322T tumours than in Min tumours. Other stem cell markers (Musashi1, Bmi1 and the Wnt target Cd44) were also at higher levels in 1322T tumours. In addition, expression of the Bmp antagonist Gremlin1 was higher in 1322T tumours, together with lower Bmp2 and Bmp4 expression. CONCLUSIONS The severe phenotype caused by truncation of Apc at codon 1322 is associated with an increased number of stem cells. Thus, a submaximal level of Wnt signalling favours the stem cell phenotype and this may promote tumorigenesis. A level of Wnt signalling exists that is too high for optimal tumour growth.
Collapse
Affiliation(s)
- Annabelle Lewis
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Stefania Segditsas
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Maesha Deheragoda
- Department of Pathology, University College Hospital, London, UK,Histopathology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Patrick Pollard
- Oxygen Sensing Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Rosemary Jeffery
- Histopathology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Emma Nye
- Experimental Histopathology Unit, London Research Institute, Cancer Research UK, London, UK
| | - Helen Lockstone
- Bioinformatics and Statistical Genetics, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hayley Davis
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Susan Clark
- The Polyposis Registry, St Mark's Hospital, Harrow, London, UK
| | - Gordon Stamp
- Experimental Histopathology Unit, London Research Institute, Cancer Research UK, London, UK
| | - Richard Poulsom
- Histopathology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Nicholas Wright
- Histopathology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
108
|
Sun G, Hasebe T, Fujimoto K, Lu R, Fu L, Matsuda H, Kajita M, Ishizuya-Oka A, Shi YB. Spatio-temporal expression profile of stem cell-associated gene LGR5 in the intestine during thyroid hormone-dependent metamorphosis in Xenopus laevis. PLoS One 2010; 5:e13605. [PMID: 21042589 PMCID: PMC2962644 DOI: 10.1371/journal.pone.0013605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/17/2010] [Indexed: 11/18/2022] Open
Abstract
Background The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established in the so-called postembryonic developmental period in mammals when endogenous thyroid hormone (T3) levels are high. Methodology/Principal Findings The T3-dependent metamorphosis in anurans like Xenopus laevis resembles the mammalian postembryonic development and offers a unique opportunity to study how the adult stem cells are developed. The tadpole intestine is predominantly a monolayer of larval epithelial cells. During metamorphosis, the larval epithelial cells undergo apoptosis and, concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. The leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a well-established stem cell marker in the adult mouse intestinal crypt. Here we have cloned and analyzed the spatiotemporal expression profile of LGR5 gene during frog metamorphosis. We show that the two duplicated LGR5 genes in Xenopus laevis and the LGR5 gene in Xenopus tropicalis are highly homologous to the LGR5 in other vertebrates. The expression of LGR5 is induced in the limb, tail, and intestine by T3 during metamorphosis. More importantly, LGR5 mRNA is localized to the developing adult epithelial stem cells of the intestine. Conclusions/Significance These results suggest that LGR5-expressing cells are the stem/progenitor cells of the adult intestine and that LGR5 plays a role in the development and/or maintenance of the adult intestinal stem cells during postembryonic development in vertebrates.
Collapse
Affiliation(s)
- Guihong Sun
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Kenta Fujimoto
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Rosemary Lu
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Hiroki Matsuda
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mitsuko Kajita
- Department of Molecular Biology, Institute of Development and Aging Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa, Japan
- Department of Molecular Biology, Institute of Development and Aging Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
109
|
Uchida H, Yamazaki K, Fukuma M, Yamada T, Hayashida T, Hasegawa H, Kitajima M, Kitagawa Y, Sakamoto M. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci 2010; 101:1731-7. [PMID: 20384634 PMCID: PMC11159016 DOI: 10.1111/j.1349-7006.2010.01571.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a 7-transmembrane receptor reportedly expressed in stem cells of the intestinal crypts and hair follicles of mice. Overexpression of LGR5 is observed in some types of cancer; however, there has been no specific assessment in colorectal tumorigenesis. We performed quantitative RT-PCR for LGR5 expression in 37 representative cancer cell lines, and showed that LGR5 mRNA was frequently overexpressed in colon cancer cell lines. Moreover, LGR5 expression was higher in colon cancer cell lines derived from metastatic tumors compared with those from primary tumors. In clinical specimens, there was significant overexpression of LGR5 in 35 of 50 colorectal cancers (CRCs), and in seven of seven sporadic colonic adenomas, compared with matched normal mucosa. This suggests up-regulation of LGR5 from the early stage of colorectal tumorigenesis. LGR5 expression showed marked variation among CRC cases and correlated significantly with lymphatic invasion, vascular invasion, tumor depth, lymph node metastasis, and tumor stage (IIIC vs. IIIB). In addition to cancer cells, crypt base columnar cells of the small intestine and colon were shown by in situ hybridization to express LGR5. This is the first report suggesting the involvement of LGR5, not only in early events but also in late events in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Hiroshi Uchida
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Expression of Lgr5 in human colorectal carcinogenesis and its potential correlation with beta-catenin. Int J Colorectal Dis 2010; 25:583-90. [PMID: 20195621 DOI: 10.1007/s00384-010-0903-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUNDS AND AIMS Lgr5 is a member of the G protein receptor super-family and was shown recently to be a stem cell marker for cells with intestinal differentiation. Its over-expression has been demonstrated in hepatocellular, basal cell carcinoma, and ovarian cancers but the underlying mechanisms are poorly understood. The aim of this study was to investigate if Lgr5 over-expression was correlated with human colorectal carcinogenesis and its potential correlation with beta-catenin. METHODS The study was carried out on a tissue microarray that consisted of 102 colorectal carcinomas (CRC; M:F = 55:47), 18 colon adenoma, and 12 colon normal mucosa cases. Immunostains were performed with the standard EnVision method with primary antibodies against Lgr5, beta-catenin, and p53 antigens. Immunoreactivity of neoplastic cells to each antibody was double-blindly semi-quantified by two pathologists and the data were analyzed with the Chi-square and Spearman rank correlation tests. Subsequently, expression of Lgr5 in tissue sections of tumor centre and invasive margins of 21 cases of CRC certified to be immunoreactive of Lgr5 in TMA were evaluated and possible differences of Lgr5 expression between them were analyzed. RESULTS Lgr5 immunoreactivity was observed only in single cells in the base of normal colon mucosal crypts but high in 28% (five out of 18) adenomas, and significantly higher in 54% (55/102, p = 0.016) CRC cases. In normal mucosa, adenoma, and CRC, beta-catenin expression was seen in 25% (three out of 12), 27% (five out of 18), and 81% (83/102) cases, respectively, in contrast to 0, 0, and 40% (41/102) for p53 expression, respectively. In CRC, Lgr5 expression was more intense in women than men (p < 0.0001), and positively correlated with beta-catenin expression (p < 0.001), but not with patients' ages, tumor sizes, nodal status, TNM stages, and p53 expression. Different expression of Lgr5 between tumor centre and invasive margins was not found (p > 0.05). CONCLUSIONS The results suggest that up-regulation of Lgr5 expression, especially in female patients, may play an important role in colorectal carcinogenesis, probably through the WNT/beta-catenin pathway, but not involve the progression of the CRC.
Collapse
|
111
|
Barker N, Clevers H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 2010; 138:1681-96. [PMID: 20417836 DOI: 10.1053/j.gastro.2010.03.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 12/18/2022]
Abstract
Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult organs. Genetic mouse models have allowed the visualization, isolation, and genetic marking of Lgr5(+ve) and Lgr6(+ve) cells and provided evidence that they are stem cells. The Lgr5(+ve) cells were found to occupy locations not commonly associated with stem cells in the stomach, small intestine, colon, and hair follicles. A multipotent population of skin stem cells express Lgr6. Single Lgr5(+ve) stem cells from the small intestine and the stomach can be cultured into long-lived organoids. Further studies of these markers might reveal adult stem cell populations in additional tissues. Identification of the ligands for Lgr5 and 6 will help elucidate stem cell functions and modes of intracellular signaling.
Collapse
Affiliation(s)
- Nick Barker
- Hubrecht Institute, Uppsalalaan, Utrecht, The Netherlands.
| | | |
Collapse
|
112
|
Suomalainen M, Thesleff I. Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/beta-catenin signaling in the epithelial stem cells. Dev Dyn 2010; 239:364-72. [PMID: 19806668 DOI: 10.1002/dvdy.22106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Wnt pathway is crucial for tooth development as shown by dental defects caused by impaired Wnt signaling in mouse and human. We investigated Wnt signaling in continuously growing mouse incisors focusing on epithelial stem cells. Ten Wnt ligands were expressed both in the dental epithelium and mesenchyme, and were associated mainly with odontoblast and ameloblast differentiation. Wnt/beta-catenin activity was detected in mesenchyme in BATgal and TOPgal reporter mice while Axin2, also a reporter of Wnt/beta-catenin signaling, was expressed additionally in the epithelium. Axin2 was, however, excluded from the epithelial stem cells in the cervical loop. Interestingly, these cells expressed specifically Lgr5, a Wnt target gene and stem cell marker in the intestine, suggesting that Lgr5 is a marker of incisor stem cells but is not regulated by Wnt signaling in the incisor. We conclude that epithelial stem cells in the mouse incisors are not regulated directly by Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Marika Suomalainen
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | |
Collapse
|
113
|
Satoh JI, Obayashi S, Tabunoki H, Wakana T, Kim SU. Stable expression of neurogenin 1 induces LGR5, a novel stem cell marker, in an immortalized human neural stem cell line HB1.F3. Cell Mol Neurobiol 2010; 30:415-26. [PMID: 19813087 PMCID: PMC11498790 DOI: 10.1007/s10571-009-9466-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 09/25/2009] [Indexed: 12/23/2022]
Abstract
Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat spinal cord injury, stroke, and neurodegenerative diseases. To efficiently induce neuronal lineage cells from NSC for neuron replacement therapy, we should clarify the intrinsic genetic programs involved in a time- and place-specific regulation of human NSC differentiation. Recently, we established an immortalized human NSC clone HB1.F3 to provide an unlimited NSC source applicable to genetic manipulation for cell-based therapy. To investigate a role of neurogenin 1 (Ngn1), a proneural basic helix-loop-helix (bHLH) transcription factor, in human NSC differentiation, we established a clone derived from F3 stably overexpressing Ngn1. Genome-wide gene expression profiling identified 250 upregulated genes and 338 downregulated genes in Ngn1-overexpressing F3 cells (F3-Ngn1) versus wild-type F3 cells (F3-WT). Notably, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a novel stem cell marker, showed an 167-fold increase in F3-Ngn1, although transient overexpression of Ngn1 did not induce upregulation of LGR5, suggesting that LGR5 is not a direct transcriptional target of Ngn1. KeyMolnet, a bioinformatics tool for analyzing molecular relations on a comprehensive knowledgebase, suggests that the molecular network of differentially expressed genes involves the complex interaction of networks regulated by multiple transcription factors. Gene ontology (GO) terms of development and morphogenesis are enriched in upregulated genes, while those of extracellular matrix and adhesion are enriched in downregulated genes. These results suggest that stable expression of a single gene Ngn1 in F3 cells induces not simply neurogenic but multifunctional changes that potentially affect the differentiation of human NSC via a reorganization of complex gene regulatory networks.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| | | | | | | | | |
Collapse
|
114
|
Affiliation(s)
- Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands.
| |
Collapse
|
115
|
Chopra DP, Dombkowski AA, Stemmer PM, Parker GC. Intestinal epithelial cells in vitro. Stem Cells Dev 2010; 19:131-42. [PMID: 19580443 PMCID: PMC3136723 DOI: 10.1089/scd.2009.0109] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/06/2009] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the biology of stem cells has resulted in significant interest in the development of normal epithelial cell lines from the intestinal mucosa, both to exploit the therapeutic potential of stem cells in tissue regeneration and to develop treatment models of degenerative disorders of the digestive tract. However, the difficulty of propagating cell lines of normal intestinal epithelium has impeded research into the molecular mechanisms underlying differentiation of stem/progenitor cells into the various intestinal lineages. Several short-term organ/organoid and epithelial cell culture models have been described. There is a dearth of long-term epithelial and/or stem cell cultures of intestine. With an expanding role of stem cells in the treatment of degenerative disorders, there is a critical need for additional efforts to develop in vitro models of stem/progenitor epithelial cells of intestine. The objective of this review is to recapitulate the current status of technologies and knowledge for in vitro propagation of intestinal epithelial cells, markers of the intestinal stem cells, and gene and protein expression profiles of the intestinal cellular differentiation.
Collapse
Affiliation(s)
- Dharam P. Chopra
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Alan A. Dombkowski
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Graham C. Parker
- Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan
| |
Collapse
|
116
|
Acevedo AC, da Fonseca JAC, Grinham J, Doudney K, Gomes RR, de Paula LM, Stanier P. Autosomal-dominant ankyloglossia and tooth number anomalies. J Dent Res 2009; 89:128-32. [PMID: 20042737 DOI: 10.1177/0022034509356401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ankyloglossia is a congenital oral anomaly characterized by the presence of a hypertrophic lingual frenulum. It frequently accompanies X-linked cleft palate and is sometimes seen alone due to mutations in the gene encoding the transcription factor TBX22, while knockout of Lgr5 in the mouse results in ankyloglossia. The aim of the present study was to characterize the phenotype and to verify sequence variations in the LGR5 gene in a Brazilian family with ankyloglossia associated with tooth number anomalies. Twelve individuals of three generations were submitted to physical, oral, and radiographic examinations and molecular analysis. Eight had ankyloglossia with various degrees of severity. Six also had hypodontia in the lower incisor region; one had a supernumerary tooth in this region, and another had a supernumerary tooth in the lower premolar region. The characterization of this family determined an autosomal-dominant inheritance and excluded the LGR5 gene mutations as being involved in the pathogenesis of this condition.
Collapse
Affiliation(s)
- A C Acevedo
- Oral Care Center for Inherited Diseases, University Hospital of Brasilia, Department of Dentistry, University of Brasilia, Brazil.
| | | | | | | | | | | | | |
Collapse
|
117
|
Sun X, Jackson L, Dey SK, Daikoku T. In pursuit of leucine-rich repeat-containing G protein-coupled receptor-5 regulation and function in the uterus. Endocrinology 2009; 150:5065-73. [PMID: 19797400 PMCID: PMC2775985 DOI: 10.1210/en.2009-0690] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leucine-rich repeat-containing G protein-coupled receptor (LGR)-5 is a recently identified marker of stem cells in adult intestinal epithelium and hair follicles. Because of this characteristic, we studied the status of Lgr5 expression in the mouse uterus under various conditions. Lgr5 is highly expressed in the uterine epithelium of immature mice and is dramatically down-regulated after the mice resume estrous cycles. Surprisingly, whereas its expression is up-regulated in uteri of ovariectomized mice, the expression is down-regulated by estrogen and progesterone via their cognate nuclear receptors, estrogen receptor-alpha and progesterone receptor, respectively. Using a mouse endometrial cancer model, we also found that Lgr5 is highly expressed in the epithelium during the initial stages of tumorigenesis but is remarkably down-regulated in fully developed tumors. Lgr5 is a downstream target of Wnt signaling in the intestine. Genetic evidence shows that either excessive or absence of Wnt signaling dampens Lgr5 expression in the uterus. Collectively, our results show that Lgr5 expression in the mouse uterine epithelium is unique and dynamically regulated under various physiological and pathological states of the uterus, suggesting that this orphan receptor has important functions in uterine biology. However, identifying definitive uterine function of LGR5 will require further investigation using conditional deletion of uterine Lgr5 because systemic deletion of this gene is neonatally lethal.
Collapse
Affiliation(s)
- Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
118
|
Pauws E, Hoshino A, Bentley L, Prajapati S, Keller C, Hammond P, Martinez-Barbera JP, Moore GE, Stanier P. Tbx22null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes. Hum Mol Genet 2009; 18:4171-9. [PMID: 19648291 PMCID: PMC2758147 DOI: 10.1093/hmg/ddp368] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Craniofacial defects involving the lip and/or palate are among the most common human birth defects. X-linked cleft palate and ankyloglossia results from loss-of-function mutations in the gene encoding the T-box transcription factor TBX22. Further studies show that TBX22 mutations are also found in around 5% of non-syndromic cleft palate patients. Although palate defects are obvious at birth, the underlying developmental pathogenesis remains unclear. Here, we report a Tbx22(null) mouse, which has a submucous cleft palate (SMCP) and ankyloglossia, similar to the human phenotype, with a small minority showing overt clefts. We also find persistent oro-nasal membranes or, in some mice a partial rupture, resulting in choanal atresia. Each of these defects can cause severe breathing and/or feeding difficulties in the newborn pups, which results in approximately 50% post-natal lethality. Analysis of the craniofacial skeleton demonstrates a marked reduction in bone formation in the posterior hard palate, resulting in the classic notch associated with SMCP. Our results suggest that Tbx22 plays an important role in the osteogenic patterning of the posterior hard palate. Ossification is severely reduced after condensation of the palatal mesenchyme, resulting from a delay in the maturation of osteoblasts. Rather than having a major role in palatal shelf closure, we show that Tbx22 is an important determinant for intramembranous bone formation in the posterior hard palate, which underpins normal palate development and function. These findings could have important implications for the molecular diagnosis in patients with isolated SMCP and/or unexplained choanal atresia.
Collapse
Affiliation(s)
- Erwin Pauws
- UCL Institute of Child Health, 30 Guilford Street, WC1N 1EH London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Garcia MI, Ghiani M, Lefort A, Libert F, Strollo S, Vassart G. LGR5 deficiency deregulates Wnt signaling and leads to precocious Paneth cell differentiation in the fetal intestine. Dev Biol 2009; 331:58-67. [PMID: 19394326 DOI: 10.1016/j.ydbio.2009.04.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 12/17/2022]
Abstract
The orphan Leucine-rich repeat G protein-coupled receptor 5 (LGR5/GPR49), a target of Wnt signaling, is a marker of adult intestinal stem cells (SC). However, neither its function in the adults, nor during development of the intestine have been addressed yet. In this report, we investigated the role of LGR5 during ileal development by using LGR5 null/LacZ-NeoR knock-in mice. X-gal staining experiments showed that, after villus morphogenesis, Lgr5 expression becomes restricted to dividing cells clustered in the intervillus region and is more pronounced in the distal small intestine. At day E18.5, LGR5 deficiency leads to premature Paneth cell differentiation in the small intestine without detectable effects on differentiation of other cell lineages, nor on epithelial cell proliferation or migration. Quantitative RT-PCR experiments showed that expression from the LGR5 promoter was upregulated in LGR5-null mice, pointing to the existence of an autoregulatory negative feedback loop in intact animals. This deregulation was associated with overexpression of Wnt target genes in the intervillus epithelium. Transcriptional profiling of mutant mice ileums revealed that LGR5 function is associated with expression of SC and SC niche markers. Together, our data identify LGR5 as a negative regulator of the Wnt pathway in the developing intestine.
Collapse
Affiliation(s)
- Marie Isabelle Garcia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
120
|
Karahan S, Çinar Kul B. Ankyloglossia in Dogs: A Morphological and Immunohistochemical Study. Anat Histol Embryol 2009; 38:118-21. [DOI: 10.1111/j.1439-0264.2008.00907.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
121
|
Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:715-21. [PMID: 19197002 DOI: 10.2353/ajpath.2009.080758] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem cells hold great promise for regenerative medicine, but have remained elusive in many tissues because of a lack of adequate definitive markers. Progress in mouse genetics has provided the tools for characterization and validation of stem cell markers by functional and/or lineage tracing assays. The Wnt target gene Lgr5 has been recently identified as a novel stem cell marker of the intestinal epithelium and the hair follicle. In the intestine, Lgr5 is exclusively expressed in cycling crypt base columnar cells. Genetic lineage-tracing experiments revealed that crypt base columnar cells are capable of self-renewal and multipotency, thus representing genuine intestinal stem cells. In the stem cell niche of the murine hair follicle, Lgr5 is expressed in actively cycling cells. Transplantation and lineage tracing experiments have demonstrated that these Lgr5(+ve) cells maintain all cell lineages of the hair follicle throughout long periods of time and can build entire new hair follicles. Expression of Lgr5 in multiple other organs indicates that it may represent a global marker of adult stem cells. This review attempts to provide a comprehensive overview of the stem cell compartments in the intestine and skin with a focus on the cycling, yet long-lived and multipotent, Lgr5(+ve) stem cell populations.
Collapse
Affiliation(s)
- Andrea Haegebarth
- Hubrecht Institute and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The
| | | |
Collapse
|
122
|
Abstract
Stem cells hold great promise for regenerative medicine but remain elusive in many tissues, including the small intestine, where it is well accepted that the epithelium is maintained by intestinal stem cells located in the crypts. The lack of established markers to prospectively identify intestinal stem cells has necessitated the use of indirect analysis, e.g. long-term label retention, which is based on the hypothesis that intestinal stem cells are slow-cycling. Several intestinal stem cell markers have been proposed, including Musashi-1, BMPR1alpha, phospho-PTEN, DCAMKL1, Eph receptors and integrins, but their validity, using functional and/or lineage tracing assays, has yet to be confirmed. Recently, Lgr5 has been identified by lineage tracing as an intestinal stem cell marker. In this review we summarize what is known about the currently reported intestinal stem cell markers and provide a rationale for developing model systems whereby intestinal stem cells can be functionally validated.
Collapse
Affiliation(s)
- Robert K Montgomery
- Division of Gastroenterology, Children's Hospital Boston, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
123
|
Abstract
The epithelium of the adult mammalian intestine is in a constant dialog with its underlying mesenchyme to direct progenitor proliferation, lineage commitment, terminal differentiation, and, ultimately, cell death. The epithelium is shaped into spatially distinct compartments that are dedicated to each of these events. While the intestinal epithelium represents the most vigorously renewing adult tissue in mammals, the stem cells that fuel this self-renewal process have been identified only recently. The unique epithelial anatomy makes the intestinal crypt one of the most accessible models for the study of adult stem cell biology. This review attempts to provide a comprehensive overview of four decades of research on crypt stem cells.
Collapse
Affiliation(s)
- Nick Barker
- Hubrecht Institute and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | | | | |
Collapse
|
124
|
Tanese K, Fukuma M, Yamada T, Mori T, Yoshikawa T, Watanabe W, Ishiko A, Amagai M, Nishikawa T, Sakamoto M. G-protein-coupled receptor GPR49 is up-regulated in basal cell carcinoma and promotes cell proliferation and tumor formation. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:835-43. [PMID: 18688030 DOI: 10.2353/ajpath.2008.071091] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The significance of Hedgehog (HH) signaling in the development of basal cell carcinoma (BCC) has been established. Although several target genes of HH signaling have been described previously, their precise role in tumorigenesis and cell proliferation is not yet known. To identify genes responsible for tumor formation in BCC, we screened a DNA microarray database of human BCC cases; the orphan G-protein-coupled receptor GPR49 was found to be up-regulated in all cases. GPR49 is a novel gene reported to be a marker of follicular and other tissue stem cells. Using real-time quantitative RT-PCR analysis, significant expression of GPR49 mRNA was observed in 19 of 20 BCC cases (95%) compared with controls. Up-regulation of GPR49 was confirmed by in situ hybridization. Moreover, knockdown of mouse Gpr49 showed suppression of cell proliferation in a mouse BCC cell line, and overexpression of GPR49 in human immortalized keratinocyte HaCaT cells induced proliferation. Furthermore, HaCaT cells overexpressing GPR49 showed tumor formation when transplanted into immunodeficient mice. In addition, inhibition of the HH signaling pathway in a mouse BCC cell line down-regulated endogenous Gpr49, whereas activation of HH signaling in mouse NIH3T3 cells up-regulated endogenous GPR49. These results suggest that GPR49 is expressed downstream of HH signaling and promotes cell proliferation and tumor formation in cases of BCC.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Van Loy T, Vandersmissen HP, Van Hiel MB, Poels J, Verlinden H, Badisco L, Vassart G, Vanden Broeck J. Comparative genomics of leucine-rich repeats containing G protein-coupled receptors and their ligands. Gen Comp Endocrinol 2008; 155:14-21. [PMID: 17706217 DOI: 10.1016/j.ygcen.2007.06.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 06/27/2007] [Indexed: 11/18/2022]
Abstract
Leucine-rich repeats containing G protein-coupled receptors (LGRs) constitute a unique cluster of transmembrane proteins sharing a large leucine-rich extracellular domain for hormone binding. In mammals, LGRs steer important developmental, metabolic and reproductive processes as receptors for glycoprotein hormones and insulin/relaxin-related proteins. In insects, a receptor structurally related to human LGRs mediates the activity of the neurohormone bursicon thereby regulating wing expansion behaviour and remodelling of the newly synthesized exoskeleton. In the past decade, novel insights into the molecular evolution of LGR encoding genes accumulated rapidly due to comparative genome analyses indicating that the endocrine LGR signalling system likely emerged before the radiation of metazoan phyla and expanded throughout evolution. Here, we present a short survey on the evolution of LGRs and the hormones they interact with.
Collapse
Affiliation(s)
- Tom Van Loy
- Department of Animal Physiology and Neurobiology, Molecular Developmental Physiology and Signal Transduction Research Group, Zoological Institute K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Alexandrovich A, Qureishi A, Coudert AE, Zhang L, Grigoriadis AE, Shah AM, Brewer AC, Pizzey JA. A role for GATA-6 in vertebrate chondrogenesis. Dev Biol 2007; 314:457-70. [PMID: 18191120 DOI: 10.1016/j.ydbio.2007.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/22/2007] [Accepted: 12/01/2007] [Indexed: 01/12/2023]
Abstract
The GATA family of transcription factors are known to play multiple critical roles in vertebrate developmental processes, including erythropoiesis, endoderm formation and cardiogenesis. There have been no previous demonstrations of a functional role for any GATA family member being associated with musculoskeletal development but we now identify a possible role for GATA-6 in chondrogenesis. We detect abundant levels of GATA-6 mRNA in precartilaginous condensations (PCCs) in both the axial and appendicular skeleton of mouse embryos and in committed primary chondrocyte precursors. We also show that the G-protein coupled receptor, Gpr49, is a target of GATA-6 regulation in differentiating embryonal carcinoma cells and that, in vivo, the expression domains of the two genes overlap within PCCs. Finally, we have identified conserved, canonical GATA binding sites within the Gpr49 gene locus, and show by EMSAs that GATA-6 can bind to these sites in vitro. These data therefore suggest that GATA-6 also plays a role in chondrogenesis and that Gpr49 is a potential direct target of GATA regulation in this process.
Collapse
|
127
|
Barker N, Clevers H. Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology 2007; 133:1755-60. [PMID: 18054544 DOI: 10.1053/j.gastro.2007.10.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nick Barker
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands.
| | | |
Collapse
|
128
|
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449:1003-7. [PMID: 17934449 DOI: 10.1038/nature06196] [Citation(s) in RCA: 4305] [Impact Index Per Article: 239.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/24/2007] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. It is currently believed that four to six crypt stem cells reside at the +4 position immediately above the Paneth cells in the small intestine; colon stem cells remain undefined. Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5, also known as Gpr49) was selected from a panel of intestinal Wnt target genes for its restricted crypt expression. Here, using two knock-in alleles, we reveal exclusive expression of Lgr5 in cycling columnar cells at the crypt base. In addition, Lgr5 was expressed in rare cells in several other tissues. Using an inducible Cre knock-in allele and the Rosa26-lacZ reporter strain, lineage-tracing experiments were performed in adult mice. The Lgr5-positive crypt base columnar cell generated all epithelial lineages over a 60-day period, suggesting that it represents the stem cell of the small intestine and colon. The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers.
Collapse
Affiliation(s)
- Nick Barker
- Hubrecht Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Klockars T. Familial ankyloglossia (tongue-tie). Int J Pediatr Otorhinolaryngol 2007; 71:1321-4. [PMID: 17588677 DOI: 10.1016/j.ijporl.2007.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
Ankyloglossia (tongue-tie) is a congenital anomaly with a prevalence of 4-5% and characterized by an abnormally short lingual frenulum. For unknown reasons the abnormality seems to be more common in males. The pathogenesis of ankyloglossia is not known. The author reports a family with isolated ankyloglossia inherited as an autosomal dominant trait. The identification of the defective gene(s) causing ankyloglossia might reveal novel information on the craniofacial embryogenesis and its disorders.
Collapse
Affiliation(s)
- Tuomas Klockars
- Department of Otorhinolaryngology, Kymenlaakso Central Hospital, Kotkantie 41, 48210 Kotka, Finland.
| |
Collapse
|
130
|
Coré N, Caubit X, Metchat A, Boned A, Djabali M, Fasano L. Tshz1 is required for axial skeleton, soft palate and middle ear development in mice. Dev Biol 2007; 308:407-20. [PMID: 17586487 DOI: 10.1016/j.ydbio.2007.05.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 05/04/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Members of the Tshz gene family encode putative zinc fingers transcription factors that are broadly expressed during mouse embryogenesis. Tshz1 is detected from E9.5 in the somites, the spinal cord, the limb buds and the branchial arches. In order to assess the function of Tshz1 during mouse development, we generated Tshz1-deficient mice. Tshz1 inactivation leads to neonatal lethality and causes multiple developmental defects. In the craniofacial region, loss of Tshz1 function leads to specific malformations of middle ear components, including the malleus and the tympanic ring. Tshz1(-/-) mice exhibited Hox-like vertebral malformations and homeotic transformations in the cervical and thoracic regions, suggesting that Tshz1 and Hox genes are involved in common pathways to control skeletal morphogenesis. Finally, we demonstrate that Tshz1 is required for the development of the soft palate.
Collapse
Affiliation(s)
- Nathalie Coré
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS, Université de la Méditerranée, F-13288 Marseille cedex 09, France.
| | | | | | | | | | | |
Collapse
|
131
|
Krusche CA, Kroll T, Beier HM, Classen-Linke I. Expression of leucine-rich repeat-containing G-protein-coupled receptors in the human cyclic endometrium. Fertil Steril 2007; 87:1428-37. [DOI: 10.1016/j.fertnstert.2006.11.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 11/09/2006] [Accepted: 11/09/2006] [Indexed: 11/24/2022]
|
132
|
Mendive F, Laurent P, Van Schoore G, Skarnes W, Pochet R, Vassart G. Defective postnatal development of the male reproductive tract in LGR4 knockout mice. Dev Biol 2006; 290:421-34. [PMID: 16406039 DOI: 10.1016/j.ydbio.2005.11.043] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 11/18/2005] [Accepted: 11/24/2005] [Indexed: 11/18/2022]
Abstract
The final outcome of tube elongation and branching is to maximize the epithelial exchange surfaces in tubular organs. The molecular and cellular basis of these processes is actively studied in model organs such as mammary glands, liver and kidney, but they remain almost unexplored in the male reproductive tract. Here, we report that the orphan G protein-coupled receptor LGR4/GPR48 plays a role in the postnatal tissue remodeling needed for elongation and convolution of the efferent ducts and epididymis. In LGR4 knockout male mice, tube elongation fails, resulting in a hypoplastic and poorly convoluted tract. Cell proliferation is dramatically reduced in KO affected tissues, providing an explanation to the observed phenotype. Detailed analysis showed that LGR4 inactivation manifests differently in the affected organs. In efferent ducts, immune cells infiltrate the epithelium and reach the lumen, blocking the transit of sperm and testicular fluid. In addition, the hypoplasia and low convolution result in a reduction of the epithelial area involved in liquid reabsorption. Both phenomena contribute in tissue swelling upstream the blockade due to liquid and sperm accumulation, with secondary damaging effects on the germinal epithelium. In the epididymis, the thin and highly convoluted duct is replaced by a large cystic tube which is surrounded by a thick condensation of mesenchymal cells. The abnormal organization of the cellular compartments in and around the ducts suggests that LGR4 might play a role in epithelial-mesenchymal interactions. Altogether, our data identify LGR4 as an important signaling molecule implicated in the tube morphogenesis of the male reproductive tract.
Collapse
Affiliation(s)
- Fernando Mendive
- Institut de Recherche en Biologie Humaine et Moléculaire (IRIBHM), University of Brussels (ULB), Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
133
|
Civelli O, Saito Y, Wang Z, Nothacker HP, Reinscheid RK. Orphan GPCRs and their ligands. Pharmacol Ther 2005; 110:525-32. [PMID: 16289308 DOI: 10.1016/j.pharmthera.2005.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 10/04/2005] [Indexed: 12/31/2022]
Abstract
Due to their diversity, G-protein-coupled receptors (GPCRs) are major regulators of intercellular interactions. They exert their actions by being activated by a vast array of natural ligands, referred to in this article as "transmitters". Yet each GPCR is highly selective in its ligand recognition. Traditionally, the transmitters were found first and served to characterize the receptors pharmacologically. Since the end of the 1980s, however, it is the GPCRs that are first to be found because they are identified molecularly by homology screening approaches. But the GPCRs found this way suffer of one drawback, they lack their natural transmitters, they are "orphan" GPCRs. Searching for transmitters of orphan GPCRs has given birth to the reverse pharmacology approach that uses orphan GPCRs as targets to identify their transmitters. The most salient successes of the reverse pharmacology approach were the discoveries of 9 novel neuropeptide families. These have enriched our understanding of several important behavioral responses. But the application of reverse pharmacology has also led to some surprising results that question some basic pharmacological concepts. This review aims at describing the history of the orphan GPCRs and their impact on our understanding of biology.
Collapse
Affiliation(s)
- Olivier Civelli
- Department of Pharmacology and Department of Developmental and Cell Biology, University of California, Irvine, Med Surge II Room 369, Irvine, CA 92697-4625, USA.
| | | | | | | | | |
Collapse
|
134
|
Nef S, Schaad O, Stallings NR, Cederroth CR, Pitetti JL, Schaer G, Malki S, Dubois-Dauphin M, Boizet-Bonhoure B, Descombes P, Parker KL, Vassalli JD. Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 2005; 287:361-77. [PMID: 16214126 DOI: 10.1016/j.ydbio.2005.09.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 07/29/2005] [Accepted: 09/02/2005] [Indexed: 01/31/2023]
Abstract
The primary event in mammalian sexual development is the differentiation of the bipotential gonads into either testes or ovaries. Our understanding of the molecular pathways specifying gonadal differentiation is still incomplete. To identify the initial molecular changes accompanying gonadal differentiation in mice, we have performed a large-scale transcriptional analysis of XX and XY Sf1-positive gonadal cells during sex determination. In both male and female genital ridges, a robust genetic program is initiated pre-dating the first morphological changes of the differentiating gonads. Between E10.5 and E13.5, 2306 genes were expressed in a sex-specific manner in the somatic compartment of the gonads; 1223 were overexpressed in XX embryos and 1083 in XY embryos. Although sexually dimorphic genes were scattered throughout the mouse genome, we identified chromosomal regions hosting clusters of genes displaying similar expression profiles. The cyclin-dependent kinase inhibitors Cdkn1a and Cdkn1c are overexpressed in XX gonads at E11.5 and E12.5, suggesting that the increased proliferation of XY gonads relative to XX gonads may result from the overexpression of cell cycle inhibitors in the developing ovaries. These studies define the major characteristics of testicular and ovarian transcriptional programs and reveal the richness of signaling processes in differentiation of the bipotential gonads into testes and ovaries.
Collapse
Affiliation(s)
- Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Van Schoore G, Mendive F, Pochet R, Vassart G. Expression pattern of the orphan receptor LGR4/GPR48 gene in the mouse. Histochem Cell Biol 2005; 124:35-50. [PMID: 16028069 DOI: 10.1007/s00418-005-0002-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Leucine-rich G-protein-coupled Receptors (LGR) constitute a subfamily of receptors related to glycoprotein hormone receptors. Amongst them, LGR4, LGR5 and LGR6 form a cluster for which natural agonists are still unknown. By an extensive gene trapping approach, Leighton et al. (2001) obtained a mouse line in which the LGR4 gene is disrupted by a trap vector carrying two biological markers, beta-geo (a fusion between bacterial beta-galactosidase and neomycin phosphotransferase) and a placental alkaline phosphatase (PLAP). Due to perinatal lethality, characterization of adult mice homozygous for this insertion has been impaired. In the present study we have investigated LacZ and PLAP activity patterns in heterozygous mice as a marker for LGR4 natural expression at both macroscopic and histological levels. We present a detailed atlas of LGR4 expression, which displays very wide expression with particularly strong activity in cartilages, kidneys, reproductive tracts and nervous system cells.
Collapse
Affiliation(s)
- Grégory Van Schoore
- Université Libre de Bruxelles, Campus Erasme, 808 route de Lennik, 1070 Brussels, Belgium
| | | | | | | |
Collapse
|
136
|
Abstract
Insulin, IGF, and relaxin are established members of the insulin protein superfamily. The application of the techniques of cellular, molecular, and computational biology has permitted the identification of new insulin-like ligands and their cognate receptors. Information regarding the biologic role is available for some of these newly identified ligand-receptor systems and indicates novel roles in diverse processes such as testicular descent, germ cell function, and cell migration.
Collapse
Affiliation(s)
- Chunxia Lu
- Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | |
Collapse
|
137
|
Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, Hsueh AJW. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci U S A 2005; 102:2820-5. [PMID: 15703293 PMCID: PMC549504 DOI: 10.1073/pnas.0409916102] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All arthropods periodically molt to replace their exoskeleton (cuticle). Immediately after shedding the old cuticle, the neurohormone bursicon causes the hardening and darkening of the new cuticle. Here we show that bursicon, to our knowledge the first heterodimeric cystine knot hormone found in insects, consists of two proteins encoded by the genes burs and pburs (partner of burs). The pburs/burs heterodimer from Drosophila melanogaster binds with high affinity and specificity to activate the G protein-coupled receptor DLGR2, leading to the stimulation of cAMP signaling in vitro and tanning in neck-ligated blowflies. Native bursicon from Periplaneta americana is also a heterodimer. In D. melanogaster the levels of pburs, burs, and DLGR2 transcripts are increased before ecdysis, consistent with their role in postecdysial cuticle changes. Immunohistochemical analyses in diverse insect species revealed the colocalization of pburs- and burs-immunoreactivity in some of the neurosecretory neurons that also express crustacean cardioactive peptide. Forty-three years after its initial description, the elucidation of the molecular identity of bursicon and the verification of its receptor allow for studies of bursicon actions in regulating cuticle tanning, wing expansion, and as yet unknown functions. Because bursicon subunit genes are homologous to the vertebrate bone morphogenetic protein antagonists, our findings also facilitate investigation on the function of these proteins during vertebrate development.
Collapse
Affiliation(s)
- Ching-Wei Luo
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA
| | | | | | | | | | | | | |
Collapse
|