101
|
Tsuchida S, Maruyama F, Ogura Y, Toyoda A, Hayashi T, Okuma M, Ushida K. Genomic Characteristics of Bifidobacterium thermacidophilum Pig Isolates and Wild Boar Isolates Reveal the Unique Presence of a Putative Mobile Genetic Element with tetW for Pig Farm Isolates. Front Microbiol 2017; 8:1540. [PMID: 28861055 PMCID: PMC5561799 DOI: 10.3389/fmicb.2017.01540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/31/2017] [Indexed: 01/16/2023] Open
Abstract
Genomic analysis was performed on seven strains of Bifidobacterium thermacidophilum, a Sus-associated Bifidobacterium. Three strains from the feces of domestic pigs (Sus scrofa domesticus) and four strains from the rectal feces of free-range Japanese wild boars (S. s. scrofa) were compared. The phylogenetic position of these isolates suggested by genomic analyses were not concordant with that suggested by 16S rRNA sequence. There was biased distribution of genes for virulence, phage, metabolism of aromatic compounds, iron acquisition, cell division, and DNA metabolism. In particular four wild boar isolates harbored fiber-degrading enzymes, such as endoglucanase, while two of the pig isolates obtained from those grown under an intensive feeding practice with routine use of antimicrobials, particularly tetracycline harbored a tetracycline resistance gene, which was further proved functional by disk diffusion test. The tetW gene is associated with a serine recombinase of an apparently non-bifidobacterial origin. The insertion site of the tetW cassette was precisely defined by analyzing the corresponding genomic regions in the other tetracycline-susceptible isolates. The cassette may have been transferred from some other bacteria in the pig gut.
Collapse
Affiliation(s)
- Sayaka Tsuchida
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of GeneticsMishima, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Moriya Okuma
- Japan Collection of Microorganisms, RIKEN BioResource CenterTsukuba, Japan
| | - Kazunari Ushida
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
| |
Collapse
|
102
|
Gurung I, Berry JL, Hall A, Pelicic V. Cloning-independent markerless gene editing in Streptococcus sanguinis: novel insights in type IV pilus biology. Nucleic Acids Res 2017; 45:e40. [PMID: 27903891 PMCID: PMC5389465 DOI: 10.1093/nar/gkw1177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/14/2016] [Indexed: 11/14/2022] Open
Abstract
Streptococcus sanguinis, a naturally competent opportunistic human pathogen, is a Gram-positive workhorse for genomics. It has recently emerged as a model for the study of type IV pili (Tfp)—exceptionally widespread and important prokaryotic filaments. To enhance genetic manipulation of Streptococcus sanguinis, we have developed a cloning-independent methodology, which uses a counterselectable marker and allows sophisticated markerless gene editing in situ. We illustrate the utility of this methodology by answering several questions regarding Tfp biology by (i) deleting single or mutiple genes, (ii) altering specific bases in genes of interest, and (iii) engineering genes to encode proteins with appended affinity tags. We show that (i) the last six genes in the pil locus harbouring all the genes dedicated to Tfp biology play no role in piliation or Tfp-mediated motility, (ii) two highly conserved Asp residues are crucial for enzymatic activity of the prepilin peptidase PilD and (iii) that pilin subunits with a C-terminally appended hexa-histidine (6His) tag are still assembled into functional Tfp. The methodology for genetic manipulation we describe here should be broadly applicable.
Collapse
Affiliation(s)
- Ishwori Gurung
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Jamie-Lee Berry
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Alexander M. J. Hall
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
- To whom correspondence should be addressed. Tel: +44 20 7594 2080;
| |
Collapse
|
103
|
Motility and adhesion through type IV pili in Gram-positive bacteria. Biochem Soc Trans 2017; 44:1659-1666. [PMID: 27913675 DOI: 10.1042/bst20160221] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022]
Abstract
Type IV pili are hair-like bacterial surface appendages that play a role in diverse processes such as cellular adhesion, colonization, twitching motility, biofilm formation, and horizontal gene transfer. These extracellular fibers are composed exclusively or primarily of many copies of one or more pilin proteins, tightly packed in a helix so that the highly hydrophobic amino-terminus of the pilin is buried in the pilus core. Type IV pili have been characterized extensively in Gram-negative bacteria, and recent advances in high-throughput genomic sequencing have revealed that they are also widespread in Gram-positive bacteria. Here, we review the current state of knowledge of type IV pilus systems in Gram-positive bacterial species and discuss them in the broader context of eubacterial type IV pili.
Collapse
|
104
|
Nagar E, Zilberman S, Sendersky E, Simkovsky R, Shimoni E, Gershtein D, Herzberg M, Golden SS, Schwarz R. Type 4 pili are dispensable for biofilm development in the cyanobacterium Synechococcus elongatus. Environ Microbiol 2017; 19:2862-2872. [PMID: 28585390 DOI: 10.1111/1462-2920.13814] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
Abstract
The hair-like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo-proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm-promoting function in type IV pili-producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non-piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well-studied type IV pili-producing heterotrophic bacteria.
Collapse
Affiliation(s)
- Elad Nagar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| | - Shaul Zilberman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| | - Ryan Simkovsky
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eyal Shimoni
- Weizmann Institute of Science, Electron Microscopy Unit, Rehovot, 7610001 Israel
| | - Diana Gershtein
- The Department of Desalination & Water Treatment, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be'er Sheva 84990, Israel
| | - Moshe Herzberg
- The Department of Desalination & Water Treatment, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be'er Sheva 84990, Israel
| | - Susan S Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| |
Collapse
|
105
|
Bacterial Filamentous Appendages Investigated by Solid-State NMR Spectroscopy. Methods Mol Biol 2017. [PMID: 28667627 DOI: 10.1007/978-1-4939-7033-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The assembly of filamentous appendages at the surface of bacteria is essential in many infection mechanisms. The extent of mechanical, dynamical, and functional properties of such appendages is very diverse, ranging from a structural scaffold of the pathogen-host cell interaction to cell motility, surface adhesion, or the export of virulence effectors. In particular, the architectures of several bacterial secretion systems have revealed the presence of filamentous architectures, known as pili, fimbriae, andneedles. At the macroscopic level, filamentous bacterial appendages appear as thin extracellular filaments of several nanometers in diameter and up to several microns in length. The structural characterization of these appendages at atomic-scale resolution represents an extremely challenging task because of their inherent noncrystallinity and very poor solubility. Here, we describe protocols based on recent advances in solid-state NMR spectroscopy to investigate the secondary structure, subunit-subunit protein interactions, symmetry parameters, and atomic architecture of bacterial filaments.
Collapse
|
106
|
Muschiol S, Erlendsson S, Aschtgen MS, Oliveira V, Schmieder P, de Lichtenberg C, Teilum K, Boesen T, Akbey U, Henriques-Normark B. Structure of the competence pilus major pilin ComGC in Streptococcus pneumoniae. J Biol Chem 2017; 292:14134-14146. [PMID: 28659339 PMCID: PMC5572924 DOI: 10.1074/jbc.m117.787671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/14/2017] [Indexed: 01/23/2023] Open
Abstract
Type IV pili are important virulence factors on the surface of many pathogenic bacteria and have been implicated in a wide range of diverse functions, including attachment, twitching motility, biofilm formation, and horizontal gene transfer. The respiratory pathogen Streptococcus pneumoniae deploys type IV pili to take up DNA during transformation. These “competence pili” are composed of the major pilin protein ComGC and exclusively assembled during bacterial competence, but their biogenesis remains unclear. Here, we report the high resolution NMR structure of N-terminal truncated ComGC revealing a highly flexible and structurally divergent type IV pilin. It consists of only three α-helical segments forming a well-defined electronegative cavity and confined electronegative and hydrophobic patches. The structure is particularly flexible between the first and second α-helix with the first helical part exhibiting slightly slower dynamics than the rest of the pilin, suggesting that the first helix is involved in forming the pilus structure core and that parts of helices two and three are primarily surface-exposed. Taken together, our results provide the first structure of a type IV pilin protein involved in the formation of competence-induced pili in Gram-positive bacteria and corroborate the remarkable structural diversity among type IV pilin proteins.
Collapse
Affiliation(s)
- Sandra Muschiol
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden,.
| | - Simon Erlendsson
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Center for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marie-Stephanie Aschtgen
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Vitor Oliveira
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie FMP, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Casper de Lichtenberg
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Center for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Center for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Umit Akbey
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark,; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark
| | - Birgitta Henriques-Normark
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,; Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden,; Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
107
|
Callegan MC, Parkunan SM, Randall CB, Coburn PS, Miller FC, LaGrow AL, Astley RA, Land C, Oh SY, Schneewind O. The role of pili in Bacillus cereus intraocular infection. Exp Eye Res 2017; 159:69-76. [PMID: 28336259 PMCID: PMC5492386 DOI: 10.1016/j.exer.2017.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/09/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
Bacterial endophthalmitis is a potentially blinding intraocular infection. The bacterium Bacillus cereus causes a devastating form of this disease which progresses rapidly, resulting in significant inflammation and loss of vision within a few days. The outer surface of B. cereus incites the intraocular inflammatory response, likely through interactions with innate immune receptors such as TLRs. This study analyzed the role of B. cereus pili, adhesion appendages located on the bacterial surface, in experimental endophthalmitis. To test the hypothesis that the presence of pili contributed to intraocular inflammation and virulence, we analyzed the progress of experimental endophthalmitis in mouse eyes infected with wild type B. cereus (ATCC 14579) or its isogenic pilus-deficient mutant (ΔbcpA-srtD-bcpB or ΔPil). One hundred CFU were injected into the mid-vitreous of one eye of each mouse. Infections were analyzed by quantifying intraocular bacilli and retinal function loss, and by histology from 0 to 12 h postinfection. In vitro growth and hemolytic phenotypes of the infecting strains were also compared. There was no difference in hemolytic activity (1:8 titer), motility, or in vitro growth (p > 0.05, every 2 h, 0-18 h) between wild type B. cereus and the ΔPil mutant. However, infected eyes contained greater numbers of wild type B. cereus than ΔPil during the infection course (p ≤ 0.05, 3-12 h). Eyes infected with wild type B. cereus experienced greater losses in retinal function than eyes infected with the ΔPil mutant, but the differences were not always significant. Eyes infected with ΔPil or wild type B. cereus achieved similar degrees of severe inflammation. The results indicated that the intraocular growth of pilus-deficient B. cereus may have been better controlled, leading to a trend of greater retinal function in eyes infected with the pilus-deficient strain. Although this difference was not enough to significantly alter the severity of the inflammatory response, these results suggest a potential role for pili in protecting B. cereus from clearance during the early stages of endophthalmitis, which is a newly described virulence mechanism for this organism and this infection.
Collapse
Affiliation(s)
- Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 950 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA,Dean A. McGee Eye Institute, Oklahoma City Oklahoma USA,Corresponding author: DMEI PA-418, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA. Phone: (405) 271-3674, Fax: (405) 271-8128,
| | - Salai Madhumathi Parkunan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 950 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - C. Blake Randall
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Frederick C. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 950 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Austin L. LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Roger A. Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Craig Land
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - So-Young Oh
- Department of Microbiology, University of Chicago, 920 East 58
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58
| |
Collapse
|
108
|
Simon L, Škraban J, Kyrpides NC, Woyke T, Shapiro N, Cleenwerck I, Vandamme P, Whitman WB, Trček J. Paenibacillus aquistagni sp. nov., isolated from an artificial lake accumulating industrial wastewater. Antonie van Leeuwenhoek 2017; 110:1189-1197. [PMID: 28555445 DOI: 10.1007/s10482-017-0891-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Strain 11T was isolated from water of an artificial lake accumulating industrial wastewater on the outskirts of Celje, Slovenia. Phenotypic characterisation showed strain 11T to be a Gram-stain positive, spore forming bacterium. The 16S rRNA gene sequence identified strain 11T as a member of the genus Paenibacillus, closely related to Paenibacillus alvei (96.2%). Genomic similarity with P. alvei 29T was 73.1% (gANI), 70.2% (ANIb), 86.7% (ANIm) and 21.7 ± 2.3% (GGDC). The DNA G+C content of strain 11T was determined to be 47.5%. The predominant menaquinone of strain 11T was identified as MK-7 and the major fatty acid as anteiso-C15:0. The peptidoglycan was found to contain meso-diaminopimelic acid. In contrast to its close relatives P. alvei DSM 29T, Paenibacillus apiarius DSM 5581T and Paenibacillus profundus NRIC 0885T, strain 11T was found to be able to ferment D-fructose, D-mannose and D-xylose. A draft genome of strain 11T contains a cluster of genes associated with type IV pilin synthesis usually found in clostridia, and only sporadically in other Gram-positive bacteria. Genotypic, chemotaxonomic, physiological and biochemical characteristics of strain 11T presented in this study support the creation of a novel species within the genus Paenibacillus, for which the name Paenibacillus aquistagni sp. nov. is proposed, with strain 11T (=ZIM B1027T =LMG 29561T =CCM 8679T ) as the type strain.
Collapse
Affiliation(s)
- Lučka Simon
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jure Škraban
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia. .,Department of Biology, Faculty of Chemistry and Chemical Engineering, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
| |
Collapse
|
109
|
Structural and Molecular Biology of a Protein-Polymerizing Nanomachine for Pilus Biogenesis. J Mol Biol 2017; 429:2654-2666. [PMID: 28551336 DOI: 10.1016/j.jmb.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/23/2023]
Abstract
Bacteria produce protein polymers on their surface called pili or fimbriae that serve either as attachment devices or as conduits for secreted substrates. This review will focus on the chaperone-usher pathway of pilus biogenesis, a widespread assembly line for pilus production at the surface of Gram-negative bacteria and the archetypical protein-polymerizing nanomachine. Comparison with other nanomachines polymerizing other types of biological units, such as nucleotides during DNA replication, provides some unifying principles as to how multidomain proteins assemble biological polymers.
Collapse
|
110
|
Zaza G, Dalla Gassa A, Felis G, Granata S, Torriani S, Lupo A. Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: Comparison between an everolimus- and a standard tacrolimus-based regimen. PLoS One 2017; 12:e0178228. [PMID: 28542523 PMCID: PMC5443527 DOI: 10.1371/journal.pone.0178228] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The gut microbiome is the full set of microbes living in the gastrointestinal tract and is emerging as an important dynamic/fluid system that, if altered by environmental, dietetic or pharmacological factors, could considerably influence drug response. However, the immunosuppressive drug-induced modifications of this system are still poorly defined. METHODS We employed an innovative bioinformatics approach to assess differences in the whole-gut microbial metagenomic profile of 20 renal transplant recipients undergoing maintenance treatment with two different immunosuppressive protocols. Nine patients were treated with everolimus plus mycophenolate mofetil (EVE+MMF group), and 11 patients were treated with a standard therapy with tacrolimus plus mycophenolate mofetil (TAC+MMF group). RESULTS A statistical analysis of comparative high-throughput data demonstrated that although similar according to the degree of Shannon diversity (alpha diversity) at the taxonomic level, three functional genes clearly discriminated EVE+MMF versus TAC+MMF (cutoff: log2 fold change≥1, FDR≤0.05). Flagellar motor switch protein (fliNY) and type IV pilus assembly protein pilM (pilM) were significantly enriched in TAC+MMF-treated patients, while macrolide transport system mrsA (msrA) was more abundant in patients treated with EVE+MMF. Finally, PERMANOVA revealed that among the variables analyzed and included in our model, only the consumption of sugar significantly influenced beta diversity. CONCLUSIONS Our study, although performed on a relatively small number of patients, showed, for the first time, specific immunosuppressive-related effects on fecal microbiome of renal transplant recipients and it suggested that the analysis of the gut microbes community could represent a new tool to better understand the effects of drugs currently employed in organ transplantations. However, multicenter studies including healthy controls should be undertaken to better address this objective.
Collapse
Affiliation(s)
- Gianluigi Zaza
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
- * E-mail:
| | | | - Giovanna Felis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| |
Collapse
|
111
|
Abstract
Pili are crucial virulence factors for many Gram-negative pathogens. These surface structures provide bacteria with a link to their external environments by enabling them to interact with, and attach to, host cells, other surfaces or each other, or by providing a conduit for secretion. Recent high-resolution structures of pilus filaments and the machineries that produce them, namely chaperone-usher pili, type IV pili, conjugative type IV secretion pili and type V pili, are beginning to explain some of the intriguing biological properties that pili exhibit, such as the ability of chaperone-usher pili and type IV pili to stretch in response to external forces. By contrast, conjugative pili provide a conduit for the exchange of genetic information, and recent high-resolution structures have revealed an integral association between the pilin subunit and a phospholipid molecule, which may facilitate DNA transport. In addition, progress in the area of cryo-electron tomography has provided a glimpse of the overall architecture of the type IV pilus machinery. In this Review, we examine recent advances in our structural understanding of various Gram-negative pilus systems and discuss their functional implications.
Collapse
|
112
|
Evolution of a Biomass-Fermenting Bacterium To Resist Lignin Phenolics. Appl Environ Microbiol 2017; 83:AEM.00289-17. [PMID: 28363966 DOI: 10.1128/aem.00289-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Increasing the resistance of plant-fermenting bacteria to lignocellulosic inhibitors is useful to understand microbial adaptation and to develop candidate strains for consolidated bioprocessing. Here, we study and improve inhibitor resistance in Clostridium phytofermentans (also called Lachnoclostridium phytofermentans), a model anaerobe that ferments lignocellulosic biomass. We survey the resistance of this bacterium to a panel of biomass inhibitors and then evolve strains that grow in increasing concentrations of the lignin phenolic, ferulic acid, by automated, long-term growth selection in an anaerobic GM3 automat. Ultimately, strains resist multiple inhibitors and grow robustly at the solubility limit of ferulate while retaining the ability to ferment cellulose. We analyze genome-wide transcription patterns during ferulate stress and genomic variants that arose along the ferulate growth selection, revealing how cells adapt to inhibitors through changes in gene dosage and regulation, membrane fatty acid structure, and the surface layer. Collectively, this study demonstrates an automated framework for in vivo directed evolution of anaerobes and gives insight into the genetic mechanisms by which bacteria survive exposure to chemical inhibitors.IMPORTANCE Fermentation of plant biomass is a key part of carbon cycling in diverse ecosystems. Further, industrial biomass fermentation may provide a renewable alternative to fossil fuels. Plants are primarily composed of lignocellulose, a matrix of polysaccharides and polyphenolic lignin. Thus, when microorganisms degrade lignocellulose to access sugars, they also release phenolic and acidic inhibitors. Here, we study how the plant-fermenting bacterium Clostridium phytofermentans resists plant inhibitors using the lignin phenolic, ferulic acid. We examine how the cell responds to abrupt ferulate stress by measuring changes in gene expression. We evolve increasingly resistant strains by automated, long-term cultivation at progressively higher ferulate concentrations and sequence their genomes to identify mutations associated with acquired ferulate resistance. Our study develops an inhibitor-resistant bacterium that ferments cellulose and provides insights into genomic evolution to resist chemical inhibitors.
Collapse
|
113
|
Khare B, V L Narayana S. Pilus biogenesis of Gram-positive bacteria: Roles of sortases and implications for assembly. Protein Sci 2017; 26:1458-1473. [PMID: 28493331 DOI: 10.1002/pro.3191] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
Successful adherence, colonization, and survival of Gram-positive bacteria require surface proteins, and multiprotein assemblies called pili. These surface appendages are attractive pharmacotherapeutic targets and understanding their assembly mechanisms is essential for identifying a new class of 'anti-infectives' that do not elicit microbial resistance. Molecular details of the Gram-negative pilus assembly are available indepth, but the Gram-positive pilus biogenesis is still an emerging field and investigations continue to reveal novel insights into this process. Pilus biogenesis in Gram-positive bacteria is a biphasic process that requires enzymes called pilus-sortases for assembly and a housekeeping sortase for covalent attachment of the assembled pilus to the peptidoglycan cell wall. Emerging structural and functional data indicate that there are at least two groups of Gram-positive pili, which require either the Class C sortase or Class B sortase in conjunction with LepA/SipA protein for major pilin polymerization. This observation suggests two distinct modes of sortase-mediated pilus biogenesis in Gram-positive bacteria. Here we review the structural and functional biology of the pilus-sortases from select streptococcal pilus systems and their role in Gram-positive pilus assembly.
Collapse
Affiliation(s)
- Baldeep Khare
- Center for Structural Biology, School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| | - Sthanam V L Narayana
- Center for Structural Biology, School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
114
|
Cyclic Di-GMP Binding by an Assembly ATPase (PilB2) and Control of Type IV Pilin Polymerization in the Gram-Positive Pathogen Clostridium perfringens. J Bacteriol 2017; 199:JB.00034-17. [PMID: 28242722 DOI: 10.1128/jb.00034-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/18/2017] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive pathogen Clostridium perfringens possesses type IV pili (TFP), which are extracellular fibers that are polymerized from a pool of pilin monomers in the cytoplasmic membrane. Two proteins that are essential for pilus functions are an assembly ATPase (PilB) and an inner membrane core protein (PilC). Two homologues each of PilB and PilC are present in C. perfringens, called PilB1/PilB2 and PilC1/PilC2, respectively, along with four pilin proteins, PilA1 to PilA4. The gene encoding PilA2, which is considered the major pilin based on previous studies, is immediately downstream of the pilB2 and pilC2 genes. Purified PilB2 had ATPase activity, bound zinc, formed hexamers even in the absence of ATP, and bound the second messenger molecule cyclic di-GMP (c-di-GMP). Circular dichroism spectroscopy of purified PilC2 indicated that it retained its predicted degree of alpha-helical secondary structure. Even though no direct interactions between PilB2 and PilC2 could be detected in vivo or in vitro even in the presence of c-di-GMP, high levels of expression of a diguanylate cyclase from C. perfringens (CPE1788) stimulated polymerization of PilA2 in a PilB2- and PilC2-dependent manner. These results suggest that PilB2 activity is controlled by c-di-GMP levels in vivo but that PilB2-PilC2 interactions are either transitory or of low affinity, in contrast to results reported previously from in vivo studies of the PilB1/PilC1 pair in which PilC1 was needed for polar localization of PilB1. This is the first biochemical characterization of a c-di-GMP-dependent assembly ATPase from a Gram-positive bacterium.IMPORTANCE Type IV pili (TFP) are protein fibers involved in important bacterial functions, including motility, adherence to surfaces and host cells, and natural transformation. All clostridia whose genomes have been sequenced show evidence of the presence of TFP. The genetically tractable species Clostridium perfringens was used to study proteins involved in polymerizing the pilin, PilA2, into a pilus. The assembly ATPase PilB2 and its cognate membrane protein partner, PilC2, were purified. PilB2 bound the intracellular signal molecule c-di-GMP. Increased levels of intracellular c-di-GMP led to increased polymerization of PilA2, indicating that Gram-positive bacteria use this molecule to regulate pilus synthesis. These findings provide valuable information for understanding how pathogenic clostridia regulate TFP to cause human diseases.
Collapse
|
115
|
Santos-Moreno J, East A, Guilvout I, Nadeau N, Bond PJ, Tran Van Nhieu G, Francetic O. Polar N-terminal Residues Conserved in Type 2 Secretion Pseudopilins Determine Subunit Targeting and Membrane Extraction Steps during Fibre Assembly. J Mol Biol 2017; 429:1746-1765. [PMID: 28427876 DOI: 10.1016/j.jmb.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
Bacterial type 2 secretion systems (T2SS), type 4 pili, and archaeal flagella assemble fibres from initially membrane-embedded pseudopilin and pilin subunits. Fibre subunits are made as precursors with positively charged N-terminal anchors, whose cleavage via the prepilin peptidase, essential for pilin membrane extraction and assembly, is followed by N-methylation of the mature (pseudo)pilin N terminus. The conserved Glu residue at position 5 (E5) of mature (pseudo)pilins is essential for assembly. Unlike T4 pilins, where E5 residue substitutions also abolish N-methylation, the E5A variant of T2SS pseudopilin PulG remains N-methylated but is affected in interaction with the T2SS component PulM. Here, biochemical and functional analyses showed that the PulM interaction defect only partly accounts for the PulGE5A assembly defect. First, PulGT2A variant, equally defective in PulM interaction, remained partially functional. Furthermore, pseudopilus assembly defect of pulG(E5A) mutant was stronger than that of the pulM deletion mutant. To understand the dominant effect of E5A mutation, we used molecular dynamics simulations of PulGE5A, methylated PulGWT (MePulGWT), and MePulGE5A variant in a model membrane. These simulations pointed to a key role for an intramolecular interaction between the pseudopilin N-terminal amine and E5 to limit polar interactions with membrane phospholipids. N-methylation of the N-terminal amine further limited its interactions with phospholipid head-groups to facilitate pseudopilin membrane escape. By binding to polar residues in the conserved N-terminal region of PulG, we propose that PulM acts as chaperone to promote pseudopilin recruitment and coordinate its membrane extraction with subsequent steps of the fibre assembly process.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Université Paris Diderot (Paris 7) Sorbonne Paris Cité, 11 Place Marcelin Berthelot, 75231 Paris, France; Laboratory of Intercellular Communication and Microbial Infections, CIRB, Collège de France, 75231 Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, 75231 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR7241, 75231 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, 75231 Paris, France
| | - Alexandra East
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ingrid Guilvout
- Laboratory of Macromolecular Systems and Signalling, Institut Pasteur, Department of Microbiology and CNRS ERL6002, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France; Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | - Nathalie Nadeau
- Laboratory of Macromolecular Systems and Signalling, Institut Pasteur, Department of Microbiology and CNRS ERL6002, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Str, #07-01 Matrix, Singapore 138671, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Guy Tran Van Nhieu
- Laboratory of Intercellular Communication and Microbial Infections, CIRB, Collège de France, 75231 Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, 75231 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR7241, 75231 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, 75231 Paris, France
| | - Olivera Francetic
- Laboratory of Macromolecular Systems and Signalling, Institut Pasteur, Department of Microbiology and CNRS ERL6002, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France; Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France.
| |
Collapse
|
116
|
Abstract
Pili are widespread among bacteria. Type IVa pili (T4aP) are associated with a variety of bacterial functions, including adhesion, motility, natural transformation, biofilm formation, and force-dependent signaling. In pathogenic bacteria, T4aP play a crucial role during infection and have been the subject of hundreds of studies. Methods for the isolation and purification of T4aP were first described in the 1970s. Purified pili have been used for studies of filament protein content, morphology, immunogenicity, post-translational modifications, and X-ray crystallography. We detail a tried-and-true method of isolating large amounts of native T4aP from bacterial surfaces. The method requires supplies and equipment that are available in most microbiology labs.
Collapse
Affiliation(s)
| | - Katrina T Forest
- Department of Bacteriology and Biophysics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
117
|
Role of RNase Y in Clostridium perfringens mRNA Decay and Processing. J Bacteriol 2016; 199:JB.00703-16. [PMID: 27821608 DOI: 10.1128/jb.00703-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022] Open
Abstract
RNase Y is a major endoribonuclease that plays a crucial role in mRNA degradation and processing. We study the role of RNase Y in the Gram-positive anaerobic pathogen Clostridium perfringens, which until now has not been well understood. Our study implies an important role for RNase Y-mediated RNA degradation and processing in virulence gene expression and the physiological development of the organism. We began by constructing an RNase Y conditional knockdown strain in order to observe the importance of RNase Y on growth and virulence. Our resulting transcriptome analysis shows that RNase Y affects the expression of many genes, including toxin-producing genes. We provide data to show that RNase Y depletion repressed several toxin genes in C. perfringens and involved the virR-virS two-component system. We also observe evidence that RNase Y is indispensable for processing and stabilizing the transcripts of colA (encoding a major toxin collagenase) and pilA2 (encoding a major pilin component of the type IV pili). Posttranscriptional regulation of colA is known to be mediated by cleavage in the 5' untranslated region (5'UTR), and we observe that RNase Y depletion diminishes colA 5'UTR processing. We show that RNase Y is also involved in the posttranscriptional stabilization of pilA2 mRNA, which is thought to be important for host cell adherence and biofilm formation. IMPORTANCE RNases have important roles in RNA degradation and turnover in all organisms. C. perfringens is a Gram-positive anaerobic spore-forming bacterial pathogen that produces numerous extracellular enzymes and toxins, and it is linked to digestive disorders and disease. A highly conserved endoribonuclease, RNase Y, affects the expression of hundreds of genes, including toxin genes, and studying these effects is useful for understanding C. perfringens specifically and RNases generally. Moreover, RNase Y is involved in processing specific transcripts, and we observed that this processing in C. perfringens results in the stabilization of mRNAs encoding a toxin and bacterial extracellular apparatus pili. Our study shows that RNase activity is associated with gene expression, helping to determine the growth, proliferation, and virulence of C. perfringens.
Collapse
|
118
|
Ng D, Harn T, Altindal T, Kolappan S, Marles JM, Lala R, Spielman I, Gao Y, Hauke CA, Kovacikova G, Verjee Z, Taylor RK, Biais N, Craig L. The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus. PLoS Pathog 2016; 12:e1006109. [PMID: 27992883 PMCID: PMC5207764 DOI: 10.1371/journal.ppat.1006109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 12/02/2016] [Indexed: 01/03/2023] Open
Abstract
Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system. Bacterial pathogens utilize a number of highly complex and sophisticated molecular systems to colonize their hosts and alter them, creating customized niches in which to reproduce. One such system is the Type IV pilus system, made up of dozens of proteins that form a macromolecular machine to polymerize small pilin proteins into long thin filaments that are displayed on the bacterial surface. These pili have a remarkable array of functions that rely on their ability to (i) adhere to many substrates, including host cell surfaces, pili from nearby bacteria, DNA and bacterial viruses (bacteriophage), and (ii) to depolymerize or retract, which pulls the bacteria along mucosal surfaces, pulls them close together in protective aggregates, and can even draw in substrates like DNA and bacteriophage for nutrition and genetic variation. For most Type IV pilus systems, retraction is an energy-driven process facilitated by a retraction ATPase. We show here that in the simplest of the Type IV pilus systems, the Vibrio cholerae toxin-coregulated pilus, a pilin-like protein initiates pilus retraction by what appears to be mechanical rather than enzymatic means. Our results provide a framework for understanding more complex Type IV pili and the related Type II secretion systems, which represent targets for novel highly specific antibiotics.
Collapse
Affiliation(s)
- Dixon Ng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tony Harn
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tuba Altindal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Subramania Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jarrad M. Marles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Rajan Lala
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Ingrid Spielman
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Yang Gao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Caitlyn A. Hauke
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Zia Verjee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nicolas Biais
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
- Graduate Center, City University of New York, Brooklyn, New York, United States of America
- * E-mail: (LC); (NB)
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (LC); (NB)
| |
Collapse
|
119
|
Manzoor S, Bongcam-Rudloff E, Schnürer A, Müller B. Genome-Guided Analysis and Whole Transcriptome Profiling of the Mesophilic Syntrophic Acetate Oxidising Bacterium Syntrophaceticus schinkii. PLoS One 2016; 11:e0166520. [PMID: 27851830 PMCID: PMC5113046 DOI: 10.1371/journal.pone.0166520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023] Open
Abstract
Syntrophaceticus schinkii is a mesophilic, anaerobic bacterium capable of oxidising acetate to CO2 and H2 in intimate association with a methanogenic partner, a syntrophic relationship which operates close to the energetic limits of microbial life. Syntrophaceticus schinkii has been identified as a key organism in engineered methane-producing processes relying on syntrophic acetate oxidation as the main methane-producing pathway. However, due to strict cultivation requirements and difficulties in reconstituting the thermodynamically unfavourable acetate oxidation, the physiology of this functional group is poorly understood. Genome-guided and whole transcriptome analyses performed in the present study provide new insights into habitat adaptation, syntrophic acetate oxidation and energy conservation. The working draft genome of Syntrophaceticus schinkii indicates limited metabolic capacities, with lack of organic nutrient uptake systems, chemotactic machineries, carbon catabolite repression and incomplete biosynthesis pathways. Ech hydrogenase, [FeFe] hydrogenases, [NiFe] hydrogenases, F1F0-ATP synthase and membrane-bound and cytoplasmic formate dehydrogenases were found clearly expressed, whereas Rnf and a predicted oxidoreductase/heterodisulphide reductase complex, both found encoded in the genome, were not expressed under syntrophic growth condition. A transporter sharing similarities to the high-affinity acetate transporters of aceticlastic methanogens was also found expressed, suggesting that Syntrophaceticus schinkii can potentially compete with methanogens for acetate. Acetate oxidation seems to proceed via the Wood-Ljungdahl pathway as all genes involved in this pathway were highly expressed. This study shows that Syntrophaceticus schinkii is a highly specialised, habitat-adapted organism relying on syntrophic acetate oxidation rather than metabolic versatility. By expanding its complement of respiratory complexes, it might overcome limiting bioenergetic barriers, and drive efficient energy conservation from reactions operating close to the thermodynamic equilibrium, which might enable S. schinkii to occupy the same niche as the aceticlastic methanogens. The knowledge gained here will help specify process conditions supporting efficient and robust biogas production and will help identify mechanisms important for the syntrophic lifestyle.
Collapse
Affiliation(s)
- Shahid Manzoor
- Department of Information Technology, University of the Punjab, Lahore, Pakistan
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Science, SLU-Global Bioinformatics Centre, Uppsala, SE 750 07, Sweden
| | - Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural Sciences, BioCenter, Uppsala, SE 750 07, Sweden
| | - Bettina Müller
- Department of Microbiology, Swedish University of Agricultural Sciences, BioCenter, Uppsala, SE 750 07, Sweden
| |
Collapse
|
120
|
Hyeon JE, Shin SK, Han SO. Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnol J 2016; 11:1386-1396. [PMID: 27783468 PMCID: PMC5132044 DOI: 10.1002/biot.201600039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/26/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022]
Abstract
The utilization of scaffolds for enzyme immobilization involves advanced bionanotechnology applications in biorefinery fields, which can be achieved by optimizing the function of various enzymes. This review presents various current scaffolding techniques based on proteins, microbes and nanomaterials for enzyme immobilization, as well as the impact of these techniques on the biorefinery of lignocellulosic materials. Among them, architectural scaffolds have applied to useful strategies for protein engineering to improve the performance of immobilized enzymes in several industrial and research fields. In complexed enzyme systems that have critical roles in carbon metabolism, scaffolding proteins assemble different proteins in relatively durable configurations and facilitate collaborative protein interactions and functions. Additionally, a microbial strain, combined with designer enzyme complexes, can be applied to the immobilizing scaffold because the in vivo immobilizing technique has several benefits in enzymatic reaction systems related to both synthetic biology and metabolic engineering. Furthermore, with the advent of nanotechnology, nanomaterials possessing ideal physicochemical characteristics, such as mass transfer resistance, specific surface area and efficient enzyme loading, can be applied as novel and interesting scaffolds for enzyme immobilization. Intelligent application of various scaffolds to couple with nanoscale engineering tools and metabolic engineering technology may offer particular benefits in research.
Collapse
Affiliation(s)
- Jeong Eun Hyeon
- Department of BiotechnologyKorea University02841SeoulRepublic of Korea
| | - Sang Kyu Shin
- Department of BiotechnologyKorea University02841SeoulRepublic of Korea
| | - Sung Ok Han
- Department of BiotechnologyKorea University02841SeoulRepublic of Korea
| |
Collapse
|
121
|
Piepenbrink KH, Lillehoj E, Harding CM, Labonte JW, Zuo X, Rapp CA, Munson RS, Goldblum SE, Feldman MF, Gray JJ, Sundberg EJ. Structural Diversity in the Type IV Pili of Multidrug-resistant Acinetobacter. J Biol Chem 2016; 291:22924-22935. [PMID: 27634041 PMCID: PMC5087714 DOI: 10.1074/jbc.m116.751099] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 11/06/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative coccobacillus found primarily in hospital settings that has recently emerged as a source of hospital-acquired infections. A. baumannii expresses a variety of virulence factors, including type IV pili, bacterial extracellular appendages often essential for attachment to host cells. Here, we report the high resolution structures of the major pilin subunit, PilA, from three Acinetobacter strains, demonstrating that A. baumannii subsets produce morphologically distinct type IV pilin glycoproteins. We examine the consequences of this heterogeneity for protein folding and assembly as well as host-cell adhesion by Acinetobacter Comparisons of genomic and structural data with pilin proteins from other species of soil gammaproteobacteria suggest that these structural differences stem from evolutionary pressure that has resulted in three distinct classes of type IVa pilins, each found in multiple species.
Collapse
Affiliation(s)
| | | | - Christian M Harding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jason W Labonte
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Xiaotong Zuo
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | | | - Robert S Munson
- The Center for Microbial Pathogenesis in the Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, and
| | - Simeon E Goldblum
- Departments of Medicine.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.,Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Eric J Sundberg
- From the Institute of Human Virology and .,Departments of Medicine.,Microbiology and Immunology
| |
Collapse
|
122
|
Antunes LC, Poppleton D, Klingl A, Criscuolo A, Dupuy B, Brochier-Armanet C, Beloin C, Gribaldo S. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. eLife 2016; 5. [PMID: 27580370 PMCID: PMC5007114 DOI: 10.7554/elife.14589] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022] Open
Abstract
One of the major unanswered questions in evolutionary biology is when and how the transition between diderm (two membranes) and monoderm (one membrane) cell envelopes occurred in Bacteria. The Negativicutes and the Halanaerobiales belong to the classically monoderm Firmicutes, but possess outer membranes with lipopolysaccharide (LPS-OM). Here, we show that they form two phylogenetically distinct lineages, each close to different monoderm relatives. In contrast, their core LPS biosynthesis enzymes were inherited vertically, as in the majority of bacterial phyla. Finally, annotation of key OM systems in the Halanaerobiales and the Negativicutes shows a puzzling combination of monoderm and diderm features. Together, these results support the hypothesis that the LPS-OMs of Negativicutes and Halanaerobiales are remnants of an ancient diderm cell envelope that was present in the ancestor of the Firmicutes, and that the monoderm phenotype in this phylum is a derived character that arose multiple times independently through OM loss. DOI:http://dx.doi.org/10.7554/eLife.14589.001 The cell envelope is one of the evolutionarily oldest parts of a bacterium. This structure – made up of a cell wall and either one or two cell membranes – surrounds the bacterial cell, maintaining the cell’s structure and providing an interface through which bacteria can sense their environment and communicate. Bacteria can be broadly classed based on the number of cell membranes that their envelope consists of. Bacteria that have a single cell membrane are known as “monoderm”, whereas those with two membranes are termed “diderm”. The number of membranes that bacteria have can affect how well they resist antibacterial compounds. When, how and why bacteria switched between monoderm and diderm cell envelopes are some of the major unanswered questions in evolutionary biology. The textbook example of a monoderm cell envelope can be found in bacteria called Firmicutes. This group includes some notoriously harmful bacteria such as Staphylococcus, which can cause conditions ranging from abscesses to pneumonia. However, some Firmicutes possess two cell membranes. It was unclear how these unusual diderm Firmicutes developed a second membrane, and how they are related to their monoderm relatives. Antunes, Poppleton et al. set out to answer these questions by analyzing the information contained in the thousands of bacterial genomes that have already been described. The results indicate that Firmicutes originally had diderm envelopes, and that species with monoderm envelopes arose independently several times through the loss of their outermost membrane. Future work is needed to investigate the driving forces and the precise mechanism that led most Firmicutes to lose their outer membrane. Also, further characterization of diderm Firmicutes will provide key information about the biology of these poorly understood bacteria. DOI:http://dx.doi.org/10.7554/eLife.14589.002
Collapse
Affiliation(s)
- Luisa Cs Antunes
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Daniel Poppleton
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Andreas Klingl
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU, Munich, Germany
| | - Alexis Criscuolo
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Département de Microbiologie, Institut Pasteur, Paris
| | | | - Christophe Beloin
- Unité de Génétique des Biofilms, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Simonetta Gribaldo
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| |
Collapse
|
123
|
Purcell EB, Tamayo R. Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:753-73. [PMID: 27354347 DOI: 10.1093/femsre/fuw013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 12/14/2022] Open
Abstract
The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria.
Collapse
Affiliation(s)
- Erin B Purcell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
124
|
Maldarelli GA, Matz H, Gao S, Chen K, Hamza T, Yfantis HG, Feng H, Donnenberg MS. Pilin Vaccination Stimulates Weak Antibody Responses and Provides No Protection in a C57Bl/6 Murine Model of Acute Clostridium difficile Infection. JOURNAL OF VACCINES & VACCINATION 2016; 7:321. [PMID: 27375958 PMCID: PMC4927082 DOI: 10.4172/2157-7560.1000321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is the leading cause of nosocomial infections in the United States, adding billions of dollars per year to health care costs. A vaccine targeted against the bacterium would be extremely beneficial in decreasing the morbidity and mortality caused by C. difficile-associated disease; a vaccine directed against a colonization factor would hinder the spread of the bacterium as well as prevent disease. Type IV pili (T4Ps) are extracellular appendages composed of protein monomers called pilins. They are involved in adhesion and colonization in a wide variety of bacteria and archaea, and are putative colonization factors in C. difficile. We hypothesized that vaccinating mice with pilins would lead to generation of anti-pilin antibodies, and would protect against C. difficile challenge. We found that immunizing C57Bl/6 mice with various pilins, whether combined or as individual proteins, led to low anti-pilin antibody titers and no protection upon C. difficile challenge. Passive transfer of anti-pilin antibodies led to high serum anti-pilin IgG titers, but to undetectable fecal anti-pilin IgG titers and did not protect against challenge. The low antibody titers observed in these experiments may be due to the particular strain of mice used. Further experiments, possibly with a different animal model of C. difficile infection, are needed to determine if an anti-T4P vaccine would be protective against C. difficile infection.
Collapse
Affiliation(s)
- Grace A Maldarelli
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hanover Matz
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Si Gao
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Kevin Chen
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Harris G Yfantis
- Department of Pathology and Laboratory Medicine, VAMHCS, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Michael S Donnenberg
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
125
|
Hyeon JE, Kim SW, Park C, Han SO. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface. Chem Commun (Camb) 2016; 51:10202-5. [PMID: 26017299 DOI: 10.1039/c5cc00832h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics.
Collapse
Affiliation(s)
- Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| | | | | | | |
Collapse
|
126
|
Bischof LF, Friedrich C, Harms A, Søgaard-Andersen L, van der Does C. The Type IV Pilus Assembly ATPase PilB of Myxococcus xanthus Interacts with the Inner Membrane Platform Protein PilC and the Nucleotide-binding Protein PilM. J Biol Chem 2016; 291:6946-57. [PMID: 26851283 DOI: 10.1074/jbc.m115.701284] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Indexed: 01/01/2023] Open
Abstract
Type IV pili (T4P) are ubiquitous bacterial cell surface structures, involved in processes such as twitching motility, biofilm formation, bacteriophage infection, surface attachment, virulence, and natural transformation. T4P are assembled by machinery that can be divided into the outer membrane pore complex, the alignment complex that connects components in the inner and outer membrane, and the motor complex in the inner membrane and cytoplasm. Here, we characterize the inner membrane platform protein PilC, the cytosolic assembly ATPase PilB of the motor complex, and the cytosolic nucleotide-binding protein PilM of the alignment complex of the T4P machinery ofMyxococcus xanthus PilC was purified as a dimer and reconstituted into liposomes. PilB was isolated as a monomer and bound ATP in a non-cooperative manner, but PilB fused to Hcp1 ofPseudomonas aeruginosaformed a hexamer and bound ATP in a cooperative manner. Hexameric but not monomeric PilB bound to PilC reconstituted in liposomes, and this binding stimulated PilB ATPase activity. PilM could only be purified when it was stabilized by a fusion with a peptide corresponding to the first 16 amino acids of PilN, supporting an interaction between PilM and PilN(1-16). PilM-N(1-16) was isolated as a monomer that bound but did not hydrolyze ATP. PilM interacted directly with PilB, but only with PilC in the presence of PilB, suggesting an indirect interaction. We propose that PilB interacts with PilC and with PilM, thus establishing the connection between the alignment and the motor complex.
Collapse
Affiliation(s)
- Lisa Franziska Bischof
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and the Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, D-79104 Freiburg, Germany
| | - Carmen Friedrich
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and
| | - Andrea Harms
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and
| | - Lotte Søgaard-Andersen
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and
| | - Chris van der Does
- From the Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg and the Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
127
|
King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:129-56. [PMID: 27193542 DOI: 10.1007/978-3-319-32189-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All bacteria are bound by at least one membrane that acts as a barrier between the cell's interior and the outside environment. Surface components within and attached to the cell membrane are essential for ensuring that the overall homeostasis of the cell is maintained. However, many surface components of the bacterial cell also have an indispensable role mediating interactions of the bacteria with their immediate environment and as such are essential to the pathogenesis of infectious disease. During the course of an infection, bacterial pathogens will encounter many different ecological niches where environmental conditions such as salinity, temperature, pH, and the availability of nutrients fluctuate. It is the bacterial cell surface that is at the front-line of these host-pathogen interactions often protecting the bacterium from hostile surroundings but at the same time playing a critical role in the adherence to host tissues promoting colonization and subsequent infection. To deal effectively with the changing environments that pathogens may encounter in different ecological niches within the host many of the surface components of the bacterial cell are subject to phenotypic variation resulting in heterogeneous subpopulations of bacteria within the clonal population. This dynamic phenotypic heterogeneity ensures that at least a small fraction of the population will be adapted for a particular circumstance should it arise. Diversity within the clonal population has often been masked by studies on entire bacterial populations where it was often assumed genes were expressed in a uniform manner. This chapter, therefore, aims to highlight the non-uniformity in certain cell surface structures and will discuss the implication of this heterogeneity in bacterial-host interaction. Some of the recent advances in studying bacterial surface structures at the single cell level will also be reviewed.
Collapse
Affiliation(s)
- Jane E King
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
128
|
Imipenem Treatment Induces Expression of Important Genes and Phenotypes in a Resistant Acinetobacter baumannii Isolate. Antimicrob Agents Chemother 2015; 60:1370-6. [PMID: 26666943 DOI: 10.1128/aac.01696-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/05/2015] [Indexed: 12/28/2022] Open
Abstract
Acinetobacter baumannii has emerged as a notorious multidrug-resistant pathogen, and development of novel control measures is of the utmost importance. Understanding the factors that play a role in drug resistance may contribute to the identification of novel therapeutic targets. Pili are essential for A. baumannii adherence to and biofilm formation on abiotic surfaces as well as virulence. In the present study, we found that biofilm formation was significantly induced in an imipenem-resistant (Imp(r)) strain treated with a subinhibitory concentration of antibiotic compared to that in an untreated control and an imipenem-susceptible (Imp(s)) isolate. Using microarray and quantitative PCR analyses, we observed that several genes responsible for the synthesis of type IV pili were significantly upregulated in the Imp(r) but not in the Imp(s) isolate. Notably, this finding is corroborated by an increase in the motility of the Imp(r) strain. Our results suggest that the ability to overproduce colonization factors in response to imipenem treatment confers biological advantage to A. baumannii and may contribute to clinical success.
Collapse
|
129
|
Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile. J Bacteriol 2015; 198:565-77. [PMID: 26598364 DOI: 10.1128/jb.00816-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The intestinal pathogen Clostridium difficile is an urgent public health threat that causes antibiotic-associated diarrhea and is a leading cause of fatal nosocomial infections in the United States. C. difficile rates of recurrence and mortality have increased in recent years due to the emergence of so-called "hypervirulent" epidemic strains. A great deal of the basic biology of C. difficile has not been characterized. Recent findings that flagellar motility, toxin synthesis, and type IV pilus (TFP) formation are regulated by cyclic diguanylate (c-di-GMP) reveal the importance of this second messenger for C. difficile gene regulation. However, the function(s) of TFP in C. difficile remains largely unknown. Here, we examine TFP-dependent phenotypes and the role of c-di-GMP in controlling TFP production in the historical 630 and epidemic R20291 strains of C. difficile. We demonstrate that TFP contribute to C. difficile biofilm formation in both strains, but with a more prominent role in R20291. Moreover, we report that R20291 is capable of TFP-dependent surface motility, which has not previously been described in C. difficile. The expression and regulation of the pilA1 pilin gene differs between R20291 and 630, which may underlie the observed differences in TFP-mediated phenotypes. The differences in pilA1 expression are attributable to greater promoter-driven transcription in R20291. In addition, R20291, but not 630, upregulates c-di-GMP levels during surface-associated growth, suggesting that the bacterium senses its substratum. The differential regulation of surface behaviors in historical and epidemic C. difficile strains may contribute to the different infection outcomes presented by these strains. IMPORTANCE How Clostridium difficile establishes and maintains colonization of the host bowel is poorly understood. Surface behaviors of C. difficile are likely relevant during infection, representing possible interactions between the bacterium and the intestinal environment. Pili mediate bacterial interactions with various surfaces and contribute to the virulence of many pathogens. We report that type IV pili (TFP) contribute to biofilm formation by C. difficile. TFP are also required for surface motility, which has not previously been demonstrated for C. difficile. Furthermore, an epidemic-associated C. difficile strain showed higher pilin gene expression and greater dependence on TFP for biofilm production and surface motility. Differences in TFP regulation and their effects on surface behaviors may contribute to increased virulence in recent epidemic strains.
Collapse
|
130
|
Matthey N, Blokesch M. The DNA-Uptake Process of Naturally Competent Vibrio cholerae. Trends Microbiol 2015; 24:98-110. [PMID: 26614677 DOI: 10.1016/j.tim.2015.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
The sophisticated DNA-uptake machinery used during natural transformation is still poorly characterized, especially in Gram-negative bacteria where the transforming DNA has to cross two membranes as well as the peptidoglycan layer before entering the cytoplasm. The DNA-uptake machinery was hypothesized to take the form of a pseudopilus, which, upon repeated cycles of extension and retraction, would pull external DNA towards the cell surface or into the periplasmic space, followed by translocation across the cytoplasmic membrane. In this review, we summarize recent advances on the DNA-uptake machinery of V. cholerae, highlighting the presence of an extended competence-induced pilus and the contribution of a conserved DNA-binding protein that acts as a ratchet and reels DNA into the periplasm.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
131
|
Islam ST, Mignot T. The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus. Semin Cell Dev Biol 2015; 46:143-54. [PMID: 26520023 DOI: 10.1016/j.semcdb.2015.10.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022]
Abstract
Motility of bacterial cells promotes a range of important physiological phenomena such as nutrient detection, harm avoidance, biofilm formation, and pathogenesis. While much research has been devoted to the mechanism of bacterial swimming in liquid via rotation of flagellar filaments, the mechanisms of bacterial translocation across solid surfaces are poorly understood, particularly when cells lack external appendages such as rotary flagella and/or retractile type IV pili. Under such limitations, diverse bacteria at the single-cell level are still able to "glide" across solid surfaces, exhibiting smooth translocation of the cell along its long axis. Though multiple gliding mechanisms have evolved in different bacterial classes, most remain poorly characterized. One exception is the gliding motility mechanism used by the Gram-negative social predatory bacterium Myxococcus xanthus. The available body of research suggests that M. xanthus gliding motility is mediated by trafficked multi-protein (Glt) cell envelope complexes, powered by proton-driven flagellar stator homologues (Agl). Through coupling to the substratum via polysaccharide slime, Agl-Glt assemblies can become fixed relative to the substratum, forming a focal adhesion site. Continued directional transport of slime-associated substratum-fixed Agl-Glt complexes would result in smooth forward movement of the cell. In this review, we have provided a comprehensive synthesis of the latest mechanistic and structural data for focal adhesion-mediated gliding motility in M. xanthus, with emphasis on the role of each Agl and Glt protein. Finally, we have also highlighted the possible connection between the motility complex and a new type of spore coat assembly system, suggesting that gliding and cell envelope synthetic complexes are evolutionarily linked.
Collapse
Affiliation(s)
- Salim T Islam
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique (CNRS) UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13009 Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique (CNRS) UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
132
|
Bergeron JRC, Sgourakis NG. Type IV pilus: one architectural problem, many structural solutions. Structure 2015; 23:253-5. [PMID: 25651057 DOI: 10.1016/j.str.2015.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Type IV pili are long appendages found at the surface of many bacteria, composed of an oligomerized pilin protein and involved in processes such as adherence, motility and DNA transfer. In this issue of Structure, Piepenbrink and colleagues report the first structure a major pilin from a Gram-positive bacterium, revealing an unprecedented stabilization mechanism that may have implications for pilus evolution.
Collapse
Affiliation(s)
- Julien R C Bergeron
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nikolaos G Sgourakis
- National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
133
|
Gurung I, Spielman I, Davies MR, Lala R, Gaustad P, Biais N, Pelicic V. Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis. Mol Microbiol 2015; 99:380-92. [PMID: 26435398 PMCID: PMC4832360 DOI: 10.1111/mmi.13237] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 12/30/2022]
Abstract
Type IV pili (Tfp), which have been studied extensively in a few Gram‐negative species, are the paradigm of a group of widespread and functionally versatile nano‐machines. Here, we performed the most detailed molecular characterisation of Tfp in a Gram‐positive bacterium. We demonstrate that the naturally competent Streptococcus sanguinis produces retractable Tfp, which like their Gram‐negative counterparts can generate hundreds of piconewton of tensile force and promote intense surface‐associated motility. Tfp power ‘train‐like’ directional motion parallel to the long axis of chains of cells, leading to spreading zones around bacteria grown on plates. However, S. sanguinis
Tfp are not involved in DNA uptake, which is mediated by a related but distinct nano‐machine, and are unusual because they are composed of two pilins in comparable amounts, rather than one as normally seen. Whole genome sequencing identified a locus encoding all the genes involved in Tfp biology in S. sanguinis. A systematic mutational analysis revealed that Tfp biogenesis in S. sanguinis relies on a more basic machinery (only 10 components) than in Gram‐negative species and that a small subset of four proteins dispensable for pilus biogenesis are essential for motility. Intriguingly, one of the piliated mutants that does not exhibit spreading retains microscopic motility but moves sideways, which suggests that the corresponding protein controls motion directionality. Besides establishing S. sanguinis as a useful new model for studying Tfp biology, these findings have important implications for our understanding of these widespread filamentous nano‐machines.
Collapse
Affiliation(s)
- Ishwori Gurung
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Ingrid Spielman
- Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA
| | - Mark R Davies
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Rajan Lala
- Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA
| | - Peter Gaustad
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Nicolas Biais
- Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
134
|
Khayatan B, Meeks JC, Risser DD. Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria. Mol Microbiol 2015; 98:1021-36. [PMID: 26331359 DOI: 10.1111/mmi.13205] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2015] [Indexed: 01/20/2023]
Abstract
In filamentous cyanobacteria, the mechanism of gliding motility is undefined but posited to be driven by a polysaccharide secretion system known as the junctional pore complex (JPC). Recent evidence implies that the JPC is a modified type IV pilus-like structure encoded for in part by genes in the hps locus. To test this hypothesis, we conducted genetic, cytological and comparative genomics studies on hps and pil genes in Nostoc punctiforme, a species in which motility is restricted to transiently differentiated filaments called hormogonia. Inactivation of most hps and pil genes abolished motility and abolished or drastically reduced secretion of hormogonium polysaccharide, and the subcellular localization of several Pil proteins in motile hormogonia corresponds to the site of the junctional pore complex. The non-motile ΔhpsE-G strain, which lacks three glycosyltransferases that synthesize hormogonium polysaccharide, could be complemented to motility by the addition of medium conditioned by wild-type hormogonia. Based on this result, we speculate that secretion of hormogonium polysaccharide facilitates but does not provide the motive force for gliding. Both the Hps and Pil homologs characterized in this study are almost universally conserved among filamentous cyanobacteria, with the Hps homologs rarely found in unicellular strains. These results support the theory that Hps and Pil proteins compose the JPC, a type IV pilus-like nanomotor that drives motility and polysaccharide secretion in filamentous cyanobacteria.
Collapse
Affiliation(s)
- Behzad Khayatan
- Department of Biology, University of the Pacific, Stockton, CA, 95211, USA
| | - John C Meeks
- Department of Microbiology, University of California, Davis, CA, 95616, USA
| | - Douglas D Risser
- Department of Biology, University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
135
|
Kolappan S, Ng D, Yang G, Harn T, Craig L. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli. J Biol Chem 2015; 290:25805-18. [PMID: 26324721 DOI: 10.1074/jbc.m115.676106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/04/2023] Open
Abstract
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.
Collapse
Affiliation(s)
- Subramania Kolappan
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dixon Ng
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Guixiang Yang
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony Harn
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lisa Craig
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
136
|
Nelson WC, Stegen JC. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front Microbiol 2015; 6:713. [PMID: 26257709 PMCID: PMC4508563 DOI: 10.3389/fmicb.2015.00713] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/29/2015] [Indexed: 11/21/2022] Open
Abstract
Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in a broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. “Housekeeping” genes and genes for biosynthesis of peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides, and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle, or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest that the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum.
Collapse
Affiliation(s)
- William C Nelson
- Microbiology, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - James C Stegen
- Microbiology, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
137
|
Zimmerman SM, Michel F, Hogan RJ, Lafontaine ER. The Autotransporter BpaB Contributes to the Virulence of Burkholderia mallei in an Aerosol Model of Infection. PLoS One 2015; 10:e0126437. [PMID: 25993100 PMCID: PMC4438868 DOI: 10.1371/journal.pone.0126437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
Burkholderia mallei is a highly pathogenic bacterium that causes the zoonosis glanders. Previous studies indicated that the genome of the organism contains eight genes specifying autotransporter proteins, which are important virulence factors of Gram-negative bacteria. In the present study, we report the characterization of one of these autotransporters, BpaB. Database searches identified the bpaB gene in ten B. mallei isolates and the predicted proteins were 99-100% identical. Comparative sequence analyses indicate that the gene product is a trimeric autotransporter of 1,090 amino acids with a predicted molecular weight of 105-kDa. Consistent with this finding, we discovered that recombinant bacteria expressing bpaB produce a protein of ≥300-kDa on their surface that is reactive with a BpaB-specific monoclonal antibody. Analysis of sera from mice infected with B. mallei indicated that animals produce antibodies against BpaB during the course of disease, thus establishing production of the autotransporter in vivo. To gain insight on its role in virulence, we inactivated the bpaB gene of B. mallei strain ATCC 23344 and determined the median lethal dose of the mutant in a mouse model of aerosol infection. These experiments revealed that the bpaB mutation attenuates virulence 8-14 fold. Using a crystal violet-based assay, we also discovered that constitutive production of BpaB on the surface of B. mallei promotes biofilm formation. To our knowledge, this is the first report of a biofilm factor for this organism.
Collapse
Affiliation(s)
- Shawn M. Zimmerman
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, United States of America
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
138
|
Terrasse R, Amoroso A, Vernet T, Di Guilmi AM. Streptococcus pneumoniae GAPDH Is Released by Cell Lysis and Interacts with Peptidoglycan. PLoS One 2015; 10:e0125377. [PMID: 25927608 PMCID: PMC4415926 DOI: 10.1371/journal.pone.0125377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/23/2015] [Indexed: 11/26/2022] Open
Abstract
Release of conserved cytoplasmic proteins is widely spread among Gram-positive and Gram-negative bacteria. Because these proteins display additional functions when located at the bacterial surface, they have been qualified as moonlighting proteins. The GAPDH is a glycolytic enzyme which plays an important role in the virulence processes of pathogenic microorganisms like bacterial invasion and host immune system modulation. However, GAPDH, like other moonlighting proteins, cannot be secreted through active secretion systems since they do not contain an N-terminal predicted signal peptide. In this work, we investigated the mechanism of GAPDH export and surface retention in Streptococcus pneumoniae, a major human pathogen. We addressed the role of the major autolysin LytA in the delivery process of GAPDH to the cell surface. Pneumococcal lysis is abolished in the ΔlytA mutant strain or when 1% choline chloride is added in the culture media. We showed that these conditions induce a marked reduction in the amount of surface-associated GAPDH. These data suggest that the presence of GAPDH at the surface of pneumococcal cells depends on the LytA-mediated lysis of a fraction of the cell population. Moreover, we demonstrated that pneumococcal GAPDH binds to the bacterial cell wall independently of the presence of the teichoic acids component, supporting peptidoglycan as a ligand to surface GAPDH. Finally, we showed that peptidoglycan-associated GAPDH recruits C1q from human serum but does not activate the complement pathway.
Collapse
Affiliation(s)
- Rémi Terrasse
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044 Grenoble, France
- CNRS UMR5075, IBS, F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
| | - Ana Amoroso
- Centre for Protein Engineering, Department of Life Sciences, University of Liege, Liege, Belgium
| | - Thierry Vernet
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044 Grenoble, France
- CNRS UMR5075, IBS, F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
| | - Anne Marie Di Guilmi
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044 Grenoble, France
- CNRS UMR5075, IBS, F-38044 Grenoble, France
- CEA, DSV, IBS, F-38044 Grenoble, France
- * E-mail:
| |
Collapse
|
139
|
León M, Bastías R. Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 2015; 6:343. [PMID: 25954266 PMCID: PMC4407575 DOI: 10.3389/fmicb.2015.00343] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/07/2015] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages can influence the abundance, diversity, and evolution of bacterial communities. Several bacteriophages have been reported to add virulence factors to their host and to increase bacterial virulence. However, lytic bacteriophages can also exert a selective pressure allowing the proliferation of strains with reduced virulence. This reduction can be explained because bacteriophages use structures present on the bacterial surface as receptors, which can be virulence factors in different bacterial species. Therefore, strains with modifications in these receptors will be resistant to bacteriophage infection and may also exhibit reduced virulence. This mini-review summarizes the reports on bacteriophage-resistant strains with reductions in virulence, and it discusses the potential consequences in phage therapy and in the use of bacteriophages to select attenuated strains for vaccines.
Collapse
Affiliation(s)
- Marcela León
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Roberto Bastías
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| |
Collapse
|
140
|
FlaF Is a β-Sandwich Protein that Anchors the Archaellum in the Archaeal Cell Envelope by Binding the S-Layer Protein. Structure 2015; 23:863-872. [PMID: 25865246 PMCID: PMC4425475 DOI: 10.1016/j.str.2015.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/19/2015] [Accepted: 03/06/2015] [Indexed: 11/25/2022]
Abstract
Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is a paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope. This is the first structural and functional study of an archaellum stator component sFlaF is a β-sandwich, immunoglobulin-like dimeric protein FlaF resembles and binds to the S-layer protein FlaF exerts its function in the pseudoperiplasm
Collapse
|
141
|
Abstract
UNLABELLED Type IV pili (T4Ps) are surface appendages used by Gram-negative and Gram-positive pathogens for motility and attachment to epithelial surfaces. In Gram-negative bacteria, such as the important pediatric pathogen enteropathogenic Escherichia coli (EPEC), during extension and retraction, the pilus passes through an outer membrane (OM) pore formed by the multimeric secretin complex. The secretin is common to Gram-negative assemblies, including the related type 2 secretion (T2S) system and the type 3 secretion (T3S) system. The N termini of the secretin monomers are periplasmic and in some systems have been shown to mediate substrate specificity. In this study, we mapped the topology of BfpB, the T4P secretin from EPEC, using a combination of biochemical and biophysical techniques that allowed selective identification of periplasmic and extracellular residues. We applied rules based on solved atomic structures of outer membrane proteins (OMPs) to generate our topology model, combining the experimental results with secondary structure prediction algorithms and direct inspection of the primary sequence. Surprisingly, the C terminus of BfpB is extracellular, a result confirmed by flow cytometry for BfpB and a distantly related T4P secretin, PilQ, from Pseudomonas aeruginosa. Keeping with prior evidence, the C termini of two T2S secretins and one T3S secretin were not detected on the extracellular surface. On the basis of our data and structural constraints, we propose that BfpB forms a beta barrel with 16 transmembrane beta strands. We propose that the T4P secretins have a C-terminal segment that passes through the center of each monomer. IMPORTANCE Secretins are multimeric proteins that allow the passage of secreted toxins and surface structures through the outer membranes (OMs) of Gram-negative bacteria. To date, there have been no atomic structures of the C-terminal region of a secretin, although electron microscopy (EM) structures of the complex are available. This work provides a detailed topology prediction of the membrane-spanning domain of a type IV pilus (T4P) secretin. Our study used innovative techniques to provide new and comprehensive information on secretin topology, highlighting similarities and differences among secretin subfamilies. Additionally, the techniques used in this study may prove useful for the study of other OM proteins.
Collapse
|
142
|
Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile. Curr Genet 2015; 61:497-502. [PMID: 25800812 DOI: 10.1007/s00294-015-0484-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 02/07/2023]
Abstract
The anaerobic Gram-positive bacterium Clostridium difficile causes intestinal infections responsible for symptoms ranging from mild diarrhea to fulminant colitis. Like other bacteria, C. difficile needs to sense and integrate environmental signals in order to adapt to changes and thrive in its environment. The second messenger cyclic diguanosine monophosphate (c-di-GMP) was recently recognized as a quasi-ubiquitous phenotype coordinator in bacteria. Mostly known to be involved in the transition from motile to sessile and multicellular behaviors in Gammaproteobacteria, c-di-GMP is now known to regulate many other phenotypes from cell morphogenesis to virulence, in many Gram-negative and a few Gram-positive bacteria. Herein, we review recent advances in our understanding of c-di-GMP signaling in the lifecycle of C. difficile.
Collapse
|
143
|
Nobbs AH, Jenkinson HF. Interkingdom networking within the oral microbiome. Microbes Infect 2015; 17:484-92. [PMID: 25805401 DOI: 10.1016/j.micinf.2015.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
Abstract
Different sites within the oropharynx harbour unique microbial communities. Co-evolution of microbes and host has resulted in complex interkingdom circuitries. Metabolic signalling is crucial to these processes, and novel microbial communication factors are progressively being discovered. Resolving interkingdom networks will lead to better understanding of oral health or disease aetiology.
Collapse
Affiliation(s)
- Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom.
| |
Collapse
|
144
|
Affiliation(s)
- Alain Filloux
- Alain Filloux, MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; E-mail:
| |
Collapse
|
145
|
Gorgel M, Ulstrup JJ, Bøggild A, Jones NC, Hoffmann SV, Nissen P, Boesen T. High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis. BMC STRUCTURAL BIOLOGY 2015; 15:4. [PMID: 25886849 PMCID: PMC4376143 DOI: 10.1186/s12900-015-0031-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 11/10/2022]
Abstract
Background Type IV pili are widely expressed among Gram-negative bacteria, where they are involved in biofilm formation, serve in the transfer of DNA, motility and in the bacterial attachment to various surfaces. Type IV pili in Shewanella oneidensis are also supposed to play an important role in extracellular electron transfer by the attachment to sediments containing electron acceptors and potentially forming conductive nanowires. Results The potential nanowire type IV pilin PilBac1 from S. oneidensis was characterized by a combination of complementary structural methods and the atomic structure was determined at a resolution of 1.67 Å by X-ray crystallography. PilBac1 consists of one long N-terminal α-helix packed against four antiparallel β-strands, thus revealing the core fold of type IV pilins. In the crystal, PilBac1 forms a parallel dimer with a sodium ion bound to one of the monomers. Interestingly, our PilBac1 crystal structure reveals two unusual features compared to other type IVa pilins: an unusual position of the disulfide bridge and a straight α-helical section, which usually exhibits a pronounced kink. This straight helix leads to a distinct packing in a filament model of PilBac1 based on an EM model of a Neisseria pilus. Conclusions In this study we have described the first structure of a pilin from Shewanella oneidensis. The structure possesses features of the common type IV pilin core, but also exhibits significant variations in the α-helical part and the D-region. Electronic supplementary material The online version of this article (doi:10.1186/s12900-015-0031-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuela Gorgel
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Jakob Jensen Ulstrup
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Andreas Bøggild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, building 1525, Aarhus C, 8000, Denmark.
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, building 1525, Aarhus C, 8000, Denmark.
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| |
Collapse
|
146
|
Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 2015; 17:173-83. [PMID: 25637951 DOI: 10.1016/j.micinf.2015.01.004] [Citation(s) in RCA: 467] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens have evolved a wide range of strategies to colonize and invade human organs, despite the presence of multiple host defense mechanisms. In this review, we will describe how pathogenic bacteria can adhere and multiply at the surface of host cells, how some bacteria can enter and proliferate inside these cells, and finally how pathogens may cross epithelial or endothelial host barriers and get access to internal tissues, leading to severe diseases in humans.
Collapse
Affiliation(s)
- David Ribet
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France; INSERM, U604, F-75015 Paris, France; INRA, USC2020, F-75015 Paris, France.
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France; INSERM, U604, F-75015 Paris, France; INRA, USC2020, F-75015 Paris, France.
| |
Collapse
|
147
|
Saraoui T, Fall PA, Leroi F, Antignac JP, Chéreau S, Pilet MF. Inhibition mechanism of Listeria monocytogenes by a bioprotective bacteria Lactococcus piscium CNCM I-4031. Food Microbiol 2015; 53:70-8. [PMID: 26611171 DOI: 10.1016/j.fm.2015.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/31/2014] [Accepted: 01/09/2015] [Indexed: 11/27/2022]
Abstract
Listeria monocytogenes is a pathogenic Gram positive bacterium and the etiologic agent of listeriosis, a severe food-borne disease. Lactococcus piscium CNCM I-4031 has the capacity to prevent the growth of L. monocytogenes in contaminated peeled and cooked shrimp. To investigate the inhibititory mechanism, a chemically defined medium (MSMA) based on shrimp composition and reproducing the inhibition observed in shrimp was developed. In co-culture at 26 °C, L. monocytogenes was reduced by 3-4 log CFU g(-1) after 24 h. We have demonstrated that the inhibition was not due to secretion of extracellular antimicrobial compounds as bacteriocins, organic acids and hydrogen peroxide. Global metabolomic fingerprints of these strains in pure culture were assessed by liquid chromatography coupled with high resolution mass spectrometry. Consumption of glucose, amino-acids, vitamins, nitrogen bases, iron and magnesium was measured and competition for some molecules could be hypothesized. However, after 24 h of co-culture, when inhibition of L. monocytogenes occurred, supplementation of the medium with these compounds did not restore its growth. The inhibition was observed in co-culture but not in diffusion chamber when species were separated by a filter membrane. Taken together, these data indicate that the inhibition mechanism of L. monocytogenes by L. piscium is cell-to-cell contact-dependent.
Collapse
Affiliation(s)
- Taous Saraoui
- Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies (EM(3)B), Ifremer, Rue de l'Ile d'Yeu, 44311 Nantes Cedex 03, France; LUNAM Université, Oniris, UMR 1014 Secalim, Site de la Chantrerie, Nantes, F-44307, France; INRA, Nantes, F-44307, France
| | - Papa Abdoulaye Fall
- Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies (EM(3)B), Ifremer, Rue de l'Ile d'Yeu, 44311 Nantes Cedex 03, France; LUNAM Université, Oniris, UMR 1014 Secalim, Site de la Chantrerie, Nantes, F-44307, France; INRA, Nantes, F-44307, France
| | - Françoise Leroi
- Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies (EM(3)B), Ifremer, Rue de l'Ile d'Yeu, 44311 Nantes Cedex 03, France
| | - Jean-Philippe Antignac
- LUNAM Université, Oniris, USC INRA 1329, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, F-44307, France
| | - Sylvain Chéreau
- LUNAM Université, Oniris, USC INRA 1329, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, F-44307, France
| | - Marie France Pilet
- LUNAM Université, Oniris, UMR 1014 Secalim, Site de la Chantrerie, Nantes, F-44307, France; INRA, Nantes, F-44307, France.
| |
Collapse
|
148
|
Structural and evolutionary analyses show unique stabilization strategies in the type IV pili of Clostridium difficile. Structure 2015; 23:385-96. [PMID: 25599642 DOI: 10.1016/j.str.2014.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/18/2014] [Accepted: 11/22/2014] [Indexed: 01/17/2023]
Abstract
Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, biofilm formation, cellular adhesion, and horizontal gene transfer. However, many Gram-positive species, including Clostridium difficile, also produce type IV pili. Here, we identify the major subunit of the type IV pili of C. difficile, PilA1, and describe multiple 3D structures of PilA1, demonstrating the diversity found in three strains of C. difficile. We also model the incorporation of both PilA1 and a minor pilin, PilJ, into the pilus fiber. Although PilA1 contains no cysteine residues, and therefore cannot form the disulfide bonds found in all Gram-negative type IV pilins, it adopts unique strategies to achieve a typical pilin fold. The structures of PilA1 and PilJ exhibit similarities with the type IVb pilins from Gram-negative bacteria that suggest that the type IV pili of C. difficile are involved in microcolony formation.
Collapse
|
149
|
Muschiol S, Balaban M, Normark S, Henriques-Normark B. Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. Bioessays 2015; 37:426-35. [PMID: 25640084 PMCID: PMC4405041 DOI: 10.1002/bies.201400125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram-positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram-negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram-positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram-positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus-like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus-related opening in the cell wall, may mediate DNA uptake in S. pneumoniae.
Collapse
Affiliation(s)
- Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
150
|
Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol 2014; 197:819-32. [PMID: 25512308 DOI: 10.1128/jb.02340-14] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an anaerobic Gram-positive bacterium that causes intestinal infections with symptoms ranging from mild diarrhea to fulminant colitis. Cyclic diguanosine monophosphate (c-di-GMP) is a bacterial second messenger that typically regulates the switch from motile, free-living to sessile and multicellular behaviors in Gram-negative bacteria. Increased intracellular c-di-GMP concentration in C. difficile was recently shown to reduce flagellar motility and to increase cell aggregation. In this work, we investigated the role of the primary type IV pilus (T4P) locus in c-di-GMP-dependent cell aggregation. Inactivation of two T4P genes, pilA1 (CD3513) and pilB1 (CD3512), abolished pilus formation and significantly reduced cell aggregation under high c-di-GMP conditions. pilA1 is preceded by a putative c-di-GMP riboswitch, predicted to be transcriptionally active upon c-di-GMP binding. Consistent with our prediction, high intracellular c-di-GMP concentration increased transcript levels of T4P genes. In addition, single-round in vitro transcription assays confirmed that transcription downstream of the predicted transcription terminator was dose dependent and specific to c-di-GMP binding to the riboswitch aptamer. These results support a model in which T4P gene transcription is upregulated by c-di-GMP as a result of its binding to an upstream transcriptionally activating riboswitch, promoting cell aggregation in C. difficile.
Collapse
|