101
|
Xu Y, Li P, Li K, Li N, Liu H, Zhang X, Liu W, Liu Y. Pathological mechanisms and crosstalk among different forms of cell death in systemic lupus erythematosus. J Autoimmun 2022; 132:102890. [PMID: 35963809 DOI: 10.1016/j.jaut.2022.102890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by a profound immune dysregulation and the presence of a variety of autoantibodies. Aberrant activation of programmed cell death (PCD) signaling and accelerated cell death is critical in the immunopathogenesis of SLE. Accumulating cellular components from the dead cells and ineffective clearance of the dead cell debris, in particular the nucleic acids and nucleic acids-protein complexes, provide a stable source of self-antigens, which potently activate auto-reactive B cells and promote IFN-I responses in SLE. Different cell types display distinct susceptibility and characteristics to a certain type of cell death, while different PCDs in various cells have mutual and intricate connections to promote immune dysregulation and contribute to the development of SLE. In this review, we discuss the role of various cell death pathways and their interactions in the pathogenesis of SLE. An in depth understanding of the interconnections among various forms cell death in SLE will lead to a better understanding of disease pathogenesis, shedding light on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Ketian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huazhen Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yudong Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
102
|
Falcinelli E, Petito E, Gresele P. The role of platelets, neutrophils and endothelium in COVID-19 infection. Expert Rev Hematol 2022; 15:727-745. [PMID: 35930267 DOI: 10.1080/17474086.2022.2110061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 is associated to an increased risk of thrombosis, as a result of a complex process that involves the activation of vascular and circulating cells, the release of soluble inflammatory and thrombotic mediators and blood clotting activation. AREAS COVERED This article reviews the pathophysiological role of platelets, neutrophils and the endothelium, and of their interactions, in the thrombotic complications of COVID-19 patients, and the current and future therapeutic approaches targeting these cell types. EXPERT OPINION Virus-induced platelet, neutrophil and endothelial cell changes are crucial triggers of the thrombotic complications and of the adverse evolution of COVID-19. Both the direct interaction with the virus and the associated cytokine storm concur to trigger cell activation in a classical thromboinflammatory vicious circle. Although heparin has proven to be an effective prophylactic and therapeutic weapon for the prevention and treatment of COVID-19-associated thrombosis, it acts downstream of the cascade of events triggered by SARS-CoV-2. The identification of specific molecular targets interrupting the thromboinflammatory cascade upstream, and more specifically acting either on the interaction of SARS-CoV-2 with blood and vascular cells or on the specific signalling mechanisms associated with their COVID-19-associated activation, might theoretically offer greater protection with potentially lesser side effects.
Collapse
Affiliation(s)
- E Falcinelli
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - E Petito
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - P Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
103
|
Carmona-Rivera C, Zhang Y, Dobbs K, Markowitz TE, Dalgard CL, Oler AJ, Claybaugh DR, Draper D, Truong M, Delmonte OM, Licciardi F, Ramenghi U, Crescenzio N, Imberti L, Sottini A, Quaresima V, Fiorini C, Discepolo V, Lo Vecchio A, Guarino A, Pierri L, Catzola A, Biondi A, Bonfanti P, Poli Harlowe MC, Espinosa Y, Astudillo C, Rey-Jurado E, Vial C, de la Cruz J, Gonzalez R, Pinera C, Mays JW, Ng A, Platt A, Drolet B, Moon J, Cowen EW, Kenney H, Weber SE, Castagnoli R, Magliocco M, Stack MA, Montealegre G, Barron K, Fink DL, Kuhns DB, Hewitt SM, Arkin LM, Chertow DS, Su HC, Notarangelo LD, Kaplan MJ. Multicenter analysis of neutrophil extracellular trap dysregulation in adult and pediatric COVID-19. JCI Insight 2022; 7:160332. [PMID: 35852866 PMCID: PMC9534551 DOI: 10.1172/jci.insight.160332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease, including multisystem inflammatory syndrome in children (MIS-C) and chilblain-like lesions (CLLs), otherwise known as “COVID toes,” remains unclear. Studying multinational cohorts, we found that, in CLLs, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity. MIS-C and CLL serum samples displayed decreased NET degradation ability, in association with C1q and G-actin or anti-NET antibodies, respectively, but not with genetic variants of DNases. In adult COVID-19, persistent elevations in NETs after disease diagnosis were detected but did not occur in asymptomatic infection. COVID-19–affected adults displayed significant prevalence of impaired NET degradation, in association with anti-DNase1L3, G-actin, and specific disease manifestations, but not with genetic variants of DNases. NETs were detected in many organs of adult patients who died from COVID-19 complications. Infection with the Omicron variant was associated with decreased NET levels when compared with other SARS-CoV-2 strains. These data support a role for NETs in the pathogenesis and severity of COVID-19 in pediatric and adult patients.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID); and
| | | | | | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics, School of Medicine, and the American Genome Center, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Dillon R. Claybaugh
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
| | | | | | | | | | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences and
| | - Nicoletta Crescenzio
- Pediatric Hematology, “Regina Margherita” Children Hospital, University of Turin, Turin, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Virginia Quaresima
- Centro di Ricerca Emato-oncologica AIL, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Chiara Fiorini
- Centro di Ricerca Emato-oncologica AIL, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Valentina Discepolo
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Luca Pierri
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Andrea Catzola
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Andrea Biondi
- Department of Pediatrics, University of Milano-Bicocca, European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital–University of Milano-Bicocca, Monza, Italy
| | - Maria C. Poli Harlowe
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Hospital Roberto del Rio, Santiago, Chile
| | | | | | - Emma Rey-Jurado
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Vial
- Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Programa Hantavirus, Instituto de Ciencias e Innovación en Medicina, Santiago, Chile
| | - Javiera de la Cruz
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Ricardo Gonzalez
- Pediatric Intensive Care Unit, Hospital Exequiel Gonzalez Cortés, Santiago, Chile
| | - Cecilia Pinera
- Infectious Diseases Unit, Hospital Dr. Exequiel González Cortés, Región Metropolitana, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jacqueline W. Mays
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Ashley Ng
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Andrew Platt
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, and Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA
| | | | | | - Beth Drolet
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John Moon
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | - Mary Magliocco
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID; and
| | - Michael A. Stack
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID; and
| | - Gina Montealegre
- Division of Clinical Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Karyl Barron
- Division of Clinical Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Danielle L. Fink
- Applied/Developmental Research Directorate, Frederick and National Laboratory for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Douglas B. Kuhns
- Applied/Developmental Research Directorate, Frederick and National Laboratory for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Lisa M. Arkin
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Daniel S. Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, and Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID); and
| | | | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
| |
Collapse
|
104
|
Liu Y, Yu X, Zhang W, Zhang X, Wang M, Ji F. Mechanistic insight into premature atherosclerosis and cardiovascular complications in systemic lupus erythematosus. J Autoimmun 2022; 132:102863. [PMID: 35853760 DOI: 10.1016/j.jaut.2022.102863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with a significant risk of cardiovascular disease (CVD), which substantially increases disease mortality and morbidity. The overall mechanisms associated with the development of premature atherosclerosis and CVD in SLE remain unclear, but has been considered as a result of an intricate interplay between the profound immune dysregulation and traditional CVD risk factors. Aberrant systemic inflammation in SLE may lead to an abnormal lipid profile and dysfunction, which can further fuel the pro-atherosclerotic environment. The existence of a strong imbalance between endothelial damage and vascular repair/angiogenesis promotes vascular injury, which is the early step in the progression of atherosclerotic CVD. Profound innate and adaptive immune dysregulation, characterized by excessive type I interferon burden, aberrant macrophage, platelet and complements activation, neutrophil dysregulation and neutrophil extracellular traps formation, uncontrolled T cell activation, and excessive autoantibody production and immune complex formation, have been proposed to promote accelerated CVD in SLE. While designing targeted therapies to correct the dysregulated immune activation may be beneficial in the treatment of SLE-related CVD, much additional work is needed to determine how to translate these findings into clinical practice. Additionally, a number of biomarkers display diagnostic potentials in improving CVD risk stratification in SLE, further prospective studies will help understand which biomarker(s) will be the most impactful one(s) in assessing SLE-linked CVD. Continued efforts to identify novel mechanisms and to establish criteria for assessing CVD risk as well as predicting CVD progression are in great need to improve CVD outcomes in SLE.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Wenduo Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Fusui Ji
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
105
|
Signa S, Bertoni A, Penco F, Caorsi R, Cafaro A, Cangemi G, Volpi S, Gattorno M, Schena F. Adenosine Deaminase 2 Deficiency (DADA2): A Crosstalk Between Innate and Adaptive Immunity. Front Immunol 2022; 13:935957. [PMID: 35898506 PMCID: PMC9309328 DOI: 10.3389/fimmu.2022.935957] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Deficiency of Adenosine deaminase 2 (DADA2) is a monogenic autoinflammatory disorder presenting with a broad spectrum of clinical manifestations, including immunodeficiency, vasculopathy and hematologic disease. Biallelic mutations in ADA2 gene have been associated with a decreased ADA2 activity, leading to reduction in deamination of adenosine and deoxyadenosine into inosine and deoxyinosine and subsequent accumulation of extracellular adenosine. In the early reports, the pivotal role of innate immunity in DADA2 pathogenic mechanism has been underlined, showing a skewed polarization from the M2 macrophage subtype to the proinflammatory M1 subtype, with an increased production of inflammatory cytokines such as TNF-α. Subsequently, a dysregulation of NETosis, triggered by the excess of extracellular Adenosine, has been implicated in the pathogenesis of DADA2. In the last few years, evidence is piling up that adaptive immunity is profoundly altered in DADA2 patients, encompassing both T and B branches, with a disrupted homeostasis in T-cell subsets and a B-cell skewing defect. Type I/type II IFN pathway upregulation has been proposed as a possible core signature in DADA2 T cells and monocytes but also an increased IFN-β secretion directly from endothelial cells has been described. So far, a unifying clear pathophysiological explanation for the coexistence of systemic inflammation, immunedysregulation and hematological defects is lacking. In this review, we will explore thoroughly the latest understanding regarding DADA2 pathophysiological process, with a particular focus on dysregulation of both innate and adaptive immunity and their interacting role in the development of the disease.
Collapse
Affiliation(s)
- Sara Signa
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Arinna Bertoni
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
- *Correspondence: Marco Gattorno,
| | - Francesca Schena
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
106
|
Fernandez-Ruiz R, Belmont HM. The role of anticomplement therapy in lupus nephritis. Transl Res 2022; 245:1-17. [PMID: 35158097 DOI: 10.1016/j.trsl.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
The complement system plays crucial roles in homeostasis and host defense against microbes. Deficiency of early complement cascade components has been associated with increased susceptibility to systemic lupus erythematosus (SLE), whereas excessive complement consumption is a hallmark of this disease. Although enhanced classical pathway activation by immune complexes was initially thought to be the main contributor to lupus nephritis (LN) pathogenesis, an increasing body of evidence has suggested the alternative and the lectin pathways are also involved. Therapeutic agents targeting complement activation have been used in LN patients and clinical trials are ongoing. We review the mechanisms by which complement system dysregulation contributes to renal injury in SLE and summarize the latest evidence on the use of anticomplement agents to manage this condition.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, NYU Grossman School of Medicine, New York, New York
| | | |
Collapse
|
107
|
Simões G, Pereira T, Caseiro A. Matrix metaloproteinases in vascular pathology. Microvasc Res 2022; 143:104398. [PMID: 35671836 DOI: 10.1016/j.mvr.2022.104398] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022]
Abstract
Vascular diseases are the main cause of morbidity and mortality. The vascular extracellular matrix (ECM) is essential in mechanical support, also regulating the cellular behavior fundamental to vascular function and homeostasis. Vascular remodeling is an adaptive response to various physiological and pathological changes and is associated with aging and vascular diseases. The aim of this review is provide a general overview of the involvement of MMPs in the pathogenesis of vascular diseases, namely, arterial hypertension, atherosclerosis, aortic aneurysms and myocardial infarction. The change in the composition of the ECM by matrix metalloproteinases (MMPs) generates a pro-inflammatory microenvironment that modifies the phenotypes of endothelial cells and vascular smooth muscle cells. They play a central role in morphogenesis, tissue repair and remodeling in response to injury, e.g., after myocardial infarction, and in progression of diseases such as atherosclerosis. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension and aneurysm formation. MMPs are regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio generally determines the extent of ECM protein degradation and tissue remodeling. Studies are currently focused on improving the diagnostic and prognostic value of MMPs involved in the pathogenic process, increasing their therapeutic potential, and monitoring the disease. New selective MMP inhibitors may improve the specificity of these inhibitors, target specific MMPs in relevant pathological conditions and mitigate some of the side effects.
Collapse
Affiliation(s)
- Gonçalo Simões
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Telmo Pereira
- LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Politécnico de Coimbra, ESTeSC, Fisiologia Clínica, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Armando Caseiro
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Unidade I&D Química-Física Molecular, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.
| |
Collapse
|
108
|
Mulet M, Osuna-Gómez R, Zamora C, Porcel JM, Nieto JC, Perea L, Pajares V, Muñoz-Fernandez AM, Calvo N, Sorolla MA, Vidal S. Influence of Malignant Pleural Fluid from Lung Adenocarcinoma Patients on Neutrophil Response. Cancers (Basel) 2022; 14:cancers14102529. [PMID: 35626131 PMCID: PMC9139419 DOI: 10.3390/cancers14102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary This study provides novel information about the role of neutrophils in malignant pleural effusion (MPE) and hallmarks their clinical relevance. Since these cells have emerged as important regulators of cancer, we characterized their phenotype and functions in MPE microenvironment. We found that neutrophil-derived products (degranulation molecules and neutrophil extracellular traps (NETs)) were increased in MPE. In addition, NETs were associated with a worse outcome in lung adenocarcinoma patients with MPE. Abstract Malignant pleural effusion (MPE) is a common severe complication of advanced lung adenocarcinoma (LAC). Neutrophils, an essential component of tumor infiltrates, contribute to tumor progression and their counts in MPE have been associated with worse outcome in LAC. This study aimed to evaluate phenotypical and functional changes of neutrophils induced by MPE to determine the influence of MPE immunomodulatory factors in neutrophil response and to find a possible association between neutrophil functions and clinical outcomes. Pleural fluid samples were collected from 47 LAC and 25 heart failure (HF) patients. We measured neutrophil degranulation products by ELISA, oxidative burst capacity and apoptosis by flow cytometry, and NETosis by fluorescence. The concentration of degranulation products was higher in MPE-LAC than in PE-HF. Functionally, neutrophils cultured with MPE-LAC had enhanced survival and neutrophil extracellular trap (NET) formation but had reduced oxidative burst capacity. In MPE, NETosis was positively associated with MMP-9, P-selectin, and sPD-L1 and clinically related to a worse outcome. This is the first study associating NETs with a worse outcome in MPE. Neutrophils likely contribute to tumor progression through the release of NETs, suggesting that they are a potential therapeutic target in LAC.
Collapse
Affiliation(s)
- Maria Mulet
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Rubén Osuna-Gómez
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Carlos Zamora
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - José M. Porcel
- Pleural Medicine Unit, Department of Internal Medicine, Hospital Universitari Arnau de Vilanova, IRBLleida, University of Lleida, 25003 Lleida, Spain;
| | - Juan C. Nieto
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Lídia Perea
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Virginia Pajares
- Department of Pneumology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (V.P.); (A.M.M.-F.)
| | - Ana M. Muñoz-Fernandez
- Department of Pneumology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (V.P.); (A.M.M.-F.)
| | - Nuria Calvo
- Department of Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | | | - Silvia Vidal
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
- Correspondence:
| |
Collapse
|
109
|
Endothelial Dysfunction Induced by Extracellular Neutrophil Traps Plays Important Role in the Occurrence and Treatment of Extracellular Neutrophil Traps-Related Disease. Int J Mol Sci 2022; 23:ijms23105626. [PMID: 35628437 PMCID: PMC9147606 DOI: 10.3390/ijms23105626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major focus of tissue damage, which is highly related to many inflammatory diseases. Therefore, this review summarizes the latest advances in the primary and secondary mechanisms between NETs and ED regarding inflammation as a mediator. Moreover, the detailed molecular mechanisms with emphasis on the disadvantages from NETs are elaborated: NETs can use its own enzymes, release particles as damage-associated molecular patterns (DAMPs) and activate the complement system to interact with endothelial cells (ECs), drive ECs damage and eventually aggravate inflammation. In view of the role of NETs-induced ED in different diseases, we also discussed possible molecular mechanisms and the treatments of NETs-related diseases.
Collapse
|
110
|
Yamamoto T, Endo D, Shimada A, Matsushita S, Asai T, Amano A. Surgical treatment of acute aortic dissection in a patient with SLE and prior antiphospholipid syndrome on therapy for over 30 years: a case report. BMC Cardiovasc Disord 2022; 22:216. [PMID: 35562652 PMCID: PMC9103044 DOI: 10.1186/s12872-022-02659-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In patients with systemic lupus erythematosus (SLE), lengthy treatment and long-term steroid use are the main risk factors for developing aortic aneurysms or aortic dissections. In patients with cardiac tamponade, hemodynamic collapse may lead to acute renal and hepatic failure. CASE PRESENTATION We report the successful treatment of a 55-year-old woman with SLE since the age of 21. She suddenly felt chest pain approximately 2 weeks before developing fever and vomiting and was admitted to our hospital. Initially, she had severe liver dysfunction and was admitted to the hepatology department, where treatment for fulminant hepatitis was initiated. However, computed tomography (CT) showed an acute aortic dissection (DeBakey type II) and severe bloody pericardial effusion. Therefore, we performed emergency pericardial drainage. Plasma exchange therapy was initiated as emergency aortic surgery was deemed impossible due to impaired liver function tests and coagulation. Ten days later, the patient developed peritonitis due to small bowel perforation, and laparotomy was performed for abscess drainage and perforation closure. She had received steroid pulse therapy at the age of 21. At 40 years of age, she developed deep vein thrombosis due to antiphospholipid antibodies and was prescribed prednisolone. She was ambulatory at 3 months after the onset of acute aortic dissection, and CT revealed a rapidly enlarging true aneurysm in the distal arch. We performed elective aortic surgery. Although there were no antiphospholipid antibodies, surgery could have led to a devastating antiphospholipid syndrome. Therefore, we decided to treat the patient with triple therapy. Methylprednisolone was intravenously administered intraoperatively and at 1 day postoperatively. The patient was discharged without complications after returning to her usual oral prednisolone regimen. CONCLUSIONS The patient described herein had a systemic circulatory failure due to cardiac tamponade, accompanied by liver failure. This condition is a significant cause of death in patients with aortic dissection-associated SLE and is extremely dangerous. However, multi-specialty intervention helped the patient recover, and she has been attending the outpatient clinic. Aortic surgery requiring hypothermia in SLE patients with antiphospholipid syndrome and a history of thrombocytopenia or thrombosis requires a multi-disciplinary treatment team, including cardiac surgeons and medical experts.
Collapse
Affiliation(s)
- Taira Yamamoto
- Department of Cardiovascular Surgery, Juntendo Nerima Hospital, Takanodai 3-1-10, Nerima- Ku, Tokyo, 177-8521, Japan.
| | - Daisuke Endo
- Department of Cardiovascular Surgery, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akie Shimada
- Department of Cardiovascular Surgery, Juntendo Nerima Hospital, Takanodai 3-1-10, Nerima- Ku, Tokyo, 177-8521, Japan
| | - Satoshi Matsushita
- Department of Cardiovascular Surgery, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tohru Asai
- Department of Cardiovascular Surgery, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Atsushi Amano
- Department of Cardiovascular Surgery, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
111
|
Oliveira CB, Kaplan MJ. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2022; 44:309-324. [PMID: 35355124 PMCID: PMC9064999 DOI: 10.1007/s00281-022-00922-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) often features extensive cardiovascular (CV) comorbidity and patients with SLE are at significantly increased risk of CV event occurrence and CV-related mortality. While the specific mechanisms leading to this increased cardiovascular disease (CVD) risk remain to be fully characterized, this heightened risk cannot be fully explained by traditional CV risk factors and is likely driven by immunologic and inflammatory features of SLE. Widespread innate and adaptive immune dysregulation characterize SLE, and factors including excessive type I interferon burden, inappropriate formation and ineffective clearance of neutrophil extracellular traps, and autoantibody formation have been linked to clinical and metabolic features impacting CV risk in SLE and may represent pathogenic drivers of SLE-related CVD. Indeed, functional and phenotypic aberrations in almost every immune cell type are present in SLE and may impact CVD progression. As understanding of the contribution of SLE-specific factors to CVD in SLE improves, improved screening and monitoring of CV risk alongside development of therapeutic treatments aimed at prevention of CVD in SLE patients are required and remain the focus of several ongoing studies and lines of inquiry.
Collapse
Affiliation(s)
- Christopher B Oliveira
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA.
| |
Collapse
|
112
|
Oliveira CB, Kaplan MJ. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2022. [PMID: 35355124 DOI: 10.1007/s00281-02200922-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Systemic lupus erythematosus (SLE) often features extensive cardiovascular (CV) comorbidity and patients with SLE are at significantly increased risk of CV event occurrence and CV-related mortality. While the specific mechanisms leading to this increased cardiovascular disease (CVD) risk remain to be fully characterized, this heightened risk cannot be fully explained by traditional CV risk factors and is likely driven by immunologic and inflammatory features of SLE. Widespread innate and adaptive immune dysregulation characterize SLE, and factors including excessive type I interferon burden, inappropriate formation and ineffective clearance of neutrophil extracellular traps, and autoantibody formation have been linked to clinical and metabolic features impacting CV risk in SLE and may represent pathogenic drivers of SLE-related CVD. Indeed, functional and phenotypic aberrations in almost every immune cell type are present in SLE and may impact CVD progression. As understanding of the contribution of SLE-specific factors to CVD in SLE improves, improved screening and monitoring of CV risk alongside development of therapeutic treatments aimed at prevention of CVD in SLE patients are required and remain the focus of several ongoing studies and lines of inquiry.
Collapse
Affiliation(s)
- Christopher B Oliveira
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA.
| |
Collapse
|
113
|
Baptista de Barros Ribeiro Dourado LP, Santos M, Moreira-Gonçalves D. Nets, pulmonary arterial hypertension, and thrombo-inflammation. J Mol Med (Berl) 2022; 100:713-722. [PMID: 35441845 DOI: 10.1007/s00109-022-02197-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/28/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal vascular disease in which high blood pressure in the pulmonary artery and remodeling of the pulmonary vasculature ensues. This disorder is characterized by the presence of thrombotic lesions, resulting from chronic platelet, coagulation factors, and endothelium activation, which translate into platelet aggregation, vasoconstriction, and medial thickening. Neutrophil extracellular traps (NETs), a network of chromatin and cytoplasmatic enzymes (myeloperoxidase and neutrophil elastase) forming after neutrophil programmed cell death, were described in multiple cardiovascular diseases as thrombotic mediators, by creating a scaffold or by surface receptor interaction. In this review, we analyze the possible involvement of NETs in PAH, to enlighten future studies to explore this hypothesis. NETs may have a determining role in pulmonary hypertension through activation of platelets and endothelial cells. Simultaneously, NETosis may be induced by endothelial signaling and/or cell-cell interaction between platelets and primed neutrophils, creating a positive feedback loop. Confirming its role in the pathophysiology and prognosis of PAH may represent a new opportunity to explore new therapeutic options. KEY MESSAGES: Thrombosis and innate immunity are relevant axes in PAH. Patients with PAH display elevated levels of NETs. NETs could activate platelets/endothelium with proliferative and thrombotic effects. Activated platelets and endothelium could contribute to NETosis. NETs could open new therapy research avenues.
Collapse
Affiliation(s)
| | - Mário Santos
- Cardiology Department, Hospital Santo António, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, 4099-001, Porto, Portugal.,Unit of Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sport, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
114
|
Manchanda AS, Kwan AC, Ishimori M, Thomson LEJ, Li D, Berman DS, Bairey Merz CN, Jefferies C, Wei J. Coronary Microvascular Dysfunction in Patients With Systemic Lupus Erythematosus and Chest Pain. Front Cardiovasc Med 2022; 9:867155. [PMID: 35498009 PMCID: PMC9053571 DOI: 10.3389/fcvm.2022.867155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chest pain is a common symptom in patients with systemic lupus erythematosus, an autoimmune disease that is associated with increased cardiovascular morbidity and mortality. While chest pain mechanisms can be multifactorial and often attributed to non-coronary or non-cardiac cardiac etiologies, emerging evidence suggests that ischemia with no obstructive coronary arteries (INOCA) is a prevalent condition in patients with chest pain and no obstructive coronary artery disease. Coronary microvascular dysfunction is reported in approximately half of SLE patients with suspected INOCA. In this mini review, we highlight the cardiovascular risk assessment, mechanisms of INOCA, and diagnostic approach for patients with SLE and suspected CMD.
Collapse
Affiliation(s)
- Ashley S. Manchanda
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alan C. Kwan
- Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Imaging, Mark Taper Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mariko Ishimori
- Division of Rheumatology and Department of Biomedical Sciences, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Louise E. J. Thomson
- Department of Imaging, Mark Taper Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Daniel S. Berman
- Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Imaging, Mark Taper Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - C. Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline Jefferies
- Division of Rheumatology and Department of Biomedical Sciences, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Janet Wei
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Cedars-Sinai Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- *Correspondence: Janet Wei
| |
Collapse
|
115
|
Domerecka W, Homa-Mlak I, Mlak R, Michalak A, Wilińska A, Kowalska-Kępczyńska A, Dreher P, Cichoż-Lach H, Małecka-Massalska T. Indicator of Inflammation and NETosis-Low-Density Granulocytes as a Biomarker of Autoimmune Hepatitis. J Clin Med 2022; 11:2174. [PMID: 35456267 PMCID: PMC9026397 DOI: 10.3390/jcm11082174] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction. Interest in the potential role of low-density granulocytes (LDGs) in the development of autoimmune diseases has been renewed recently. Due to their pro-inflammatory action, more and more attention is paid to the role of LDGs, including those expressing the enzyme myeloperoxidase (MPO), in the development of autoimmune hepatitis (AIH). LDGs are actively involved in the formation of neutrophil extracellular traps (NETs). This phenomenon may favour the externalization of the autoantigen and lead to damage to internal organs, including the liver. Aim. The main aim of the study was to assess the diagnostic usefulness of the LDG percentage, including the fraction showing MPO expression as markers of systemic inflammation in AIH. Materials and methods. The study included a group of 25 patients with AIH and 20 healthy volunteers. Mononuclear cells, isolated from peripheral blood, were labelled with monoclonal antibodies conjugated to the appropriate fluorochromes (CD15-FITC, CD14-PE, CD10-PE-Cy5, MPO+) and then analyzed on a Navios Flow Cytometer (Beckman Coulter). Results. Patients with AIH had a higher median percentage of LDG (1.2 vs. 0.1; p = 0.0001) and LDG expressing MPO (0.8 vs. 0.3; p = 0.0017) when compared to healthy volunteers. Moreover, the percentage of LDG was characterised by 100% of sensitivity and 55% of specificity (AUC = 0.84; p < 0.0001), while the percentage of LDG expressing MPO was 92% of sensitivity and 55% of specificity (AUC = 0.78; p = 0.0001) in the detection of AIH. Conclusions. Assessment of inflammatory markers, such as the percentage of LDG and the percentage of LDG expressing MPO, may be helpful in assessing the phenomenon of an increased systemic inflammatory response and in assessing liver fibrosis (LC, Liver cirrhosis), which is inherent in liver decompensation. Taking into account the above arguments, the assessment of the percentage of LDG, including LDG expressing MPO, may turn out to be a useful marker in the diagnosis of AIH.
Collapse
Affiliation(s)
- Weronika Domerecka
- Department of Human Physiology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| | - Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, 8 Jaczewskiego Str., 20-090 Lublin, Poland; (A.M.); (H.C.-L.)
| | - Agnieszka Wilińska
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland;
| | - Anna Kowalska-Kępczyńska
- Department of Biochemical Diagnostics, Laboratory Diagnostics, Medical University of Lublin, 16 Staszica Str., 20-081 Lublin, Poland;
| | - Piotr Dreher
- Public Health, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, 8 Jaczewskiego Str., 20-090 Lublin, Poland; (A.M.); (H.C.-L.)
| | - Teresa Małecka-Massalska
- Department of Human Physiology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| |
Collapse
|
116
|
Moschetti L, Piantoni S, Vizzardi E, Sciatti E, Riccardi M, Franceschini F, Cavazzana I. Endothelial Dysfunction in Systemic Lupus Erythematosus and Systemic Sclerosis: A Common Trigger for Different Microvascular Diseases. Front Med (Lausanne) 2022; 9:849086. [PMID: 35462989 PMCID: PMC9023861 DOI: 10.3389/fmed.2022.849086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
This review describes the complex interplay between inflammation, vasculopathy and fibrosis that involve the heart and peripheral small vessels, leading to endothelial stiffness, vascular damage, and early aging in patients with systemic lupus erythematosus and systemic sclerosis, which represents two different models of vascular dysfunction among systemic autoimmune diseases. In fact, despite the fact that diagnostic methods and therapies have been significantly improved in the last years, affected patients show an excess of cardiovascular mortality if compared with the general population. In addition, we provide a complete overview on the new techniques which are used for the evaluation of endothelial dysfunction in a preclinical phase, which could represent a new approach in the assessment of cardiovascular risk in these patients.
Collapse
Affiliation(s)
- Liala Moschetti
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Piantoni
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- *Correspondence: Silvia Piantoni,
| | - Enrico Vizzardi
- Cardiology Unit, ASST Spedali Civili of Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Mauro Riccardi
- Cardiology Unit, ASST Spedali Civili of Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Franco Franceschini
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ilaria Cavazzana
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
117
|
Mak A, Chan JKY. Endothelial function and endothelial progenitor cells in systemic lupus erythematosus. Nat Rev Rheumatol 2022; 18:286-300. [PMID: 35393604 DOI: 10.1038/s41584-022-00770-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
The observations that traditional cardiovascular disease (CVD) risk factors fail to fully account for the excessive cardiovascular mortality in patients with systemic lupus erythematosus (SLE) compared with the general population have prompted in-depth investigations of non-traditional, SLE-related risk factors that contribute to cardiovascular complications in patients with SLE. Of the various perturbations of vascular physiology, endothelial dysfunction, which is believed to occur in the earliest step of atherosclerosis, has been extensively investigated for its contribution to CVD risk in SLE. Endothelial progenitor cells (EPCs), which play a crucial part in vascular repair, neovascularization and maintenance of endothelial function, are quantitatively and functionally reduced in patients with SLE. Yet, the lack of a unified definition of EPCs, standardization of the quantity and functional assessment of EPCs as well as endothelial function measurement pose challenges to the translation of endothelial function measurements and EPC levels into prognostic markers for CVD in patients with SLE. This Review discusses factors that contribute to CVD in SLE, with particular focus on how endothelial function and EPCs are evaluated currently, and how EPCs are quantitatively and functionally altered in patients with SLE. Potential strategies for the use of endothelial function measurements and EPC quantification as prognostic markers of CVD in patients with SLE, and the limitations of their prognostication potential, are also discussed.
Collapse
Affiliation(s)
- Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore, Singapore.
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Academic Clinical Programme in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
118
|
Copur S, Berkkan M, Basile C, Tuttle K, Kanbay M. Post-acute COVID-19 syndrome and kidney diseases: what do we know? J Nephrol 2022; 35:795-805. [PMID: 35294747 PMCID: PMC8924729 DOI: 10.1007/s40620-022-01296-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/20/2022] [Indexed: 12/17/2022]
Abstract
COVID-19, a disease caused by a novel coronavirus (SARS-CoV-2), is a major global threat that has turned into a pandemic. Despite the emergence of multiple vaccination alternatives and developing therapeutic options, dramatic short- and long-term clinical outcomes have been recorded with more than 250 million infected people and over 5 million deaths as of November 2021. COVID-19 presents various respiratory, cardiovascular, neuropsychiatric, musculoskeletal and kidney features during the acute phase; nevertheless, renal involvement in the post-infection period has recently been emphasized. The present review aims to evaluate the growing literature on kidney involvement in the SARS-CoV-2 infection along with clinical features reported both in the acute phase of the infection and in the post-acute COVID-19 period by assessing potential pathophysiological frameworks explaining such conditions. Chronic kidney disease and development of acute kidney injury (AKI) in the course of initial hospitalization are associated with high mortality and morbidity rates. Moreover, growing evidence suggests a decline in renal function in the 6-to-12-month follow-up period even in patients without any signs of AKI during the acute phase. Despite such concerns there are no guidelines regulating the follow-up period or therapeutic alternatives for such patient population. In conclusion, the burden of COVID-19 on the kidney is yet to be determined. Future prospective large scale studies are needed with long follow-up periods assessing kidney involvement via multiple parameters such as biopsy studies, urinalysis, measurement of serum creatinine and cystatin C, directly measured glomerular filtration rate, and assessment of tubular function via urinary β2-microglobulin measurements.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Metehan Berkkan
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Carlo Basile
- Associazione Nefrologica Gabriella Sebastio, Martina Franca, Italy
| | - Katherine Tuttle
- Division of Nephrology, University of Washington, Seattle, WA USA
- Providence Medical Research Center, Providence Health Care, Washington, USA
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
119
|
Role of NETosis in Central Nervous System Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3235524. [PMID: 35028005 PMCID: PMC8752220 DOI: 10.1155/2022/3235524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Central nervous system (CNS) injury is divided into brain injury and spinal cord injury and remains the most common cause of morbidity and mortality worldwide. Previous reviews have defined numerous inflammatory cells involved in this process. In the human body, neutrophils comprise the largest numbers of myeloid leukocytes. Activated neutrophils release extracellular web-like DNA amended with antimicrobial proteins called neutrophil extracellular traps (NETs). The formation of NETs was demonstrated as a new method of cell death called NETosis. As the first line of defence against injury, neutrophils mediate a variety of adverse reactions in the early stage, and we consider that NETs may be the prominent mediators of CNS injury. Therefore, exploring the specific role of NETs in CNS injury may help us shed some light on early changes in the disease. Simultaneously, we discovered that there is a link between NETosis and other cell death pathways by browsing other research, which is helpful for us to establish crossroads between known cell death pathways. Currently, there is a large amount of research concerning NETosis in various diseases, but the role of NETosis in CNS injury remains unknown. Therefore, this review will introduce the role of NETosis in CNS injury, including traumatic brain injury, cerebral ischaemia, CNS infection, Alzheimer's disease, and spinal cord injury, by describing the mechanism of NETosis, the evidence of NETosis in CNS injury, and the link between NETosis and other cell death pathways. Furthermore, we also discuss some agents that inhibit NETosis as therapies to alleviate the severity of CNS injury. NETosis may be a potential target for the treatment of CNS injury, so exploring NETosis provides a feasible therapeutic option for CNS injury in the future.
Collapse
|
120
|
Carmona-Rivera C, Zhang Y, Dobbs K, Markowitz TE, Dalgard CL, Oler AJ, Claybaugh DR, Draper D, Truong M, Delmonte OM, Licciardi F, Ramenghi U, Crescenzio N, Imberti L, Sottini A, Quaresima V, Fiorini C, Discepolo V, Lo Vecchio A, Guarino A, Pierri L, Catzola A, Biondi A, Bonfanti P, Poli Harlowe MC, Espinosa Y, Astudillo C, Rey-Jurado E, Vial C, de la Cruz J, Gonzalez R, Pinera C, Mays JW, Ng A, Platt A, Drolet B, Moon J, Cowen EW, Kenney H, Weber SE, Castagnoli R, Magliocco M, Stack MA, Montealegre G, Barron K, Hewitt SM, Arkin LM, Chertow DS, Su HC, Notarangelo LD, Kaplan MJ. Multicenter analysis of neutrophil extracellular trap dysregulation in adult and pediatric COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.02.24.22271475. [PMID: 35262093 PMCID: PMC8902885 DOI: 10.1101/2022.02.24.22271475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease including MIS-C and chilblain-like lesions (CLL), otherwise known as "COVID toes", remains unclear. Studying multinational cohorts, we found that, in CLL, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity. MIS-C and CLL serum samples displayed decreased NET degradation ability, in association with C1q and G-actin or anti-NET antibodies, respectively, but not with genetic variants of DNases. In adult COVID-19, persistent elevations in NETs post-disease diagnosis were detected but did not occur in asymptomatic infection. COVID-19-affected adults displayed significant prevalence of impaired NET degradation, in association with anti-DNase1L3, G-actin, and specific disease manifestations, but not with genetic variants of DNases. NETs were detected in many organs of adult patients who died from COVID-19 complications. Infection with the Omicron variant was associated with decreased levels of NETs when compared to other SARS-CoV-2 strains. These data support a role for NETs in the pathogenesis and severity of COVID-19 in pediatric and adult patients. Summary NET formation and degradation are dysregulated in pediatric and symptomatic adult patients with various complications of COVID-19, in association with disease severity. NET degradation impairments are multifactorial and associated with natural inhibitors of DNase 1, G-actin and anti-DNase1L3 and anti-NET antibodies. Infection with the Omicron variant is associated with decreased levels of NETs when compared to other SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | | | - Tovah E. Markowitz
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD
- Axle Informatics, Bethesda, MD, USA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics, School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD and The American Genome Center, USUHS, Bethesda, MD, USA
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD
| | - Dillon R. Claybaugh
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | | | - Francesco Licciardi
- Department of Public Health and Pediatric Sciences, “Regina Margherita” Children’s Hospital, University of Turin, Turin, Italy
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, “Regina Margherita” Children’s Hospital, University of Turin, Turin, Italy
| | - Nicoletta Crescenzio
- Pediatric Hematology, “Regina Margherita” Children Hospital, University of Turin, Turin, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Virginia Quaresima
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Chiara Fiorini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Valentina Discepolo
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Luca Pierri
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Andrea Catzola
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Andrea Biondi
- Department of Pediatrics, University of Milano-Bicocca, European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital–University of Milano-Bicocca, Monza, Italy
| | - Maria Cecilia Poli Harlowe
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Hospital Roberto del Rio, Santiago, Chile
| | | | | | - Emma Rey-Jurado
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Vial
- Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Programa Hantavirus, Instituto de Ciencias e Innovación en Medicina, Santiago, Chile
| | - Javiera de la Cruz
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Ricardo Gonzalez
- Pediatric Intensive Care Unit, Hospital Exequiel Gonzalez Cortés, Santiago, Chile
| | - Cecilia Pinera
- Infectious Diseases Unit, Hospital Dr. Exequiel González Cortés, Región Metropolitana, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jacqueline W. Mays
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Ashley Ng
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Andrew Platt
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, and Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Beth Drolet
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John Moon
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Edward W. Cowen
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD
| | | | | | | | | | | | | | - Karyl Barron
- Division of Clinical Research, NIAID, NIH, Bethesda, MD
| | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lisa M. Arkin
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Daniel S. Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, and Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | | | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
121
|
Masuda S, Kato K, Ishibashi M, Nishibata Y, Sugimoto A, Nakazawa D, Tanaka S, Tomaru U, Tsujino I, Ishizu A. Phorbol 12-myristate 13-acetate stimulation under hypoxia induces nuclear swelling with DNA outflow but not extracellular trap formation of neutrophils. Exp Mol Pathol 2022; 125:104754. [DOI: 10.1016/j.yexmp.2022.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/28/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
|
122
|
Torres-Ruiz J, Carrillo-Vázquez DA, Leal-Alanis A, Zentella-Dehesa A, Tapia-Rodríguez M, Maravillas-Montero JL, Nuñez-Álvarez CA, Carazo-Vargas ER, Romero-Hernández I, Juárez-Vega G, Alcocer-Varela J, Gómez-Martín D. Low-Density Granulocytes and Neutrophil Extracellular Traps as Biomarkers of Disease Activity in Adult Inflammatory Myopathies. J Clin Rheumatol 2022; 28:e480-e487. [PMID: 34643846 DOI: 10.1097/rhu.0000000000001772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVE Biomarkers for disease activity and damage accrual in idiopathic inflammatory myopathies (IIMs) are currently lacking. The purpose of this cross-sectional study is to analyze the relationship among low-density granulocytes (LDGs), neutrophil extracellular traps (NETs), and clinical and immunological features of patients with IIM. METHODS We assessed disease activity, damage accrual, amount of LDGs, NETs, expression of LL-37, and serum cytokines in 65 adult patients with IIM. Differences between groups and correlations were assessed by Kruskal-Wallis, Mann-Whitney U, and Spearman ρ tests. The association between LDGs, NETs, disease activity, calcinosis, and cutaneous ulcers was assessed by logistic regression. To address the capacity of LDGs and NETs to diagnose disease activity, we used receiving operating characteristic curves. RESULTS Low-density granulocytes were higher in patients with active disease, ulcers, calcinosis, and anti-MDA5 antibodies, which correlated with serum levels of IL-17A and IL-18. Neutrophil extracellular traps were higher in patients with calcinosis, elevated titers of antinuclear antibodies, and positive anti-PM/Scl75 tests. The combination of a high proportion of both total LDGs and NETs was associated with the presence of calcinosis and cutaneous ulcers. LL-37 was higher in NETs originating from LDGs. Normal-density neutrophils were elevated in patients with active dermatomyositis. CONCLUSIONS Low-density granulocytes and NETs containing LL-37 are increased in patients with IIM and active disease, and correlate with proinflammatory cytokines. Both total and CD10+ LDGs are potential biomarkers for disease activity and, in combination with NETs, have the potential to detect patients who are at risk for cutaneous ulcers and calcinosis.
Collapse
Affiliation(s)
| | | | - Araceli Leal-Alanis
- Internal Medicine, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran
| | | | - Miguel Tapia-Rodríguez
- Microscopy Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico
| | | | | | | | | | - Guillermo Juárez-Vega
- Flow Cytometry Unit, Red de Apoyo a la Investigación, Coordinacion de Investigación Cientifica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | | |
Collapse
|
123
|
Autoantibodies Present in Hidradenitis Suppurativa Correlate with Disease Severity and Promote the Release of Proinflammatory Cytokines in Macrophages. J Invest Dermatol 2022; 142:924-935. [PMID: 34606886 PMCID: PMC8860851 DOI: 10.1016/j.jid.2021.07.187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022]
Abstract
Hidradenitis suppurativa (HS), also known as acne inversa, is a debilitating inflammatory skin disorder that is characterized by nodules that lead to the development of connected tunnels and scars as it progresses from Hurley stages I to III. HS has been associated with several autoimmune diseases, including inflammatory bowel disease and spondyloarthritis. We previously reported dysregulation of humoral immune responses in HS, characterized by elevated serum total IgG, B-cell activation, and antibodies recognizing citrullinated proteins. In this study, we characterized IgG autoreactivity in HS sera and lesional skin compared with those in normal healthy controls using an array-based high-throughput autoantibody screening. The Cy3-labeled anti-human assay showed the presence of autoantibodies against nuclear antigens, cytokines, cytoplasmic proteins, extracellular matrix proteins, neutrophil proteins, and citrullinated antigens. Most of these autoantibodies were significantly elevated in stages II‒III in HS sera and stage III in HS skin lesions compared with those of healthy controls. Furthermore, immune complexes containing both native and citrullinated versions of antigens can activate M1 and M2 macrophages to release proinflammatory cytokines such as TNF-α, IL-8, IL-6, and IL-12. Taken together, the identification of specific IgG autoantibodies that recognize circulating and tissue antigens in HS suggests an autoimmune mechanism and uncovers putative therapeutic targets.
Collapse
|
124
|
Long JD, Strohbehn I, Sawtell R, Bhattacharyya R, Sise ME. COVID-19 Survival and its impact on chronic kidney disease. Transl Res 2022; 241:70-82. [PMID: 34774843 PMCID: PMC8579714 DOI: 10.1016/j.trsl.2021.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Up to 87% of patients hospitalized with coronavirus disease 2019 (COVID-19) experience chronic sequelae following infection. The long-term impact of COVID-19 infection on kidney function is largely unknown at this point in the COVID-19 pandemic. In this review, we highlight the current understanding of the pathophysiology of COVID-19-associated kidney injury and the impact COVID-19 may have on long-term kidney function. COVID-19-induced acute kidney injury may lead to tubular injury, endothelial injury, and glomerular injury. We highlight histopathologic correlates from large kidney biopsy and autopsy series. By conducting a comprehensive review of published literature to date, we summarize the rates of recovery from COVID-19-associated-AKI. Finally, we discuss how certain genetic differences, including APOL1 risk alleles (a risk factor for collapsing glomerulopathy), coupled with systemic healthcare disparities, may lead to a disproportionate burden of post-COVID-19-kidney function decline among racial and ethnic minority groups. We highlight the need for prospective studies to determine the true incidence of chronic kidney disease burden after COVID-19.
Collapse
Key Words
- aki, acute kidney disease
- aor, adjusted odds ratio
- atn, acute tubular necrosis
- covan, covid-19-associated-nephropathy
- covid-19, coronavirus disease 2019
- ckd, chronic kidney disease
- egfr, estimated glomerular filtration rate
- eskd, end-stage kidney disease
- hr, ratio
- tma, thrombotic microangiopathy
Collapse
Affiliation(s)
- Joshua D Long
- Massachusetts General Hospital, Department of Medicine, Division of Nephrology, Boston, Massachusetts
| | - Ian Strohbehn
- Massachusetts General Hospital, Department of Medicine, Division of Nephrology, Boston, Massachusetts
| | - Rani Sawtell
- Massachusetts General Hospital, Department of Medicine, Division of Nephrology, Boston, Massachusetts
| | - Roby Bhattacharyya
- Massachusetts General Hospital, Department of Medicine, Division of Infectious Diseases, Boston, Massachusetts
| | - Meghan E Sise
- Massachusetts General Hospital, Department of Medicine, Division of Nephrology, Boston, Massachusetts.
| |
Collapse
|
125
|
Abstract
Zn2+ ions are essential in many physiological processes, including enzyme catalysis, protein structural stabilization, and the regulation of many proteins. The affinities of proteins for Zn2+ ions span several orders of magnitude, with catalytic Zn2+ ions generally held more tightly than structural or regulatory ones. Metal carrier proteins, most of which are not specific for Zn2+, bind these ions with a broad range of affinities that overlap those of catalytic, structural, and regulatory Zn2+ ions and are thought to be responsible for distributing the metal through most cells, tissues, and fluid compartments. While little is known about how many proteins obtain or release these ions, there is now considerable experimental evidence suggesting that metal carrier proteins may be responsible for transferring metals to and from some Zn2+-dependent proteins, thus serving as a major regulatory factor for them. In this review, the biological roles of Zn2+ and structures of Zn2+ binding sites are examined, and experimental evidence demonstrating the direct participation of metal carrier proteins in enzyme regulation is discussed. Mechanisms of metal ion transfer are also offered, and the potential physiological significance of this phenomenon is explored.
Collapse
|
126
|
Antonelou M, Evans RDR, Henderson SR, Salama AD. Neutrophils are key mediators in crescentic glomerulonephritis and targets for new therapeutic approaches. Nephrol Dial Transplant 2022; 37:230-238. [PMID: 33057680 DOI: 10.1093/ndt/gfaa206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
Crescentic glomerulonephritis (CGN) results from a diverse set of diseases associated with immune dysregulation and the breakdown of self-tolerance to a wide range of autoantigens, some known and some that remain unknown. Experimental data demonstrate that neutrophils have an important role in the pathogenesis of CGN. Upon activation, neutrophils generate reactive oxygen species, release serine proteases and form neutrophil extracellular traps (NETs), all of which can induce direct tissue damage. In addition, serine proteases such as myeloperoxidase and proteinase 3, presented on NETs, can be processed and recognized as autoantigens, leading to the generation and maintenance of autoimmune responses in susceptible individuals. The basis of the specificity of autoimmune responses in different patients to NET proteins is unclear, but relates at least in part to differences in human leucocyte antigen expression. Conditions associated with CGN are often characterized by aberrant neutrophil activation and NETosis and, in some, impaired NET degradation. Targeting neutrophil degranulation and NETosis is now possible using a variety of novel compounds and may provide a promising therapeutic alternative to glucocorticoid use, which has been a mainstay of management in CGN for decades and is associated with significant adverse effects. In this review, we discuss the evidence supporting the role of neutrophils in the development of CGN and the pathways identified in neutrophil degranulation and NETosis that may translate to novel therapeutic applications.
Collapse
Affiliation(s)
- Marilina Antonelou
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Rhys D R Evans
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Scott R Henderson
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Alan D Salama
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| |
Collapse
|
127
|
The role of neutrophils in rheumatic disease-associated vascular inflammation. Nat Rev Rheumatol 2022; 18:158-170. [PMID: 35039664 DOI: 10.1038/s41584-021-00738-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Vascular pathologies underpin and intertwine autoimmune rheumatic diseases and cardiovascular conditions, and atherosclerosis is increasingly recognized as the leading cause of morbidity in conditions such as systemic lupus erythematosus (SLE), rheumatoid arthritis and antineutrophil cytoplasmic antibody-associated vasculitis. Neutrophils, important cells in the innate immune system, exert their functional effects in tissues via a variety of mechanisms, including the generation of neutrophil extracellular traps and the production of reactive oxygen species. Neutrophils have been implicated in the pathogenesis of several rheumatic diseases, and can also intimately interact with the vascular system, either through modulating endothelial barriers at the blood-vessel interface, or through associations with platelets. Emerging data suggest that neutrophils also have an important role maintaining homeostasis in individual organs and can protect the vascular system. Furthermore, studies using high-dimensional omics technologies have advanced our understanding of neutrophil diversity, and immature neutrophils are receiving new attention in rheumatic diseases including SLE and systemic vasculitis. Developments in genomic, imaging and organoid technologies are beginning to enable more in-depth investigations into the pathophysiology of vascular inflammation in rheumatic diseases, making now a good time to re-examine the full scope of roles of neutrophils in these processes.
Collapse
|
128
|
Polymorphonuclear Neutrophils in Rheumatoid Arthritis and Systemic Lupus Erythematosus: More Complicated Than Anticipated. IMMUNO 2022. [DOI: 10.3390/immuno2010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are the most abundant leucocytes in the circulation in humans. They represent a heterogeneous population exerting diverse functions through several activities. Usually described as typical pro-inflammatory cells, immunomodulatory properties of PMNs have been reported. Among others, once activated and depending on the stimulus, PMNs expel neutrophil extracellular traps (NET) in the extracellular space. NETs are complexes made of DNA and granule proteins representing an innate immune mechanism fighting infections. Nevertheless, an excess of NET formation might be involved in the development of inflammatory or autoimmune responses. Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two chronic, inflammatory, autoimmune diseases of unknown etiology and affecting mostly women. Several abnormal or non-classical functions of PMNs or PMN sub-populations have been described in SLE and RA. Particularly, NETs have been suggested to trigger pro-inflammatory responses by exposing pro-inflammatory mediators. Likewise, NETs may be the targets of autoantibodies or even might trigger the development of autoantibodies by exposing autoantigens. In the present review, we will summarize heterogeneous properties of human PMNs and we will discuss recent evidence linking PMNs and NETs to the pathogenesis of both SLE and RA.
Collapse
|
129
|
Chamardani TM, Amiritavassoli S. Inhibition of NETosis for treatment purposes: friend or foe? Mol Cell Biochem 2022; 477:673-688. [PMID: 34993747 PMCID: PMC8736330 DOI: 10.1007/s11010-021-04315-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Abstract
Active neutrophils participate in innate and adaptive immune responses through various mechanisms, one of the most important of which is the formation and release of neutrophil extracellular traps (NETs). The NETs are composed of network-like structures made of histone proteins, DNA and other released antibacterial proteins by activated neutrophils, and evidence suggests that in addition to the innate defense against infections, NETosis plays an important role in the pathogenesis of several other non-infectious pathological states, such as autoimmune diseases and even cancer. Therefore, targeting NET has become one of the important therapeutic approaches and has been considered by researchers. NET inhibitors or other molecules involved in the NET formation, such as the protein arginine deiminase 4 (PAD4) enzyme, an arginine-to-citrulline converter, participate in chromatin condensation and NET formation, is the basis of this therapeutic approach. The important point is whether complete inhibition of NETosis can be helpful because by inhibiting this mechanism, the activity of neutrophils is suppressed. In this review, the biology of NETosis and its role in the pathogenesis of some important diseases have been summarized, and the consequences of treatment based on inhibition of NET formation have been discussed.
Collapse
|
130
|
Joshi MB, Kamath A, Nair AS, Yedehali Thimmappa P, Sriranjini SJ, Gangadharan GG, Satyamoorthy K. Modulation of neutrophil (dys)function by Ayurvedic herbs and its potential influence on SARS-CoV-2 infection. J Ayurveda Integr Med 2022; 13:100424. [PMID: 33746457 PMCID: PMC7962552 DOI: 10.1016/j.jaim.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
For centuries, traditional medicines of Ayurveda have been in use to manage infectious and non-infectious diseases. The key embodiment of traditional medicines is the holistic system of approach in the management of human diseases. SARS-CoV-2 (COVID-19) infection is an ongoing pandemic, which has emerged as the major health threat worldwide and is causing significant stress, morbidity and mortality. Studies from the individuals with SARS-CoV-2 infection have shown significant immune dysregulation and cytokine overproduction. Neutrophilia and neutrophil to lymphocyte ratio has been correlated to poor outcome due to the disease. Neutrophils, component of innate immune system, upon stimulation expel DNA along with histones and granular proteins to form extracellular traps (NETs). Although, these DNA lattices possess beneficial activity in trapping and eliminating pathogens, NETs may also cause adverse effects by inducing immunothrombosis and tissue damage in diseases including Type 2 Diabetes and atherosclerosis. Tissues of SARS-CoV-2 infected subjects showed microthrombi with neutrophil-platelet infiltration and serum showed elevated NETs components, suggesting large involvement and uncontrolled activation of neutrophils leading to pathogenesis and associated organ damage. Hence, traditional Ayurvedic herbs exhibiting anti-inflammatory and antioxidant properties may act in a manner that might prove beneficial in targeting over-functioning of neutrophils and there by promoting normal immune homeostasis. In the present manuscript, we have reviewed and discussed pathological importance of NETs formation in SARS-CoV-2 infections and discuss how various Ayurvedic herbs can be explored to modulate neutrophil function and inhibit NETs formation in the context of a) anti-microbial activity to enhance neutrophil function, b) immunomodulatory effects to maintain neutrophil mediated immune homeostasis and c) to inhibit NETs mediated thrombosis.
Collapse
Affiliation(s)
- Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Archana Kamath
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aswathy S Nair
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Sitaram J Sriranjini
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - G G Gangadharan
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
131
|
Shi J, Tang M, Zhou S, Xu D, Zhao J, Wu C, Wang Q, Tian X, Li M, Zeng X. Programmed Cell Death Pathways in the Pathogenesis of Idiopathic Inflammatory Myopathies. Front Immunol 2021; 12:783616. [PMID: 34899749 PMCID: PMC8651702 DOI: 10.3389/fimmu.2021.783616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Idiopathic inflammatory myopathy (IIM) is a heterogeneous group of acquired, autoimmune muscle diseases characterized by muscle inflammation and extramuscular involvements. Present literatures have revealed that dysregulated cell death in combination with impaired elimination of dead cells contribute to the release of autoantigens, damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and result in immune responses and tissue damages in autoimmune diseases, including IIMs. This review summarizes the roles of various forms of programmed cell death pathways in the pathogenesis of IIMs and provides evidence for potential therapeutic targets.
Collapse
Affiliation(s)
- Jia Shi
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Mingwei Tang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| |
Collapse
|
132
|
Blanco LP, Wang X, Carlucci PM, Torres-Ruiz JJ, Romo-Tena J, Sun HW, Hafner M, Kaplan MJ. RNA Externalized by Neutrophil Extracellular Traps Promotes Inflammatory Pathways in Endothelial Cells. Arthritis Rheumatol 2021; 73:2282-2292. [PMID: 33983685 PMCID: PMC8589882 DOI: 10.1002/art.41796] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neutrophil extracellular traps (NETs) are extracellular lattices composed of nucleic material bound to neutrophil granule proteins. NETs may play pathogenic roles in the development and severity of autoimmune diseases such as systemic lupus erythematosus (SLE), at least in part, through induction of type I interferon (IFN) responses via externalization of oxidized immunostimulatory DNA. A distinct subset of SLE proinflammatory neutrophils (low-density granulocytes [LDGs]) displays enhanced ability to form proinflammatory NETs that damage the vasculature. We undertook this study to assess whether NET-bound RNA can contribute to inflammatory responses in endothelial cells (ECs) and the pathways that mediate this effect. METHODS Expression of newly synthesized and total RNA was quantified in NETs from healthy controls and lupus patients. The ability of ECs to take up NET-bound RNA and downstream induction of type I IFN responses were quantified. RNAs present in NETs were sequenced and specific small RNAs were tested for induction of endothelial type I IFN pathways. RESULTS NETs extruded RNA that was internalized by ECs, and this was enhanced when NET-bound nucleic acids were oxidized, particularly in lupus LDG-derived NETs. Internalization of NET-bound RNA by ECs was dependent on endosomal Toll-like receptors (TLRs) and the actin cytoskeleton and induced type I IFN-stimulated genes (ISGs). This ISG induction was dependent on NET-associated microRNA let-7b, a small RNA expressed at higher levels in LDG-derived NETs, which acted as a TLR-7 agonist. CONCLUSION These findings highlight underappreciated roles for small RNAs externalized in NETs in the induction of proinflammatory responses in vascular cells, with implications for lupus vasculopathy.
Collapse
Affiliation(s)
- Luz P. Blanco
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xinghao Wang
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Philip M. Carlucci
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jose Jiram Torres-Ruiz
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jorge Romo-Tena
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Medical Science PhD Program, School of Medicine, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Markus Hafner
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
133
|
Groarke EM, Dulau-Florea AE, Kanthi Y. Thrombotic manifestations of VEXAS syndrome. Semin Hematol 2021; 58:230-238. [PMID: 34802545 DOI: 10.1053/j.seminhematol.2021.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/11/2022]
Abstract
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a recently described autoinflammatory syndrome characterized by diffuse inflammatory manifestations, predisposition to hematological malignancy, and an association with a high rate of thrombosis. VEXAS is attributed to somatic mutations in the UBA1 gene in hematopoietic stem and progenitor cells with myeloid restriction in mature forms. The rate of thrombosis in VEXAS patients is approximately 40% in all reported cases to date. Venous thromboembolism predominates thrombotic events in VEXAS. These are classified as unprovoked in etiology, although systemic and vascular inflammation are implicated. Here, we review the clinical and laboratory characteristics in VEXAS that provide insight into the possible mechanisms leading to thrombosis. We present knowledge gaps in the mechanisms and management of VEXAS-associated thromboinflammation and propose areas for future investigation in the field.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Alina E Dulau-Florea
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
134
|
Passam FH, Chen G, Chen VM, Qi M, Krilis SA, Giannakopoulos B. Βeta-2-glycoprotein I exerts antithrombotic function through its domain V in mice. J Autoimmun 2021; 126:102747. [PMID: 34794103 DOI: 10.1016/j.jaut.2021.102747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
Little is known about the physiological role of beta-2-glycoprotein I (β2GPI) despite it being the major auto-antigen in the antiphospholipid syndrome. A systematic study of the role of β2GPI in thrombus formation in vivo has not been performed to date. Herein, we report that β2GPI deficient (-/-) mice have enhanced thrombus formation compared to wild type (WT) mice in a laser-induced arteriole and venule model of thrombosis. Furthermore, neutrophil accumulation and elastase activity was enhanced in thrombi of β2GPI -/- compared with WT mice. The antithrombotic function of β2GPI is dependent on its fifth domain (domain V); intravenous administration of the β2GPI domain deletion mutant lacking domain V (human recombinant domain I-IV) had no effect on platelet and fibrin thrombus size in β2GPI -/- or WT mice. On the contrary, intravenous administration of human recombinant domain V significantly inhibited platelet and fibrin thrombus size in both β2GPI -/- mice and WT mice. These findings reveal a major role for β2GPI as a natural anticoagulant and implicate domain V of β2GPI as a potential antithrombotic therapy.
Collapse
Affiliation(s)
- Freda H Passam
- Faculty Medicine Health, University of Sydney, Sydney, Australia; Heart Research Institute, Sydney, Australia
| | - Gang Chen
- Department of Infectious Disease, Immunology and Sexual Health, St George Hospital, University of New South Wales, Sydney, Australia
| | - Vivien M Chen
- Department of Haematology, Concord Hospital, Sydney, NSW, Australia; ANZAC Research Institute, University of Sydney, NSW, Australia
| | - Miao Qi
- Department of Infectious Disease, Immunology and Sexual Health, St George Hospital, University of New South Wales, Sydney, Australia
| | - Steven A Krilis
- Department of Infectious Disease, Immunology and Sexual Health, St George Hospital, University of New South Wales, Sydney, Australia; Department of Medicine, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia.
| | - Bill Giannakopoulos
- Department of Infectious Disease, Immunology and Sexual Health, St George Hospital, University of New South Wales, Sydney, Australia; Department of Medicine, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia.
| |
Collapse
|
135
|
Abstract
PURPOSE OF REVIEW Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2. Over the past year, COVID-19 has posed a significant threat to global health. Although the infection is associated with mild symptoms in many patients, a significant proportion of patients develop a prothrombotic state due to a combination of alterations in coagulation and immune cell function. The purpose of this review is to discuss the pathophysiological characteristics of COVID-19 that contribute to the immunothrombosis. RECENT FINDINGS Endotheliopathy during COVID-19 results in increased multimeric von Willebrand factor release and the potential for increased platelet adhesion to the endothelium. In addition, decreased anticoagulant proteins on the surface of endothelial cells further alters the hemostatic balance. Soluble coagulation markers are also markedly dysregulated, including plasminogen activator inhibitor-1 and tissue factor, leading to COVID-19 induced coagulopathy. Platelet hyperreactivity results in increased platelet-neutrophil and -monocyte aggregates further exacerbating the coagulopathy observed during COVID-19. Finally, the COVID-19-induced cytokine storm primes neutrophils to release neutrophil extracellular traps, which trap platelets and prothrombotic proteins contributing to pulmonary thrombotic complications. SUMMARY Immunothrombosis significantly contributes to the pathophysiology of COVID-19. Understanding the mechanisms behind COVID-19-induced coagulopathy will lead to future therapies for patients.
Collapse
Affiliation(s)
- Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| |
Collapse
|
136
|
Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death Differ 2021; 28:3125-3139. [PMID: 34031543 PMCID: PMC8142290 DOI: 10.1038/s41418-021-00805-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.
Collapse
|
137
|
Zhu S, Yu Y, Ren Y, Xu L, Wang H, Ling X, Jin L, Hu Y, Zhang H, Miao C, Guo K. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis 2021; 12:984. [PMID: 34686654 PMCID: PMC8536667 DOI: 10.1038/s41419-021-04294-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Delayed wound healing causes problems for many patients both physically and psychologically, contributing to pain, economic burden, loss of function, and even amputation. Although many factors affect the wound healing process, abnormally prolonged or augmented inflammation in the wound site is a common cause of poor wound healing. Excessive neutrophil extracellular trap (NET) formation during this phase may amplify inflammation and hinder wound healing. However, the roles of NETs in wound healing are still unclear. Herein, we briefly introduce NET formation and discuss the possible NET-related mechanisms in wound healing. We conclude with a discussion of current studies, focusing on the roles of NETs in diabetic and normoglycemic wounds and the effectiveness of NET-targeting treatments in wound healing.
Collapse
Affiliation(s)
- Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Ren
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomin Ling
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
138
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
139
|
Tatsiy O, de Carvalho Oliveira V, Mosha HT, McDonald PP. Early and Late Processes Driving NET Formation, and the Autocrine/Paracrine Role of Endogenous RAGE Ligands. Front Immunol 2021; 12:675315. [PMID: 34616390 PMCID: PMC8488397 DOI: 10.3389/fimmu.2021.675315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular trap (NET) formation has emerged as an important response against various pathogens; it also plays a role in chronic inflammation, autoimmunity, and cancer. Despite a growing understanding of the mechanisms underlying NET formation, much remains to be elucidated. We previously showed that in human neutrophils activated with different classes of physiological stimuli, NET formation features both early and late events that are controlled by discrete signaling pathways. However, the nature of these events has remained elusive. We now report that PAD4 inhibition only affects the early phase of NET generation, as do distinct signaling intermediates (TAK1, MEK, p38 MAPK). Accordingly, the inducible citrullination of residue R2 on histone H3 is an early neutrophil response that is regulated by these kinases; other arginine residues on histones H3 and H4 do not seem to be citrullinated. Conversely, elastase blockade did not affect NET formation by several physiological stimuli, though it did so in PMA-activated cells. Among belated events in NET formation, we found that chromatin decondensation is impaired by the inhibition of signaling pathways controlling both early and late stages of the phenomenon. In addition to chromatin decondensation, other late processes were uncovered. For instance, unstimulated neutrophils can condition themselves to be poised for rapid NET induction. Similarly, activated neutrophils release endogenous proteic factors that promote and largely mediate NET generation. Several such factors are known RAGE ligands and accordingly, RAGE inbibition largely prevents both NET formation and the conditioning of neutrophils to rapidly generate NETs upon stimulation. Our data shed new light on the cellular processes underlying NET formation, and unveil unsuspected facets of the phenomenon that could serve as therapeutic targets. In view of the involvement of NETs in both homeostasis and several pathologies, our findings are of broad relevance.
Collapse
Affiliation(s)
- Olga Tatsiy
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| | - Vanessa de Carvalho Oliveira
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada.,Department of Immunology and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Tshivuadi Mosha
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada.,Department of Immunology and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick P McDonald
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| |
Collapse
|
140
|
Campbell RA, Campbell HD, Bircher JS, de Araujo CV, Denorme F, Crandell JL, Rustad JL, Monts J, Cody MJ, Kosaka Y, Yost CC. Placental HTRA1 cleaves α1-antitrypsin to generate a NET-inhibitory peptide. Blood 2021; 138:977-988. [PMID: 34192300 PMCID: PMC9069473 DOI: 10.1182/blood.2020009021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/30/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are important components of innate immunity. Neonatal neutrophils (polymorphonuclear leukocytes [PMNs]) fail to form NETs due to circulating NET-inhibitory peptides (NIPs), cleavage fragments of α1-antitrypsin (A1AT). How fetal and neonatal blood NIPs are generated remains unknown, however. The placenta expresses high-temperature requirement serine protease A1 (HTRA1) during fetal development, which can cleave A1AT. We hypothesized that placentally expressed HTRA1 regulates the formation of NIPs and that NET competency changed in PMNs isolated from neonatal HTRA1 knockout mice (HTRA1-/-). We found that umbilical cord blood plasma has elevated HTRA1 levels compared with adult plasma and that recombinant and placenta-eluted HTRA1 cleaves A1AT to generate an A1AT cleavage fragment (A1ATM383S-CF) of molecular weight similar to previously identified NIPs that block NET formation by adult neutrophils. We showed that neonatal mouse pup plasma contains A1AT fragments that inhibit NET formation by PMNs isolated from adult mice, indicating that NIP generation during gestation is conserved across species. Lipopolysaccharide-stimulated PMNs isolated from HTRA1+/+ littermate control pups exhibit delayed NET formation after birth. However, plasma from HTRA1-/- pups had no detectable NIPs, and PMNs from HTRA1-/- pups became NET competent earlier after birth compared with HTRA1+/+ littermate controls. Finally, in the cecal slurry model of neonatal sepsis, A1ATM383S-CF improved survival in C57BL/6 pups by preventing pathogenic NET formation. Our data indicate that placentally expressed HTRA1 is a serine protease that cleaves A1AT in utero to generate NIPs that regulate NET formation by human and mouse PMNs.
Collapse
Affiliation(s)
- Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
- Department of Internal Medicine
| | | | | | | | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
| | - Jacob L Crandell
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
| | - John L Rustad
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
| | - Josh Monts
- Flow Cytometry Core, University of Utah, Salt Lake City, UT
| | - Mark J Cody
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
- Department of Pediatrics, and
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
| | - Christian C Yost
- University of Utah Molecular Medicine Program, Salt Lake City, UT; and
- Department of Pediatrics, and
| |
Collapse
|
141
|
Peptidylarginine deiminases 4 as a promising target in drug discovery. Eur J Med Chem 2021; 226:113840. [PMID: 34520958 DOI: 10.1016/j.ejmech.2021.113840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Peptidylarginine deaminase 4 (PAD4) is a crucial post-translational modifying enzyme catalyzing the conversion of arginine into citrulline residues, and mediating the formation of neutrophil extracellular traps (NETs). PAD4 plays a vital role in the occurrence and development of cardiovascular diseases, autoimmune diseases, and various tumors. Therefore, PAD4 is considered as a promising drug target for disease diagnosis and treatment. More and more efforts are devoted to developing highly efficient and selective PAD4 inhibitors via high-throughput screening, structure-based drug design and structure-activity relationship study. This article outlined the physiological and pathological functions of PAD4, and corresponding representative small molecule inhibitors reported in recent years.
Collapse
|
142
|
Gluba-Brzózka A, Franczyk B, Rysz-Górzyńska M, Rokicki R, Koziarska-Rościszewska M, Rysz J. Pathomechanisms of Immunological Disturbances in β-Thalassemia. Int J Mol Sci 2021; 22:ijms22189677. [PMID: 34575839 PMCID: PMC8469188 DOI: 10.3390/ijms22189677] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/19/2023] Open
Abstract
Thalassemia, a chronic disease with chronic anemia, is caused by mutations in the β-globin gene, leading to reduced levels or complete deficiency of β-globin chain synthesis. Patients with β-thalassemia display variable clinical severity which ranges from asymptomatic features to severe transfusion-dependent anemia and complications in multiple organs. They not only are at increased risk of blood-borne infections resulting from multiple transfusions, but they also show enhanced susceptibility to infections as a consequence of coexistent immune deficiency. Enhanced susceptibility to infections in β-thalassemia patients is associated with the interplay of several complex biological processes. β-thalassemia-related abnormalities of the innate immune system include decreased levels of complement, properdin, and lysozyme, reduced absorption and phagocytic ability of polymorphonuclear neutrophils, disturbed chemotaxis, and altered intracellular metabolism processes. According to available literature data, immunological abnormalities observed in patients with thalassemia can be caused by both the disease itself as well as therapies. The most important factors promoting such alterations involve iron overload, phenotypical and functional abnormalities of immune system cells resulting from chronic inflammation oxidative stress, multiple blood transfusion, iron chelation therapy, and splenectomy. Unravelling the mechanisms underlying immune deficiency in β-thalassemia patients may enable the designing of appropriate therapies for this group of patients.
Collapse
Affiliation(s)
- Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
- Correspondence: or ; Tel.: +48-42-639-3750
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Robert Rokicki
- Clinic of Hand Surgery, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Małgorzata Koziarska-Rościszewska
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
| |
Collapse
|
143
|
The Enigma of Low-Density Granulocytes in Humans: Complexities in the Characterization and Function of LDGs during Disease. Pathogens 2021; 10:pathogens10091091. [PMID: 34578124 PMCID: PMC8470838 DOI: 10.3390/pathogens10091091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Low-density granulocytes (LDGs) have been characterized as important immune cells during healthy and disease states in humans, including microbial infections, cancer, and autoimmune dysfunction. However, the classification of this cell type is similar to other immune cells (e.g., neutrophils, myeloid-derived suppressor cells) and ambiguous functional standards have rendered LDG identification and isolation daunting. Furthermore, most research involving LDGs has mainly focused on adult cells and subjects, leaving increased uncertainty surrounding younger populations, especially in vulnerable neonatal groups where LDG numbers are elevated. This review aims to bring together the current research in the field of LDG biology in the context of immunity to disease, with a focus on infection. In addition, we propose to highlight the gaps in the field that, if filled, could improve upon isolation techniques and functional characterizations for LDGs separate from neutrophils and myeloid-derived suppressor cells (MDSCs). This will not only enhance understanding of LDGs during disease processes and how they differ from other cell types but will also aid in the interpretation of comparative studies and results with the potential to inform development of novel therapeutics to improve disease states in patients.
Collapse
|
144
|
Domerecka W, Kowalska-Kępczyńska A, Michalak A, Homa-Mlak I, Mlak R, Cichoż-Lach H, Małecka-Massalska T. Etiopathogenesis and Diagnostic Strategies in Autoimmune Hepatitis. Diagnostics (Basel) 2021; 11:1418. [PMID: 34441353 PMCID: PMC8393562 DOI: 10.3390/diagnostics11081418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease with the incidence of 10 to 17 per 100,000 people in Europe. It affects people of any age, but most often occurs in the 40-60 age group. The clinical picture is varied, from asymptomatic to severe acute hepatitis or liver failure. The disease onset is probably associated with the impaired function of T lymphocytes, the development of molecular mimicry, intestinal dysbiosis, or infiltration with low density neutrophils, which, alongside autoantibodies (i.e., ANA, ASMA), implicate the formation of neutrophil extracellular traps (NETs), as a component of the disease process, and mediate the inappropriate immune response. AIH is characterized with an increased activity of aminotransferases, elevated concentration of serum immunoglobulin G, the presence of circulating autoantibodies and liver inflammation. The result of the histological examination of the liver and the presence of autoantibodies, although not pathognomonic, still remain a distinguishing feature. The diagnosis of AIH determines lifelong treatment in most patients. The treatment is implemented to prevent the development of cirrhosis and end-stage liver failure. This work focuses mainly on the etiopathogenesis and diagnosis of AIH.
Collapse
Affiliation(s)
- Weronika Domerecka
- Chair and Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| | - Anna Kowalska-Kępczyńska
- Department of Biochemical Diagnostics, Chair of Laboratory Diagnostics, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-090 Lublin, Poland; (A.M.); (H.C.-L.)
| | - Iwona Homa-Mlak
- Chair and Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| | - Radosław Mlak
- Chair and Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 20-090 Lublin, Poland; (A.M.); (H.C.-L.)
| | - Teresa Małecka-Massalska
- Chair and Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.); (R.M.); (T.M.-M.)
| |
Collapse
|
145
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
146
|
A Fragile Balance: Does Neutrophil Extracellular Trap Formation Drive Pulmonary Disease Progression? Cells 2021; 10:cells10081932. [PMID: 34440701 PMCID: PMC8394734 DOI: 10.3390/cells10081932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.
Collapse
|
147
|
Zhang S, Guo M, Liu Q, Liu J, Cui Y. Neutrophil extracellular traps induce a hypercoagulable state in glioma. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1383-1393. [PMID: 34288521 PMCID: PMC8589396 DOI: 10.1002/iid3.488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/21/2023]
Abstract
Background Venous thromboembolism (VTE) is one of the leading complications in glioma patients. Neutrophil extracellular traps (NETs) have been reported to play a critical role in the physiopathology of cancer. We aimed to investigate the presence and potential role of NETs in the hypercoagulable state in glioma patients. Moreover, we evaluated the interaction between NETs and endothelial cells (ECs) in glioma patients. Methods The plasma levels of NETs were detected by enzyme‐linked immunosorbent assay. The NET procoagulant activity was performed based on fibrin formation assays. The NET generation and NET‐treated ECs in vitro were observed by confocal microscopy. Activated platelets (PLTs) and PLT‐neutrophil aggregates were detected by flow cytometry. Results Plasma NET markers were significantly higher in stage III/IV glioma patients than in stage I/II glioma patients and healthy subjects. PLTs from glioma patients tended to induce NET formation than those from healthy subjects. NETs contributed to the hypercoagulable state in glioma patients. After ECs were incubated with NETs isolated from stage III/IV glioma patients, they lost their intercellular connections and were converted into procoagulant phenotypes. Combining DNase I and activated protein C markedly decreased endothelial dysfunction. Conclusions Our results showed the interaction between NETs and hypercoagulability in glioma patients. Targeting NETs may be a potential therapeutic and prevention direction for thrombotic complications in glioma patients. The plasma levels of NETs are increased in samples from high‐grade glioma. PLT induce the generation of NETs in glioma patients. NETs contribute to procoagulant in glioma patients and platelet activation and convert endothelial cells (ECs) to thrombogenicity.
Collapse
Affiliation(s)
- Shihua Zhang
- Department of Neurosurgery of the First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Mengfan Guo
- Department of Pathology of the First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Qianzi Liu
- Department of Pharmacy of Jiamusi University, Jiamusi, China
| | - Jingfeng Liu
- Department of Outpatient of the First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Yankun Cui
- Department of Neurosurgery of the First Affiliated Hospital, Jiamusi University, Jiamusi, China
| |
Collapse
|
148
|
Rawat S, Vrati S, Banerjee A. Neutrophils at the crossroads of acute viral infections and severity. Mol Aspects Med 2021; 81:100996. [PMID: 34284874 PMCID: PMC8286244 DOI: 10.1016/j.mam.2021.100996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.
Collapse
Affiliation(s)
- Surender Rawat
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
149
|
Shi H, Gandhi AA, Smith SA, Wang Q, Chiang D, Yalavarthi S, Ali RA, Liu C, Sule G, Tsou PS, Zuo Y, Kanthi Y, Farkash EA, Lin JD, Morrissey JH, Knight JS. Endothelium-protective, histone-neutralizing properties of the polyanionic agent defibrotide. JCI Insight 2021; 6:e149149. [PMID: 34264868 PMCID: PMC8492316 DOI: 10.1172/jci.insight.149149] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
Neutrophil-mediated activation and injury of the endothelium play roles in the pathogenesis of diverse disease states ranging from autoimmunity to cancer to COVID-19. Neutralization of cationic proteins (such as neutrophil extracellular trap–derived [NET-derived] histones) with polyanionic compounds has been suggested as a potential strategy for protecting the endothelium from such insults. Here, we report that the US Food and Drug Administration–approved polyanionic agent defibrotide (a pleiotropic mixture of oligonucleotides) directly engages histones and thereby blocks their pathological effects on endothelium. In vitro, defibrotide counteracted endothelial cell activation and pyroptosis-mediated cell death, whether triggered by purified NETs or recombinant histone H4. In vivo, defibrotide stabilized the endothelium and protected against histone-accelerated inferior vena cava thrombosis in mice. Mechanistically, defibrotide demonstrated direct and tight binding to histone H4 as detected by both electrophoretic mobility shift assay and surface plasmon resonance. Taken together, these data provide insights into the potential role of polyanionic compounds in protecting the endothelium from thromboinflammation with potential implications for myriad NET- and histone-accelerated disease states.
Collapse
Affiliation(s)
- Hui Shi
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Alex A Gandhi
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States of America
| | - Qiuyu Wang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Diane Chiang
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Srilakshmi Yalavarthi
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Ramadan A Ali
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Chao Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Gautam Sule
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Pei-Suen Tsou
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Yu Zuo
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Yogendra Kanthi
- Division of Intramural Research National Heart, Lung and Blood Institute, Bethesda, United States of America
| | - Evan A Farkash
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Jiandie D Lin
- University of Michigan, Ann Arbor, United States of America
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States of America
| | - Jason S Knight
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
150
|
Shi H, Gandhi AA, Smith SA, Wang Q, Chiang D, Yalavarthi S, Ali RA, Liu C, Sule G, Tsou PS, Zuo Y, Kanthi Y, Farkash EA, Lin JD, Morrissey JH, Knight JS. Endothelium-protective, histone-neutralizing properties of the polyanionic agent defibrotide. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33655266 DOI: 10.1101/2021.02.21.21252160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutrophil-mediated activation and injury of the endothelium play a role in the pathogenesis of diverse disease states ranging from autoimmunity to cancer to COVID-19. Neutralization of cationic proteins (such as neutrophil extracellular trap/NET-derived histones) with polyanionic compounds has been suggested as a potential strategy for protecting the endothelium from such insults. Here, we report that the FDA-approved polyanionic agent defibrotide (a pleiotropic mixture of oligonucleotides) directly engages histones and thereby blocks their pathological effects on endothelium. In vitro , defibrotide counteracted endothelial cell activation and pyroptosis-mediated cell death, whether triggered by purified NETs or recombinant histone H4. In vivo , defibrotide stabilized the endothelium and protected against histone-accelerated inferior vena cava thrombosis in mice. Mechanistically, defibrotide demonstrated direct and tight binding to histone H4 as detected by both electrophoretic mobility shift assay and surface plasmon resonance. Taken together, these data provide insights into the potential role of polyanionic compounds in protecting the endothelium from thromboinflammation with potential implications for myriad NET- and histone-accelerated disease states.
Collapse
|