101
|
Zhang RG, Duan GC, Fan QT, Chen SY. Role of Helicobacter pylori infection in pathogenesis of gastric carcinoma. World J Gastrointest Pathophysiol 2016; 7:97-107. [PMID: 26909232 PMCID: PMC4753193 DOI: 10.4291/wjgp.v7.i1.97] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/18/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common carcinoma and the second leading cause of cancer-related deaths worldwide. Helicobacter pylori (H. pylori) infection causes a series of precancerous lesions like gastritis, atrophy, intestinal metaplasia and dysplasia, and is the strongest known risk factor for GC, as supported by epidemiological, preclinical and clinical studies. However, the mechanism of H. pylori developing gastric carcinoma has not been well defined. Among infected individuals, approximately 10% develop severe gastric lesions such as peptic ulcer disease, 1%-3% progresses to GC. The outcomes of H. pylori infection are determined by bacterial virulence, genetic polymorphism of hosts as well as environmental factors. It is important to gain further understanding of the pathogenesis of H. pylori infection for developing more effective treatments for this common but deadly malignancy. The recent findings on the bacterial virulence factors, effects of H. pylori on epithelial cells, genetic polymorphism of both the bacterium and its host, and the environmental factors for GC are discussed with focus on the role of H. pylori in gastric carcinogenesis in this review.
Collapse
|
102
|
Dixon BREA, Radin JN, Piazuelo MB, Contreras DC, Algood HMS. IL-17a and IL-22 Induce Expression of Antimicrobials in Gastrointestinal Epithelial Cells and May Contribute to Epithelial Cell Defense against Helicobacter pylori. PLoS One 2016; 11:e0148514. [PMID: 26867135 PMCID: PMC4750979 DOI: 10.1371/journal.pone.0148514] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/19/2016] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori colonization of the human stomach can lead to adverse clinical outcomes including gastritis, peptic ulcers, or gastric cancer. Current data suggest that in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization. Specifically, CD4+ T cell responses impact the pathology elicited in response to H. pylori. Because gastritis is believed to be the initiating host response to more detrimental pathological outcomes, there has been a significant interest in pro-inflammatory T cell cytokines, including the cytokines produced by T helper 17 cells. Th17 cells produce IL-17A, IL-17F, IL-21 and IL-22. While these cytokines have been linked to inflammation, IL-17A and IL-22 are also associated with anti-microbial responses and control of bacterial colonization. The goal of this research was to determine the role of IL-22 in activation of antimicrobial responses in models of H. pylori infection using human gastric epithelial cell lines and the mouse model of H. pylori infection. Our data indicate that IL-17A and IL-22 work synergistically to induce antimicrobials and chemokines such as IL-8, components of calprotectin (CP), lipocalin (LCN) and some β-defensins in both human and primary mouse gastric epithelial cells (GEC) and gastroids. Moreover, IL-22 and IL-17A-activated GECs were capable of inhibiting growth of H. pylori in vitro. While antimicrobials were activated by IL-17A and IL-22 in vitro, using a mouse model of H. pylori infection, the data herein indicate that IL-22 deficiency alone does not render mice more susceptible to infection, change their antimicrobial gene transcription, or significantly change their inflammatory response.
Collapse
Affiliation(s)
- Beverly R. E. A. Dixon
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jana N. Radin
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Diana C. Contreras
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Holly M. Scott Algood
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
103
|
Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M, Ordemann J, Bartfeld S, Mollenkopf HJ, Meyer TF. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut 2016; 65:202-13. [PMID: 25539675 PMCID: PMC4752654 DOI: 10.1136/gutjnl-2014-307949] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Helicobacter pylori is the causative agent of gastric diseases and the main risk factor in the development of gastric adenocarcinoma. In vitro studies with this bacterial pathogen largely rely on the use of transformed cell lines as infection model. However, this approach is intrinsically artificial and especially inappropriate when it comes to investigating the mechanisms of cancerogenesis. Moreover, common cell lines are often defective in crucial signalling pathways relevant to infection and cancer. A long-lived primary cell system would be preferable in order to better approximate the human in vivo situation. METHODS Gastric glands were isolated from healthy human stomach tissue and grown in Matrigel containing media supplemented with various growth factors, developmental regulators and apoptosis inhibitors to generate long-lasting normal epithelial cell cultures. RESULTS Culture conditions were developed which support the formation and quasi-indefinite growth of three dimensional (3D) spheroids derived from various sites of the human stomach. Spheroids could be differentiated to gastric organoids after withdrawal of Wnt3A and R-spondin1 from the medium. The 3D cultures exhibit typical morphological features of human stomach tissue. Transfer of sheared spheroids into 2D culture led to the formation of dense planar cultures of polarised epithelial cells serving as a suitable in vitro model of H. pylori infection. CONCLUSIONS A robust and quasi-immortal 3D organoid model has been established, which is considered instrumental for future research aimed to understand the underlying mechanisms of infection, mucosal immunity and cancer of the human stomach.
Collapse
Affiliation(s)
- Philipp Schlaermann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Benjamin Toelle
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sven C Schmidt
- Clinics for General, Visceral and Transplant Surgery, Charité University Medicine, Berlin, Germany
| | - Matthias Glanemann
- Clinics for General, Visceral and Transplant Surgery, Charité University Medicine, Berlin, Germany
| | - Jürgen Ordemann
- Center of Bariatric and Metabolic Surgery, Charité University Medicine, Berlin, Germany
| | - Sina Bartfeld
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Hubrecht Institute/KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hans J Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
104
|
Amieva M, Peek RM. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology 2016; 150:64-78. [PMID: 26385073 PMCID: PMC4691563 DOI: 10.1053/j.gastro.2015.09.004] [Citation(s) in RCA: 625] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Colonization of the human stomach by Helicobacter pylori and its role in causing gastric cancer is one of the richest examples of a complex relationship among human cells, microbes, and their environment. It is also a puzzle of enormous medical importance given the incidence and lethality of gastric cancer worldwide. We review recent findings that have changed how we view these relationships and affected the direction of gastric cancer research. For example, recent data have indicated that subtle mismatches between host and microbe genetic traits greatly affect the risk of gastric cancer. The ability of H pylori and its oncoprotein CagA to reprogram epithelial cells and activate properties of stemness show the sophisticated relationship between H pylori and progenitor cells in the gastric mucosa. The observation that cell-associated H pylori can colonize the gastric glands and directly affect precursor and stem cells supports these observations. The ability to mimic these interactions in human gastric organoid cultures as well as animal models will allow investigators to more fully unravel the extent of H pylori control on the renewing gastric epithelium. Finally, our realization that external environmental factors, such as dietary components and essential micronutrients, as well as the gastrointestinal microbiota, can change the balance between H pylori's activity as a commensal or a pathogen has provided direction to studies aimed at defining the full carcinogenic potential of this organism.
Collapse
Affiliation(s)
- Manuel Amieva
- Department of Microbiology and Immunology, Stanford University, Palo Alto, California; Department of Pediatrics, Stanford University, Palo Alto, California
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
105
|
Bertaux-Skeirik N, Centeno J, Feng R, Schumacher MA, Shivdasani RA, Zavros Y. Co-culture of Gastric Organoids and Immortalized Stomach Mesenchymal Cells. Methods Mol Biol 2016; 1422:23-31. [PMID: 27246019 DOI: 10.1007/978-1-4939-3603-8_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three-dimensional primary epithelial-derived gastric organoids have recently been established as an important tool to study gastric development, physiology, and disease. Specifically, mouse-derived fundic gastric organoids (mFGOs) co-cultured with Immortalized Stomach Mesenchymal Cells (ISMCs) reflect expression patterns of mature fundic cell types seen in vivo, thus allowing for long-term in vitro studies of gastric epithelial cell physiology, regeneration, and bacterial-host interactions. Here, we describe the development and culture of mFGOs, co-cultured with ISMCs.
Collapse
Affiliation(s)
- Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Room 4255 MSB, Cincinnati, OH, 45267-0576, USA
| | - Jomaris Centeno
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Room 4255 MSB, Cincinnati, OH, 45267-0576, USA
| | - Rui Feng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yatsen University, Guangzhou, China
| | - Michael A Schumacher
- Division of Gastroenterology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Room 4255 MSB, Cincinnati, OH, 45267-0576, USA.
| |
Collapse
|
106
|
Abstract
OBJECTIVE Gastrointestinal disorders are common in HIV-positive patients and, in some cases, may be related to antiretroviral therapy (ART), making it difficult to determine the need for upper gastrointestinal (UGI) endoscopy. The primary aim of this study was to determine whether lymphocyte T CD4 cell counts were correlated with indications for endoscopy in these patients and with endoscopic diagnosis. PATIENTS AND METHODS We prospectively collected data from consecutive HIV-positive patients undergoing UGI endoscopy between 2007 and 2013, and included 265 patients who had been receiving ART for at least 6 months. Parameters studied were demographics, immune parameters, comorbidities, comedications, indications for endoscopy, and endoscopic, pathologic, and microbiologic findings. RESULTS The most frequent indications for UGI endoscopy were gastroesophageal reflux, epigastric pain, and other. Peptic esophagitis, esophageal candidiasis, and normal endoscopy were the most common diagnoses. The prevalence rates of Helicobacter pylori infection and neoplasia were 26.4 and 1.8%, respectively. Patients with CD4+ counts 200 cells/μl or more had significantly lower rates of macrolide and nonmacrolide use, fewer comorbidities, and were less likely to have AIDS than patients with lower counts. They were also more likely to have normal UGI endoscopy and had a higher frequency of H. pylori infection. AIDS status and the presence of comorbidities were independent predictors of endoscopic abnormalities. CONCLUSION UGI endoscopy remains a key diagnostic procedure for HIV-positive patients with UGI symptoms. AIDS and comorbidities are risk factors for the presence of mucosal lesions among HIV-positive patients on ART.
Collapse
|
107
|
Caron TJ, Scott KE, Fox JG, Hagen SJ. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroenterol 2015; 21:11411-11427. [PMID: 26523106 PMCID: PMC4616217 DOI: 10.3748/wjg.v21.i40.11411] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/26/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Long-term chronic infection with Helicobacter pylori (H. pylori) is a risk factor for gastric cancer development. In the multi-step process that leads to gastric cancer, tight junction dysfunction is thought to occur and serve as a risk factor by permitting the permeation of luminal contents across an otherwise tight mucosa. Mechanisms that regulate tight junction function and structure in the normal stomach, or dysfunction in the infected stomach, however, are largely unknown. Although conventional tight junction components are expressed in gastric epithelial cells, claudins regulate paracellular permeability and are likely the target of inflammation or H. pylori itself. There are 27 different claudin molecules, each with unique properties that render the mucosa an intact barrier that is permselective in a way that is consistent with cell physiology. Understanding the architecture of tight junctions in the normal stomach and then changes that occur during infection is important but challenging, because most of the reports that catalog claudin expression in gastric cancer pathogenesis are contradictory. Furthermore, the role of H. pylori virulence factors, such as cytotoxin-associated gene A and vacoulating cytotoxin, in regulating tight junction dysfunction during infection is inconsistent in different gastric cell lines and in vivo, likely because non-gastric epithelial cell cultures were initially used to unravel the details of their effects on the stomach. Hampering further study, as well, is the relative lack of cultured cell models that have tight junction claudins that are consistent with native tissues. This summary will review the current state of knowledge about gastric tight junctions, normally and in H. pylori infection, and make predictions about the consequences of claudin reorganization during H. pylori infection.
Collapse
|
108
|
Helicobacter pylori CagA Suppresses Apoptosis through Activation of AKT in a Nontransformed Epithelial Cell Model of Glandular Acini Formation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:761501. [PMID: 26557697 PMCID: PMC4628739 DOI: 10.1155/2015/761501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
H. pylori infection is the most important environmental risk to develop gastric cancer, mainly through its virulence factor CagA. In vitro models of CagA function have demonstrated a phosphoprotein activity targeting multiple cellular signaling pathways, while cagA transgenic mice develop carcinomas of the gastrointestinal tract, supporting oncogenic functions. However, it is still not completely clear how CagA alters cellular processes associated with carcinogenic events. In this study, we evaluated the capacity of H. pylori CagA positive and negative strains to alter nontransformed MCF-10A glandular acini formation. We found that CagA positive strains inhibited lumen formation arguing for an evasion of apoptosis activity of central acini cells. In agreement, CagA positive strains induced a cell survival activity that correlated with phosphorylation of AKT and of proapoptotic proteins BIM and BAD. Anoikis is a specific type of apoptosis characterized by AKT and BIM activation and it is the mechanism responsible for lumen formation of MCF-10A acini in vitro and mammary glands in vivo. Anoikis resistance is also a common mechanism of invading tumor cells. Our data support that CagA positive strains signaling function targets the AKT and BIM signaling pathway and this could contribute to its oncogenic activity through anoikis evasion.
Collapse
|
109
|
Sigal M, Rothenberg ME, Logan CY, Lee JY, Honaker RW, Cooper RL, Passarelli B, Camorlinga M, Bouley DM, Alvarez G, Nusse R, Torres J, Amieva MR. Helicobacter pylori Activates and Expands Lgr5(+) Stem Cells Through Direct Colonization of the Gastric Glands. Gastroenterology 2015; 148:1392-404.e21. [PMID: 25725293 DOI: 10.1053/j.gastro.2015.02.049] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection is the main risk factor for gastric cancer. We characterized the interactions of H pylori with gastric epithelial progenitor and stem cells in humans and mice and investigated how these interactions contribute to H pylori-induced pathology. METHODS We used quantitative confocal microscopy and 3-dimensional reconstruction of entire gastric glands to determine the localizations of H pylori in stomach tissues from humans and infected mice. Using lineage tracing to mark cells derived from leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5(+)) stem cells (Lgr5-eGFP-IRES-CreERT2/Rosa26-TdTomato mice) and in situ hybridization, we analyzed gastric stem cell responses to infection. Isogenic H pylori mutants were used to determine the role of specific virulence factors in stem cell activation and pathology. RESULTS H pylori grow as distinct bacterial microcolonies deep in the stomach glands and interact directly with gastric progenitor and stem cells in tissues from mice and humans. These gland-associated bacteria activate stem cells, increasing the number of stem cells, accelerating Lgr5(+) stem cell proliferation, and up-regulating expression of stem cell-related genes. Mutant bacteria with defects in chemotaxis that are able to colonize the stomach surface but not the antral glands in mice do not activate stem cells. In addition, bacteria that are unable to inject the contact-dependent virulence factor CagA into the epithelium colonized stomach glands in mice, but did not activate stem cells or produce hyperplasia to the same extent as wild-type H pylori. CONCLUSIONS H pylori colonize and manipulate the progenitor and stem cell compartments, which alters turnover kinetics and glandular hyperplasia. Bacterial ability to alter the stem cells has important implications for gastrointestinal stem cell biology and H pylori-induced gastric pathology.
Collapse
Affiliation(s)
- Michael Sigal
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California; Department of Microbiology and Immunology, Stanford University, Stanford, California; Department of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany
| | - Michael E Rothenberg
- Department of Medicine, Division of Gastroenterology, Stanford University, Stanford, California; Institute for Stem Cell Biology, Stanford University, Stanford, California
| | - Catriona Y Logan
- Institute for Stem Cell Biology, Stanford University, Stanford, California; Department of Developmental Biology, Stanford University, Stanford, California; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Josephine Y Lee
- Department of Microbiology and Immunology, Stanford University, Stanford, California
| | - Ryan W Honaker
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California; Department of Microbiology and Immunology, Stanford University, Stanford, California
| | - Rachel L Cooper
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California; Department of Microbiology and Immunology, Stanford University, Stanford, California
| | - Ben Passarelli
- Institute for Stem Cell Biology, Stanford University, Stanford, California
| | | | - Donna M Bouley
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Guillermo Alvarez
- Infectious Disease Research Unit, UMAE Pediatrics, IMSS, Mexico City, Mexico; Endobariatric Surgery, Piedras Negras, Coahuila, Mexico
| | - Roeland Nusse
- Institute for Stem Cell Biology, Stanford University, Stanford, California; Department of Developmental Biology, Stanford University, Stanford, California; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Javier Torres
- Infectious Disease Research Unit, UMAE Pediatrics, IMSS, Mexico City, Mexico
| | - Manuel R Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California; Department of Microbiology and Immunology, Stanford University, Stanford, California.
| |
Collapse
|
110
|
Affiliation(s)
- Alexander I Zaika
- Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA,
| |
Collapse
|
111
|
Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, Mahe MM, Engevik AC, Javier JE, Peek Jr RM, Ottemann K, Orian-Rousseau V, Boivin GP, Helmrath MA, Zavros Y. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog 2015; 11:e1004663. [PMID: 25658601 PMCID: PMC4450086 DOI: 10.1371/journal.ppat.1004663] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylori that was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H. pylori interaction with the human gastric epithelium. Here, we show that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation.
Collapse
Affiliation(s)
- Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Rui Feng
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Michael A. Schumacher
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Jing Li
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Maxime M. Mahe
- Department of Surgery, Division of Pediatric Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio, United States of
America
| | - Amy C. Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Jose E. Javier
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Richard M. Peek Jr
- Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of
America
| | - Karen Ottemann
- Department of Microbiology and Environmental Toxicology, University of
California at Santa Cruz, Santa Cruz, California, United States of
America
| | - Veronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute for Toxicology and Genetics,
Hermann von Helmholtzplatz, Germany
| | - Gregory P. Boivin
- Department of Pathology Wright State University, Health Sciences, Dayton,
Ohio, United States of America
- Veterans Affairs Medical Center, Cincinnati, Ohio, United States of
America
| | - Michael A. Helmrath
- Department of Surgery, Division of Pediatric Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio, United States of
America
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|