101
|
Maqsood R, Holland LA, Wu LI, Begnel ER, Adhiambo J, Owiti P, Chohan BH, Gantt S, Kinuthia J, Wamalwa D, Ojee E, Richardson BA, Slyker J, Lehman DA, Lim ES. Gut virome and microbiome dynamics before and after SARS-CoV-2 infection in women living with HIV and their infants. RESEARCH SQUARE 2024:rs.3.rs-4257515. [PMID: 38699305 PMCID: PMC11065063 DOI: 10.21203/rs.3.rs-4257515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Microbiome perturbations can have long-term effects on health. The dynamics of the gut microbiome and virome in women living with HIV (WLHIV) and their newborn infants is poorly understood. Here, we performed metagenomic sequencing analyses on longitudinal stool samples including 23 mothers (13 WLHIV, 10 HIV-negative) and 12 infants that experienced SARS-CoV-2 infection with mild disease, as well as 40 mothers (18 WLHIV, 22 HIV-negative) and 60 infants that remained SARS-CoV-2 seronegative throughout the study follow-up. Regardless of HIV or SARS-CoV-2 status, maternal bacterial and viral profiles were distinct from infants. Using linear mixed effects models, we showed that while the microbiome alpha diversity trajectory was not significantly different between SARS-CoV-2 seropositive and seronegative women. However, seropositive women's positive trajectory while uninfected was abruptly reversed after SARS-CoV-2 infection (p = 0.015). However, gut virome signatures of women were not associated with SARS-CoV-2. Alterations in infant microbiome and virome diversities were generally not impacted by SARS-CoV-2 but were rather driven by development. We did not find statistically significant interactions between HIV and SARS-CoV-2 on the gut microbiome and virome. Overall, our study provides insights into the complex interplay between maternal and infant bacterial microbiome, virome, and the influence of SARS-CoV-2 and HIV status.
Collapse
|
102
|
Ortiz Sanjuán JM, Argüello H, Cabrera-Rubio R, Crispie F, Cotter PD, Garrido JJ, Ekhlas D, Burgess CM, Manzanilla EG. Effects of removing in-feed antibiotics and zinc oxide on the taxonomy and functionality of the microbiota in post weaning pigs. Anim Microbiome 2024; 6:18. [PMID: 38627869 PMCID: PMC11022352 DOI: 10.1186/s42523-024-00306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Post weaning diarrhoea (PWD) causes piglet morbidity and mortality at weaning and is a major driver for antimicrobial use worldwide. New regulations in the EU limit the use of in-feed antibiotics (Ab) and therapeutic zinc oxide (ZnO) to prevent PWD. New approaches to control PWD are needed, and understanding the role of the microbiota in this context is key. In this study, shotgun metagenome sequencing was used to describe the taxonomic and functional evolution of the faecal microbiota of the piglet during the first two weeks post weaning within three experimental groups, Ab, ZnO and no medication, on commercial farms using antimicrobials regularly in the post weaning period. RESULTS Diversity was affected by day post weaning (dpw), treatment used and diarrhoea but not by the farm. Microbiota composition evolved towards the dominance of groups of species such as Prevotella spp. at day 14dpw. ZnO inhibited E. coli overgrowth, promoted higher abundance of the family Bacteroidaceae and decreased Megasphaera spp. Animals treated with Ab exhibited inconsistent taxonomic changes across time points, with an overall increase of Limosilactobacillus reuteri and Megasphaera elsdenii. Samples from non-medicated pigs showed virulence-related functions at 7dpw, and specific ETEC-related virulence factors were detected in all samples presenting diarrhoea. Differential microbiota functions of pigs treated with ZnO were related to sulphur and DNA metabolism, as well as mechanisms of antimicrobial and heavy metal resistance, whereas Ab treated animals exhibited functions related to antimicrobial resistance and virulence. CONCLUSION Ab and particularly ZnO maintained a stable microbiota composition and functionality during the two weeks post weaning, by limiting E. coli overgrowth, and ultimately preventing microbiota dysbiosis. Future approaches to support piglet health should be able to reproduce this stable gut microbiota transition during the post weaning period, in order to maintain optimal gut physiological and productive conditions.
Collapse
Affiliation(s)
- Juan M Ortiz Sanjuán
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| | - Héctor Argüello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Daniel Ekhlas
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Catherine M Burgess
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Edgar G Manzanilla
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
103
|
Ding M, Li B, Chen H, Ross RP, Stanton C, Zhao J, Chen W, Yang B. Bifidobacterium longum Subsp. infantis Promotes IgA Level of Growing Mice in a Strain-Specific and Intestinal Niche-Dependent Manner. Nutrients 2024; 16:1148. [PMID: 38674840 PMCID: PMC11054607 DOI: 10.3390/nu16081148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Throughout infancy, IgA is crucial for maintaining gut mucosal immunity. This study aims to determine whether supplementing newborn mice with eight different strains of Bifidobacterium longum subsp. infantis might regulate their IgA levels. The strains were gavaged to BALB/C female (n = 8) and male (n = 8) dams at 1-3 weeks old. Eight strains of B. longum subsp. infantis had strain-specific effects in the regulation of intestinal mucosal barriers. B6MNI, I4MI, and I10TI can increase the colonic IgA level in females and males. I8TI can increase the colonic IgA level in males. B6MNI was also able to significantly increase the colonic sIgA level in females. B6MNI, I4MI, I8TI, and I10TI regulated colonic and Peyer's patch IgA synthesis genes but had no significant effect on IgA synthesis pathway genes in the jejunum and ileum. Moreover, the variety of sIgA-coated bacteria in male mice was changed by I4MI, I5TI, I8TI, and B6MNI. These strains also can decrease the relative abundance of Escherichia coli. These results indicate that B. longum subsp. infantis can promote IgA levels but show strain specificity. Different dietary habits with different strains of Bifidobacterium may have varying effects on IgA levels when supplemented in early infancy.
Collapse
Affiliation(s)
- Mengfan Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (M.D.); (B.L.); (H.C.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (M.D.); (B.L.); (H.C.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (M.D.); (B.L.); (H.C.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Reynolds Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 R229 Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 R229 Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (M.D.); (B.L.); (H.C.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (M.D.); (B.L.); (H.C.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (M.D.); (B.L.); (H.C.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (R.P.R.); (C.S.)
| |
Collapse
|
104
|
Tang H, Huang Y, Yuan D, Liu J. Atherosclerosis, gut microbiome, and exercise in a meta-omics perspective: a literature review. PeerJ 2024; 12:e17185. [PMID: 38584937 PMCID: PMC10999153 DOI: 10.7717/peerj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cardiovascular diseases are the leading cause of death worldwide, significantly impacting public health. Atherosclerotic cardiovascular diseases account for the majority of these deaths, with atherosclerosis marking the initial and most critical phase of their pathophysiological progression. There is a complex relationship between atherosclerosis, the gut microbiome's composition and function, and the potential mediating role of exercise. The adaptability of the gut microbiome and the feasibility of exercise interventions present novel opportunities for therapeutic and preventative approaches. Methodology We conducted a comprehensive literature review using professional databases such as PubMed and Web of Science. This review focuses on the application of meta-omics techniques, particularly metagenomics and metabolomics, in studying the effects of exercise interventions on the gut microbiome and atherosclerosis. Results Meta-omics technologies offer unparalleled capabilities to explore the intricate connections between exercise, the microbiome, the metabolome, and cardiometabolic health. This review highlights the advancements in metagenomics and metabolomics, their applications in research, and examines how exercise influences the gut microbiome. We delve into the mechanisms connecting these elements from a metabolic perspective. Metagenomics provides insight into changes in microbial strains post-exercise, while metabolomics sheds light on the shifts in metabolites. Together, these approaches offer a comprehensive understanding of how exercise impacts atherosclerosis through specific mechanisms. Conclusions Exercise significantly influences atherosclerosis, with the gut microbiome serving as a critical intermediary. Meta-omics technology holds substantial promise for investigating the gut microbiome; however, its methodologies require further refinement. Additionally, there is a pressing need for more extensive cohort studies to enhance our comprehension of the connection among these element.
Collapse
Affiliation(s)
- Haotian Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Didi Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
105
|
Zhao X, Liu S, Li S, Jiang W, Wang J, Xiao J, Chen T, Ma J, Khan MZ, Wang W, Li M, Li S, Cao Z. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab 2024; 36:725-744. [PMID: 38569470 DOI: 10.1016/j.cmet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Faculty of Veterinary and Animal Sciences, Department of Animal Breeding and Genetics, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
106
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
107
|
Guo C, Liu J, Wei Y, Du W, Li S. Comparison of the gastrointestinal bacterial microbiota between dairy cows with and without mastitis. Front Microbiol 2024; 15:1332497. [PMID: 38585704 PMCID: PMC10996066 DOI: 10.3389/fmicb.2024.1332497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Mastitis causes significant losses in the global dairy industry, and the health of animals has been linked to their intestinal microbiota. To better understand the relationship between gastrointestinal microbiota and mastitis in dairy cows, we collected blood, rumen fluid, and fecal samples from 23 dairy cows, including 13 cows with mastitis and 10 healthy cows. Using ELISA kit and high-throughput sequencing, we found that cows with mastitis had higher concentrations of TNF-α, IL-1, and LPS than healthy cows (p < 0.05), but no significant differences in microbiota abundance or diversity (p > 0.05). Principal coordinate analysis (PCOA) revealed significant differences in rumen microbial structure between the two groups (p < 0.05), with Moryella as the signature for rumen in cows with mastitis. In contrast, fecal microbial structure showed no significant differences (p > 0.05), with Aeriscardovia, Lactococcus, and Bacillus as the signature for feces in healthy cows. Furthermore, the results showed distinct microbial interaction patterns in the rumen and feces of cows with mastitis compared to healthy cows. Additionally, we observed correlations between the microbiota in both the rumen and feces of cows and blood inflammatory indicators. Our study sheds new light on the prevention of mastitis in dairy cows by highlighting the relationship between gastrointestinal microbiota and mastitis.
Collapse
Affiliation(s)
- Chunyan Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Jinzhong Vocational and Technical College, Jinzhong, China
| | - Jingjing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yong Wei
- Xinjiang Agricultural University, Urumuqi, China
| | - Wen Du
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
108
|
Choi R, Bodkhe R, Pees B, Kim D, Berg M, Monnin D, Cho J, Narayan V, Deller E, Savage-Dunn C, Shapira M. An Enterobacteriaceae bloom in aging animals is restrained by the gut microbiome. AGING BIOLOGY 2024; 2:20240024. [PMID: 38736850 PMCID: PMC11085993 DOI: 10.59368/agingbio.20240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The gut microbiome plays important roles in host function and health. Core microbiomes have been described for different species, and imbalances in their composition, known as dysbiosis, are associated with pathology. Changes in the gut microbiome and dysbiosis are common in aging, possibly due to multi-tissue deterioration, which includes metabolic shifts, dysregulated immunity, and disrupted epithelial barriers. However, the characteristics of these changes, as reported in different studies, are varied and sometimes conflicting. Using clonal populations of Caenorhabditis elegans to highlight trends shared among individuals, we employed 16s rRNA gene sequencing, CFU counts and fluorescent imaging, identifying an Enterobacteriaceae bloom as a common denominator in aging animals. Experiments using Enterobacter hormaechei, a representative commensal, suggested that the Enterobacteriaceae bloom was facilitated by a decline in Sma/BMP immune signaling in aging animals and demonstrated its potential for exacerbating infection susceptibility. However, such detrimental effects were context-dependent, mitigated by competition with commensal communities, highlighting the latter as determinants of healthy versus unhealthy aging, depending on their ability to restrain opportunistic pathobionts.
Collapse
Affiliation(s)
- Rebecca Choi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rahul Bodkhe
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Barbara Pees
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dan Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maureen Berg
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Monnin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Juhyun Cho
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vivek Narayan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ethan Deller
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing NY, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
109
|
Olson M, Toffoli S, Vander Wyst KB, Zhou F, Reifsnider E, Petrov ME, Whisner CM. Associations of Infant Feeding, Sleep, and Weight Gain with the Toddler Gut Microbiome. Microorganisms 2024; 12:549. [PMID: 38543600 PMCID: PMC10972346 DOI: 10.3390/microorganisms12030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 05/05/2024] Open
Abstract
This study examines how feeding, sleep, and growth during infancy impact the gut microbiome (GM) in toddlers. The research was conducted on toddlers (n = 36), born to Latina women of low-income with obesity. Their mothers completed retrospective feeding and sleeping questionnaires at 1, 6, and 12 months; at 36 months, fecal samples were collected. Sequencing of the 16S rRNA gene (V4 region) revealed that breastfeeding for at least 1 month and the introduction of solids before 6 months differentiated the GM in toddlerhood (Bray-Curtis, pseudo-F = 1.805, p = 0.018, and pseudo-F = 1.651, p = 0.044, respectively). Sleep had an effect across time; at 1 and 6 months of age, a lower proportion of nighttime sleep (relative to 24 h total sleep) was associated with a richer GM at three years of age (Shannon H = 4.395, p = 0.036 and OTU H = 5.559, p = 0.018, respectively). Toddlers experiencing rapid weight gain from birth to 6 months had lower phylogenetic diversity (Faith PD H = 3.633, p = 0.057). These findings suggest that early life nutrition, sleeping patterns, and growth rate in infancy may influence the GM composition. Further verification of these results with objective sleep data and a larger sample is needed.
Collapse
Affiliation(s)
- Magdalena Olson
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
- Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Samantha Toffoli
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
| | - Kiley B. Vander Wyst
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
| | - Fang Zhou
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
| | - Elizabeth Reifsnider
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA; (E.R.); (M.E.P.)
| | - Megan E. Petrov
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA; (E.R.); (M.E.P.)
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
- Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
110
|
Zhang R, Chen J, Liu L, Li X, Qiu C. Gut microbiota-based discriminative model for patients with ulcerative colitis: A meta-analysis and real-world study. Medicine (Baltimore) 2024; 103:e37091. [PMID: 38457570 PMCID: PMC10919464 DOI: 10.1097/md.0000000000037091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 03/10/2024] Open
Abstract
Gut microbiota directly interacts with intestinal epithelium and is a significant factor in the pathogenesis of ulcerative colitis (UC). A meta-analysis was performed to investigate gut microbiota composition of patients with UC in the United States. We also collected fecal samples from Chinese patients with UC and healthy individuals. Gut microbiota was tested using 16S ribosomal RNA gene sequencing. Meta-analysis and 16S ribosomal RNA sequencing revealed significant differences in gut bacterial composition between UC patients and healthy subjects. The Chinese UC group had the highest scores for Firmicutes, Clostridia, Clostridiales, Streptococcaceae, and Blautia, while healthy cohort had the highest scores for P-Bacteroidetes, Bacteroidia, Bacteroidales, Prevotellaceae, and Prevotella_9. A gut microbiota-based discriminative model trained on an American cohort achieved a discrimination efficiency of 0.928 when applied to identify the Chinese UC cohort, resulting in a discrimination efficiency of 0.759. Additionally, a differentiation model was created based on gut microbiota of a Chinese cohort, resulting in an area under the receiver operating characteristic curve of 0.998. Next, we applied the model established for the Chinese UC cohort to analyze the American cohort. Our findings suggest that the diagnostic efficiency ranged from 0.8794 to 0.9497. Furthermore, a combined analysis using data from both the Chinese and US cohorts resulted in a model with a diagnostic efficacy of 0.896. In summary, we found significant differences in gut bacteria between UC individuals and healthy subjects. Notably, the model from the Chinese cohort performed better at diagnosing UC patients compared to healthy subjects. These results highlight the promise of personalized and region-specific approaches using gut microbiota data for UC diagnosis.
Collapse
Affiliation(s)
- Rong Zhang
- Department of General Surgery, The Third People’s Hospital of Chengdu, Chengdu 610014, Sichuan Province, China
| | - Jing Chen
- Department of Gastroenterology, The People’s Hospital of Dujiangyan, Dujiangyan 611830, Sichuan Province, China
| | - Li Liu
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, Chengdu 610014, Sichuan Province, China
| | - Xiankun Li
- Department of Pharmacy, The People’s Hospital of Dujiangyan, Dujiangyan 611830, Sichuan Province, China
| | - Changwei Qiu
- Department of Gastroenterology, The People’s Hospital of Dujiangyan, Dujiangyan 611830, Sichuan Province, China
| |
Collapse
|
111
|
Baud D, Zuber A, Peric A, Pluchino N, Vulliemoz N, Stojanov M. Impact of semen microbiota on the composition of seminal plasma. Microbiol Spectr 2024; 12:e0291123. [PMID: 38349179 PMCID: PMC10913749 DOI: 10.1128/spectrum.02911-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/20/2024] [Indexed: 03/06/2024] Open
Abstract
Several studies have found associations between specific bacterial genera and semen parameters. Bacteria are known to influence the composition of their niche and, consequently, could affect the composition of the seminal plasma. This study integrated microbiota profiling and metabolomics to explore the influence of seminal bacteria on semen metabolite composition in infertile couples, revealing associations between specific bacterial genera and metabolite profiles. Amino acids and acylcarnitines were the predominant metabolite groups identified in seminal plasma. Different microbiota profiles did not result in globally diverse metabolite compositions in seminal plasma. Nevertheless, levels of specific metabolites increased in the presence of a dysbiotic microbiota. Urocanate was significantly increased in abnormal semen samples (adjusted P-value < 0.001) and enriched in samples dominated by Prevotella spp. (P-value < 0.05), which was previously linked to a negative impact on semen. Therefore, varying microbiota profiles can influence the abundance of certain metabolites, potentially having an immunomodulatory effect, as seen with urocanate.IMPORTANCEMale infertility is often considered idiopathic since the specific cause of infertility often remains unidentified. Recently, variations in the seminal microbiota composition have been associated with normal and abnormal semen parameters and may, therefore, influence male infertility. Bacteria are known to alter the metabolite composition of their ecological niches, and thus, seminal bacteria might affect the composition of the seminal fluid, crucial in the fertilization process. Our research indicates that distinct seminal microbiota profiles are not associated with widespread changes in the metabolite composition of the seminal fluid. Instead, the presence of particular metabolites with immunomodulatory functions, such as urocanate, could shed light on the interplay between seminal microbiota and variations in semen parameters.
Collapse
Affiliation(s)
- D. Baud
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - A. Zuber
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
| | - A. Peric
- 360° Fertility Center Zurich, Zollikon, Switzerland
| | - N. Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | | | - M. Stojanov
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
112
|
Huang B, Liang S, Li X, Xie Z, Yang R, Sun B, Xue J, Li B, Wang S, Shi H, Shi Y. Postweaning intermittent sleep deprivation enhances defensive attack in adult female mice via the microbiota-gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110915. [PMID: 38104921 DOI: 10.1016/j.pnpbp.2023.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Sleep is one of the most important physiological activities in life and promotes the growth and development of an individual. In modern society, sleep deprivation (SD), especially among adolescents, has become a common phenomenon. However, long-term SD severely affected adolescents' neurodevelopment leading to abnormal behavioral phenotypes. Clinical studies indicated that sleep problems caused increased aggressive behavior in adolescents. Aggressive behavior was subordinate to social behaviors, in which defensive attack was often the last line for survival. Meanwhile, increasing studies shown that gut microbiota regulated social behaviors by affecting specific brain regions via the gut-brain axis. However, whether postweaning intermittent SD is related to defensive attack in adulthood, and if so, whether it is mediated by the microbiota-gut-brain axis are still elusive. Combined with microbial sequencing and hippocampal metabolomics, the present study mainly investigated the long-term effects of postweaning intermittent SD on defensive attack in adult mice. Our study demonstrated that postweaning intermittent SD enhanced defensive attack and impaired long-term memory formation in adult female mice. Moreover, microbial sequencing and LC-MS analysis showed that postweaning intermittent SD altered the gut microbial composition and the hippocampal metabolic profile in female mice, respectively. Our attention has been drawn to the neuroactive ligand-receptor interaction pathway and related metabolites. In conclusion, our findings provide a new perspective on the relationship of early-life SD and defensive attack in adulthood, and also highlight the importance of sleep in early-life, especially in females.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Ziyu Xie
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiping Xue
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Bingyu Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China.
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
113
|
Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y, Guo Y, Wu C, Dai J, Wu M, Wang S. Multiomics insights into the female reproductive aging. Ageing Res Rev 2024; 95:102245. [PMID: 38401570 DOI: 10.1016/j.arr.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput omics methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.
Collapse
Affiliation(s)
- Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
114
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
115
|
Adams ED. Probiotics, Prebiotics, Lactoferrin, and Combination Products to Prevent Mortality and Morbidity in Preterm Infants. J Obstet Gynecol Neonatal Nurs 2024; 53:101-105. [PMID: 38342482 DOI: 10.1016/j.jogn.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024] Open
|
116
|
Lv C, Liu X, Chen S, Yi Y, Wen X, Li T, Qin S. Extract of Gardenia jasminoides Ellis Attenuates High-Fat Diet-Induced Glycolipid Metabolism Disorder in Rats by Targeting Gut Microbiota and TLR4/Myd88/NF-κB Pathway. Antioxidants (Basel) 2024; 13:293. [PMID: 38539827 PMCID: PMC10967366 DOI: 10.3390/antiox13030293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Gardenia jasminoides Ellis is abundant in crocin and has a longstanding historical usage both as a dietary and natural ethnic medicine. Enhanced studies have increasingly revealed the intricate interplay between glycolipid metabolism and gut microbiota, wherein their imbalance is regarded as a pivotal indicator of metabolic disorders. Currently, the precise molecular mechanism of the crude extract of crocin from Gardenia jasminoides Ellis (GC) targeting gut microbiota to regulate glycolipid metabolism disorder is still unclear. Firstly, we explored the effect of GC on digestive enzymes (α-amylase and α-glucosidase) in vitro. Secondly, we investigated the effect of GC on the physical and chemical parameters of high-fat diet (HFD) rats, such as body weight change, fasting blood glucose and lipid levels, and liver oxidative stress and injury. Then, 16S rDNA sequencing was used to analyze the effects of GC on the composition and structure of gut microbiota. Finally, the impact of GC on the TLR4/Myd88/NF-κB signaling pathway in the intestine was assessed by Western Blotting. In the present study, GC was found to exhibit a hypoglycemic effect in vitro, by inhibition of digestive enzymes. In animal experiments, we observed that GC significantly reduced fasting blood glucose, TC, and TG levels while increasing HDL-C levels. Additionally, GC demonstrated hepatoprotective properties by enhancing liver antioxidative capacity through the upregulation of SOD, CAT, and GSH-Px, while reducing ROS. 16S rDNA sequencing results showed that GC had a significant effect on the gut microbiota of HFD rats, mainly by reducing the ratio of Firmicutes/Bateroidota, and significantly affected the genera related to glycolipid metabolism, such as Akkermansia, Ligilactobacillus, Lactobacillus, Bacteroides, Prevotellaceae, etc. The Western Blotting results demonstrated that GC effectively downregulated the protein expressions of TLR4, Myd88, and NF-κB in the intestine of HFD rats, indicating that GC could target the TLR4/Myd88/NF-κB pathway to interfere with glycolipid metabolism disorder. Correlation analysis revealed that GC could target the Akkermansia-TLR4/Myd88/NF-κB pathway axis which attenuates glycolipid metabolism disorder. Therefore, this study establishes the foundation for GC as a novel therapeutic agent for glycolipid metabolism disorder chemoprevention, and it introduces a novel methodology for harnessing the potential of natural botanical extracts in the prevention and treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Chenghao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.L.); (X.L.)
| | - Xin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.L.); (X.L.)
| | - Shiyun Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (Y.Y.); (X.W.)
| | - Yuhang Yi
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (Y.Y.); (X.W.)
| | - Xinnian Wen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (Y.Y.); (X.W.)
| | - Tao Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Si Qin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.L.); (X.L.)
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.C.); (Y.Y.); (X.W.)
| |
Collapse
|
117
|
Corral-Vazquez C, Blanco J, Sarrate Z, Anton E. Unraveling the Intricacies of the Seminal Microbiome and Its Impact on Human Fertility. BIOLOGY 2024; 13:150. [PMID: 38534419 PMCID: PMC10967773 DOI: 10.3390/biology13030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Although the microbial communities from seminal fluid were an unexplored field some decades ago, their characteristics and potential roles are gradually coming to light. Therefore, a complex and specific microbiome population with commensal niches and fluctuating species has started to be revealed. In fact, certain clusters of bacteria have been associated with fertility and health, while the outgrowth of several species is potentially correlated with infertility indicators. This constitutes a compelling reason for outlining the external elements that may induce changes in the seminal microbiome composition, like lifestyle factors, gut microbiota, pathologies, prebiotics, and probiotics. In this review, we summarize the main findings about seminal microbiome, its origins and composition, its relationship with fertility, health, and influence factors, while reminding readers of the limitations and advantages introduced from technical variabilities during the experimental procedures.
Collapse
Affiliation(s)
| | | | | | - Ester Anton
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (C.C.-V.); (J.B.); (Z.S.)
| |
Collapse
|
118
|
Luo T, Zhu J, Li K, Li Y, Li J, Chen Y, Shi H. Crosstalk between innate immunity and rumen-fecal microbiota under the cold stress in goats. Front Immunol 2024; 15:1363664. [PMID: 38476231 PMCID: PMC10928366 DOI: 10.3389/fimmu.2024.1363664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
The balance of the microbiome, which is sensitive to temperature changes, plays a crucial role in maintaining overall health and reducing the risk of diseases. However, the specific mechanisms by which immunity and microbiota interact to adapt to cold stress have yet to be addressed. In this study, Nanjiang Yellow goats were chosen as a model and sampled during the cold (winter, cold stress) and warm (spring) seasons, respectively. Analyses of serum immune factors, as well as the composition of rumen and fecal microbial communities, were conducted to explore the crosstalk between microbiota and innate immunity under cold stress. Significantly increased levels of IgA (P < 0.01) were observed in the cold season compared to the warm season. Conversely, the levels of IL-2 (P = 0.02) and IL-6 (P < 0.01) diminished under cold stress. However, no significant differences were observed in IgG (P = 0.89), IgM (P = 0.42), and IL-4 (P = 0.56). While there were no significant changes in the diversity of bacterial communities between the warm and cold seasons, positive correlations between serum IgA, IL-2, IL-6 concentrations and several genera were observed. Furthermore, the weighted gene co-expression network analysis indicated that the microbiota enriched in the MEbrown module positively correlated with IgA, while the microbiota enriched in the MEblue module positively correlated with IL-2 and IL-6. The strong correlation between certain probiotics, including Alistipes, Bacteroides, Blautia, and Prevotellaceae_UCG.004, and the concentration of IL-2, and IL-6 suggests their potential role in immunomodulatory properties. This study provides valuable insights into the crosstalk between microbial communities and immune responses under the challenge of cold stress. Further studies on the immunomodulatory properties of these probiotics would contribute to the development of strategies to enhance the stress resistance of animals for improved overall health and survival.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Kerui Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongtao Li
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yu Chen
- Institute of Nanjiang Yellow Goat Sciences, Bazhong, Sichuan, China
| | - Hengbo Shi
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
119
|
Xu C, Jiang H, Feng LJ, Jiang MZ, Wang YL, Liu SJ. Christensenella minuta interacts with multiple gut bacteria. Front Microbiol 2024; 15:1301073. [PMID: 38440147 PMCID: PMC10910051 DOI: 10.3389/fmicb.2024.1301073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Gut microbes form complex networks that significantly influence host health and disease treatment. Interventions with the probiotic bacteria on the gut microbiota have been demonstrated to improve host well-being. As a representative of next-generation probiotics, Christensenella minuta (C. minuta) plays a critical role in regulating energy balance and metabolic homeostasis in human bodies, showing potential in treating metabolic disorders and reducing inflammation. However, interactions of C. minuta with the members of the networked gut microbiota have rarely been explored. Methods In this study, we investigated the impact of C. minuta on fecal microbiota via metagenomic sequencing, focusing on retrieving bacterial strains and coculture assays of C. minuta with associated microbial partners. Results Our results showed that C. minuta intervention significantly reduced the diversity of fecal microorganisms, but specifically enhanced some groups of bacteria, such as Lactobacillaceae. C. minuta selectively enriched bacterial pathways that compensated for its metabolic defects on vitamin B1, B12, serine, and glutamate synthesis. Meanwhile, C. minuta cross-feeds Faecalibacterium prausnitzii and other bacteria via the production of arginine, branched-chain amino acids, fumaric acids and short-chain fatty acids (SCFAs), such as acetic. Both metagenomic data analysis and culture experiments revealed that C. minuta negatively correlated with Klebsiella pneumoniae and 14 other bacterial taxa, while positively correlated with F. prausnitzii. Our results advance our comprehension of C. minuta's in modulating the gut microbial network. Conclusions C. minuta disrupts the composition of the fecal microbiota. This disturbance is manifested through cross-feeding, nutritional competition, and supplementation of its own metabolic deficiencies, resulting in the specific enrichment or inhibition of the growth of certain bacteria. This study will shed light on the application of C. minuta as a probiotic for effective interventions on gut microbiomes and improvement of host health.
Collapse
Affiliation(s)
- Chang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li-Juan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
120
|
Kimmel MC, Verosky B, Chen HJ, Davis O, Gur TL. The Maternal Microbiome as a Map to Understanding the Impact of Prenatal Stress on Offspring Psychiatric Health. Biol Psychiatry 2024; 95:300-309. [PMID: 38042328 PMCID: PMC10884954 DOI: 10.1016/j.biopsych.2023.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
Stress and psychiatric disorders have been independently associated with disruption of the maternal and offspring microbiome and with increased risk of the offspring developing psychiatric disorders, both in clinical studies and in preclinical studies. However, the role of the microbiome in mediating the effect of prenatal stress on offspring behavior is unclear. While preclinical studies have identified several key mechanisms, clinical studies focusing on mechanisms are limited. In this review, we discuss 3 specific mechanisms by which the microbiome could mediate the effects of prenatal stress: 1) altered production of short-chain fatty acids; 2) disruptions in TH17 (T helper 17) cell differentiation, leading to maternal and fetal immune activation; and 3) perturbation of intestinal and microbial tryptophan metabolism and serotonergic signaling. Finally, we review the existing clinical literature focusing on these mechanisms and highlight the need for additional mechanistic clinical research to better understand the role of the microbiome in the context of prenatal stress.
Collapse
Affiliation(s)
- Mary C Kimmel
- University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Branden Verosky
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| | - Helen J Chen
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| | - Olivia Davis
- University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tamar L Gur
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
121
|
Chu XJ, Song DD, Zhou MH, Chen XZ, Chu N, Li M, Li BZ, Liu SH, Hou S, Wu JB, Gong L. Perturbations in gut and respiratory microbiota in COVID-19 and influenza patients: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1301312. [PMID: 38405190 PMCID: PMC10884097 DOI: 10.3389/fmed.2024.1301312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Objectives Coronavirus disease-19 (COVID-19)/influenza poses unprecedented challenges to the global economy and healthcare services. Numerous studies have described alterations in the microbiome of COVID-19/influenza patients, but further investigation is needed to understand the relationship between the microbiome and these diseases. Herein, through systematic comparison between COVID-19 patients, long COVID-19 patients, influenza patients, no COVID-19/influenza controls and no COVID-19/influenza patients, we conducted a comprehensive review to describe the microbial change of respiratory tract/digestive tract in COVID-19/influenza patients. Methods We systematically reviewed relevant literature by searching the PubMed, Embase, and Cochrane Library databases from inception to August 12, 2023. We conducted a comprehensive review to explore microbial alterations in patients with COVID-19/influenza. In addition, the data on α-diversity were summarized and analyzed by meta-analysis. Results A total of 134 studies comparing COVID-19 patients with controls and 18 studies comparing influenza patients with controls were included. The Shannon indices of the gut and respiratory tract microbiome were slightly decreased in COVID-19/influenza patients compared to no COVID-19/influenza controls. Meanwhile, COVID-19 patients with more severe symptoms also exhibited a lower Shannon index versus COVID-19 patients with milder symptoms. The intestinal microbiome of COVID-19 patients was characterized by elevated opportunistic pathogens along with reduced short-chain fatty acid (SCFAs)-producing microbiota. Moreover, Enterobacteriaceae (including Escherichia and Enterococcus) and Lactococcus, were enriched in the gut and respiratory tract of COVID-19 patients. Conversely, Haemophilus and Neisseria showed reduced abundance in the respiratory tract of both COVID-19 and influenza patients. Conclusion In this systematic review, we identified the microbiome in COVID-19/influenza patients in comparison with controls. The microbial changes in influenza and COVID-19 are partly similar.
Collapse
Affiliation(s)
- Xiu-Jie Chu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Dan-Dan Song
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ming-Hua Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiu-Zhi Chen
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Na Chu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ming Li
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Song-Hui Liu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Sai Hou
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Jia-Bing Wu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Lei Gong
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| |
Collapse
|
122
|
Wang XA, Li JP, Lee MS, Yang SF, Chang YS, Chen L, Li CW, Chao YH. A common trajectory of gut microbiome development during the first month in healthy neonates with limited inter-individual environmental variations. Sci Rep 2024; 14:3264. [PMID: 38332050 PMCID: PMC10853277 DOI: 10.1038/s41598-024-53949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
The early development of the gut microbiome is governed by multiple factors and has significantly long-term effects on later-in-life health. To minimize inter-individual variations in the environment, we determined developmental trajectories of the gut microbiome in 28 healthy neonates during their stay at a postpartum center. Stool samples were collected at three time points: the first-pass meconium within 24 h of life, and at 7 and 28 days of age. Illumina sequencing of the V3-V4 region of 16S rRNA was used to investigate microbiota profiles. We found that there was a distinct microbiota structure at each time point, with a significant shift during the first week. Proteobacteria was most abundant in the first-pass meconium; Firmicutes and Actinobacteria increased with age and were substituted as the major components. Except for a short-term influence of different delivery modes on the microbiota composition, early microbiome development was not remarkably affected by gravidity, maternal intrapartum antibiotic treatment, premature rupture of membranes, or postnatal phototherapy. Hence, our data showed a similar developmental trajectory of the gut microbiome during the first month in healthy neonates when limited in environmental variations. Environmental factors external to the host were crucial in the early microbiome development.
Collapse
Affiliation(s)
- Xing-An Wang
- Department of Pediatrics, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Maw-Sheng Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Lee Women's Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Sheng Chang
- Department of Research and Development, AllBio Life Incorporation, Taichung, Taiwan
| | - Ling Chen
- Department of Research and Development, AllBio Life Incorporation, Taichung, Taiwan
| | - Chang-Wei Li
- Department of Research and Development, AllBio Life Incorporation, Taichung, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
123
|
Zhong X, Zhang G, Huang J, Chen L, Shi Y, Wang D, Zheng Q, Su H, Li X, Wang C, Zhang J, Guo L. Effects of Intestinal Microbiota on the Biological Transformation of Arsenic in Zebrafish: Contribution and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2247-2259. [PMID: 38179619 DOI: 10.1021/acs.est.3c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Both the gut microbiome and their host participate in arsenic (As) biotransformation, while their exact roles and mechanisms in vivo remain unclear and unquantified. In this study, as3mt-/- zebrafish were treated with tetracycline (TET, 100 mg/L) and arsenite (iAsIII) exposure for 30 days and treated with probiotic Lactobacillus rhamnosus GG (LGG, 1 × 108 cfu/g) and iAsIII exposure for 15 days, respectively. Structural equation modeling analysis revealed that the contribution rates of the intestinal microbiome to the total arsenic (tAs) and inorganic As (iAs) metabolism approached 44.0 and 18.4%, respectively. Compared with wild-type, in as3mt-/- zebrafish, microbial richness and structure were more significantly correlated with tAs and iAs, and more differential microbes and microbial metabolic pathways significantly correlated with arsenic metabolites (P < 0.05). LGG supplement influenced the microbial communities, significantly up-regulated the expressions of genes related to As biotransformation (gss and gst) in the liver, down-regulated the expressions of oxidative stress genes (sod1, sod2, and cat) in the intestine, and increased arsenobetaine concentration (P < 0.05). Therefore, gut microbiome promotes As transformation and relieves As accumulation, playing more active roles under iAs stress when the host lacks key arsenic detoxification enzymes. LGG can promote As biotransformation and relieve oxidative stress under As exposure.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China
| | - Jieliang Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Dongbin Wang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hongtian Su
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiang Li
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chunchun Wang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
124
|
Zhao B, Guo Y, Sun R, Zhang L, Yang L, Mei X, Zhang L, Huang J. Quadrivalent hemagglutinin and adhesion expressed on Saccharomyces cerevisiae induce protective immunity against Mycoplasma gallisepticum infection and improve gut microbiota. Microb Pathog 2024; 187:106511. [PMID: 38168552 DOI: 10.1016/j.micpath.2023.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Mycoplasma gallisepticum (MG) infection causes infectious respiratory diseases in poultry, causing economic losses to the poultry industry. Therefore, this study aims to develop a safe, convenient, and effective multivalent recombinant Saccharomyces cerevisiae vaccine candidate and to explore its potential for oral immunization as a subunit vaccine. Mycoplasma gallisepticum Cytadhesin (MGC) and variable lipoprotein and hemagglutinin (vlhA) are associated with the pathogenesis of MG. In this study, a quadrivalent recombinant Saccharomyces cerevisiae (ST1814G-MG) displaying on MGC2, MGC3, VLH5, and VLH3, proteins was innovatively constructed, and its protective efficiency was evaluated in birds. The results showed that oral immunization with ST1814G-MG stimulates specific antibodies in chickens, reshapes the composition of the gut microbiota, reduces the Mycoplasma loading and pulmonary disease injury in the lungs. In addition, we found that oral ST1814G-MG had better protection against MG infection than an inactivated vaccine, and co-administration with the inactivated vaccine was even more effective. The results suggest that ST1814G-MG is a potentially safer and effective agent for controlling MG infection.
Collapse
Affiliation(s)
- Baiping Zhao
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Liu Yang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Xuefeng Mei
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
125
|
Zhangni L, Mofan X, Yuling C, Yingchao L. Clinical features and fecal microbiota characteristics of patients with both ulcerative colitis and axial spondyloarthritis. BMC Gastroenterol 2024; 24:56. [PMID: 38297219 PMCID: PMC10832282 DOI: 10.1186/s12876-024-03150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease combined with axial spondyloarthritis (axSpA) is gaining widespread interest. AIMS This study was conducted to investigate the clinical and fecal microbiota characteristics of patients with both ulcerative colitis (UC) and axSpA. METHODS Clinical data were collected from patients with UC. Patients were divided into the axSpA and non-axSpA groups according to human leukocyte antigen-B27 serology and sacroiliac joint imaging results. We obtained fecal specimens from 14 axSpA and 26 non-axSpA patients. All samples underwent 16S ribosomal DNA sequencing. RESULTS Seventy-three patients with UC were included in this study, and the axSpA incidence was 19.2%. This incidence was significantly higher in patients with C-reactive protein > 10 mg/L. Firmicutes and Faecalibacterium abundances were decreased, and Proteobacteria and Escherichia_Shigella abundances were increased in the axSpA group compared with those of the non-axSpA group. Indicator analysis showed that Escherichia_Shigella was more likely to be an indicator species of axSpA. Additionally, many biosynthetic and metabolic pathways, including glutathione metabolism, fatty acid degradation, geraniol degradation, and biosynthesis of siderophore group nonribosomal peptides, were upregulated in the axSpA group. CONCLUSION Patients with UC have a high axSpA incidence, which may be related to the relative abundances of Escherichia_Shigella in these patients. The abundances of various biosynthetic and metabolic pathways of the fecal flora were upregulated in patients with axSpA.
Collapse
Affiliation(s)
- Lei Zhangni
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Xiao Mofan
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Chen Yuling
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Li Yingchao
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China.
| |
Collapse
|
126
|
Ahmad AR, Ridgeway S, Shibl AA, Idaghdour Y, Jha AR. Falcon gut microbiota is shaped by diet and enriched in Salmonella. PLoS One 2024; 19:e0293895. [PMID: 38289900 PMCID: PMC10826950 DOI: 10.1371/journal.pone.0293895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/20/2023] [Indexed: 02/01/2024] Open
Abstract
The gut microbiome is increasingly being appreciated as a master regulator of animal health. However, avian gut microbiome studies commonly focus on birds of economic importance and the gut microbiomes of raptors remain underexplored. Here we examine the gut microbiota of 29 captive falcons-raptors of historic importance-in the context of avian evolution by sequencing the V4 region of the 16S rRNA gene. Our results reveal that evolutionary histories and diet are significantly associated with avian gut microbiota in general, whereas diet plays a major role in shaping the falcon gut microbiota. Multiple analyses revealed that gut microbial diversity, composition, and relative abundance of key diet-discriminating bacterial genera in the falcon gut closely resemble those of carnivorous raptors rather than those of their closest phylogenetic relatives. Furthermore, the falcon microbiota is dominated by Firmicutes and contains Salmonella at appreciable levels. Salmonella presence was associated with altered functional capacity of the falcon gut microbiota as its abundance is associated with depletion of multiple predicted metabolic pathways involved in protein mass buildup, muscle maintenance, and enrichment of antimicrobial compound degradation, thus increasing the pathogenic potential of the falcon gut. Our results point to the necessity of screening for Salmonella and other human pathogens in captive birds to safeguard both the health of falcons and individuals who come in contact with these birds.
Collapse
Affiliation(s)
- Anique R. Ahmad
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Samuel Ridgeway
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Ahmed A. Shibl
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Aashish R. Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
127
|
Qiao X, Li X, Wang Z, Feng Y, Wei X, Li L, Pan Y, Zhang K, Zhou R, Yan L, Li P, Xu C, Lv Z, Tian Z. Gut microbial community and fecal metabolomic signatures in different types of osteoporosis animal models. Aging (Albany NY) 2024; 16:1192-1217. [PMID: 38284894 PMCID: PMC10866450 DOI: 10.18632/aging.205396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND The gut microbiota (GM) constitutes a critical factor in the maintenance of physiological homeostasis. Numerous studies have empirically demonstrated that the GM is closely associated with the onset and progression of osteoporosis (OP). Nevertheless, the characteristics of the GM and its metabolites related to different forms of OP are poorly understood. In the present study, we examined the changes in the GM and its metabolites associated with various types of OP as well as the correlations among them. METHODS We simultaneously established rat postmenopausal, disuse-induced, and glucocorticoid-induced OP models. We used micro-CT and histological analyses to observe bone microstructure, three-point bending tests to measure bone strength, and enzyme-linked immunosorbent assay (ELISA) to evaluate the biochemical markers of bone turnover in the three rat OP models and the control. We applied 16s rDNA to analyze GM abundance and employed untargeted metabolomics to identify fecal metabolites in all four treatment groups. We implemented multi-omics methods to explore the relationships among OP, the GM, and its metabolites. RESULTS The 16S rDNA sequencing revealed that both the abundance and alterations of the GM significantly differed among the OP groups. In the postmenopausal OP model, the bacterial genera g__Bacteroidetes_unclassified, g__Firmicutes_unclassified, and g__Eggerthella had changed. In the disuse-induced and glucocorticoid-induced OP models, g__Akkermansia and g__Rothia changed, respectively. Untargeted metabolomics disclosed that the GM-derived metabolites significantly differed among the OP types. However, a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that it was mainly metabolites implicated in lipid and amino acid metabolism that were altered in all cases. An association analysis indicated that the histidine metabolism intermediate 4-(β-acetylaminoethyl) imidazole was common to all OP forms and was strongly correlated with all bone metabolism-related bacterial genera. Hence, 4-(β-acetylaminoethyl) imidazole might play a vital role in OP onset and progression. CONCLUSIONS The present work revealed the alterations in the GM and its metabolites that are associated with OP. It also disclosed the changes in the GM that are characteristic of each type of OP. Future research should endeavor to determine the causal and regulatory effects of the GM and the metabolites typical of each form of OP.
Collapse
Affiliation(s)
- Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, Jinzhong Hospital Affiliated to Shanxi Medical University, Jinzhong 030600, Shanxi, P.R. China
| | - Xiaoyan Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, P.R. China
| | - Zhichao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi, China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Lu Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Yongchun Pan
- Department of Orthopedics, Third People’s Hospital of Datong City, Datong 037006, Shanxi, P.R. China
| | - Kun Zhang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| |
Collapse
|
128
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168221. [PMID: 37923256 DOI: 10.1016/j.scitotenv.2023.168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenically driven climate change is predicted to increase average sea surface temperatures, as well as the frequency and intensity of marine heatwaves in the future. This increasing temperature is predicted to have a range of negative physiological impacts on multiple life-stages of coral reef fish. Nevertheless, studies of early-life stages remain limited, and tissue-specific transcriptomic studies of post-larval coral reef fish are yet to be conducted. Here, in an aquaria-based study we investigate the tissue-specific (brain, liver, muscle, and digestive tract) transcriptomic response of post-larval (20 dph) Amphiprion ocellaris to temperatures associated with future climate change (+3 °C). Additionally, we utilized metatranscriptomic sequencing to investigate how the microbiome of the digestive tract changes at +3 °C. Our results show that the transcriptional response to elevated temperatures is highly tissue-specific, as the number of differentially expressed genes (DEGs) and gene functions varied amongst the brain (102), liver (1785), digestive tract (380), and muscle (447). All tissues displayed DEGs associated with thermal stress, as 23 heat-shock protein genes were upregulated in all tissues. Our results indicate that post-larval clownfish may experience liver fibrosis-like symptoms at +3 °C as genes associated with extracellular matrix structure, oxidative stress, inflammation, glucose transport, and metabolism were all upregulated. We also observe a shift in the digestive tract microbiome community structure, as Vibrio sp. replace Escherichia coli as the dominant bacteria. This shift is coupled with the dysregulation of various genes involved in immune response in the digestive tract. Overall, this study highlights post-larval clownfish will display tissue-specific transcriptomic responses to future increases in temperature, with many potentially harmful pathways activated at +3 °C.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
129
|
Gonçalves CL, Doifode T, Rezende VL, Costa MA, Rhoads JM, Soutullo CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci 2024; 337:122357. [PMID: 38123016 DOI: 10.1016/j.lfs.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Victoria L Rezende
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A Costa
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - J Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| |
Collapse
|
130
|
Wang S, Mu L, Yu C, He Y, Hu X, Jiao Y, Xu Z, You S, Liu SL, Bao H. Microbial collaborations and conflicts: unraveling interactions in the gut ecosystem. Gut Microbes 2024; 16:2296603. [PMID: 38149632 PMCID: PMC10761165 DOI: 10.1080/19490976.2023.2296603] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
The human gut microbiota constitutes a vast and complex community of microorganisms. The myriad of microorganisms present in the intestinal tract exhibits highly intricate interactions, which play a crucial role in maintaining the stability and balance of the gut microbial ecosystem. These interactions, in turn, influence the overall health of the host. The mammalian gut microbes have evolved a wide range of mechanisms to suppress or even eliminate their competitors for nutrients and space. Simultaneously, extensive cooperative interactions exist among different microbes to optimize resource utilization and enhance their own fitness. This review will focus on the competitive mechanisms among members of the gut microorganisms and discuss key modes of actions, including bacterial secretion systems, bacteriocins, membrane vesicles (MVs) etc. Additionally, we will summarize the current knowledge of the often-overlooked positive interactions within the gut microbiota, and showcase representative machineries. This information will serve as a reference for better understanding the complex interactions occurring within the mammalian gut environment. Understanding the interaction dynamics of competition and cooperation within the gut microbiota is crucial to unraveling the ecology of the mammalian gut microbial communities. Targeted interventions aimed at modulating these interactions may offer potential therapeutic strategies for disease conditions.
Collapse
Affiliation(s)
- Shuang Wang
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingyi Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chong Yu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yuting He
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xinliang Hu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yanlei Jiao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Ziqiong Xu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shaohui You
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hongxia Bao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| |
Collapse
|
131
|
Fenneman AC, Boulund U, Collard D, Galenkamp H, Zwinderman AH, van den Born BJH, van der Spek AH, Fliers E, Rampanelli E, Blaser MJ, Nieuwdorp M. Comparative Analysis of Taxonomic and Functional Gut Microbiota Profiles in Relation to Seroconversion of Thyroid Peroxidase Antibodies in Euthyroid Participants. Thyroid 2024; 34:101-111. [PMID: 38010921 PMCID: PMC10818057 DOI: 10.1089/thy.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background: Previous studies have reported gut microbiome alterations in Hashimoto's autoimmune thyroiditis (HT) patients. Yet, it is unknown whether an aberrant microbiome is present before clinical disease onset in participants susceptible to HT or whether it reflects the effects of the disease itself. In this study, we report for the first time a comprehensive characterization of the taxonomic and functional profiles of the gut microbiota in euthyroid seropositive and seronegative participants. Our primary goal was to determine taxonomic and functional signatures of the intestinal microbiota associated with serum thyroid peroxidase antibodies (TPOAb). A secondary aim was to determine whether different ethnicities warrant distinct reference intervals for accurate interpretation of serum thyroid biomarkers. Methods: In this cross-sectional study, euthyroid participants with (N = 159) and without (N = 1309) TPOAb were selected from the multiethnic (European Dutch, Moroccan, and Turkish) HEalthy Life In an Urban Setting (HELIUS) cohort. Fecal microbiota composition was profiled using 16S rRNA sequencing. Differences between the groups were analyzed based on the overall composition (alpha and beta diversity), as well as differential abundance (DA) of microbial taxa and functional pathways using multiple DA tools. Results: Overall composition showed a substantial overlap between the two groups (p > 0.05 for alpha-diversity; p = 0.39 for beta-diversity), indicating that TPOAb-seropositivity does not significantly differentiate gut microbiota composition and diversity. Interestingly, TPOAb status accounted for only a minor fraction (0.07%) of microbiome variance (p = 0.545). Further exploration of taxonomic differences identified 138 taxa nominally associated with TPOAb status. Among these, 13 taxa consistently demonstrated nominal significance across three additional DA methods, alongside notable associations within various functional pathways. Furthermore, we showed that ethnicity-specific reference intervals for serum thyroid biomarkers are not required, as no significant disparities in serum thyroid markers were found among the three ethnic groups residing in an iodine-replete area (p > 0.05 for thyrotropin, free thyroxine, and TPOAb). Conclusion: These findings suggest that there is no robust difference in gut microbiome between individuals with or without TPOAb in terms of alpha and beta-diversity. Nonetheless, several taxa were identified with nominal significance related to TPOAb presence. Further research is required to determine whether these changes indeed imply a higher risk of overt HT.
Collapse
Affiliation(s)
- Aline C. Fenneman
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Didier Collard
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam Public Health (APH), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Aeilko H. Zwinderman
- Department of Public and Occupational Health, Amsterdam Public Health (APH), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Bert-Jan H. van den Born
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Public and Occupational Health, Amsterdam Public Health (APH), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Anne H. van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway New Jersey, USA
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
132
|
Beurel E. Stress in the microbiome-immune crosstalk. Gut Microbes 2024; 16:2327409. [PMID: 38488630 PMCID: PMC10950285 DOI: 10.1080/19490976.2024.2327409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The gut microbiota exerts a mutualistic interaction with the host in a fragile ecosystem and the host intestinal, neural, and immune cells. Perturbations of the gastrointestinal track composition after stress have profound consequences on the central nervous system and the immune system. Reciprocally, brain signals after stress affect the gut microbiota highlighting the bidirectional communication between the brain and the gut. Here, we focus on the potential role of inflammation in mediating stress-induced gut-brain changes and discuss the impact of several immune cells and inflammatory molecules of the gut-brain dialogue after stress. Understanding the impact of microbial changes on the immune system after stress might provide new avenues for therapy.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
133
|
Al-Busaidi A, Alabri O, Alomairi J, ElSharaawy A, Al Lawati A, Al Lawati H, Das S. Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e170124225723. [PMID: 38243954 DOI: 10.2174/0115733998281910231231051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual's good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.
Collapse
Affiliation(s)
- Alsalt Al-Busaidi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Omer Alabri
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Jaifar Alomairi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Hanan Al Lawati
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
134
|
David P, Claud EC. Necrotizing Enterocolitis and the Preterm Infant Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:29-41. [PMID: 39060729 DOI: 10.1007/978-3-031-58572-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Preterm infants differ significantly from their term infant counterparts regarding bacterial colonization patterns related to maternal microbiota diversity, mode of delivery, feeding type, antibiotic exposure, and the environmental influences related to prolonged hospitalization in the neonatal intensive care unit (NICU). Necrotizing enterocolitis (NEC), a multifactorial intestinal disorder characterized by ischemic bowel disease, disproportionately impacts preterm infants and has a high disease burden. Recent studies in the basic, translational, and clinical scientific literature have advanced knowledge into this complex disease process. Despite the explosion of research into NEC, however, there is a still a great deal unknown about this devastating illness. Additionally, the disease morbidity and mortality for NEC remain high despite advances in therapy options. This chapter reviews the current literature into the preterm infant microbiome, pathogenesis of NEC, potential targets for altering preterm microbiome, influence of microbiome on other organ systems, long-term implications of microbiome dysbiosis, and future directions of study.
Collapse
Affiliation(s)
- Pyone David
- Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Erika C Claud
- Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
135
|
Maqsood R, Holland LA, Wu LI, Begnel ER, Adhiambo J, Owiti P, Chohan BH, Gantt S, Kinuthia J, Wamalwa D, Ojee E, Richardson BA, Slyker J, Lehman DA, Lim ES. Gut virome and microbiome dynamics before and after SARS-CoV-2 infection in women living with HIV and their infants. Gut Microbes 2024; 16:2394248. [PMID: 39185682 PMCID: PMC11352790 DOI: 10.1080/19490976.2024.2394248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Microbiome perturbations can have long-term effects on health. The dynamics of the gut microbiome and virome in women living with HIV (WLHIV) and their newborn infants is poorly understood. Here, we performed metagenomic sequencing analyses on longitudinal stool samples including 23 mothers (13 WLHIV, 10 HIV-negative) and 12 infants that experienced SARS-CoV-2 infection with mild disease, as well as 40 mothers (18 WLHIV, 22 HIV-negative) and 60 infants that remained SARS-CoV-2 seronegative throughout the study follow-up. Regardless of HIV or SARS-CoV-2 status, maternal bacterial and viral profiles were distinct from infants. Using linear mixed effects models, we showed that the microbiome alpha diversity trajectory was not significantly different between SARS-CoV-2 seropositive and seronegative women. However, seropositive women's positive trajectory while uninfected was abruptly reversed after SARS-CoV-2 infection (p = 0.015). Gut virome signatures of women were not associated with SARS-CoV-2. Alterations in infant microbiome and virome diversities were generally not impacted by SARS-CoV-2 but were rather driven by development. We did not find statistically significant interactions between HIV and SARS-CoV-2 on the gut microbiome and virome. Overall, our study provides insights into the complex interplay between maternal and infant bacterial microbiome, virome, and the influence of SARS-CoV-2 and HIV status.
Collapse
Affiliation(s)
- Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Lily I. Wu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Emily R. Begnel
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Judith Adhiambo
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Prestone Owiti
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Bhavna H. Chohan
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center of Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Centre de Recherche du CHU St-Justine, Montreal, Québec, Canada
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Ednah Ojee
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Dara A. Lehman
- Department of Global Health, University of Washington, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
136
|
Gu Z, Zhang Y, Zhao X, Liu T, Sheng S, Song R, Jin R. Comparing sputum microbiota characteristics between severe and critically ill influenza patients. Front Cell Infect Microbiol 2023; 13:1297946. [PMID: 38188635 PMCID: PMC10766813 DOI: 10.3389/fcimb.2023.1297946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Currently, limited attention has been directed toward utilizing clinical cohorts as a starting point to elucidate alterations in the lower respiratory tract (LRT) microbiota following influenza A virus (IAV) infection. Objectives Our objective was to undertake a comparative analysis of the diversity and composition of sputum microbiota in individuals afflicted by severe and critically ill influenza patients. Methods Sputum specimens were procured from patients diagnosed with IAV infection for the purpose of profiling the microbiota using 16S-rDNA sequencing. To ascertain taxonomic differences between the severe and critically ill influenza cohorts, we leveraged Linear Discriminant Analysis Effect Size (LEfSe). Additionally, Spearman correlation analysis was employed to illuminate associations between sputum microbiota and influenza Ct values alongside laboratory indicators. Results Our study encompassed a total cohort of 64 patients, comprising 48 within the severe group and 16 within the critically ill group. Intriguingly, Bacteroidetes exhibited significant depletion in the critically ill cohort (p=0.031). The sputum microbiomes of the severe influenza group were hallmarked by an overrepresentation of Neisseria, Porphyromonas, Actinobacillus, Alloprevotella, TM7x, and Clostridia_UCG-014, yielding ROC-plot AUC values of 0.71, 0.68, 0.60, 0.70, 0.70, and 0.68, respectively. Notably, Alloprevotella exhibited an inverse correlation with influenza Ct values. Moreover, C-reactive protein (CRP) manifested a positive correlation with Haemophilus and Porphyromonas. Conclusion The outcomes of this investigation lay the groundwork for future studies delving into the connection between the LRT microbiome and respiratory disorders. Further exploration is warranted to elucidate the intricate mechanisms underlying the interaction between IAV and Alloprevotella, particularly in disease progression.
Collapse
Affiliation(s)
- Zhixia Gu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Xue Zhao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Shugui Sheng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Rui Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| |
Collapse
|
137
|
Qu Z, Tian P, Wang L, Jin X, Guo M, Lu J, Zhao J, Chen W, Wang G. Dietary Nucleotides Promote Neonatal Rat Microbiota-Gut-Brain Axis Development by Affecting Gut Microbiota Composition and Metabolic Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19622-19637. [PMID: 38014964 DOI: 10.1021/acs.jafc.3c07349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A variety of active factors in milk and foods have been proven to serve as microbial nutrients that regulate the formation of early gut microbiota (GM), thereby ensuring the healthy development of infants. This study demonstrated that dietary nucleotides (NTs), one of the main nitrogen-containing substances in human milk, promoted the neurodevelopment of neonatal rats and the expression of Sox2, Dcx, Tuj1, and NeuN in the prefrontal cortex and hippocampus, but had no significant regulatory effects in the striatum. 16s rRNA sequencing and metabolomics of the colon contents of neonatal rats at different developmental stages showed that the early intake of NTs promoted an increase in the abundance of beneficial microorganisms related to neurodevelopment, digestion, and gut absorption, such as g_Romboutsia and g_Akkermansia. Changes in the ability of the GM to regulate folate synthesis, riboflavin metabolism, and other processes were also observed. Further analysis revealed significant correlations between the level of characteristic metabolites, namely, trans-3-indoleacrylic acid, urocanic acid, inosine, and adenosine, in the gut with neurodevelopment and characteristic GM components. These findings suggest that NTs in milk may affect neurodevelopment and maturation in early life by regulating the GM composition-gut-brain axis.
Collapse
Affiliation(s)
- Zhihao Qu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingyu Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
138
|
Tang X, Zhang L, Ren S, Zhao Y, Zhang Y. Temporal and geographic distribution of gut microbial enterotypes associated with host thermogenesis characteristics in plateau pikas. Microbiol Spectr 2023; 11:e0002023. [PMID: 37815332 PMCID: PMC10715161 DOI: 10.1128/spectrum.00020-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The gut microbiotas of small mammals play an important role in host energy homeostasis. However, it is still unknown whether small mammals with different enterotypes show differences in thermogenesis characteristics. Our study confirmed that plateau pikas with different bacterial enterotypes harbored distinct thermogenesis capabilities and employed various strategies against cold environments. Additionally, we also found that pikas with different fungal enterotypes may display differences in coprophagy.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
139
|
Epicoco L, Pellegrino R, Madaghiele M, Friuli M, Giannotti L, Di Chiara Stanca B, Palermo A, Siculella L, Savkovic V, Demitri C, Nitti P. Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration. Pharmaceutics 2023; 15:2725. [PMID: 38140066 PMCID: PMC10747510 DOI: 10.3390/pharmaceutics15122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Periodontitis is a global, multifaceted, chronic inflammatory disease caused by bacterial microorganisms and an exaggerated host immune response that not only leads to the destruction of the periodontal apparatus but may also aggravate or promote the development of other systemic diseases. The periodontium is composed of four different tissues (alveolar bone, cementum, gingiva, and periodontal ligament) and various non-surgical and surgical therapies have been used to restore its normal function. However, due to the etiology of the disease and the heterogeneous nature of the periodontium components, complete regeneration is still a challenge. In this context, guided tissue/bone regeneration strategies in the field of tissue engineering and regenerative medicine have gained more and more interest, having as a goal the complete restoration of the periodontium and its functions. In particular, the use of electrospun nanofibrous scaffolds has emerged as an effective strategy to achieve this goal due to their ability to mimic the extracellular matrix and simultaneously exert antimicrobial, anti-inflammatory and regenerative activities. This review provides an overview of periodontal regeneration using electrospun membranes, highlighting the use of these nanofibrous scaffolds as delivery systems for bioactive molecules and drugs and their functionalization to promote periodontal regeneration.
Collapse
Affiliation(s)
- Luana Epicoco
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
- Institute of Medical Physics and Biophysics, University of Leipzig, 04103 Leipzig, Germany
| | - Rebecca Pellegrino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marco Friuli
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Vuk Savkovic
- Clinic and Polyclinic for Oral and Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| |
Collapse
|
140
|
Feng X, Deng M, Zhang L, Pan Q. Impact of gut microbiota and associated mechanisms on postprandial glucose levels in patients with diabetes. J Transl Int Med 2023; 11:363-371. [PMID: 38130636 PMCID: PMC10732577 DOI: 10.2478/jtim-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Diabetes and its complications are serious medical and global burdens, often manifesting as postprandial hyperglycemia. In recent years, considerable research attention has focused on relationships between the gut microbiota and circulating postprandial glucose (PPG). Different population studies have suggested that PPG is closely related to the gut microbiota which may impact PPG via short-chain fatty acids (SCFAs), bile acids (BAs) and trimethylamine N-oxide (TMAO). Studies now show that gut microbiota models can predict PPG, with individualized nutrition intervention strategies used to regulate gut microbiota and improve glucose metabolism to facilitate the precision treatment of diabetes. However, few studies have been conducted in patients with diabetes. Therefore, little is known about the relationships between the gut microbiota and PPG in this cohort. Thus, more research is required to identify key gut microbiota and associated metabolites and pathways impacting PPG to provide potential therapeutic targets for PPG.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Mingqun Deng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
141
|
Fetter K, Weigel M, Ott B, Fritzenwanker M, Stricker S, de Laffolie J, Hain T. The microbiome landscape in pediatric Crohn's disease and therapeutic implications. Gut Microbes 2023; 15:2247019. [PMID: 37614093 PMCID: PMC10453987 DOI: 10.1080/19490976.2023.2247019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Dysbiosis of the gut microbiome and a pathological immune response in intestinal tissues form the basis of Crohn's disease (CD), which is a debilitating disease with relevant morbidity and mortality. It is increasing in childhood and adolescents, due to western life-style and nutrition and a large set of predisposing genetic factors. Crohn's disease-associated genetic mutations play an essential role in killing pathogens, altering mucosal barrier function, and protecting the host microbiome, suggesting an important pathogenic link. The intestinal microbiome is highly variable and can be influenced by environmental factors. Changes in microbial composition and a reduction in species diversity have been shown to be central features of disease progression and are therefore the target of therapeutic approaches. In this review, we summarize the current literature on the role of the gut microbiome in childhood, adolescent, and adult CD, current therapeutic options, and their impact on the microbiome.
Collapse
Affiliation(s)
- Karin Fetter
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Benjamin Ott
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Sebastian Stricker
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
| | - Jan de Laffolie
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
142
|
Zhang K, Chen L, Yang J, Liu J, Li J, Liu Y, Li X, Chen L, Hsu C, Zeng J, Xie X, Wang Q. Gut microbiota-derived short-chain fatty acids ameliorate methamphetamine-induced depression- and anxiety-like behaviors in a Sigmar-1 receptor-dependent manner. Acta Pharm Sin B 2023; 13:4801-4822. [PMID: 38045052 PMCID: PMC10692394 DOI: 10.1016/j.apsb.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Methamphetamine (Meth) abuse can cause serious mental disorders, including anxiety and depression. The gut microbiota is a crucial contributor to maintaining host mental health. Here, we aim to investigate if microbiota participate in Meth-induced mental disorders, and the potential mechanisms involved. Here, 15 mg/kg Meth resulted in anxiety- and depression-like behaviors of mice successfully and suppressed the Sigma-1 receptor (SIGMAR1)/BDNF/TRKB pathway in the hippocampus. Meanwhile, Meth impaired gut homeostasis by arousing the Toll-like receptor 4 (TLR4)-related colonic inflammation, disturbing the gut microbiome and reducing the microbiota-derived short-chain fatty acids (SCFAs). Moreover, fecal microbiota from Meth-administrated mice mediated the colonic inflammation and reproduced anxiety- and depression-like behaviors in recipients. Further, SCFAs supplementation optimized Meth-induced microbial dysbiosis, ameliorated colonic inflammation, and repressed anxiety- and depression-like behaviors. Finally, Sigmar1 knockout (Sigmar1-/-) repressed the BDNF/TRKB pathway and produced similar behavioral phenotypes with Meth exposure, and eliminated the anti-anxiety and -depression effects of SCFAs. The activation of SIGMAR1 with fluvoxamine attenuated Meth-induced anxiety- and depression-like behaviors. Our findings indicated that gut microbiota-derived SCFAs could optimize gut homeostasis, and ameliorate Meth-induced mental disorders in a SIGMAR1-dependent manner. This study confirms the crucial role of microbiota in Meth-related mental disorders and provides a potential preemptive therapy.
Collapse
Affiliation(s)
- Kaikai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianzheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiali Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiuwen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
143
|
Aghili SS, Jahangirnia A, Alam M, Oskouei AB, Golkar M, Badkoobeh A, Abbasi K, Mohammadikhah M, Karami S, Soufdoost RS, Namanloo RA, Talebi S, Amookhteh S, Hemmat M, Sadeghi S. The effect of photodynamic therapy in controlling the oral biofilm: A comprehensive overview. J Basic Microbiol 2023; 63:1319-1347. [PMID: 37726220 DOI: 10.1002/jobm.202300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Several resistance mechanisms are involved in dental caries, including oral biofilms. An accumulation of bacteria on the surface of teeth is called plaque. Periodontitis and gingivitis are caused by dental plaque. In this review article, we aimed to review the studies associated with the application of photodynamic therapy (PDT) to prevent and treat various microbial biofilm-caused oral diseases in recent decades. There are several studies published in PubMed that have described antimicrobial photodynamic therapy (APDT) effects on microorganisms. Several in vitro and in vivo studies have demonstrated the potential of APDT for treating endodontic, periodontal, and mucosal infections caused by bacteria as biofilms. Reactive oxygen species (ROS) are activated in the presence of oxygen by integrating a nontoxic photosensitizer (PS) with appropriate wavelength visible light. By causing irreversible damage to microorganisms, ROS induces some biological and photochemical events. Testing several wavelengths has been conducted to identify potential PS for APDT. A standard protocol is not yet available, and the current review summarizes findings from dental studies on APDT.
Collapse
Affiliation(s)
- Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | | | - Sahar Talebi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Amookhteh
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hemmat
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadeghi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
144
|
Robitaille S, Simmons EL, Verster AJ, McClure EA, Royce DB, Trus E, Swartz K, Schultz D, Nadell CD, Ross BD. Community composition and the environment modulate the population dynamics of type VI secretion in human gut bacteria. Nat Ecol Evol 2023; 7:2092-2107. [PMID: 37884689 PMCID: PMC11099977 DOI: 10.1038/s41559-023-02230-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of great importance; however, knowledge of the biogeographical and ecological relationships between physically interacting taxa is limited. Interbacterial antagonism may play an important role in gut community dynamics, yet the conditions under which antagonistic behaviour is favoured or disfavoured by selection in the gut are not well understood. Here, using genomics, we show that a species-specific type VI secretion system (T6SS) repeatedly acquires inactivating mutations in Bacteroides fragilis in the human gut. This result implies a fitness cost to the T6SS, but we could not identify laboratory conditions under which such a cost manifests. Strikingly, experiments in mice illustrate that the T6SS can be favoured or disfavoured in the gut depending on the strains and species in the surrounding community and their susceptibility to T6SS antagonism. We use ecological modelling to explore the conditions that could underlie these results and find that community spatial structure modulates interaction patterns among bacteria, thereby modulating the costs and benefits of T6SS activity. Our findings point towards new integrative models for interrogating the evolutionary dynamics of type VI secretion and other modes of antagonistic interaction in microbiomes.
Collapse
Affiliation(s)
- Sophie Robitaille
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Emilia L Simmons
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Adrian J Verster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Emily Ann McClure
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Darlene B Royce
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Evan Trus
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Kerry Swartz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Benjamin D Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
145
|
Fyntanidou B, Amaniti A, Soulioti E, Zagalioti SC, Gkarmiri S, Chorti A, Loukipoudi L, Ioannidis A, Dalakakis I, Menni AE, Shrewsbury AD, Kotzampassi K. Probiotics in Postoperative Pain Management. J Pers Med 2023; 13:1645. [PMID: 38138872 PMCID: PMC10745134 DOI: 10.3390/jpm13121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Postoperative pain is the unpleasant sensory and emotional experience after surgery, its origin being both the inflammatory reaction induced by the surgical trauma on the abdominal wall and the splanchnic pain induced by the activation of nociceptors of the viscera, which are highly sensitive to distension, ischemia, and inflammation. Nowadays, it is well recognized that there is a close relationship between the gut microbiome and pain perception, and that microbiome is highly affected by both anesthesia and surgical manipulation. Thus, efforts to restore the disturbed microbiome via supplementation with beneficial bacteria, namely probiotics, seem to be effective. In this article, the knowledge gained mainly from experimental research on this topic is analyzed, the concluding message being that each probiotic strain works in its own way towards pain relief.
Collapse
Affiliation(s)
- Barbara Fyntanidou
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Aikaterini Amaniti
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Eleftheria Soulioti
- Second Department of Anesthesiology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| | - Sofia-Chrysovalantou Zagalioti
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Sofia Gkarmiri
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Angeliki Chorti
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Lamprini Loukipoudi
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Aris Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Ioannis Dalakakis
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| |
Collapse
|
146
|
Ingribelli E, Modrackova N, Tejnecky V, Killer J, Schwab C, Neuzil-Bunesova V. Culture-dependent screening of endospore-forming clostridia in infant feces. BMC Microbiol 2023; 23:347. [PMID: 37978420 PMCID: PMC10655253 DOI: 10.1186/s12866-023-03104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Only a few studies dealt with the occurrence of endospore-forming clostridia in the microbiota of infants without obvious health complications. METHODS A methodology pipeline was developed to determine the occurrence of endospore formers in infant feces. Twenty-four fecal samples (FS) were collected from one infant in monthly intervals and were subjected to variable chemical and heat treatment in combination with culture-dependent analysis. Isolates were identified by MALDI-TOF mass spectrometry, 16S rRNA gene sequencing, and characterized with biochemical assays. RESULTS More than 800 isolates were obtained, and a total of 21 Eubacteriales taxa belonging to the Clostridiaceae, Lachnospiraceae, Oscillospiraceae, and Peptostreptococcaceae families were detected. Clostridium perfringens, C. paraputrificum, C. tertium, C. symbiosum, C. butyricum, and C. ramosum were the most frequently identified species compared to the rarely detected Enterocloster bolteae, C. baratii, and C. jeddahense. Furthermore, the methodology enabled the subsequent cultivation of less frequently detectable gut taxa such as Flavonifractor plautii, Intestinibacter bartlettii, Eisenbergiella tayi, and Eubacterium tenue. The isolates showed phenotypic variability regarding enzymatic activity, fermentation profiles, and butyrate production. CONCLUSIONS Taken together, this approach suggests and challenges a cultivation-based pipeline that allows the investigation of the population of endospore formers in complex ecosystems such as the human gastrointestinal tract.
Collapse
Affiliation(s)
- Eugenio Ingribelli
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
| | - Vaclav Tejnecky
- Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Animal Physiology and Genetics v.v.i, the Czech Academy of Sciences, Prague, Czechia
| | - Clarissa Schwab
- Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
| | - Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czechia.
| |
Collapse
|
147
|
Abril AG, Carrera M, Pazos M. Immunomodulatory effect of marine lipids on food allergy. Front Nutr 2023; 10:1254681. [PMID: 38035353 PMCID: PMC10683508 DOI: 10.3389/fnut.2023.1254681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Manuel Pazos
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
148
|
Frąszczak K, Barczyński B, Siwiec R, Kondracka A, Malm A, Kotarski J, Witt E, Korona-Głowniak I. The analysis of Lactobacillus spp. distribution in the vaginal microbiota of Polish women with abnormal Pap smear result. Front Microbiol 2023; 14:1257587. [PMID: 38029074 PMCID: PMC10666048 DOI: 10.3389/fmicb.2023.1257587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction A healthy vaginal microbiota is represented mainly by Lactobacillus spp. and plays a vital role in maintaining the functional balance in the vaginal environment. Scientists have drawn attention to possible correlations between the vaginal microbiome and gynecological neoplasms. Several recent studies have shown a potential link between the vaginal microbiome and the risk of developing cervical cancer from human papillomavirus (HPV) infection. This study aimed to compare the prevalence and abundance of various lactic acid bacteria species (LABs) in vaginal swabs from healthy controls and patients with abnormal Pap smear results. Methods The study included 100 women (79 patients with abnormal cervical Pap smear results and 21 controls) from whom vaginal swabs were collected. Real-time quantitative PCR was used to determine seven lactic acid bacteria (LAB) species and their quantities. Results Most patients were colonized by two Lactobacillus species, primarily Lactobacillus gasseri (93%) and L. crispatus (83%). Patient age and place of residence were associated with the diversity of LAB in the vaginal microbiota. The abundance of L. delbrueckii in the vaginal microbiota increased, whereas the abundance of L. gasseri abundance decreased, with patient age. Lactobacillus acidophilus and Limosilactobacillus fermentum were significantly more often detected in patients living in rural versus urban areas. Statistical analysis did not show any significant differences in LAB between groups of patients with various changes on smear tests. Discussion The degree of dysplastic changes in the endothelium or the presence of a group of atypical cervical stratified epithelial cells was not associated with significant changes in the studied vaginal bacteria.
Collapse
Affiliation(s)
- Karolina Frąszczak
- I Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, Lublin, Poland
| | - Bartłomiej Barczyński
- I Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, Lublin, Poland
| | - Radosław Siwiec
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University in Lublin, Lublin, Poland
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University in Lublin, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University in Lublin, Lublin, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University in Lublin, Lublin, Poland
| | - Elzbieta Witt
- Frauenklinik, Marienhospital Witten, Witten, Germany
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University in Lublin, Lublin, Poland
| |
Collapse
|
149
|
Ye J, Qi X. Vaginal microecology and its role in human papillomavirus infection and human papillomavirus associated cervical lesions. APMIS 2023. [PMID: 37941500 DOI: 10.1111/apm.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
The vaginal microecology comprises the vaginal microbiome, immune microenvironment, vaginal anatomy, and the cervicovaginal fluid, which is rich in metabolites, enzymes, and cytokines. Investigating its role in the female reproductive system holds paramount significance. The advent of next-generation sequencing enabled a more profound investigation into the structure of the vaginal microbial community in relation to the female reproductive system. Human papillomavirus infection is prevalent among women of reproductive age, and persistent oncogenic HPV infection is widely recognized as a factor associated with cervical cancer. Extensive previous research has demonstrated that dysbiosis of vaginal microbiota characterized by a reduction in Lactobacillus species, heightens susceptivity to HPV infection, consequently contributing to persistent HPV infection and the progression of cervical lesion. Likewise, HPV infection can exacerbate dysbiosis. This review aims to provide a comprehensive summary of current literatures and to elucidate potential mechanisms underlying the interaction between vaginal microecology and HPV infection, with the intention of offering valuable insights for future clinical interventions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
150
|
Liu W, Xu J, Pi Z, Chen Y, Jiang G, Wan Y, Mao W. Untangling the web of intratumor microbiota in lung cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189025. [PMID: 37980944 DOI: 10.1016/j.bbcan.2023.189025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Microbes are pivotal in contemporary cancer research, influencing various biological behaviors in cancer. The previous notion that the lung was sterile has been destabilized by the discovery of microbiota in the lower airway and lung, even within tumor tissues. Advances of biotechnology enable the association between intratumor microbiota and lung cancer to be revealed. Nonetheless, the origin and tumorigenicity of intratumor microbiota in lung cancer still remain implicit. Additionally, accumulating evidence indicates that intratumor microbiota might serve as an emerging biomarker for cancer diagnosis, prognosis, and even a therapeutic target across multiple cancer types, including lung cancer. However, research on intratumor microbiota's role in lung cancer is still nascent and warrants more profound exploration. Herein, this paper provides an extensive review of recent advancements in the following fields, including 1) established and emerging biotechnologies utilized to study intratumor microbiota in lung cancer, 2) causation between intratumor microbiota and lung cancer from the perspectives of translocation, cancerogenesis and metastasis, 3) potential application of intratumor microbiota as a novel biomarker for lung cancer diagnosis and prognosis, and 4) promising lung cancer therapies via regulating intratumor microbiota. Moreover, this review addresses the limitations, challenges, and future prospects of studies focused on intratumor microbiota in lung cancer.
Collapse
Affiliation(s)
- Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Jingtong Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheshun Pi
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA
| | - Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| |
Collapse
|