101
|
Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:77-96. [DOI: 10.1007/978-3-319-72799-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
102
|
Gallegos-Candela M, Boyer AE, Woolfitt AR, Brumlow J, Lins RC, Quinn CP, Hoffmaster AR, Meister G, Barr JR. Validated MALDI-TOF-MS method for anthrax lethal factor provides early diagnosis and evaluation of therapeutics. Anal Biochem 2017; 543:97-107. [PMID: 29224733 PMCID: PMC7904043 DOI: 10.1016/j.ab.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023]
Abstract
Anthrax lethal factor (LF) is a zinc-dependent endoprotease and a critical virulence factor for Bacillus anthracis, the causative agent of anthrax. The mass spectrometry (MS) method for total-LF quantification includes three steps; 1) LF specific antibody capture/concentration, 2) LF-specific hydrolysis of a peptide substrate, and 3) detection and quantification of LF-cleaved peptides by isotope-dilution MALDI-TOF/MS. Recombinant LF spiked plasma was used for calibration and quality control (QC) materials. Specificity was 100% from analysis of serum and plasma from 383 non-infected humans, 31 rabbits, and 24 rhesus macaques. Sensitivity was 100% from 32 human clinical anthrax cases including infections by inhalation, ingestion, cutaneous and injection exposures and experimental infections for 29 rabbits and 24 rhesus macaques with inhalation anthrax. Robustness evaluation included sample storage, serum and plasma, antimicrobial and antitoxin effects and long-term performance. Data from 100 independent runs gave detection limits 0.01 ng/mL (111 amol/mL) for the 4-h method and 0.0027 ng/mL (30 amol/mL) for an alternate 20-h method. QC precision ranged from 7.7 to 14.8% coefficient of variation and accuracy from 0.2 to 9.8% error. The validated LF MS method provides sensitive quantification of anthrax total-LF using a robust high throughput platform for early diagnosis and evaluation of therapeutics during an anthrax emergency.
Collapse
Affiliation(s)
- Maribel Gallegos-Candela
- Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop F-50, Atlanta, GA 30341, USA
| | - Anne E Boyer
- Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop F-50, Atlanta, GA 30341, USA.
| | - Adrian R Woolfitt
- Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop F-50, Atlanta, GA 30341, USA
| | - Judy Brumlow
- Battelle Atlanta Analytical Services, 2987 Clairmont Road NE, Suite 450, Atlanta, GA 30329, USA
| | - Renato C Lins
- Battelle Atlanta Analytical Services, 2987 Clairmont Road NE, Suite 450, Atlanta, GA 30329, USA
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Alex R Hoffmaster
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Gabriel Meister
- Battelle Biomedical Research Center, 1425 Plain City Georgesville Rd, West Jefferson, OH 43162, USA
| | - John R Barr
- Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop F-50, Atlanta, GA 30341, USA
| |
Collapse
|
103
|
Suffredini DA, Cui X, Xu W, Li Y, Eichacker PQ. The Potential Pathogenic Contributions of Endothelial Barrier and Arterial Contractile Dysfunction to Shock Due to B. anthracis Lethal and Edema Toxins. Toxins (Basel) 2017; 9:toxins9120394. [PMID: 29210983 PMCID: PMC5744114 DOI: 10.3390/toxins9120394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shock with B. anthracis infection is particularly resistant to conventional cardiovascular support and its mortality rate appears higher than with more common bacterial pathogens. As opposed to many bacteria that lack exotoxins directly depressing hemodynamic function, lethal and edema toxin (LT and ET respectively) both cause shock and likely contribute to the high lethality rate with B. anthracis. Selective inhibition of the toxins is protective in infection models, and administration of either toxin alone in animals produces hypotension with accompanying organ injury and lethality. Shock during infection is typically due to one of two mechanisms: (i) intravascular volume depletion related to disruption of endothelial barrier function; and (ii) extravasation of fluid and/or maladaptive dilation of peripheral resistance arteries. Although some data suggests that LT can produce myocardial dysfunction, growing evidence demonstrates that it may also interfere with endothelial integrity thereby contributing to the extravasation of fluid that helps characterize severe B. anthracis infection. Edema toxin, on the other hand, while known to produce localized tissue edema when injected subcutaneously, has potent vascular relaxant effects that could lead to pathologic arterial dilation. This review will examine recent data supporting a role for these two pathophysiologic mechanisms underlying the shock LT and ET produce. Further research and a better understanding of these mechanisms may lead to improved management of B. anthracis in patients.
Collapse
Affiliation(s)
- Dante A Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Wanying Xu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
104
|
Munguira ILB, Takahashi H, Casuso I, Scheuring S. Lysenin Toxin Membrane Insertion Is pH-Dependent but Independent of Neighboring Lysenins. Biophys J 2017; 113:2029-2036. [PMID: 29117526 DOI: 10.1016/j.bpj.2017.08.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 10/18/2022] Open
Abstract
Pore-forming toxins form a family of proteins that act as virulence factors of pathogenic bacteria, but similar proteins are found in all kingdoms of life, including the vertebrate immune system. They are secreted as soluble monomers that oligomerize on target membranes in the so-called prepore state; after activation, they insert into the membrane and adopt the pore state. Lysenin is a pore-forming toxin from the earthworm Eisenida foetida, of which both the soluble and membrane-inserted structures are solved. However, the activation and membrane-insertion mechanisms have remained elusive. Here, we used high-speed atomic force microscopy to directly visualize the membrane-insertion mechanism. Changing the environmental pH from pH 7.5 to below pH 6.0 favored membrane insertion. We detected a short α-helix in the soluble structure that comprised three glutamic acids (Glu92, Glu94, and Glu97) that we hypothesized may represent a pH-sensor (as in similar toxins, e.g., Listeriolysin). Mutant lysenin still can form pores, but mutating these glutamic acids to glutamines rendered the toxin pH-insensitive. On the other hand, toxins in the pore state did not favor insertion of neighboring prepores; indeed, pore insertion breaks the hexagonal ordered domains of prepores and separates from neighboring molecules in the membrane. pH-dependent activation of toxins may represent a common feature of pore-forming toxins. High-speed atomic force microscopy with single-molecule resolution at high temporal resolution and the possibility of exchanging buffers during the experiments presents itself as a unique tool for the study of toxin-state conversion.
Collapse
Affiliation(s)
- Ignacio L B Munguira
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Hirohide Takahashi
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France; Departments of Anesthesiology and Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Ignacio Casuso
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Simon Scheuring
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France; Departments of Anesthesiology and Physiology and Biophysics, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
105
|
Ma P, Cardenas AE, Chaudhari MI, Elber R, Rempe SB. The Impact of Protonation on Early Translocation of Anthrax Lethal Factor: Kinetics from Molecular Dynamics Simulations and Milestoning Theory. J Am Chem Soc 2017; 139:14837-14840. [PMID: 29019235 PMCID: PMC5656527 DOI: 10.1021/jacs.7b07419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report atomically detailed molecular dynamics simulations of the permeation of the lethal factor (LF) N-terminal segment through the anthrax channel. The N-terminal chain is unstructured and leads the permeation process for the LF protein. The simulations were conducted in explicit solvent with milestoning theory, making it possible to extract kinetic information from nanosecond to millisecond time scales. We illustrate that the initial event is strongly influenced by the protonation states of the permeating amino acids. While the N-terminal segment passes easily at high protonation state through the anthrax channel (and the ϕ clamp), the initial permeation represents a critical step, which can be irreversible and establishes a hook in the channel mouth.
Collapse
Affiliation(s)
- Piao Ma
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712
| | - Alfredo E. Cardenas
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712
| | - Mangesh I. Chaudhari
- Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, NM 87185
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712
| | - Susan B. Rempe
- Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, NM 87185
| |
Collapse
|
106
|
Verdurmen WPR, Mazlami M, Plückthun A. A quantitative comparison of cytosolic delivery via different protein uptake systems. Sci Rep 2017; 7:13194. [PMID: 29038564 PMCID: PMC5643320 DOI: 10.1038/s41598-017-13469-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023] Open
Abstract
Over many years, a variety of delivery systems have been investigated that have the capacity to shuttle macromolecular cargoes, especially proteins, into the cytosol. Due to the lack of an objective way to quantify cytosolic delivery, relative delivery efficiencies of the various transport systems have remained unclear. Here, we demonstrate the use of the biotin ligase assay for a quantitative comparison of protein transport to the cytosol via cell-penetrating peptides, supercharged proteins and bacterial toxins in four different cell lines. The data illustrate large differences in both the total cellular internalization, which denotes any intracellular location including endosomes, and in the cytosolic uptake of the transport systems, with little correlation between the two. Also, we found significant differences between the cell lines. In general, protein transport systems based on cell-penetrating peptides show a modest total uptake, and mostly do not deliver cargo to the cytosol. Systems based on bacterial toxins show a modest receptor-mediated internalization but an efficient delivery to the cytosol. Supercharged proteins, on the contrary, are not receptor-specific and lead to massive total internalization into endosomes, but only low amounts end up in the cytosol.
Collapse
Affiliation(s)
- Wouter P R Verdurmen
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Marigona Mazlami
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
107
|
Seshadri S, Allan DSJ, Carlyle JR, Zenewicz LA. Bacillus anthracis lethal toxin negatively modulates ILC3 function through perturbation of IL-23-mediated MAPK signaling. PLoS Pathog 2017; 13:e1006690. [PMID: 29059238 PMCID: PMC5695638 DOI: 10.1371/journal.ppat.1006690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 11/02/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes lethal toxin that down-regulates immune functions. Translocation of B. anthracis across mucosal epithelia is key for its dissemination and pathogenesis. Group 3 innate lymphocytes (ILC3s) are important in mucosal barrier maintenance due to their expression of the cytokine IL-22, a critical regulator of tissue responses and repair during homeostasis and inflammation. We found that B. anthracis lethal toxin perturbed ILC3 function in vitro and in vivo, revealing an unknown IL-23-mediated MAPK signaling pathway. Lethal toxin had no effects on the canonical STAT3-mediated IL-23 signaling pathway. Rather lethal toxin triggered the loss of several MAP2K kinases, which correlated with reduced activation of downstream ERK1/2 and p38, respectively. Inhibition studies showed the importance of MAPK signaling in IL-23-mediated production of IL-22. Our finding that MAPK signaling is required for optimal IL-22 production in ILC3s may lead to new approaches for targeting IL-22 biology.
Collapse
Affiliation(s)
- Sudarshan Seshadri
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David S. J. Allan
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
108
|
Guichard A, Jain P, Moayeri M, Schwartz R, Chin S, Zhu L, Cruz-Moreno B, Liu JZ, Aguilar B, Hollands A, Leppla SH, Nizet V, Bier E. Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport. PLoS Pathog 2017; 13:e1006603. [PMID: 28945820 PMCID: PMC5612732 DOI: 10.1371/journal.ppat.1006603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies. Recent anthrax outbreaks in Zambia and northern Russia and biodefense preparedness highlight the need for new therapies to counteract fatal late-stage pathologies in patients infected with Bacillus anthracis. Indeed, two toxins secreted by this pathogen—edema toxin (ET) and lethal toxin (LT)—can cause death in face of effective antibiotic treatment. ET, a potent adenylate cyclase, severely impacts host cells and tissues through an overproduction of the ubiquitous second messenger cAMP. Previously, we identified Rab11 as a key host factor inhibited by ET. Blockade of Rab11-dependent endocytic recycling resulted in the disruption of intercellular junctions, likely contributing to life threatening vascular effusion observed in anthrax patients. Here we present a multi-system analysis of the mechanism by which EF inhibits Rab11 and exocyst-dependent trafficking. Epistasis experiments in Drosophila reveal that over-activation of the cAMP effectors PKA and Epac/Rap1 interferes with Rab11-mediated trafficking at two distinct steps. We further describe conserved roles of Epac and the small GTPase Arf6 in ET-mediated disruption of vesicular trafficking and show how chemical inhibition of either pathway greatly alleviates ET-induced edema. Thus, our study defines Epac and Arf6 as promising drug targets for the treatment of infectious diseases and other pathologies involving cAMP overload or related barrier disruption.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Prashant Jain
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States of America
| | - Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephen Chin
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Lin Zhu
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Beatriz Cruz-Moreno
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Janet Z. Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Bernice Aguilar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Andrew Hollands
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
109
|
Asymmetric Cryo-EM Structure of Anthrax Toxin Protective Antigen Pore with Lethal Factor N-Terminal Domain. Toxins (Basel) 2017; 9:toxins9100298. [PMID: 28937604 PMCID: PMC5666345 DOI: 10.3390/toxins9100298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
The anthrax lethal toxin consists of protective antigen (PA) and lethal factor (LF). Understanding both the PA pore formation and LF translocation through the PA pore is crucial to mitigating and perhaps preventing anthrax disease. To better understand the interactions of the LF-PA engagement complex, the structure of the LFN-bound PA pore solubilized by a lipid nanodisc was examined using cryo-EM. CryoSPARC was used to rapidly sort particle populations of a heterogeneous sample preparation without imposing symmetry, resulting in a refined 17 Å PA pore structure with 3 LFN bound. At pH 7.5, the contributions from the three unstructured LFN lysine-rich tail regions do not occlude the Phe clamp opening. The open Phe clamp suggests that, in this translocation-compromised pH environment, the lysine-rich tails remain flexible and do not interact with the pore lumen region.
Collapse
|
110
|
Understanding the Mechanism of Translocation of Adenylate Cyclase Toxin across Biological Membranes. Toxins (Basel) 2017; 9:toxins9100295. [PMID: 28934133 PMCID: PMC5666342 DOI: 10.3390/toxins9100295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/05/2023] Open
Abstract
Adenylate cyclase toxin (ACT) is one of the principal virulence factors secreted by the whooping cough causative bacterium Bordetella pertussis, and it has a critical role in colonization of the respiratory tract and establishment of the disease. ACT targets phagocytes via binding to the CD11b/CD18 integrin and delivers its N-terminal adenylate cyclase (AC) domain directly to the cell cytosol, where it catalyzes unregulated conversion of cytosolic ATP into cAMP upon activation by binding to cellular calmodulin. High cAMP levels disrupt bactericidal functions of the immune cells, ultimately leading to cell death. In spite of its relevance in the ACT biology, the mechanism by which its ≈400 amino acid-long AC domain is transported through the target plasma membrane, and is released into the target cytosol, remains enigmatic. This article is devoted to refresh our knowledge on the mechanism of AC translocation across biological membranes. Two models, the so-called "two-step model" and the recently-proposed "toroidal pore model", will be considered.
Collapse
|
111
|
Aktories K, Schwan C, Lang AE. ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. Handb Exp Pharmacol 2017; 235:179-206. [PMID: 27316913 DOI: 10.1007/164_2016_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Actin and the actin cytoskeleton play fundamental roles in host-pathogen interactions. Proper function of the actin cytoskeleton is crucial for innate and acquired immune defense. Bacterial toxins attack the actin cytoskeleton by targeting regulators of actin. Moreover, actin is directly modified by various bacterial protein toxins and effectors, which cause ADP-ribosylation or cross-linking of actin. Modification of actin can result in inhibition or stimulation of actin polymerization. Toxins, acting directly on actin, are reviewed.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany. .,Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany.
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
112
|
Suffredini DA, Li Y, Xu W, Moayeri M, Leppla S, Fitz Y, Cui X, Eichacker PQ. Shock and lethality with anthrax edema toxin in rats are associated with reduced arterial responsiveness to phenylephrine and are reversed with adefovir. Am J Physiol Heart Circ Physiol 2017; 313:H946-H958. [PMID: 28887331 DOI: 10.1152/ajpheart.00285.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Although edema toxin (ETx) and lethal toxin (LTx) contribute to Bacillus anthracis shock and lethality, the mechanisms underlying their cardiovascular effects are unclear. We have previously shown that ETx but not LTx inhibited phenylephrine-stimulated contraction of aortic rings prepared from healthy rats and that adefovir, a selective inhibitor of ETx cAMP production, blocked this effect. Here, we examined arterial function in rats that received 24-h ETx or LTx infusions. Compared with control rats, ETx reduced mean arterial pressure (MAP) and survival over 48 h (P ≤ 0.0003) and increased plasma cAMP at 4, 24, and 48 h (P < 0.0001) and nitric oxide (NO) at 24 and 48 h (P ≤ 0.01). Compared with control animals, at 24- and 48-h phenylephrine stimulation of aortic rings from ETx animals produced decreased maximal contractile force (MCF; P = 0.05 and 0.006) and in vivo phenylephrine infusion in ETx animals produced decreased proportional increases in MAP (P < 0.0001 and P = 0.05). In ETx-treated animals, compared with placebo-treated animals, adefovir treatment prevented all lethality (P = 0.01), increased MAP (P ≤ 0.0001), decreased plasma and aortic tissue cAMP at 24 and 48 h, respectively (P ≤ 0.03), and plasma NO at both times (P ≤ 0.004), and increased phenylephrine-stimulated increases in MCF in aortic rings and MAP in vivo at 48 h (P = 0.02). LTx decreased MAP and survival also, but it did not alter the response to phenylephrine of MCF in aortic rings prepared from LTx animals or of MAP in vivo. In conclusion, in rats, hypotension and lethality are associated with reduced arterial contractile function with ETx but not LTx and adefovir improves ETx-induced hypotension and lethality.NEW & NOTEWORTHY The most important aspects of the present study are the findings that 1) in vivo challenge with anthrax edema but not lethal toxin depresses arterial contractile function measured both ex vivo and in vivo and 2) adefovir inhibits the effects of edema toxin on arterial hypotension and improves survival with lethal dose of edema toxin challenge.
Collapse
Affiliation(s)
- Dante A Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Wanying Xu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Mahtab Moayeri
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stephen Leppla
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yvonne Fitz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
113
|
Zahaf NI, Schmidt G. Bacterial Toxins for Cancer Therapy. Toxins (Basel) 2017; 9:toxins9080236. [PMID: 28788054 PMCID: PMC5577570 DOI: 10.3390/toxins9080236] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Several pathogenic bacteria secrete toxins to inhibit the immune system of the infected organism. Frequently, they catalyze a covalent modification of specific proteins. Thereby, they block production and/or secretion of antibodies or cytokines. Moreover, they disable migration of macrophages and disturb the barrier function of epithelia. In most cases, these toxins are extremely effective enzymes with high specificity towards their cellular substrates, which are often central signaling molecules. Moreover, they encompass the capacity to enter mammalian cells and to modify their substrates in the cytosol. A few molecules, at least of some toxins, are sufficient to change the cellular morphology and function of a cell or even kill a cell. Since many of those toxins are well studied concerning molecular mechanisms, cellular receptors, uptake routes, and structures, they are now widely used to analyze or to influence specific signaling pathways of mammalian cells. Here, we review the development of immunotoxins and targeted toxins for the treatment of a disease that is still hard to treat: cancer.
Collapse
Affiliation(s)
- Nour-Imene Zahaf
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albert-Str. 25, 79104 Freiburg, Germany.
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albert-Str. 25, 79104 Freiburg, Germany.
| |
Collapse
|
114
|
Abstract
Clostridium difficile is the cause of antibiotics-associated diarrhea and pseudomembranous colitis. The pathogen produces three protein toxins: C. difficile toxins A (TcdA) and B (TcdB), and C. difficile transferase toxin (CDT). The single-chain toxins TcdA and TcdB are the main virulence factors. They bind to cell membrane receptors and are internalized. The N-terminal glucosyltransferase and autoprotease domains of the toxins translocate from low-pH endosomes into the cytosol. After activation by inositol hexakisphosphate (InsP6), the autoprotease cleaves and releases the glucosyltransferase domain into the cytosol, where GTP-binding proteins of the Rho/Ras family are mono-O-glucosylated and, thereby, inactivated. Inactivation of Rho proteins disturbs the organization of the cytoskeleton and affects multiple Rho-dependent cellular processes, including loss of epithelial barrier functions, induction of apoptosis, and inflammation. CDT, the third C. difficile toxin, is a binary actin-ADP-ribosylating toxin that causes depolymerization of actin, thereby inducing formation of the microtubule-based protrusions. Recent progress in understanding of the toxins' actions include insights into the toxin structures, their interaction with host cells, and functional consequences of their actions.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Thomas Jank
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| |
Collapse
|
115
|
Tao P, Mahalingam M, Zhu J, Moayeri M, Kirtley ML, Fitts EC, Andersson JA, Lawrence WS, Leppla SH, Chopra AK, Rao VB. A Bivalent Anthrax-Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis. Front Immunol 2017; 8:687. [PMID: 28694806 PMCID: PMC5483451 DOI: 10.3389/fimmu.2017.00687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/26/2017] [Indexed: 01/14/2023] Open
Abstract
Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis, the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis, in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis, demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis. This bivalent anthrax–plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jourdan A Andersson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - William S Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, United States
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| |
Collapse
|
116
|
Zha JS, Zhu BL, Liu L, Lai YJ, Long Y, Hu XT, Deng XJ, Wang XF, Yan Z, Chen GJ. Phorbol esters dPPA/dPA promote furin expression involving transcription factor CEBPβ in neuronal cells. Oncotarget 2017; 8:60159-60172. [PMID: 28947961 PMCID: PMC5601129 DOI: 10.18632/oncotarget.18569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/10/2017] [Indexed: 02/03/2023] Open
Abstract
Using high-throughput small molecule screening targeting furin gene, we identified that phorbol esters dPPA (12-Deoxyphorbol 13-phenylacetate 20-acetate) and dPA (12-Deoxyphorbol 13-acetate) significantly increased furin protein and mRNA expression in SH-SY5Y cells. This effect was prevented by PKC (protein kinase C) inhibitor calphostin C but not Ro318220, suggesting that the C1 domain, rather than the catalytic domain of PKC plays an important role. Luciferase assay revealed that nucleotides -7925 to -7426 were sufficient to mediate dPPA/dPA enhancement of furin P1 promoter activity. RNA interference of transcriptional factors CEBPβ (CCAAT/enhancer-binding protein β) and GATA1 revealed that knockdown of CEBPβ significantly attenuated the effect of dPPA on furin expression. Pharmacological inhibition of ERK and PI3K but not TGFβ receptor diminished the up-regulation of furin by dPPA. These results suggested that in neuronal cells, transcriptional activation of furin by dPPA/dPA may be initiated by C1 domain containing proteins including PKC; the intracellular signaling involves ERK and PI3K and transcription factor CEBPβ.
Collapse
Affiliation(s)
- Jing-Si Zha
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Lu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yu-Jie Lai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yan Long
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Xiao-Tong Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| |
Collapse
|
117
|
Targeting Bacillus anthracis toxicity with a genetically selected inhibitor of the PA/CMG2 protein-protein interaction. Sci Rep 2017; 7:3104. [PMID: 28596569 PMCID: PMC5465072 DOI: 10.1038/s41598-017-03253-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022] Open
Abstract
The protein-protein interaction between the human CMG2 receptor and the Bacillus anthracis protective antigen (PA) is essential for the transport of anthrax lethal and edema toxins into human cells. We used a genetically encoded high throughput screening platform to screen a SICLOPPS library of 3.2 million cyclic hexapeptides for inhibitors of this protein-protein interaction. Unusually, the top 3 hits all contained stop codons in the randomized region of the library, resulting in linear rather than cyclic peptides. These peptides disrupted the targeted interaction in vitro; two act by binding to CMG2 while one binds PA. The efficacy of the most potent CMG2-binding inhibitor was improved through the incorporation of non-natural phenylalanine analogues. Cell based assays demonstrated that the optimized inhibitor protects macrophages from the toxicity of lethal factor.
Collapse
|
118
|
Jia Z, Ackroyd C, Han T, Agrawal V, Liu Y, Christensen K, Dominy B. Effects from metal ion in tumor endothelial marker 8 and anthrax protective antigen: BioLayer Interferometry experiment and molecular dynamics simulation study. J Comput Chem 2017; 38:1183-1190. [PMID: 28437008 DOI: 10.1002/jcc.24768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/08/2017] [Accepted: 01/14/2017] [Indexed: 11/09/2022]
Abstract
One of the anthrax receptors, tumor endothelial marker 8 (TEM8), is reported to be a potential anticancer target due to its over-expression during tumor angiogenesis. To extend our BioLayer Interferometry study in PA-TEM8 binding, we present a computational approach to reveal the role of an integral metal ion on receptor structure and binding thermodynamics. We estimated the interaction energy between PA and TEM8 using computer simulation. Consistent with experimental study, computational results indicate the metal ion in TEM8 contributes significantly to the binding affinity, and PA-TEM8 binding is more favorable in the presence of Mg2+ than Ca2+ . Further, computational analysis suggests that the differences in PA-TEM8 binding affinity are comparable to the closely related integrin proteins. The conformation change, which linked to changes in activity of integrins, was not found in TEM8. In the present of Mg2+ , TEM8 remains in a conformation analogous to an integrin open (high-affinity) conformation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhe Jia
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| | - Christine Ackroyd
- Department of Chemistry and Biochemistry, C205 BNSN, Brigham Young University, Provo, Utah, 84602
| | - Tingting Han
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| | - Vibhor Agrawal
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| | - Yinling Liu
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| | - Kenneth Christensen
- Department of Chemistry and Biochemistry, C205 BNSN, Brigham Young University, Provo, Utah, 84602
| | - Brian Dominy
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
119
|
Liu S, Ma Q, Fattah R, Bugge TH, Leppla SH. Anti-tumor activity of anthrax toxin variants that form a functional translocation pore by intermolecular complementation. Oncotarget 2017; 8:65123-65131. [PMID: 29029417 PMCID: PMC5630317 DOI: 10.18632/oncotarget.17729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/16/2017] [Indexed: 12/31/2022] Open
Abstract
Anthrax lethal toxin is a typical A-B type protein toxin secreted by Bacillus anthracis. Lethal factor (LF) is the catalytic A-subunit, a metalloprotease having MEKs as targets. LF relies on the cell-binding B-subunit, protective antigen (PA), to gain entry into the cytosol of target cells. PA binds to cell surface toxin receptors and is activated by furin protease to form an LF-binding-competent oligomer-PA pre-pore, which converts to a functional protein-conductive pore in the acidic endocytic vesicles, allowing translocation of LF into the cytosol. During PA pre-pore-to-pore conversion, the intermolecular salt bridge interactions between Lys397 and Asp426 on adjacent PA protomers play a critical role in positioning neighboring luminal Phe427 residues to form the Phe-clamp, an essential element of the PA functional pore. This essential intermolecular interaction affords the opportunity to create pairs of PA variants that depend on intermolecular complementation to form a functional pore. We have previously generated PA variants with furin-cleavage site replaced by substrate sequences of tumor-associated proteases, such as urokinase or MMPs. Here we show that PA-U2-K397Q, a urokinase-activated PA variant with Lys397 residue replaced by glutamine, and PA-L1-D426K, a MMP-activated PA variant with Asp426 changed to lysine, do not form functional pores both in vitro or in vivo unless they are used together. Further, the mixture of PA-U2-K397Q and PA-L1-D426K displayed potent anti-tumor activity in the presence of LF. Thus, PA-U2-K397Q and PA-L1-D426K form a novel intermolecular complementation system with toxin activation relying on the presence of two distinct tumor-associated proteases, i.e., urokinase and MMPs.
Collapse
Affiliation(s)
- Shihui Liu
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.,Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qian Ma
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rasem Fattah
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
120
|
The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) 2017; 9:toxins9030107. [PMID: 28300784 PMCID: PMC5371862 DOI: 10.3390/toxins9030107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases.
Collapse
|
121
|
Lino CA, Caldeira JC, Peabody DS. Display of single-chain variable fragments on bacteriophage MS2 virus-like particles. J Nanobiotechnology 2017; 15:13. [PMID: 28193211 PMCID: PMC5307822 DOI: 10.1186/s12951-016-0240-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/03/2016] [Indexed: 11/11/2022] Open
Abstract
Background Virus-like particles (VLPs) of the RNA bacteriophage MS2 have many potential applications in biotechnology. MS2 VLPs provide a platform for peptide display and affinity selection (i.e. biopanning). They are also under investigation as vehicles for targeted drug delivery, using display of receptor-specific peptides or nucleic acid aptamers to direct their binding to specific cell-surface receptors. However, there are few molecules more suited to the precise targeting and binding of a cellular receptor than antibodies. Results Here we describe a strategy for display of four different functional single-chain variable fragments (scFvs) on the surface of the MS2 VLP. Each scFv is validated both for its presence on the surface of the VLP and for its ability to bind its cognate antigen. Conclusions This work demonstrates the suitability of the MS2 VLP platform to display genetically fused scFvs, allowing for many potential applications of these VLPs and paving the way for future work with libraries of scFvs displayed in a similar manner on the VLP surface. These libraries can then be biopanned and novel scFv binders to targets can be readily discovered.
Collapse
Affiliation(s)
- Christopher A Lino
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, USA.
| | - Jerri C Caldeira
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, USA
| | - David S Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
122
|
Jones RM, Burke M, Dubose D, Chichester JA, Manceva S, Horsey A, Streatfield SJ, Breit J, Yusibov V. Stability and pre-formulation development of a plant-produced anthrax vaccine candidate. Vaccine 2017; 35:5463-5470. [PMID: 28117174 DOI: 10.1016/j.vaccine.2016.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Second generation anthrax vaccines focus on the use of recombinant protective antigen (rPA) to elicit a strong, toxin neutralizing antibody responses in immunized subjects. The main difference between the rPA vaccines compared to the current licensed vaccine, anthrax vaccine absorbed (AVA), is the rPA vaccines are highly purified preparations of only rPA. These second generation rPA vaccines strive to elicit strong immune responses with substantially fewer doses than AVA while provoking less side effects. Many of the rPA candidates have shown to be effective in pre-clinical studies, but most of the second generation molecules have stability issues which reduce their efficacy over time. These stability issues are evident even under refrigerated conditions and thus emphasis has been directed to stabilizing the rPA molecule and determining an optimized final formulation. Stabilization of vaccines for long-term storage is a major challenge in the product development life cycle. The effort required to identify suitable formulations can be slow and expensive. The ideal storage for stockpiled vaccines would allow the candidate to withstand years of storage at ambient temperatures. The Fraunhofer Center for Molecular Biotechnology is developing a plant-produced rPA vaccine candidate that shows instability when stored under refrigerated conditions in a solution, as is typical for rPA vaccines. Increased stability of our plant-produced rPA vaccine candidate was achieved in a spray dried powder formulation that could eliminate the need for conventional cold chain allowing greater confidence to stockpile vaccine for civilian and military biodefense.
Collapse
Affiliation(s)
- R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Newark, DE 19711, USA.
| | | | - Devon Dubose
- Capsugel, 64550 Research Road, Bend, OR 97701, USA
| | - Jessica A Chichester
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Newark, DE 19711, USA
| | - Slobodanka Manceva
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Newark, DE 19711, USA
| | - April Horsey
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Newark, DE 19711, USA
| | - Stephen J Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Newark, DE 19711, USA
| | - Jeff Breit
- Capsugel, 64550 Research Road, Bend, OR 97701, USA.
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
123
|
Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules. Curr Top Microbiol Immunol 2017; 406:229-256. [DOI: 10.1007/82_2017_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
124
|
Head BM, Rubinstein E, Meyers AFA. Alternative pre-approved and novel therapies for the treatment of anthrax. BMC Infect Dis 2016; 16:621. [PMID: 27809794 PMCID: PMC5094018 DOI: 10.1186/s12879-016-1951-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis, the causative agent of anthrax, is a spore forming and toxin producing rod-shaped bacterium that is classified as a category A bioterror agent. This pathogenic microbe can be transmitted to both animals and humans. Clinical presentation depends on the route of entry (direct contact, ingestion, injection or aerosolization) with symptoms ranging from isolated skin infections to more severe manifestations such as cardiac or pulmonary shock, meningitis, and death. To date, anthrax is treatable if antibiotics are administered promptly and continued for 60 days. However, if treatment is delayed or administered improperly, the patient's chances of survival are decreased drastically. In addition, antibiotics are ineffective against the harmful anthrax toxins and spores. Therefore, alternative therapeutics are essential. In this review article, we explore and discuss advances that have been made in anthrax therapy with a primary focus on alternative pre-approved and novel antibiotics as well as anti-toxin therapies. METHODS A literature search was conducted using the University of Manitoba search engine. Using this search engine allowed access to a greater variety of journals/articles that would have otherwise been restricted for general use. In order to be considered for discussion for this review, all articles must have been published later than 2009. RESULTS The alternative pre-approved antibiotics demonstrated high efficacy against B. anthracis both in vitro and in vivo. In addition, the safety profile and clinical pharmacology of these drugs were already known. Compounds that targeted underexploited bacterial processes (DNA replication, RNA synthesis, and cell division) were also very effective in combatting B. anthracis. In addition, these novel compounds prevented bacterial resistance. Targeting B. anthracis virulence, more specifically the anthrax toxins, increased the length of which treatment could be administered. CONCLUSIONS Several novel and pre-existing antibiotics, as well as toxin inhibitors, have shown increasing promise. A combination treatment that targets both bacterial growth and toxin production would be ideal and probably necessary for effectively combatting this armed bacterium.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Ethan Rubinstein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Adrienne F. A. Meyers
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
- National Laboratory for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
125
|
Le Gars M, Haustant M, Klezovich-Bénard M, Paget C, Trottein F, Goossens PL, Tournier JN. Mechanisms of Invariant NKT Cell Activity in Restraining Bacillus anthracis Systemic Dissemination. THE JOURNAL OF IMMUNOLOGY 2016; 197:3225-3232. [PMID: 27605012 DOI: 10.4049/jimmunol.1600830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
Abstract
Exogenous activation of invariant NKT (iNKT) cells by the superagonist α-galactosylceramide (α-GalCer) can protect against cancer, autoimmune diseases, and infections. In the current study, we investigated the effect of α-GalCer against Bacillus anthracis infection, the agent of anthrax. Using an experimental model of s.c. B. anthracis infection (an encapsulated nontoxigenic strain), we show that concomitant administration of α-GalCer delayed B. anthracis systemic dissemination and prolonged mouse survival. Depletion of subcapsular sinus CD169-positive macrophages by clodronate-containing liposome was associated with a lack of iNKT cell activation in the draining lymph nodes (dLNs) and prevented the protective effect of α-GalCer on bacterial dissemination out of the dLNs. Production of IFN-γ triggered chemokine (C-C motif) ligand 3 synthesis and recruitment of neutrophils in the dLNs, leading to the restraint of B. anthracis dissemination. Our data highlight a novel immunological pathway leading to the control of B. anthracis infection, a finding that might lead to improved therapeutics based on iNKT cells.
Collapse
Affiliation(s)
- Mathieu Le Gars
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France;
| | - Michel Haustant
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France
| | - Maria Klezovich-Bénard
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France
| | - Christophe Paget
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Universitaire de Lille, Centre Hospitalier Régional Universitaire de Lille-Institut Pasteur de Lille, 59000 Lille, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Universitaire de Lille, Centre Hospitalier Régional Universitaire de Lille-Institut Pasteur de Lille, 59000 Lille, France
| | - Pierre L Goossens
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France
| | - Jean-Nicolas Tournier
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France.,Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, 91223 Brétigny-sur-Orge, France; and.,Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
126
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
127
|
Gatsogiannis C, Merino F, Prumbaum D, Roderer D, Leidreiter F, Meusch D, Raunser S. Membrane insertion of a Tc toxin in near-atomic detail. Nat Struct Mol Biol 2016; 23:884-890. [PMID: 27571177 DOI: 10.1038/nsmb.3281] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
Tc toxins from pathogenic bacteria use a special syringe-like mechanism to perforate the host cell membrane and inject a deadly enzyme into the host cytosol. The molecular mechanism of this unusual injection system is poorly understood. Using electron cryomicroscopy, we determined the structure of TcdA1 from Photorhabdus luminescens embedded in lipid nanodiscs. In our structure, compared with the previous structure of TcdA1 in the prepore state, the transmembrane helices rearrange in the membrane and open the initially closed pore. However, the helices do not span the complete membrane; instead, the loops connecting the helices form the rim of the funnel. Lipid head groups reach into the space between the loops and consequently stabilize the pore conformation. The linker domain is folded and packed into a pocket formed by the other domains of the toxin, thereby considerably contributing to stabilization of the pore state.
Collapse
Affiliation(s)
- Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Franziska Leidreiter
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dominic Meusch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
128
|
Chen KH, Liu S, Leysath CE, Miller-Randolph S, Zhang Y, Fattah R, Bugge TH, Leppla SH. Anthrax Toxin Protective Antigen Variants That Selectively Utilize either the CMG2 or TEM8 Receptors for Cellular Uptake and Tumor Targeting. J Biol Chem 2016; 291:22021-22029. [PMID: 27555325 DOI: 10.1074/jbc.m116.753301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
The protective antigen (PA) moiety of anthrax toxin binds to cellular receptors and mediates the translocation of the two enzymatic moieties of the toxin to the cytosol. Two PA receptors are known, with capillary morphogenesis protein 2 (CMG2) being the more important for pathogenesis and tumor endothelial marker 8 (TEM8) playing a minor role. The C-terminal PA domain 4 (PAD4) has extensive interactions with the receptors and is required for binding. Our previous study identified PAD4 variants having enhanced TEM8 binding specificity. To obtain PA variants that selectively bind to CMG2, here we performed phage display selections using magnetic beads having bound CMG2. We found that PA residue isoleucine 656 plays a critical role in PA binding to TEM8 but has a much lesser effect on PA binding to CMG2. We further characterized the role of residue 656 in distinguishing PA binding to CMG2 versus TEM8 by substituting it with the other 19 amino acids. Of the resulting variants, PA I656Q and PA I656V had significantly reduced activity on TEM8-expressing CHO cells but maintained their activity on CMG2-expressing CHO cells. The preference of these PA mutants for CMG2 over TEM8 was further demonstrated using mouse embryonic fibroblast cells and mice deficient in the CMG2 and/or the TEM8 receptors. The structural basis of the alterations in the receptor binding activities of these mutants is also discussed.
Collapse
Affiliation(s)
- Kuang-Hua Chen
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Shihui Liu
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Clinton E Leysath
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Sharmina Miller-Randolph
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Yi Zhang
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Rasem Fattah
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Thomas H Bugge
- the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen H Leppla
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| |
Collapse
|
129
|
Abstract
In some Bacillus species, including Bacillus subtilis, the coat is the outermost layer of the spore. In others, such as the Bacillus cereus family, there is an additional layer that envelops the coat, called the exosporium. In the case of Bacillus anthracis, a series of fine hair-like projections, also referred to as a "hairy" nap, extends from the exosporium basal layer. The exact role of the exosporium in B. anthracis, or for any of the Bacillus species possessing this structure, remains unclear. However, it has been assumed that the exosporium would play some role in infection for B. anthracis, because it is the outermost structure of the spore and would make initial contact with host and immune cells during infection. Therefore, the exosporium has been a topic of great interest, and over the past decade much progress has been made to understand its composition, biosynthesis, and potential roles. Several key aspects of this spore structure, however, are still debated and remain undetermined. Although insights have been gained on the interaction of exosporium with the host during infection, the exact role and significance of this complex structure remain to be determined. Furthermore, because the exosporium is a highly antigenic structure, future strategies for the next-generation anthrax vaccine should pursue its inclusion as a component to provide protection against the spore itself during the initial stages of anthrax.
Collapse
|
130
|
Kronhardt A, Beitzinger C, Barth H, Benz R. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells. Toxins (Basel) 2016; 8:toxins8080237. [PMID: 27517960 PMCID: PMC4999853 DOI: 10.3390/toxins8080237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells’ receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa.
Collapse
Affiliation(s)
- Angelika Kronhardt
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany.
| | - Christoph Beitzinger
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs-University Bremen, Campus-Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
131
|
Ryou JH, Sohn YK, Hwang DE, Park WY, Kim N, Heo WD, Kim MY, Kim HS. Engineering of bacterial exotoxins for highly efficient and receptor-specific intracellular delivery of diverse cargos. Biotechnol Bioeng 2016; 113:1639-46. [PMID: 26773973 DOI: 10.1002/bit.25935] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/14/2016] [Indexed: 01/27/2023]
Abstract
The intracellular delivery of proteins with high efficiency in a receptor-specific manner is of great significance in molecular medicine and biotechnology, but remains a challenge. Herein, we present the development of a highly efficient and receptor-specific delivery platform for protein cargos by combining the receptor binding domain of Escherichia coli Shiga-like toxin and the translocation domain of Pseudomonas aeruginosa exotoxin A. We demonstrated the utility and efficiency of the delivery platform by showing a cytosolic delivery of diverse proteins both in vitro and in vivo in a receptor-specific manner. In particular, the delivery system was shown to be effective for targeting an intracellular protein and consequently suppressing the tumor growth in xenograft mice. The present platform can be widely used for intracellular delivery of diverse functional macromolecules with high efficiency in a receptor-specific manner. Biotechnol. Bioeng. 2016;113: 1639-1646. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeong-Hyun Ryou
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Yoo-Kyoung Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Da-Eun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Woo-Yong Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Nury Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Won-Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea.
| |
Collapse
|
132
|
Schnell L, Mittler AK, Mattarei A, Azarnia Tehran D, Montecucco C, Barth H. Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells from Intoxication. Toxins (Basel) 2016; 8:E221. [PMID: 27428999 PMCID: PMC4963853 DOI: 10.3390/toxins8070221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/25/2016] [Accepted: 07/07/2016] [Indexed: 01/29/2023] Open
Abstract
Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA) from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The compound 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA) has been previously shown to protect cells from various bacterial protein toxins which deliver their enzymatic subunits from acidic endosomes to the cytosol, including Bacillus anthracis lethal toxin and the binary clostridial actin ADP-ribosylating toxins C2, iota and Clostridium difficile binary toxin (CDT). Here, we demonstrate that EGA also protects human cells from diphtheria toxin by inhibiting the pH-dependent translocation of DTA across cell membranes. The results suggest that EGA might serve for treatment and/or prevention of the severe disease diphtheria.
Collapse
Affiliation(s)
- Leonie Schnell
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Ann-Katrin Mittler
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Andrea Mattarei
- Department of Chemical Sciences, University of Padova, 35121 Padova, Italy.
| | | | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
133
|
Amador-Molina JC, Valerdi-Madrigal ED, Domínguez-Castillo RI, Sirota LA, Arciniega JL. Temperature-mediated recombinant anthrax protective antigen aggregate development: Implications for toxin formation and immunogenicity. Vaccine 2016; 34:4188-4195. [PMID: 27364097 DOI: 10.1016/j.vaccine.2016.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022]
Abstract
Anthrax vaccines containing recombinant PA (rPA) as the only antigen face a stability issue: rPA forms aggregates in solution after exposure to temperatures ⩾40°C, thus losing its ability to form lethal toxin (LeTx) with Lethal Factor. To study rPA aggregation's impact on immune response, we subjected rPA to several time and temperature combinations. rPA treated at 50°C for 30min formed high mass aggregates when analyzed by gel electrophoresis and failed to form LeTx as measured by a macrophage lysis assay (MLA). Aggregated rPA-formed LeTx was about 30 times less active than LeTx containing native rPA. Mice immunized with heat-treated rPA combined with Al(OH)3 developed antibody titers about 49 times lower than mice immunized with native rPA, as measured by a Toxicity Neutralization Assay (TNA). Enzyme Linked Immunosorbent Assay (ELISA) of the same immune sera showed anti-rPA titers only 2-7 times lower than titers elicited by native rPA. Thus, rPA's ability to form LeTx correlates with its production of neutralizing antibodies, and aggregation significantly impairs the protein's antibody response. However, while these findings suggest MLA has some value as an in-process quality test for rPA in new anthrax vaccines, they also confirm the superiority of TNA for use in vaccine potency.
Collapse
Affiliation(s)
- Juan C Amador-Molina
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States.
| | - Esther D Valerdi-Madrigal
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Rocío I Domínguez-Castillo
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Lev A Sirota
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Juan L Arciniega
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
134
|
Silin V, Kasianowicz JJ, Michelman-Ribeiro A, Panchal RG, Bavari S, Robertson JWF. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins. MEMBRANES 2016; 6:E36. [PMID: 27348008 PMCID: PMC5041027 DOI: 10.3390/membranes6030036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/18/2023]
Abstract
Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects.
Collapse
Affiliation(s)
- Vitalii Silin
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20899, USA.
| | - John J Kasianowicz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
| | - Ariel Michelman-Ribeiro
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
| | - Rekha G Panchal
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Joseph W F Robertson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
| |
Collapse
|
135
|
Rabideau AE, Pentelute BL. Delivery of Non-Native Cargo into Mammalian Cells Using Anthrax Lethal Toxin. ACS Chem Biol 2016; 11:1490-501. [PMID: 27055654 DOI: 10.1021/acschembio.6b00169] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intracellular delivery of peptide and protein therapeutics is a major challenge due to the plasma membrane, which acts as a barrier between the extracellular environment and the intracellular milieu. Over the past two decades, a nontoxic PA/LFN delivery platform derived from anthrax lethal toxin has been developed for the transport of non-native cargo into the cytosol of cells in order to understand the translocation process through a protective antigen (PA) pore and to probe intracellular biological functions. Enzyme-mediated ligation using sortase A and native chemical ligation are two facile methods used to synthesize these non-native conjugates, inaccessible by recombinant technology. Cargo molecules that translocate efficiently include enzymes from protein toxins, antibody mimic proteins, and peptides of varying lengths and non-natural amino acid compositions. The PA pore has been found to effectively convey over 30 known cargos other than native lethal factor (LF; i.e., non-native) with diverse sequences and functionalities on the LFN transporter protein. All together these studies demonstrated that non-native cargos must adopt an unfolded or extended conformation and contain a suitable charge composition in order to efficiently pass through the PA pore. This review provides insight into design parameters for the efficient delivery of new cargos using PA and LFN.
Collapse
Affiliation(s)
- Amy E. Rabideau
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley Lether Pentelute
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
136
|
Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:442-50. [PMID: 27030589 PMCID: PMC4895005 DOI: 10.1128/cvi.00091-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus alpha-hemolysin (Hla) assembles into heptameric pores on the host cell membrane, causing lysis, apoptosis, and junction disruption. Herein, we present the design of a newly engineered S. aureus alpha-toxin, HlaPSGS, which lacks the predicted membrane-spanning stem domain. This protein is able to form heptamers in aqueous solution in the absence of lipophilic substrata, and its structure, obtained by transmission electron microscopy and single-particle reconstruction analysis, resembles the cap of the wild-type cytolytic Hla pore. HlaPSGS was found to be impaired in binding to host cells and to its receptor ADAM10 and to lack hemolytic and cytotoxic activity. Immunological studies using human sera as well as sera from mice convalescent from S. aureus infection suggested that the heptameric conformation of HlaPSGS mimics epitopes exposed by the cytolytic Hla pore during infection. Finally, immunization with this newly engineered Hla generated high protective immunity against staphylococcal infection in mice. Overall, this study provides unprecedented data on the natural immune response against Hla and suggests that the heptameric HlaPSGS is a highly valuable vaccine candidate against S. aureus.
Collapse
|
137
|
Fujikura D, Toyomane K, Kamiya K, Mutoh M, Mifune E, Ohnuma M, Higashi H. ANTXR-1 and -2 independent modulation of a cytotoxicity mediated by anthrax toxin in human cells. J Vet Med Sci 2016; 78:1311-7. [PMID: 27170489 PMCID: PMC5053933 DOI: 10.1292/jvms.15-0727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several animal models have shown that anthrax toxin (ATX) elicits a cytotoxic effect on host cells through anthrax toxin receptor (ANTXR) function. In this study, compared with mouse cells, cells obtained from humans exhibited low sensitivity to ATX-mediated cytotoxicity, and the sensitivity was not correlated with expression levels of ANTXRs. ATX treatment also induced a cytotoxic effect in other cultured human cells, human embryonic kidney (HEK) 293 cells, that express ANTXRs at undetectable levels. Furthermore, ectopic expression of ANTXRs in HEK293 cells did not affect the sensitivity to ATX treatment. These findings suggest that there is an ANTXR-independent cytotoxic mechanism in human cells.
Collapse
Affiliation(s)
- Daisuke Fujikura
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | | | | | | | | | | | | |
Collapse
|
138
|
Mechanistic Analysis of the Effect of Deamidation on the Immunogenicity of Anthrax Protective Antigen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:396-402. [PMID: 26912784 DOI: 10.1128/cvi.00701-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/18/2016] [Indexed: 11/20/2022]
Abstract
The spontaneous modification of proteins, such as deamidation of asparagine residues, can significantly affect the immunogenicity of protein-based vaccines. Using a "genetically deamidated" form of recombinant protective antigen (rPA), we have previously shown that deamidation can decrease the immunogenicity of rPA, the primary component of new-generation anthrax vaccines. In this study, we investigated the biochemical and immunological mechanisms by which deamidation of rPA might decrease the immunogenicity of the protein. We found that loss of the immunogenicity of rPA vaccine was independent of the presence of adjuvant. We assessed the effect of deamidation on the immunodominant neutralizing B-cell epitopes of rPA and found that these epitopes were not significantly affected by deamidation. In order to assess the effect of deamidation on T-cell help for antibody production elicited by rPA vaccine, we examined the ability of the wild-type and genetically deamidated forms of rPA to serve as hapten carriers. We found that when wild-type and genetically deamidated rPA were modified to similar extents with 2,4-dinitrophenyl hapten (DNP) and then used to immunize mice, higher levels of anti-DNP antibodies were elicited by wild-type DNP-rPA than those elicited by the genetically deamidated DNP-rPA, indicating that wild-type rPA elicits more T-cell help than the genetically deamidated form of the protein. These results suggest that a decrease in the ability of deamidated rPA to elicit T-cell help for antibody production is a possible contributor to its lower immunogenicity.
Collapse
|
139
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
140
|
Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Arch Toxicol 2016; 91:1431-1445. [DOI: 10.1007/s00204-016-1716-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
141
|
Schmidt FI, Lu A, Chen JW, Ruan J, Tang C, Wu H, Ploegh HL. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J Exp Med 2016; 213:771-90. [PMID: 27069117 PMCID: PMC4854733 DOI: 10.1084/jem.20151790] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/01/2016] [Indexed: 01/09/2023] Open
Abstract
Ploegh et al. raised an alpaca single-domain antibody (VHH) against the inflammasome adaptor ASC. VHHASC blocks inflammasome activation in vitro and in living cells, and demonstrates a role of the ASC CARD domain in cross-linking ASC Pyrin domain filaments. Myeloid cells assemble inflammasomes in response to infection or cell damage; cytosolic sensors activate pro–caspase-1, indirectly for the most part, via the adaptors ASC and NLRC4. This leads to secretion of proinflammatory cytokines and pyroptosis. To explore complex formation under physiological conditions, we generated an alpaca single domain antibody, VHHASC, which specifically recognizes the CARD of human ASC via its type II interface. VHHASC not only impairs ASCCARD interactions in vitro, but also inhibits inflammasome activation in response to NLRP3, AIM2, and NAIP triggers when expressed in living cells, highlighting a role of ASC in all three types of inflammasomes. VHHASC leaves the Pyrin domain of ASC functional and stabilizes a filamentous intermediate of inflammasome activation. Incorporation of VHHASC-EGFP into these structures allowed the visualization of endogenous ASCPYD filaments for the first time. These data revealed that cross-linking of ASCPYD filaments via ASCCARD mediates the assembly of ASC foci.
Collapse
Affiliation(s)
| | - Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Jeff W Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Jianbin Ruan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Catherine Tang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
142
|
EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin. Toxins (Basel) 2016; 8:101. [PMID: 27043629 PMCID: PMC4848627 DOI: 10.3390/toxins8040101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.
Collapse
|
143
|
NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus. PLoS Pathog 2016; 12:e1005468. [PMID: 26938870 PMCID: PMC4777570 DOI: 10.1371/journal.ppat.1005468] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/02/2016] [Indexed: 01/19/2023] Open
Abstract
A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS) has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase). When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO), and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase) that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells. Invasive infections due to group A Streptococcus (S. pyogenes or GAS) have become more frequent since the 1980s due, in part, to the emergence and global spread of closely related strains of the M1T1 serotype. A feature of this clonal group is the production of a secreted enzyme, NAD+-glycohydrolase (NADase), which has been suggested to contribute to GAS virulence by intoxication of host cells. For NADase to exert its toxic effects, it must be translocated into the host cell by a second GAS protein, streptolysin O (SLO). SLO is a pore-forming toxin that damages cell membranes in addition to its role in translocating NADase. In order to distinguish effects of NADase on host cell biology from those of SLO, we used components of anthrax toxin to deliver NADase to human throat epithelial cells, independently of SLO. Introduction of NADase into GAS-infected cells increased the intracellular survival of GAS lacking NADase or SLO, and the increase in bacterial survival correlated with inhibition of intracellular trafficking of GAS to lysosomes that mediate bacterial killing. The results support an important role for NADase in enhancing GAS survival in human epithelial cells, a phenomenon that may contribute to GAS colonization and disease.
Collapse
|
144
|
Bezrukov SM, Nestorovich EM. Inhibiting bacterial toxins by channel blockage. Pathog Dis 2016; 74:ftv113. [PMID: 26656888 PMCID: PMC4830228 DOI: 10.1093/femspd/ftv113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/15/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology.
Collapse
Affiliation(s)
- Sergey M Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
145
|
Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R. Toxins (Basel) 2016; 8:toxins8030056. [PMID: 26927174 PMCID: PMC4810201 DOI: 10.3390/toxins8030056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2−) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R.
Collapse
|
146
|
Weighted gene co-expression network analysis of pneumocytes under exposure to a carcinogenic dose of chloroprene. Life Sci 2016; 151:339-347. [PMID: 26916823 DOI: 10.1016/j.lfs.2016.02.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Abstract
AIMS Occupational exposure to chloroprene via inhalation may lead to acute toxicity and chronic pulmonary diseases, including lung cancer. Currently, most research is focused on epidemiological studies of chloroprene production workers. The specific molecular mechanism of carcinogenesis by chloroprene in lung tissues still remains obscure, and specific candidate therapeutic targets for lung cancer are lacking. The present study identifies specific gene modules and valuable hubs associated with lung cancer. MAIN METHODS We downloaded the dataset GSE40795 from the Gene Expression Omnibus (GEO) and divided the dataset into the non-carcinogenic dose chloroprene exposed mice group and the carcinogenic dose chloroprene exposed mice group. With a systemic biological view, we discovered significantly altered gene modules between the two groups and identified hub genes in the carcinogenic dose exposed group using weighted co-expression network analysis (WGCNA). KEY FINDINGS A total of 2434 differentially expressed genes were identified. Twelve gene modules with multiple biological activities were related to the carcinogenesis of chloroprene in lung tissue. Seven hub genes that were critical for the carcinogenesis of chloroprene in lung tissue were ultimately identified, including Cftr, Hip1, Tbl1x, Ephx1, Cbr3, Antxr2 and Ccnd2. They were implicated in inflammatory response, cell transformation, gene transcription regulation, phase II detoxification, angiogenesis, cell adhesion, motility and the cell cycle. SIGNIFICANCE The seven hub genes may become valuable candidates for risk assessment biomarkers and therapeutic targets in lung cancer.
Collapse
|
147
|
Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli. Mol Biol Int 2016; 2016:4732791. [PMID: 26966576 PMCID: PMC4761392 DOI: 10.1155/2016/4732791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L(-1)) compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein's functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform.
Collapse
|
148
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
149
|
Sun J, Jacquez P. Roles of Anthrax Toxin Receptor 2 in Anthrax Toxin Membrane Insertion and Pore Formation. Toxins (Basel) 2016; 8:34. [PMID: 26805886 PMCID: PMC4773787 DOI: 10.3390/toxins8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/04/2022] Open
Abstract
Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA) binds to the cell surface receptor, enters the cell through receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anthrax toxin in vivo, anthrax toxin receptor 2 (ANTXR2) plays an essential role in anthrax toxin action by providing the toxin with a high-affinity binding anchor on the cell membrane and a path of entry into the host cell. ANTXR2 also acts as a molecular clamp by shifting the pH threshold of PA pore formation to a more acidic pH range, which prevents premature pore formation at neutral pH before the toxin reaches the designated intracellular location. Most recent studies have suggested that the disulfide bond in the immunoglobulin (Ig)-like domain of ANTXR2 plays an essential role in anthrax toxin action. Here we will review the roles of ANTXR2 in anthrax toxin action, with an emphasis on newly updated knowledge.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Pedro Jacquez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
150
|
Host Cell Chaperones Hsp70/Hsp90 and Peptidyl-Prolyl Cis/Trans Isomerases Are Required for the Membrane Translocation of Bacterial ADP-Ribosylating Toxins. Curr Top Microbiol Immunol 2016; 406:163-198. [PMID: 27197646 DOI: 10.1007/82_2016_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial ADP-ribosylating toxins are the causative agents for several severe human and animal diseases such as diphtheria, cholera, or enteric diseases. They display an AB-type structure: The enzymatically active A-domain attaches to the binding/translocation B-domain which then binds to a receptor on the cell surface. After receptor-mediated endocytosis, the B-domain facilitates the membrane translocation of the unfolded A-domain into the host cell cytosol. Here, the A-domain transfers an ADP-ribose moiety onto its specific substrate which leads to characteristic cellular effects and thus to severe clinical symptoms. Since the A-domain has to reach the cytosol to achieve a cytotoxic effect, the membrane translocation represents a crucial step during toxin uptake. Host cell chaperones including Hsp90 and protein-folding helper enzymes of the peptidyl-prolyl cis/trans isomerase (PPIase) type facilitate this membrane translocation of the unfolded A-domain for ADP-ribosylating toxins but not for toxins with a different enzyme activity. This review summarizes the uptake mechanisms of the ADP-ribosylating clostridial binary toxins, diphtheria toxin (DT) and cholera toxin (CT), with a special focus on the interaction of these toxins with the chaperones Hsp90 and Hsp70 and PPIases of the cyclophilin and FK506-binding protein families during the membrane translocation of their ADP-ribosyltransferase domains into the host cell cytosol. Moreover, the medical implications of host cell chaperones and PPIases as new drug targets for the development of novel therapeutic strategies against diseases caused by bacterial ADP-ribosylating toxins are discussed.
Collapse
|