101
|
Rorsman P, Renström E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 2003; 46:1029-45. [PMID: 12879249 DOI: 10.1007/s00125-003-1153-1] [Citation(s) in RCA: 581] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Revised: 05/12/2003] [Indexed: 01/11/2023]
Abstract
Glucose-induced insulin secretion in response to a step increase in blood glucose concentrations follows a biphasic time course consisting of a rapid and transient first phase followed by a slowly developing and sustained second phase. Because Type 2 diabetes involves defects of insulin secretion, manifested as a loss of first phase and a reduction of second phase, it is important to understand the cellular mechanisms underlying biphasic insulin secretion. Insulin release involves the packaging of insulin in small (diameter approximately 0.3 micro m) secretory granules, the trafficking of these granules to the plasma membrane, the exocytotic fusion of the granules with the plasma membrane and eventually the retrieval of the secreted membranes by endocytosis. Until recently, studies on insulin secretion have been confined to the appearance of insulin in the extracellular space and the cellular events preceding exocytosis have been inaccessible to more detailed analysis. Evidence from a variety of secretory tissues, including pancreatic islet cells suggests, however, that the secretory granules can be functionally divided into distinct pools that are distinguished by their release competence and/or proximity to the plasma membrane. The introduction of fluorescent proteins that can be targeted to the secretory granules, in combination with the advent of new techniques that allow real-time imaging of granule trafficking in living cells (granule dynamics), has led to an explosion of our knowledge of the pre-exocytotic and post-exocytotic processes in the beta cell. Here we discuss these observations in relation to previous functional and ultra-structural data as well as the secretory defects of Type 2 diabetes.
Collapse
Affiliation(s)
- P Rorsman
- The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford, UK.
| | | |
Collapse
|
102
|
Stuart JN, Sweedler JV. Ultrafast capillary electrophoresis and bioanalytical applications. Proc Natl Acad Sci U S A 2003; 100:3545-6. [PMID: 12657735 PMCID: PMC152953 DOI: 10.1073/pnas.0830869100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jeffrey N Stuart
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
103
|
Abstract
Changes in the amplitudes of signals conveyed at synaptic contacts between neurons underlie many brain functions and pathologies. Here we review the possible determinants of the amplitude and plasticity of the elementary postsynaptic signal, the miniature. In the absence of a definite understanding of the molecular mechanism releasing transmitters, we investigated a possible alternative interpretation. Classically, both the quantal theory and the vesicle theory predict that the amount of transmitter producing a miniature is determined presynaptically prior to release and that rapid changes in miniature amplitude reflect essentially postsynaptic alterations. However, recent data indicates that short-term and long-lasting changes in miniature amplitude are in large part due to changes in the amount of transmitter in individual released packets that show no evidence of preformation. Current representations of transmitter release derive from basic properties of neuromuscular transmission and endocrine secretion. Reexamination of overlooked properties of these two systems indicate that the amplitude of miniatures may depend as much, if not more, on the Ca(2+) signals in the presynaptic terminal than on the number of postsynaptic receptors available or on vesicle's contents. Rapid recycling of transmitter and its possible adsorption at plasma and vesicle lumenal membrane surfaces suggest that exocytosis may reflect membrane traffic rather than actual transmitter release. This led us to reconsider the disregarded hypothesis introduced by Fatt and Katz (1952; J Physiol 117:109-128) that the excitability of the release site may account for the "quantal effect" in fast synaptic transmission. In this case, changes in excitability of release sites would contribute to the presynaptic quantal plasticity that is often recorded.
Collapse
Affiliation(s)
- Jean Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
104
|
Liebetrau JM, Miller HM, Baur JE, Takacs SA, Anupunpisit V, Garris PA, Wipf DO. Scanning electrochemical microscopy of model neurons: imaging and real-time detection of morphological changes. Anal Chem 2003; 75:563-71. [PMID: 12585485 DOI: 10.1021/ac026166v] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Living PC12 cells, a model cell type for studying neuronal function, were imaged using the negative feedback mode of a scanning electrochemical microscope (SECM). Six biocompatible redox mediators were successfully identified from a large pool of candidates and were then used for imaging PC12 cells before and after exposure to nerve growth factor (NGF). When exposed to NGF, cells differentiate into a neuron phenotype by growing narrow neurites (1-2 microm wide) that can extend > 100 microm from the cell proper. We demonstrate that carbon fiber electrodes with reduced tip diameters can be used for imaging both the cell proper and these neurites. Regions of decreased current, possibly resulting from raised features not identifiable by light microscopy, are clearly evident in the SECM images. Changes in the morphology of undifferentiated PC12 cells could be detected in real time with the SECM. After exposure to hypotonic and hypertonic solutions, reversible changes in cell height of <2 microm were measured.
Collapse
Affiliation(s)
- Johanna M Liebetrau
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Chen P, Xu B, Tokranova N, Feng X, Castracane J, Gillis KD. Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips. Anal Chem 2003; 75:518-24. [PMID: 12585478 DOI: 10.1021/ac025802m] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have fabricated electrochemical electrodes in picolitersized wells for measuring catecholamine release from individual cells with millisecond resolution. Each well-electrode roughly conforms to the shape of the cell in order to capture a large fraction of released catecholamine with high time resolution. Using this device, we can resolve spikes in amperometric current corresponding to quantal catecholamine release via exocytosis. In addition, we have combined amperometric recording on the chip with patch-clamp recordings of membrane capacitance as an assay of exocytosis. A quantitative comparison of the two methods suggests that a large fraction of catecholamine release is oxidized on the surface of the well-electrode. This technology has applications in cell-based biosensor development, high-throughput screening of drugs, and basic science investigations.
Collapse
Affiliation(s)
- Peng Chen
- Department of Biological Engineering, University of Missouri-Columbia, Research Park Drive, Columbia, Missouri, 65211, USA
| | | | | | | | | | | |
Collapse
|
106
|
Liu B, Rotenberg SA, Mirkin MV. Scanning electrochemical microscopy of living cells. 4. Mechanistic study of charge transfer reactions in human breast cells. Anal Chem 2002; 74:6340-8. [PMID: 12510757 DOI: 10.1021/ac020564g] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scanning electrochemical microscopy (SECM) has recently been employed for probing the redox properties of individual mammalian cells. It was shown that intracellular redox activity can be probed noninvasively by measuring the rate of mediator regeneration by the cell. Depending on the properties of the mediator species (e.g., formal potential, ionic charge, and hydrophobicity), different steps can limit the rate of the mediator regeneration reaction. This paper describes the evaluation of several factors that determine the rates of different steps of the process. These include intracellular concentration of redox centers, mixed redox potential inside the cell, and the rate of membrane permeation by mediator species. The kinetic analysis has been carried out to clarify the origins of different rates of the overall charge-transfer reaction in different cell types and with different redox mediators. The results can be used to facilitate differentiation between different types of cells, for example, normal and metastatic breast cells, on the basis of differences in redox responses.
Collapse
Affiliation(s)
- Biao Liu
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, USA
| | | | | |
Collapse
|
107
|
Wightman RM, Troyer KP, Mundorf ML, Catahan R. The association of vesicular contents and its effects on release. Ann N Y Acad Sci 2002; 971:620-6. [PMID: 12438196 DOI: 10.1111/j.1749-6632.2002.tb04540.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The oxidation of catecholamines with a carbon-fiber electrode can be used to monitor exocytosis at the single cell level at a variety of different types of cells. These measurements allow release to be followed from individual vesicles and have revealed several unique aspects concerning the coupling between release and storage. The strong association of the vesicular components in chromaffin cells dictates the time course of extrusion of the vesicle contents. Furthermore, liberation of the Ca(2+) normally stored within the vesicles can promote exocytosis without an external Ca(2+) source.
Collapse
Affiliation(s)
- R Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
| | | | | | | |
Collapse
|
108
|
Elhamdani A, Palfrey CH, Artalejo CR. Ageing changes the cellular basis of the "fight-or-flight" response in human adrenal chromaffin cells. Neurobiol Aging 2002; 23:287-93. [PMID: 11804714 DOI: 10.1016/s0197-4580(01)00275-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stress-induced increases in plasma epinephrine in man have been reported to decrease with age. To investigate the possible cellular basis for this decline we determined the characteristics of calcium currents and their relationship to catecholamine secretion in isolated human adrenal chromaffin (AC) cells. Cells derived from young individuals displayed prominent prepulse facilitation of L-type Ca channels but this property was absent in cells from older subjects. Robust quantal secretion in young cells as determined by amperometry was strongly coupled to the activation of these channels with an average delay of only approximately 3 msec. N- and P-type Ca channels also contributed to secretion but were more weakly coupled to catecholamine release sites. Cells from older subjects secreted much less efficiently and showed only weak coupling between Ca channels and secretion. These studies suggest that the magnitude and timing of adrenal secretion changes with age and that the facilitation Ca channel is key to rapid activation of the fight-or-flight response in young individuals.
Collapse
Affiliation(s)
- Abdeladim Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
109
|
Cai X, Klauke N, Glidle A, Cobbold P, Smith GL, Cooper JM. Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology. Anal Chem 2002; 74:908-14. [PMID: 11866072 DOI: 10.1021/ac010941+] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fabrication of microelectrodes integrated within ultra-low-volume microtiter chambers for the amperometric determination of metabolites continues to be of interest in the subject of single-cell and high-throughput screening. The microsystem described in this paper consists of a two-microelectrode sensor with a microfluidic dispensation technology, which is able to deliver both very low titers (6.5 pL) and single heart cells into a low-volume microphotoelectrochemical cell. Devices were fabricated using photolithography and liftoff giving reproducible sensors integrated within high aspect ratio titer chambers (with a volume of 360 pL), made of the photoepoxy SU8. In this paper, the determination of lactate was optimized using an enzyme-linked assay based upon lactate oxidase, involving the amperometric determination of hydrogen peroxide at +640 mV versus an internal Ag/AgCl pseudoreference. The microsystem (including the microfluidic dispensers and structures as well as the microsensor) was subsequently used to measure the lactate content of single heart cells. Dynamic electrochemical measurements of lactate during cell permeabilization are presented. We also show the use of respiratory uncouplers to simulate ischemia in the single myocyte and show that, as expected, the rate of lactate production from the hypoxic heart cell is greater than that within the normoxic healthy myocyte.
Collapse
Affiliation(s)
- Xinxia Cai
- Bioelectronics Research Centre, Department of Electronics and Electrical Engineering, University of Glasgow, UK
| | | | | | | | | | | |
Collapse
|
110
|
Cans AS, Höök F, Shupliakov O, Ewing AG, Eriksson PS, Brodin L, Orwar O. Measurement of the dynamics of exocytosis and vesicle retrieval at cell populations using a quartz crystal microbalance. Anal Chem 2001; 73:5805-11. [PMID: 11791548 DOI: 10.1021/ac010777q] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quartz crystal microbalance-dissipation technique (QCM-D) is used in two different measurement strategies to monitor the mass change and rigidity of populations of excitable cells during exocytosis and subsequent retrieval of dense-core vesicles. Two cell lines, NG 108-15 and PC 12, were grown to confluence on piezoelectric quartz crystals and were examined separately to demonstrate differences in release and retrieval with cells of different morphology, size, and number of dense-core vesicles. Stimulating the cells to exocytosis with media containing an elevated potassium concentration resulted in an increase in the frequency response corresponding to loss of mass from the cells owing to release of vesicles. In Ca2+-free media, the response was completely abolished. The amplitude and peak area in the frequency response corresponding to mass change with stimulated release was larger for PC 12 cells than for NG 108-15 cells, whereas the initial rate constants for the frequency responses were similar. The data suggest (1) that a greater number and larger size of vesicles in PC 12 cells results in a greater amount of release from these cells vs NG 108-15 cells, (2) the recycling of vesicles utilizes similar fusion/retrieval mechanisms in both cell types, (3) that the control of excess retrieval might be related to the number and size of released vesicles, and (4) that measured retrieval has a rapid onset, masking exocytosis and implying a rapid retrieval mechanism in the early stages of release. These results demonstrate that measurements of complex dynamic processes relating to dense-core vesicle release and retrieval can be simultaneously accomplished using the QCM-D technique.
Collapse
Affiliation(s)
- A S Cans
- Department of Chemistry, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
111
|
Henkel AW, Kang G, Kornhuber J. A common molecular machinery for exocytosis and the ‘kiss-and-run’ mechanism in chromaffin cells is controlled by phosphorylation. J Cell Sci 2001; 114:4613-20. [PMID: 11792825 DOI: 10.1242/jcs.114.24.4613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exocytosis and ‘kiss-and-run’ secretion coexist in chromaffin cells. Our findings suggest that these mechanisms are closely related, based on their common molecular machinery. Here we present a model that describes how chromaffin cells regulate catecholamine release by switching the mode of secretion between the two pathways, a process controlled by phosphorylation. Stimulation-dependent vesicle-plasma membrane interactions in chromaffin cells were analysed by simultaneous ‘on-cell’ capacitance and conductance measurements, a technique that allows the monitoring of single vesicles. Capacitance steps represent fusions of large dense-core vesicles with the plasma membrane, whereas capacitance flickers correspond to transient connections of the vesicle lumen with the extracellular space. All these events require the presence of extracellular calcium in millimolar concentrations. ‘Kiss-and-run’ type of release is enhanced by the kinase inhibitor staurosporine, which suggests that this secretion mode is regulated by protein phosphorylation. We also observed capacitance bursts, which most probably represent ‘hot spots’ of secretion and we found that ‘kiss-and-run’ is the prevalent mechanism during these episodes. The significance of ‘kiss-and run’ for neurohormone release is even higher at physiological temperature, because up to half of all secretion events are mediated by this mechanism.
Collapse
Affiliation(s)
- A W Henkel
- Department of Psychiatry, University of Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany.
| | | | | |
Collapse
|
112
|
Haller T, Dietl P, Pfaller K, Frick M, Mair N, Paulmichl M, Hess MW, Furst J, Maly K. Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells. J Cell Biol 2001; 155:279-89. [PMID: 11604423 PMCID: PMC2198834 DOI: 10.1083/jcb.200102106] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In alveolar type II cells, the release of surfactant is considerably delayed after the formation of exocytotic fusion pores, suggesting that content dispersal may be limited by fusion pore diameter and subject to regulation at a postfusion level. To address this issue, we used confocal FRAP and N-(3-triethylammoniumpropyl)-4-(4-[dibutylamino]styryl) pyridinium dibromide (FM 1-43), a dye yielding intense localized fluorescence of surfactant when entering the vesicle lumen through the fusion pore (Haller, T., J. Ortmayr, F. Friedrich, H. Volkl, and P. Dietl. 1998. Proc. Natl. Acad. Sci. USA. 95:1579-1584). Thus, we have been able to monitor the dynamics of individual fusion pores up to hours in intact cells, and to calculate pore diameters using a diffusion model derived from Fick's law. After formation, fusion pores were arrested in a state impeding the release of vesicle contents, and expanded at irregular times thereafter. The expansion rate of initial pores and the probability of late expansions were increased by elevation of the cytoplasmic Ca2+ concentration. Consistently, content release correlated with the occurrence of Ca2+ oscillations in ATP-treated cells, and expanded fusion pores were detectable by EM. This study supports a new concept in exocytosis, implicating fusion pores in the regulation of content release for extended periods after initial formation.
Collapse
Affiliation(s)
- T Haller
- Department of Physiology, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Elhamdani A, Palfrey HC, Artalejo CR. Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 2001; 31:819-30. [PMID: 11567619 DOI: 10.1016/s0896-6273(01)00418-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To what extent the quantal hypothesis of transmitter release applies to dense-core vesicle (DCV) secretion is unknown. We determined the characteristics of individual secretory events in calf chromaffin cells using catecholamine amperometry combined with different patterns of stimulation. Raising the frequency of action potential trains from 0.25-10 Hz in 2 mM [Ca(2+)]o or [Ca(2+)]o from 0.25-7 mM at 7 Hz elevated the amount released per event (quantal size). With increased stimulation, quantal size rose continuously, not abruptly, suggesting that release efficiency from a single population of DCVs rather than recruitment of different-sized vesicles contributed to the effect. These results suggest that catecholamine secretion does not conform to the quantal model. Inhibition of rapid endocytosis damped secretion in successive episodes, implying an essential role for this process in the recycling of vesicles needed for continuous secretion.
Collapse
Affiliation(s)
- A Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
114
|
Heidelberger R. Electrophysiological approaches to the study of neuronal exocytosis and synaptic vesicle dynamics. Rev Physiol Biochem Pharmacol 2001; 143:1-80. [PMID: 11428263 DOI: 10.1007/bfb0115592] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- R Heidelberger
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, University of Texas, Houston Health Science Center, Houston, Texas 77025, USA
| |
Collapse
|
115
|
Kilic G, Angleson JK, Cochilla AJ, Nussinovitch I, Betz WJ. Sustained stimulation of exocytosis triggers continuous membrane retrieval in rat pituitary somatotrophs. J Physiol 2001; 532:771-83. [PMID: 11313445 PMCID: PMC2278588 DOI: 10.1111/j.1469-7793.2001.0771e.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We studied the relationship between exocytosis and endocytosis in rat pituitary somatotrophs using patch-clamp capacitance, FM1-43 fluorescence imaging and amperometry. Stimulation of exocytosis through voltage-dependent Ca2+ channels by depolarizations (1-5 s) increased the capacitance by 4.3 +/- 0.9 % and the fluorescence by 6.6 +/- 1.1 % (10 cells). The correlation between the capacitance and fluorescence changes indicated that the cell membrane and granule membrane added via exocytosis were stained with the membrane-bound fluorescent dye FM1-43 in a quantitatively similar manner. Intracellular dialysis (0.5-4.5 min) with elevated Ca2+ (1.5-100 microM) evoked continuous exocytosis that was detected with a carbon fibre electrode from dopamine-loaded cells (10 cells) or as an increase in FM1-43 fluorescence (56 +/- 10 %; 21 cells). Interestingly during Ca2+ dialysis the capacitance did not significantly change (2 +/- 1 %; 31 cells), indicating that endocytosis efficiently retrieved increased cell membrane. Sustained endocytosis was not blocked when the intracellular GTP (300 microM) was replaced with GTP[gamma]S. Replacing intracellular Ca2+ (100 microM) with Ba2+ (300 microM) or Sr2+ (200 microM), or reducing the pH of the intracellular solution from 7.2 to 6.2 did not block sustained endocytosis. Our results suggest that pituitary somatotrophs have the ability to undergo continuous exocytosis and membrane retrieval that persist in whole-cell recordings.
Collapse
Affiliation(s)
- G Kilic
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
116
|
Mahmoud SF, Fewtrell C. Microdomains of high calcium are not required for exocytosis in RBL-2H3 mucosal mast cells. J Cell Biol 2001; 153:339-49. [PMID: 11309415 PMCID: PMC2169467 DOI: 10.1083/jcb.153.2.339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that store-associated microdomains of high Ca(2+) are not essential for exocytosis in RBL-2H3 mucosal mast cells. We have now examined whether Ca(2+) microdomains near the plasma membrane are required, by comparing the secretory responses seen when Ca(2+) influx was elicited by two very different mechanisms. In the first, antigen was used to activate the Ca(2+) release-activated Ca(2+) (CRAC) current (I(CRAC)) through CRAC channels. In the second, a Ca(2+) ionophore was used to transport Ca(2+) randomly across the plasma membrane. Since store depletion by Ca(2+) ionophore will also activate I(CRAC), different means of inhibiting I(CRAC) before ionophore addition were used. Ca(2+) responses and secretion in individual cells were compared using simultaneous indo-1 microfluorometry and constant potential amperometry. Secretion still takes place when the increase in intracellular Ca(2+) occurs diffusely via the Ca(2+) ionophore, and at an average intracellular Ca(2)+ concentration that is no greater than that observed when Ca(2+) entry via CRAC channels triggers secretion. Our results suggest that microdomains of high Ca(2+) near the plasma membrane, or associated with mitochondria or Ca(2+) stores, are not required for secretion. Therefore, we conclude that modest global increases in intracellular Ca(2+) are sufficient for exocytosis in these nonexcitable cells.
Collapse
Affiliation(s)
- Sahar F. Mahmoud
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Clare Fewtrell
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
117
|
Green KN, Taylor SC, Smith IF, Peers C. Differential coupling of voltage-gated Ca(2+) channels to catecholamine secretion from separate PC12 cell batches. Neurosci Lett 2001; 301:13-6. [PMID: 11239705 DOI: 10.1016/s0304-3940(01)01594-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amperometric recordings were employed to investigate the coupling of Ca(2+) channels to catecholamine secretion in two batches of pheochromocytoma (PC12) cells. In 'new' (freshly obtained) cells (PC12n cells), secretion was dependent on Ca(2+) influx through L-type and N-type Ca(2+) channels. By contrast, in 'aged' cells (maintained in liquid nitrogen for 6-8 years; PC12a cells), secretion was mostly dependent on Ca(2+) influx through N-type channels. Patch clamp recordings revealed that L-type channels accounted for only ca. 26% of total whole-cell current in PC12a cells (determined by blockade caused by 2 microM nifedipine). In contrast, nifedipine suppressed currents by ca. 59% in PC12n cells. Thus important differences in fundamental physiological properties can be observed in PC12 cell batches even when obtained from the same source and maintained under identical conditions.
Collapse
Affiliation(s)
- K N Green
- Institute for Cardiovascular Research, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | | |
Collapse
|
118
|
Spaine TW, Baur JE. A positionable microcell for electrochemistry and scanning electrochemical microscopy in subnanoliter volumes. Anal Chem 2001; 73:930-8. [PMID: 11289438 DOI: 10.1021/ac0011787] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Positionable voltammetric cells with tip diameters of < 50 microm were constructed from theta glass capillaries. One channel of the pulled glass capillary contains a carbon fiber microelectrode sealed in epoxy while the other houses a Ag/AgCl reference electrode that makes electrical contact to the analyte solution via a salt bridge at the tip. The device can be operated as a two-electrode cell and can therefore make measurements in droplets of solution that are similar in size to the tip. Alternatively, if the droplet of solution is larger than the tip, spatially resolved measurements of a substrate in solution can be made. Voltammetric experiments and feedback imaging with the scanning electrochemical microscope (SECM) were accomplished in microdroplets with solution volumes of less than 1 nL. pH images of a substrate immersed in 70-microL-thick films of solution were obtained in the generator-collector mode of SECM using an iridium oxide-modified microcell. This type of microcell is particularly useful for making electrochemical measurements in very small droplets of solution where a mobile working electrode could easily collide with a separately positioned reference electrode.
Collapse
Affiliation(s)
- T W Spaine
- Department of Chemistry, Illinois State University, Normal 61790-4160, USA
| | | |
Collapse
|
119
|
Koval LM, Yavorskaya EN, Lukyanetz EA. Electron microscopic evidence for multiple types of secretory vesicles in bovine chromaffin cells. Gen Comp Endocrinol 2001; 121:261-77. [PMID: 11254368 DOI: 10.1006/gcen.2000.7592] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been previously shown that the neuron-like chromaffin cells from the bovine adrenal medulla are heterogeneous. Among other differences, the cells also differed in secretory vesicles represented in their cytoplasm. The present study investigates the types of secretory vesicles in bovine chromaffin cells by electron microscopy. Morphometric analysis revealed five types of electron-dense secretory vesicles in chromaffin cells. These were as follows: elementary large catecholamine-storing chromaffin granules of rounded shape, large dense core vesicles of ovoid and rod-like shapes, small dense core vesicles as well as ribosome-coated vesicles of intermediate density. Among the electron-lucent vesicles there were small synaptic-like microvesicles, endocytotic clathrin-coated vesicles, growth cone vesicles, and emptied large light core vesicles. The structural and functional backgrounds of different types of secretory vesicles are described, focusing on their formation and potential role.
Collapse
Affiliation(s)
- L M Koval
- A. A. Bogomoletz Institute of Physiology, Kiev, MSP 01601, Ukraine
| | | | | |
Collapse
|
120
|
Davidson C, Ellinwood EH, Douglas SB, Lee TH. Effect of cocaine, nomifensine, GBR 12909 and WIN 35428 on carbon fiber microelectrode sensitivity for voltammetric recording of dopamine. J Neurosci Methods 2000; 101:75-83. [PMID: 10967364 DOI: 10.1016/s0165-0270(00)00264-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Electrochemical measurements using voltammetry or amperometry at carbon-fiber microelectrodes have been used in vitro and in vivo to examine regulatory mechanisms for the central dopamine system. In many of these experiments, dopamine efflux concentrations under control conditions are determined followed by their alterations in response to a drug treatment. The present study demonstrates that some drugs can affect dopamine measurements, not only by their expected pharmacological action but also by directly altering the microelectrode responsivity. The commonly used reuptake inhibitors GBR 12909 (10 microM) and nomifensine (5 microM) drastically reduce electrode sensitivity and, in the case of nomifensine, increase the time to reach a plateau in response to dopamine boluses (i.e. reduced 'frequency response'). Cocaine (10 microM) and WIN 35428 (2 microM) have negligible effect on these indices. This decrease in sensitivity was found in both nafion and non-nafion coated electrodes. Further, the reduction in sensitivity seen in non-nafion coated electrodes was not prevented by increasing the reversal potential (from +1.0 to +1.3 V) and voltage scan rate (from 350 to 450 V/s). These data suggest that care must be taken when interpreting data from voltammetric or amporometric experiments using carbon electrodes where GBR 12909 or nomifensine are used, especially at high concentrations. Furthermore, wherever possible, direct effects of a drug on electrode sensitivity and frequency response should be determined.
Collapse
Affiliation(s)
- C Davidson
- Department of Psychiatry, Box 3870, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
121
|
Abstract
Exocytosis is commonly viewed as the only secretory process able to account for quantal forms of fast synaptic transmission. However, the demonstrated variability and composite properties of miniature postsynaptic signals are not easily explained by all-or-none exocytotic discharge of transmitter in solution from inside vesicles. Recent studies of endocrine secretion have shown that hormone release does not coincide with exocytosis due to its trapping in the core matrix of the granule. Thus, we tested whether the synaptic transmitter GABA could also be held in a matrix before being released. Using confocal microscopy and flow cytometry of embryonic rat hippocampal neurons, we found a GABA immunoreaction at the surface of live cell bodies and growth cones that coincided spatially and quantitatively with the binding of tetanus toxin fragment C (TTFC). TTFC binds predominantly at membrane sites containing the trisialoglycosphingolipid GT1b. Using flow cytometry, GT1b-containing liposomes preincubated in 100 nM GABA exhibited the same relationship between GABA and TTFC surface binding as found on neurons and growth cones. Embryonic neurons differentiated in culture expressed initially a tonic, and after 3-5 days, transient, postsynaptic signals mediated by GABA acting at GABA(A) receptor/Cl(-) channels. A stream of saline applied to the neuronal surface rapidly and reversibly suppressed both tonic and transient signals. A brief application of the GABAmimetic isoguvacine immediately transformed both tonic and transient GABAergic signals into tonic and transient isoguvacinergic signals. These results and those in the literature are consistent with an immediately releasable compartment of transmitter accessible from the presynaptic surface.
Collapse
Affiliation(s)
- J Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
122
|
Enhancement of the dense-core vesicle secretory cycle by glucocorticoid differentiation of PC12 cells: characteristics of rapid exocytosis and endocytosis. J Neurosci 2000. [PMID: 10729329 DOI: 10.1523/jneurosci.20-07-02495.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The secretory cycle of dense-core vesicles (DCVs) in physiologically stimulated patch-clamped PC12 cells was analyzed using both amperometry and capacitance measurements. Untreated cells had low or undetectable Ca currents and sparse secretory responses to short depolarizations. Dexamethasone (5 microM) treatment for 5-7 d tripled Ca current magnitude and dramatically increased quantal secretion in response to depolarization with action potentials. Such cells expressed L-, N-, and P-type Ca channels, and depolarization evoked rapid catecholamine secretion recorded as amperometric spikes; the average latency was approximately 50 msec. These spikes were much smaller and shorter than those of primary adrenal chromaffin cells, reflecting the smaller size of DCVs in PC12 cells. Depolarizing pulse trains also elicited a rapid increase in membrane capacitance corresponding to exocytosis in differentiated but not in naïve cells. On termination of stimulation, membrane capacitance declined within 20 sec to baseline indicative of rapid endocytosis (RE). RE did not take place when secretion was stimulated in the presence of Ba or Sr, indicating that RE is Ca-specific. RE was blocked when either anti-dynamin antibodies or the pleckstrin homology domain of dynamin-1 was loaded into the cell via the patch pipette. These studies indicate that neuroendocrine differentiation of PC12 cells with glucocorticoids enhances the development of the excitable membrane and increases the coupling between Ca channels and vesicle release sites, leading to rapid exocytosis and endocytosis. Slow catecholamine secretion in undifferentiated cells may be caused in part by a lack of localized secretory machinery rather than being an intrinsic property of dense-core vesicles.
Collapse
|
123
|
|
124
|
Koval LM, Yavorskaya EN, Lukyanetz EA. Ultrastructural features of medullary chromaffin cell cultures. Neuroscience 2000; 96:639-49. [PMID: 10717445 DOI: 10.1016/s0306-4522(99)00563-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ultrastructural organization on the fourth day of culture of chromaffin cells isolated from the bovine adrenal medulla was characterized based on electron microscopic and morphological analysis. We established that medullary chromaffin cells could be divided into four morphologically different subtypes. Most cells (49.1% of those examined) had a dense cytoplasm and fine dense granules. Cells with dense cytoplasm and large granules represented a second type of chromaffin cell (21.1%). Cells of the third type had a light cytoplasm, granules with a light halo and a well-developed Golgi apparatus (26.3%). The fourth type of chromaffin cell was characterized by moderately dense cytoplasm with well-expressed varicose rough endoplasmic reticulum (about 3.5%). Among concomitant cell types, cortical adrenal cells from the zona fasciculata and zona glomerulosa, epithelial cells, fibroblasts, lymphocytes, brown lipoblasts and glial Schwann cells were present. Morphological analysis implies that cells with dense cytoplasm and fine granules and those with light cytoplasm and haloed granules (75.4% in total) are adrenaline-containing cells, whereas the cells with dense cytoplasm and large granules (26.3%) contain noradrenaline. Cells with moderately dense cytoplasm and varicose reticulum share common morphological properties with classical glandular cells and, by their properties, were closer to noradrenaline-containing cells. It is concluded that chromaffin cells, which are the main cell type among cultured cells from adult bovine adrenal medulla, are morphologically quite heterogeneous. Other cell types of different nature may also be present in the culture and can locally influence the properties of the investigated medullary chromaffin cells used in electrophysiological experiments.
Collapse
Affiliation(s)
- L M Koval
- International Center of Molecular Physiology, Kiev, Ukraine
| | | | | |
Collapse
|
125
|
Abstract
Quantal size is often modeled as invariant, although it is now well established that the number of transmitter molecules released per synaptic vesicle during exocytosis can be modulated in central and peripheral synapses. In this review, we suggest why presynaptically altered quantal size would be important at social synapses that provide extrasynaptic neurotransmitter. Current techniques used to measure quantal size are reviewed with particular attention to amperometry, the first approach to provide direct measurement of the number of molecules and kinetics of presynaptic quantal release, and to CNS dopamine neuronal terminals. The known interventions that alter quantal size at the presynaptic locus are reviewed and categorized as (1) alteration of transvesicular free energy gradients, (2) modulation of vesicle transmitter transporter activity, (3) modulation of fusion pore kinetics, (4) altered transmitter degranulation, and (5) changes in synaptic vesicle volume. Modulation of the number of molecules released per quantum underlies mechanisms of drug action of L-DOPA and the amphetamines, and seems likely to be involved in both normal synaptic modification and disease states. Statistical analysis for examining quantal size and data presentation is discussed. We include detailed information on performing nonparametric resampling statistical analysis, the Kolmogorov-Smirnov test for two populations, and random walk simulations using spreadsheet programs.
Collapse
Affiliation(s)
- D Sulzer
- Department of Neurology, Columbia University, New York, USA.
| | | |
Collapse
|
126
|
Hochstetler SE, Puopolo M, Gustincich S, Raviola E, Wightman RM. Real-time amperometric measurements of zeptomole quantities of dopamine released from neurons. Anal Chem 2000; 72:489-96. [PMID: 10695133 DOI: 10.1021/ac991119x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amperometry with carbon-fiber microelectrodes provides a unique way to measure very small chemical concentration changes at the surface of biological cells. In this work, an investigation of dopamine release from individual neurons isolated from the mouse retina is described. The mice were genetically modified so that, in cells that expressed the protein responsible for catecholamine synthesis, tyrosine hydroxylase, the marker protein, placental alkaline phosphatase, was also expressed. This modification allowed for identification of the dopamine-containing cells among the many present in the freshly dissociated retina. Release of dopamine was evoked by chemical secretagogues delivered from micropipets that were calibrated with respect to response time and concentration delivered. Amperometric measurements were recorded with low-noise patch clamp amplifiers, and the primary noise source was found to be the electrode capacitance. Dopamine release occurred in the form of transient concentration spikes, consistent with release from small intracellular vesicles. With optimized filtering of the data, the quantity secreted during each release event could be determined. The average quantity determined at one cell was 52 zmol. However, the spikes were quite variable in size and the amount released per event ranged from 8 to 170 zmol. These measurements allow an estimation of the concentration of released transmitter in a synapse.
Collapse
Affiliation(s)
- S E Hochstetler
- Department of Chemistry, University of North Carolina at Chapel Hill 27599-3290, USA
| | | | | | | | | |
Collapse
|
127
|
Travis ER, Wang YM, Michael DJ, Caron MG, Wightman RM. Differential quantal release of histamine and 5-hydroxytryptamine from mast cells of vesicular monoamine transporter 2 knockout mice. Proc Natl Acad Sci U S A 2000; 97:162-7. [PMID: 10618388 PMCID: PMC26633 DOI: 10.1073/pnas.97.1.162] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent availability of mice lacking the neuronal form of the vesicular monoamine transporter 2 (VMAT2) affords the opportunity to study its roles in storage and release. Carbon fiber microelectrodes were used to measure individual secretory events of histamine and 5-hydroxytryptamine (5-HT) from VMAT2-expressing mast cells as a model system for quantal release. VMAT2 is indispensable for monoamine storage because mast cells from homozygous (VMAT2(-/-)) mice, while undergoing granule-cell fusion, do not release monoamines. Cells from heterozygous animals (VMAT2(+/-)) secrete lower amounts of monoamine per granule than cells from wild-type controls. Investigation of corelease of histamine and 5-HT from granules in VMAT2(+/-) cells revealed 5-HT quantal size was reduced more than that of histamine. Thus, although vesicular transport is the limiting factor determining quantal size of 5-HT and histamine release, intragranular association with the heparin matrix also plays a significant role.
Collapse
Affiliation(s)
- E R Travis
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
128
|
Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells. J Neurosci 1999. [PMID: 10460244 DOI: 10.1523/jneurosci.19-17-07375.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium-dependent activator protein for secretion (CAPS) is a neural/endocrine cell-specific protein that has been shown to function at the Ca(2+)-dependent triggering step of dense-core vesicle (DCV) exocytosis in permeabilized PC12 cells. To evaluate the function of CAPS under physiological conditions, we introduced affinity-purified anti-CAPS IgGs into calf adrenal chromaffin (AC) cells via a patch pipette and tested the kinetics of catecholamine secretion using both amperometric and membrane capacitance techniques. The antibodies reacted with a single major approximately 145 kDa protein in AC cells based on immunoblot analysis. AC cells stimulated with sequential trains of action potentials at 7 Hz resulted in successive secretory episodes of equivalent magnitude. When either of two different anti-CAPS IgGs or their Fab fragments were present, a rapid and progressive inhibition of catecholamine release ensued to a maximum of >80%. The effect was specific because preabsorption of IgGs with the respective antigens ablated the inhibitory effect, and the IgGs had no effect on Ca currents. CAPS immunoneutralization not only reduced the number of amperometric spikes but markedly altered the kinetic characteristics of the residual events. The remaining spikes were much smaller (by 85%) and broader (by approximately 3.5-fold) than those in control cells, suggesting that CAPS plays a role in determining release of vesicle contents via the fusion pore. Anti-CAPS IgGs also slowed the rate of the initial exocytotic capacitance burst, representing the docked-and-primed vesicle pool, by approximately 90% but had no effect on the kinetics of rapid endocytosis. These results suggest that CAPS is a key component regulating the fusion of DCVs to the plasma membrane, and possibly fusion pore dilation, in catecholamine secretion from AC cells.
Collapse
|
129
|
Abstract
While GABA and glutamate have an established synaptic function in the CNS, recent evidence suggests 5-HT neurotransmission is predominantly paracrine. As the amino-acid neurotransmitters interact with receptors that produce effects rapidly, electrophysiological approaches can be used to assess the time delay between transmitter release and the postsynaptic response directly. However, this approach cannot be used for studies of 5-HT-mediated neurotransmission, because the majority of its receptors react more slowly, so anatomical and voltammetrical approaches have been used to provide insight into 5-HT-mediated events. These studies have revealed that extrasynaptic receptors and transporters for 5-HT exist, and that 5-HT escapes readily from the synaptic cleft. Attenuation of 5-HT binding by 5-HT-receptor antagonists and 5-HT-uptake inhibitors does not affect the synaptic efflux elicited by transient stimuli, although the effects of such drugs are apparent at later time points. Once it is extrasynaptic, 5-HT has a concentration that is similar to those estimated to be optimal for receptor and transporter activation, and it can diffuse a few micrometers until removed by its transporter. These properties of 5-HT raise the possibility that it can act on receptors that are distant from its release site and function as a paracrine transmitter.
Collapse
Affiliation(s)
- M A Bunin
- Dept of Chemistry and Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
130
|
Affiliation(s)
- Joseph K. Campbell
- Department of Chemistry P.O. Box 30012, Texas A&M University College Station, Texas 77842-3012
| | - Li Sun
- Department of Chemistry P.O. Box 30012, Texas A&M University College Station, Texas 77842-3012
| | - Richard M. Crooks
- Department of Chemistry P.O. Box 30012, Texas A&M University College Station, Texas 77842-3012
| |
Collapse
|
131
|
Bertrand CA, Laboisse CL, Hopfer U. Purinergic and cholinergic agonists induce exocytosis from the same granule pool in HT29-Cl.16E monolayers. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C907-14. [PMID: 10199822 DOI: 10.1152/ajpcell.1999.276.4.c907] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several secretagogues induce mucin secretion in epithelial monolayers, as determined by measuring released granule contents. To assess whether different agonists act on the same granule pool, capacitance changes in intact monolayers of the goblet cell line HT29-Cl.16E were measured by a novel impedance method. Apical ATP (purinergic agonist) and basolateral carbachol (cholinergic agonist) induce rapid exocytosis with maximal capacitance changes within 3 min. The maximal levels of exocytosis that can be induced by optimal concentrations of either agonist are the same and produce a 30-40% increase in total monolayer capacitance. When ATP and carbachol are applied simultaneously, the magnitude of exocytosis is unchanged from the single-secretagogue level. The recovery of capacitance to baseline (endocytosis) is significantly faster after ATP stimulation than after carbachol stimulation. When ATP and carbachol are applied sequentially at doses that give maximal exocytosis, the magnitude of the capacitance increase produced by the second secretagogue is less than or equal to that of the capacitance decrease during the recovery period. Together, these data suggest that purinergic and cholinergic agonists act on the same granule pool.
Collapse
Affiliation(s)
- C A Bertrand
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
132
|
Barker AL, Gonsalves M, Macpherson JV, Slevin CJ, Unwin PR. Scanning electrochemical microscopy: beyond the solid/liquid interface. Anal Chim Acta 1999. [DOI: 10.1016/s0003-2670(98)00588-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|