101
|
Neumann G, Schuster S. Continuous model for the rock-scissors-paper game between bacteriocin producing bacteria. J Math Biol 2007; 54:815-46. [PMID: 17457587 DOI: 10.1007/s00285-006-0065-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/04/2006] [Indexed: 11/29/2022]
Abstract
In this work, important aspects of bacteriocin producing bacteria and their interplay are elucidated. Various attempts to model the resistant, producer and sensitive Escherichia coli strains in the so-called rock-scissors-paper (RSP) game had been made in the literature. The question arose whether there is a continuous model with a cyclic structure and admitting an oscillatory dynamics as observed in various experiments. The May-Leonard system admits a Hopf bifurcation, which is, however, degenerate and hence inadequate. The traditional differential equation model of the RSP-game cannot be applied either to the bacteriocin system because it involves positive interaction terms. In this paper, a plausible competitive Lotka-Volterra system model of the RSP game is presented and the dynamics generated by that model is analyzed. For the first time, a continuous, spatially homogeneous model that describes the competitive interaction between bacteriocin-producing, resistant and sensitive bacteria is established. The interaction terms have negative coefficients. In some experiments, for example, in mice cultures, migration seemed to be essential for the reinfection in the RSP cycle. Often statistical and spatial effects such as migration and mutation are regarded to be essential for periodicity. Our model gives rise to oscillatory dynamics in the RSP game without such effects. Here, a normal form description of the limit cycle and conditions for its stability are derived. The toxicity of the bacteriocin is used as a bifurcation parameter. Exact parameter ranges are obtained for which a stable (robust) limit cycle and a stable heteroclinic cycle exist in the three-species game. These parameters are in good accordance with the observed relations for the E. coli strains. The roles of growth rate and growth yield of the three strains are discussed. Numerical calculations show that the sensitive, which might be regarded as the weakest, can have the longest sojourn times.
Collapse
|
102
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 811] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
Mathematical models have proved to be useful tools for addressing questions about the process of infection. This is because the model allows the investigation of the mathematical link between invisible events (transmission of infection between individuals) and more visible ones (incidence of clinical infection, seroprevalence data etc.). A useful model is often one that is simple enough to provide answers that are applicable to as general a context as possible, but also complex enough so that it can address the most relevant questions. Thus, relatively simple models of viral (or hospital acquired-) infection were used to establish the existence of critical thresholds of immunisation (or antibiotic usage) coverage, although more complex models were needed for the investigation of the impact of infection control practices within more specific contexts. Mathematical models have the potential to elucidate key determinants of the epidemiology of infectious disease arising in infants nursed in neonatal intensive care units.
Collapse
Affiliation(s)
- Pietro G Coen
- Infection Control Office, Department of Microbiology, The Windeyer Institute of Medical Sciences, University College London Hospitals NHS Trust, United Kingdom.
| |
Collapse
|
104
|
Erni B. The mannose transporter complex: an open door for the macromolecular invasion of bacteria. J Bacteriol 2006; 188:7036-8. [PMID: 17015642 PMCID: PMC1636239 DOI: 10.1128/jb.01074-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Bernhard Erni
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
105
|
Chuang DY, Chien YC, Wu HP. Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin carocin S1. J Bacteriol 2006; 189:620-6. [PMID: 17071754 PMCID: PMC1797388 DOI: 10.1128/jb.01090-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to clone the carocin S1 gene and express it in a non-carocin-producing strain of Erwinia carotovora. A mutant, TH22-10, which produced a high-molecular-weight bacteriocin but not a low-molecular-weight bacteriocin, was obtained by Tn5 insertional mutagenesis using H-rif-8-2 (a spontaneous rifampin-resistant mutant of Erwinia carotovora subsp. carotovora 89-H-4). Using thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of the contiguous 2,280-bp region were determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequence fragment. ORF2 and ORF3 were identified with the carocin S1 genes, caroS1K (ORF2) and caroS1I (ORF3), which, respectively, encode a killing protein (CaroS1K) and an immunity protein (CaroS1I). These genes were homologous to the pyocin S3 gene and the pyocin AP41 gene. Carocin S1 was expressed in E. carotovora subsp. carotovora Ea1068 and replicated in TH22-10 but could not be expressed in Escherichia coli (JM101) because a consensus sequence resembling an SOS box was absent. A putative sequence similar to the consensus sequence for the E. coli cyclic AMP receptor protein binding site (-312 bp) was found upstream of the start codon. Production of this bacteriocin was also induced by glucose and lactose. The homology search results indicated that the carocin S1 gene (between bp 1078 and bp 1704) was homologous to the pyocin S3 and pyocin AP41 genes in Pseudomonas aeruginosa. These genes encode proteins with nuclease activity (domain 4). This study found that carocin S1 also has nuclease activity.
Collapse
Affiliation(s)
- Duen-yau Chuang
- Department of Chemistry, National Chung-Hsing University, 250 Kuo Kuang Rd., Taichung, Taiwan 402, Republic of China.
| | | | | |
Collapse
|
106
|
Abstract
Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents.
Collapse
Affiliation(s)
- Håvard Jenssen
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Lower Mall Research Station, 232-2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | |
Collapse
|
107
|
Carraturo A, Raieta K, Ottaviani D, Russo GL. Inhibition of Vibrio parahaemolyticus by a bacteriocin-like inhibitory substance (BLIS) produced by Vibrio mediterranei 1. J Appl Microbiol 2006; 101:234-41. [PMID: 16834611 DOI: 10.1111/j.1365-2672.2006.02909.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this research was to identify and partially purify new bacteriocin-like substances from strains of halophilic 'non-cholera' vibrios isolated from food sources. METHODS AND RESULTS Forty-five halophilic Vibrio spp. strains were screened for antimicrobial production. Vibrio mediterranei 1, a nonpathogenic strain, showed antimicrobial activity towards Vibrio parahaemolyticus spp. and related species. The bacteriocin-like inhibitory substance (BLIS), released by the bacteria into growth media, was concentrated by ultrafiltration and characterized. BLIS was sensitive to proteinase K, was stable in the pH range 5-9, was resistant to organic solvents and was heat stable up to 75 degrees C. Initial purification of BLIS by size exclusion chromatography showed an apparent molecular mass of 63-65 kDa. CONCLUSIONS This study reports the ability of V. mediterranei 1 to produce a bacteriocin-like substance inhibiting growth of V. parahaemolyticus spp. and other closely related bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY The strong activity of BLIS towards the human and fish pathogen V. parahaemolyticus and the persistence of antimicrobial properties under a variety of different conditions suggest its potential application in food microbiology.
Collapse
Affiliation(s)
- A Carraturo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | | | | | | |
Collapse
|
108
|
Smajs D, Matejková P, Weinstock GM. Recognition of pore-forming colicin Y by its cognate immunity protein. FEMS Microbiol Lett 2006; 258:108-13. [PMID: 16630264 DOI: 10.1111/j.1574-6968.2006.00201.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Construction of hybrid immunity genes between colicin U (cui) and Y (cyi) immunity genes and site-directed mutagenesis of cyi were used to identify amino-acid residues of the colicin Y immunity protein (Cyi) involved in recognition of colicin Y. These amino-acid residues were localized close to the cytoplasmic site of the Cyi transmembrane helices T3 (S104, S107, F110, A112) and T4 (A159). Mutations in cui, which converted Cui sequence to Cyi sequence in positions 104, 107, 110, 112 and 159, resulted in an immunity gene that also conferred (besides immunity to colicin U) a high degree of immunity to colicin Y.
Collapse
Affiliation(s)
- David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | |
Collapse
|
109
|
Parret AHA, Temmerman K, De Mot R. Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 2005; 71:5197-207. [PMID: 16151105 PMCID: PMC1214683 DOI: 10.1128/aem.71.9.5197-5207.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriocin LlpA, produced by Pseudomonas sp. strain BW11M1, is a peculiar antibacterial protein due to its homology to mannose-binding lectins mostly found in monocots (A. H. A. Parret, G. Schoofs, P. Proost, and R. De Mot, J. Bacteriol. 185:897-908, 2003). Biocontrol strain Pseudomonas fluorescens Pf-5 contains two llpA-like genes, named llpA1(Pf-5) and llpA2(Pf-5). Recombinant Escherichia coli cells expressing llpA1(Pf-5) or llpA2(Pf-5) acquired bacteriocin activity and secreted a 31-kDa protein cross-reacting with LlpA(BW11M1) antibodies. Antibacterial activity of the recombinant proteins was evidenced by gel overlay assays. Analysis of the antimicrobial spectrum indicated that LlpA1(Pf-5) and LlpA2(Pf-5) are able to inhibit P. fluorescens strains, as well as the related mushroom pathogen Pseudomonas tolaasii. LlpA-type bacteriocins are characterized by a domain structure consisting of tandem monocot mannose-binding lectin (MMBL) domains. Molecular phylogeny of these MMBL domains suggests that the individual MMBL domains within an LlpA protein have evolved separately toward a specific, as yet unknown, function or, alternatively, were acquired from different ancestral sources. Our observations are consistent with earlier observations, which hinted that MMBL-like bacteriocins represent a new family of antibacterial proteins, probably with a novel mode of action.
Collapse
Affiliation(s)
- Annabel H A Parret
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | | | | |
Collapse
|
110
|
Abstract
Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.
Collapse
Affiliation(s)
- Paul D Cotter
- Alimentary Pharmabiotic Centre, Microbiology Department, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
111
|
Chavan M, Rafi H, Wertz J, Goldstone C, Riley MA. Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification in Klebsiella. J Mol Evol 2005; 60:546-56. [PMID: 15883889 DOI: 10.1007/s00239-004-0263-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 10/11/2004] [Indexed: 10/25/2022]
Abstract
Ninety-six isolates of Klebsiella pneumoniae and K. oxytoca were recovered from wild mammals in Australia. 14.6% of these bacteria produce killing phenotypes that suggest the production of bacteriocin toxins. Cloning and sequencing of the gene clusters encoding two of these killing phenotypes revealed two instances of a bacteriocin associated with a bacteriophage gene, the first such genetic organization described. The newly identified klebicin C gene cluster was discovered in both K. pneumoniae and K. oxytoca. The newly identified klebicin D gene cluster was detected in K. oxytoca. Protein sequence comparisons and phylogenetic inference suggest that klebicin C is most closely related to the rRNase group of colicins (such as colicin E4), while klebicin D is most closely related to the tRNase group of colicins (such as colicin D). The klebicin C and D gene clusters have similar genetic and regulatory organizations. In both cases, an operon structure is inferred consisting of a phage-associated open reading frame and klebicin activity and associated immunity genes. This novel bacteriophage/bacteriocin organization may provide a novel mechanism for the generation of bacteriocin diversity in Klebsiella.
Collapse
Affiliation(s)
- Milind Chavan
- Department of Biology, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | | | | | | | | |
Collapse
|
112
|
Prasad S, Morris PC, Hansen R, Meaden PG, Austin B. A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi. Microbiology (Reading) 2005; 151:3051-3058. [PMID: 16151215 DOI: 10.1099/mic.0.28011-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inter-strain and inter-species inhibition mediated by a bacteriocin-like inhibitory substance (BLIS) from a pathogenic Vibrio harveyi strain VIB 571 was demonstrated against four isolates of the same species, and one culture each of a Vibrio sp., Vibrio fischeri, Vibrio gazogenes and Vibrio parahaemolyticus. The crude BLIS, which was obtained by ammonium-sulphate precipitation of the cell-free supernatant of a 72 h broth culture of strain VIB 571, was inactivated by lipase, proteinase K, pepsin, trypsin, pronase E, SDS and incubation at ≥60 °C for 10 min. The activity was stable between pH 2–11 for at least 5 h. Anion-exchange chromatography, gel filtration, SDS-PAGE and two-dimensional gel electrophoresis revealed the presence of a single major peak, comprising a protein with a pI of ∼5·4 and a molecular mass of ∼32 kDa. The N-terminal amino acid sequence of the protein comprised Asp-Glu-Tyr-Ile-Ser-X-Asn-Lys-X-Ser-Ser-Ala-Asp-Ile (with X representing cysteine or modified amino acid residues). A similarity search based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) generated peptide masses and the N-terminal sequence did not yield any significant matches.
Collapse
Affiliation(s)
- Sathish Prasad
- School of Life Sciences, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
| | - Peter C Morris
- School of Life Sciences, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
| | - Rasmus Hansen
- School of Life Sciences, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
| | - Philip G Meaden
- School of Life Sciences, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
| | - Brian Austin
- School of Life Sciences, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
| |
Collapse
|
113
|
Hert AP, Roberts PD, Momol MT, Minsavage GV, Tudor-Nelson SM, Jones JB. Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains. Appl Environ Microbiol 2005; 71:3581-8. [PMID: 16000765 PMCID: PMC1168993 DOI: 10.1128/aem.71.7.3581-3588.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 01/18/2005] [Indexed: 11/20/2022] Open
Abstract
In a previous study, tomato race 3 (T3) strains of Xanthomonas perforans became predominant in fields containing both X. euvesicatoria and X. perforans races T1 and T3, respectively. This apparent ability to take over fields led to the discovery that there are three bacteriocin-like compounds associated with T3 strains. T3 strain 91-118 produces at least three different bacteriocin-like compounds (BCN-A, BCN-B, and BCN-C) antagonistic toward T1 strains. We determined the relative importance of the bacteriocin-like compounds by constructing the following mutant forms of a wild-type (WT) T3 strain to evaluate the antagonism to WT T1 strains: Mut-A (BCN-A-), Mut-B (BCN-B-), Mut-C (BCN-C-), Mut-AB, Mut-BC, and Mut-ABC. Although all mutant and WT T3 strains reduced the T1 populations in in planta growth room experiments, Mut-B and WT T3 were significantly more effective. Mutants expressing BCN-B and either BCN-A or BCN-C reduced T1 populations less than mutants expressing only BCN-A or BCN-C. The triple-knockout mutant Mut-ABC also had a significant competitive advantage over the T1 strain. In pairwise-inoculation field experiments where plants were coinoculated with an individual mutant or WT T3 strain and the T1 strain, the mutant strains and the WT T3 strain were reisolated from more than 70% of the lesions. WT T3 and Mut-B were the most frequently reisolated strains. In field experiments where plants were group inoculated with Mut-A, Mut-B, Mut-C, Mut-ABC, and WT T1 and T3 strains, Mut-B populations dominated all three seasons. In greenhouse and field experiments, the WT and mutant T3 strains had a selective advantage over T1 strains. Bacterial strains expressing both BCN-A and BCN-C appeared to have a competitive advantage over all other mutant and WT strains. Furthermore, BCN-B appeared to be a negative factor, with mutant T3 strains lacking BCN-B having a selective advantage in the field.
Collapse
Affiliation(s)
- A P Hert
- Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
114
|
Bieler S, Estrada L, Lagos R, Baeza M, Castilla J, Soto C. Amyloid formation modulates the biological activity of a bacterial protein. J Biol Chem 2005; 280:26880-5. [PMID: 15917245 DOI: 10.1074/jbc.m502031200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The aggregation of proteins into amyloid fibrils is the hallmark feature of a group of late-onset degenerative diseases including Alzheimer, Parkinson, and prion diseases. We report here that microcin E492, a peptide naturally produced by Klebsiella pneumoniae that kills bacteria by forming pores in the cytoplasmic membrane, assembles in vitro into amyloid-like fibrils. The fibrils have the same structural, morphological, tinctorial, and biochemical properties as the aggregates observed in the disease conditions. In addition, we found that amyloid formation also occurs in vivo where it is associated with a loss of toxicity of the protein. The finding that microcin E492 naturally exists both as functional toxic pores and as harmless fibrils suggests that protein aggregation into amyloid fibrils is an evolutionarily conserved property of proteins that can be successfully employed by bacteria to fulfill specific physiological needs.
Collapse
Affiliation(s)
- Sylvain Bieler
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|
115
|
Yonezawa H, Kuramitsu HK. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother 2005; 49:541-8. [PMID: 15673730 PMCID: PMC547247 DOI: 10.1128/aac.49.2.541-548.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A dipeptide lantibiotic, named Smb, in Streptococcus mutans GS5 was characterized by molecular genetic approaches. The Smb biosynthesis gene locus is encoded by a 9.5-kb region of chromosomal DNA and consists of seven genes in the order smbM1, -T, -F, -M2, -G, -A, -B. This operon is not present in some other strains of S. mutans, including strain UA159. The genes encoding Smb were identified as smbA and smbB. Inactivation of smbM1, smbA, or smbB attenuated the inhibition of the growth of the indicator strain RP66, confirming an essential role for these genes in Smb expression. Mature Smb likely consists of the 30-amino-acid SmbA together with the 32-amino-acid SmbB. SmbA exhibited similarity with the mature lantibiotic lacticinA2 from Lactococcus lactis, while SmbB was similar to the mersacidin-like peptides from Bacillus halodurans and L. lactis. We also demonstrated that Smb expression is induced by the competence-stimulating peptide (CSP) and that a com box-like sequence is located in the smb promoter region. These results suggest that Smb belongs to the class I bacteriocin family, and its expression is dependent on CSP-induced quorum sensing.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Oral Biology, State University of New York, 3435 Main St., Buffalo, NY 14214, USA
| | | |
Collapse
|
116
|
de los Santos PE, Parret AHA, De Mot R. Stress-relatedPseudomonasgenes involved in production of bacteriocin LlpA. FEMS Microbiol Lett 2005; 244:243-50. [PMID: 15766775 DOI: 10.1016/j.femsle.2005.01.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/27/2005] [Accepted: 01/27/2005] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas sp. BW11M1 produces a novel type of bacteriocin that inhibits the growth of Pseudomonas putida GR12-2R3 and some phytopathogenic fluorescent Pseudomonas. A collection of mutants was screened for altered bacteriocin production phenotypes. Strongly reduced bacteriocin production was found to be caused by inactivation of the recA gene or the spoT gene. Conversely, in a recJ mutant, the bacteriocin was constitutively overproduced. The same phenotype was observed for a mutant hit in a gene of unknown function. The predicted gene product belongs to a distinct subgroup of prokaryotic helicase-like proteins within the SWI/SNF family of regulatory proteins. One mutant that also exhibited a bacteriocin overproducer phenotype was deficient in the production of the peptidoglycan-associated lipoprotein OprL. This study shows that various environmental stress response pathways are involved in controlling expression of the Pseudomonas sp. BW11M1 bacteriocin.
Collapse
Affiliation(s)
- Paulina Estrada de los Santos
- Centre of Microbial and Plant Genetics, Faculty of Applied Bioscience and Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B 3001 Heverlee Leuven, Belgium
| | | | | |
Collapse
|
117
|
Bernath K, Magdassi S, Tawfik DS. Directed Evolution of Protein Inhibitors of DNA-nucleases by in Vitro Compartmentalization (IVC) and Nano-droplet Delivery. J Mol Biol 2005; 345:1015-26. [PMID: 15644201 DOI: 10.1016/j.jmb.2004.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 11/07/2004] [Accepted: 11/09/2004] [Indexed: 11/18/2022]
Abstract
In vitro compartmentalization (IVC) uses water-in-oil emulsions to create artificial cell-like compartments in which genes can be individually transcribed and translated. Here, we present a new application of IVC for the selection of DNA-nuclease inhibitors. We developed a nano-droplets delivery system that allows the transport of various solutes, including metal ions, into the emulsion droplets. This transport mechanism was used to regulate the activity of colicin nucleases that were co-compartmentalized with the genes, so that the nucleases were activated by nickel or cobalt ions only after the potential inhibitor genes have been translated. Thus, genes encoding nuclease inhibitors survived the digestion and were subsequently amplified and isolated. Selection is therefore directly for inhibition, and not for binding of the nuclease. The stringency of selection can be easily modulated to give high enrichments (100-500-fold) and recoveries. We demonstrated its utility by selecting libraries of the gene encoding the cognate inhibitor of colicin E9 (immunity protein 9, or Im9) for inhibition of another colicin (ColE7). The in vitro evolved inhibitors show significant inhibition of ColE7 both in vitro and in vivo. These Im9 variants carry mutations into residues that determine the selectivity of the natural counterpart (Im7) while completely retaining the residues that are conserved throughout the family of immunity protein inhibitors. The in vitro evolution process confirms earlier hypotheses regarding the "dual recognition" binding mechanism and the way in which new colicin-immunity pairs diverged from existing ones.
Collapse
Affiliation(s)
- Kalia Bernath
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
118
|
Abstract
Resistance to the drugs used in the treatment of many infectious diseases is increasing, while microbial infections are being found to be responsible for more life-threatening diseases than previously thought. Despite a large investment in the invention and application of high-throughput screening techniques involving miniaturization and automation, and a diverse array of strategies for designing and constructing various chemical libraries, relatively few new drugs have resulted. Natural products, however, have been a major source of drugs for centuries. Since some of them are produced by organisms as a result of selection in favour of improved defense against competing deleterious microorganisms, in principle they would be less likely to incur resistance. Furthermore, the production of those defensive secondary metabolites is inducible because their original function is a response to environmental challenges. Moreover, symbioses, co-habitation associations between two or more different species of organisms, are universal in nature, and the production of secondary metabolites by symbiotic microbes may be an important adaptation allowing microbes to affect their hosts. Therefore, co-culture strategies, using combinations of plant cell-pathogenic microbes, plant cell-endophytes (or symbionts), and symbiont-pathogenic microbes, based on the principles of chemical defense and the known mechanisms of organism interactions, may be an efficient general approach in the search for new anti-microbial drugs.
Collapse
Affiliation(s)
- Chunhua Lu
- The State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan and School of Life Science, Xiamen University, Xiamen P. R. China
| | | |
Collapse
|
119
|
Kalmokoff ML, Cyr TD, Hefford MA, Whitford MF, Teather RM. Butyrivibriocin AR10, a new cyclic bacteriocin produced by the ruminal anaerobe Butyrivibrio fibrisolvens AR10: characterization of the gene and peptide. Can J Microbiol 2004; 49:763-73. [PMID: 15162201 DOI: 10.1139/w03-101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene (bviA) encoding the ruminal bacteriocin butyrivibriocin AR10 was cloned from an EcoRI library by using an oligonucleotide probe based on a partial peptide sequence of the previously isolated peptide. The gene encoded an 80 amino acid prebacteriocin that demonstrated significant identity with the cyclic bacteriocin gassericin A. Negative ion time of flight mass spectroscopic analysis (ESI/MS) indicated a mass of 5981.5 Da for the isolated bacteriocin, a molecular mass that could not be generated by removal of a leader peptide alone. However, an N- to C-terminal cyclization of the predicted mature bacteriocin resulted in a peptide that conformed to the determined mass and charge characteristics. Northern blotting confirmed that expression of bviA mirrored the production of the bacteriocin in both liquid and solid media.
Collapse
Affiliation(s)
- M L Kalmokoff
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Products and Foods Branch, Health Canada, Postal Locator #2204A2, Tunney's Pasture, Ottawa, ON K1A 0L2, Canada
| | | | | | | | | |
Collapse
|
120
|
Wertz JE, Riley MA. Chimeric nature of two plasmids of Hafnia alvei encoding the bacteriocins alveicins A and B. J Bacteriol 2004; 186:1598-605. [PMID: 14996789 PMCID: PMC355955 DOI: 10.1128/jb.186.6.1598-1605.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequences of two bacteriocin-encoding plasmids isolated from Hafnia alvei (pAlvA and pAlvB) were determined. Both plasmids resemble ColE1-type replicons and carry mobilization genes, as well as colicin-like bacteriocin operons. These bacteriocins appear to be chimeras consisting of translocation domains from Tol-dependent colicins, unique binding domains, and killing and immunity domains similar to those of the pore-forming colicin Ia. Just as is found for colicin Ia, these H. alvei bacteriocins (alveicins) lack lysis genes. The alveicins are unusually small at 408 and 358 amino acids for alveicin A and B, respectively, which would make alveicin B the smallest pore-forming bacteriocin yet discovered. The pattern of nucleotide substitution in the alveicins suggests that the dominant forces in the evolution of their killing domains and immunity genes are neutral mutation and random genetic drift rather than diversifying selection, which has been implicated in the evolution of other colicins. Five of six bacteriocinogenic isolates of H. alvei were found to carry plasmids identical to pAlvA. Comparisons of the levels of nucleotide divergence in five housekeeping genes to the levels of divergence in their respective plasmids led us to conclude that pAlvA is transferring laterally through the H. alvei population relatively rapidly.
Collapse
Affiliation(s)
- John E Wertz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
121
|
Li W, Keeble AH, Giffard C, James R, Moore GR, Kleanthous C. Highly Discriminating Protein–Protein Interaction Specificities in the Context of a Conserved Binding Energy Hotspot. J Mol Biol 2004; 337:743-59. [PMID: 15019791 DOI: 10.1016/j.jmb.2004.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 01/13/2004] [Accepted: 02/03/2004] [Indexed: 11/18/2022]
Abstract
We explore the thermodynamic basis for high affinity binding and specificity in conserved protein complexes using colicin endonuclease-immunity protein complexes as our model system. We investigated the ability of each colicin-specific immunity protein (Im2, Im7, Im8 and Im9) to bind the endonuclease (DNase) domains of colicins E2, E7 and E8 in vitro and compared these to the previously studied colicin E9. We find that high affinity binding (Kd < or = 10(-14) M) is a common feature of cognate colicin DNase-Im protein complexes as are non-cognate protein-protein associations, which are generally 10(6)-10(8)-fold weaker. Comparative alanine scanning of Im2 and Im9 residues involved in binding the E2 DNase revealed similar behaviour to that of the two proteins binding the E9 DNase; helix III forms a conserved binding energy hotspot with specificity residues from helix II only contributing favourably in a cognate interaction, a combination we have termed as "dual recognition". Significant differences are seen, however, in the number and side-chain chemistries of specificity sites that contribute to cognate binding. In Im2, Asp33 from helix II dominates colicin E2 specificity, whereas in Im9 several hydrophobic residues, including position 33 (leucine), help define its colicin specificity. A similar distribution of specificity sites was seen using phage display where, with Im2 as the template, a library of randomised sequences was generated in helix II and the library panned against either the E2 or E9 DNase. Position 33 was the dominant specificity site recovered in all E2 DNase-selected clones, whereas a number of Im9 specificity sites were recovered in E9 DNase-selected clones, including position 33. In order to probe the relationship between biological specificity and in vitro binding affinity we compared the degree of protection afforded to bacteria against colicin E9 toxicity by a set of immunity proteins whose affinities for the E9 DNase differed by up to ten orders of magnitude. This analysis indicated that the Kd required for complete biological protection is <10(-10)M and that the "affinity window" over which the selection of novel immunity protein specificities likely evolves is 10(-6)-10(-10)M. This comprehensive survey of colicin DNase-immunity protein complexes illustrates how high affinity protein-protein interactions can be very discriminating even though binding is dominated by a conserved hotspot, with single or multiple specificity sites modulating the overall binding free energy. We discuss these results in the context of other conserved protein complexes and suggest that they point to a generic specificity mechanism in divergently evolved protein-protein interactions.
Collapse
Affiliation(s)
- Wei Li
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
122
|
Czárán TL, Hoekstra RF. Killer-sensitive coexistence in metapopulations of micro-organisms. Proc Biol Sci 2003; 270:1373-8. [PMID: 12965028 PMCID: PMC1691387 DOI: 10.1098/rspb.2003.2338] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many micro-organisms are known to produce efficient toxic substances against conspecifics and closely related species. The widespread coexistence of killer (toxin producer) and sensitive (non-producer) strains is a puzzle calling for a theoretical explanation. Based on stochastic cellular automaton simulations and the corresponding semi-analytical configuration-field approximation models, we suggest that metapopulation dynamics offers a plausible rationale for the maintenance of polymorphism in killer-sensitive systems. A slight trade-off between toxin production and population growth rate is sufficient to maintain the regional coexistence of toxic and sensitive strains, if toxic killing is a local phenomenon restricted to small habitat patches and local populations regularly go extinct and are renewed via recolonizations from neighbouring patches. Pattern formation on the regional scale does not play a decisive part in this mechanism, but the local manner of interactions is essential.
Collapse
Affiliation(s)
- Tamás L Czárán
- Theoretical Biology and Ecology Research Group, Hungarian Academy of Sciences and Eötvös University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | | |
Collapse
|
123
|
Musse AA, Merrill AR. The molecular basis for the pH-activation mechanism in the channel-forming bacterial colicin E1. J Biol Chem 2003; 278:24491-9. [PMID: 12714593 DOI: 10.1074/jbc.m302371200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vitro activity of the channel-forming bacteriocins such as colicin E1 in model membranes requires the specific activation of the protein by an acidic environment in the presence of a membrane potential. Acid activation of the C-terminal domain results in the formation of an insertion-competent intermediate with an enhanced ability to penetrate and perforate cell membranes. We report novel findings of this activation process through the design and study of mutant proteins involving the replacement of conserved Asp residues Asp-408, Asp-410, and Asp-423 within helices 5a and 4 in the colicin E1 channel domain that resulted in enhanced membrane binding, bilayer insertion rates, and ion channel activities at near neutral pH values. This activation process involves the destabilization of a critical salt bridge (Asp-410 and Lys-406) and H-bonds (Asp-408 and Ser-405 main chain; Asp-423 and Lys-420 main chain). The helix-to-coil transition of this motif was identified previously by time-resolved Trp fluorescence measurements (Merrill, A. R., Steer, B. A., Prentice, G. A., Weller, M. J., and Szabo, A. G. (1997) Biochemistry 36, 6874-6884), and here we use this approach to demonstrate that disruption of the helical structure of helices 4 and 5a results in a shift in this equilibrium to favor the coil state. Finally, we show that the essential components of the pH trigger motif are conserved among the channel-forming colicins and that it likely exists within other bacterial proteins and may even have evolved into more sophisticated devices in a number of microbial species.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
124
|
Riley MA, Goldstone CM, Wertz JE, Gordon D. A phylogenetic approach to assessing the targets of microbial warfare. J Evol Biol 2003; 16:690-7. [PMID: 14632232 DOI: 10.1046/j.1420-9101.2003.00575.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteriocins are the most abundant and diverse defense systems in bacteria. As a result of the specific mechanisms of bacteriocin recognition and translocation into the target cell it is assumed that these toxins mediate intra-specific or population-level interactions. However, no published studies specifically address this question. We present here a survey of bacteriocin production in a collection of enteric bacteria isolated from wild mammals in Australia. A subset of the bacteriocin-producing strains was assayed for the ability to kill a broad range of enteric bacteria from the same bacterial collection. A novel method of estimating killing breadth was developed and used to compare the surveyed bacteriocins in terms of the phylogenetic range over which they kill. The most striking result is that although bacteriocin-producers kill members of their own species most frequently, some kill phylogenetically distant taxa more frequently than they kill closer relatives. This study calls into question the role these toxins play in natural populations. A significant number of bacteriocins are highly effective in killing inter-specific strains and thus bacteriocins may serve to mediate bacterial community interactions.
Collapse
Affiliation(s)
- M A Riley
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA.
| | | | | | | |
Collapse
|
125
|
|
126
|
|
127
|
Parret AHA, Schoofs G, Proost P, De Mot R. Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 2003; 185:897-908. [PMID: 12533465 PMCID: PMC142807 DOI: 10.1128/jb.185.3.897-908.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 11/06/2002] [Indexed: 11/20/2022] Open
Abstract
Rhizosphere isolate Pseudomonas sp. strain BW11M1, which belongs to the Pseudomonas putida cluster, secretes a heat- and protease-sensitive bacteriocin which kills P. putida GR12-2R3. The production of this bacteriocin is enhanced by DNA-damaging treatment of producer cells. We isolated a TnMod mutant of strain BW11M1 that had lost the capacity to inhibit the growth of strain GR12-2R3. A wild-type genomic fragment encompassing the transposon insertion site was shown to confer the bacteriocin phenotype when it was introduced into Escherichia coli cells. The bacteriocin structural gene was identified by defining the minimal region required for expression in E. coli. This gene was designated llpA (lectin-like putidacin) on the basis of significant homology of its 276-amino-acid product with mannose-binding lectins from monocotyledonous plants. LlpA is composed of two monocot mannose-binding lectin (MMBL) domains. Several uncharacterized bacterial genes encoding diverse proteins containing one or two MMBL domains were identified. A phylogenetic analysis of the MMBL domains present in eukaryotic and prokaryotic proteins assigned the putidacin domains to a new bacterial clade within the MMBL-containing protein family. Heterologous expression of the llpA gene also conveyed bacteriocin production to several Pseudomonas fluorescens strains. In addition, we demonstrated that strain BW11M1 and heterologous hosts secrete LlpA into the growth medium without requiring a cleavable signal sequence. Most likely, the mode of action of this lectin-like bacteriocin is different from the modes of action of previously described Pseudomonas bacteriocins.
Collapse
Affiliation(s)
- Annabel H A Parret
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.
| | | | | | | |
Collapse
|
128
|
de Boer W, Verheggen P, Klein Gunnewiek PJA, Kowalchuk GA, van Veen JA. Microbial community composition affects soil fungistasis. Appl Environ Microbiol 2003; 69:835-44. [PMID: 12571002 PMCID: PMC143609 DOI: 10.1128/aem.69.2.835-844.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.
Collapse
Affiliation(s)
- Wietse de Boer
- Department of Plant-Microorganism Interactions, Centre for Terrestrial Ecology, Netherlands Institute of Ecology, 6666 ZG Heteren, The Netherlands.
| | | | | | | | | |
Collapse
|
129
|
Abstract
Microbes produce an extraordinary array of microbial defense systems. These include classical antibiotics, metabolic by-products, lytic agents, numerous types of protein exotoxins, and bacteriocins. The abundance and diversity of this potent arsenal of weapons are clear. Less clear are their evolutionary origins and the role they play in mediating microbial interactions. The goal of this review is to explore what we know about the evolution and ecology of the most abundant and diverse family of microbial defense systems: the bacteriocins. We summarize current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics. In the latter half of this review we focus on the potential role bacteriocins may play in addressing human health concerns and the current role they serve in food preservation.
Collapse
Affiliation(s)
- Margaret A Riley
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|
130
|
Maldonado A, Ruiz-Barba JL, Jiménez-Díaz R. Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol 2003; 69:383-9. [PMID: 12514019 PMCID: PMC152457 DOI: 10.1128/aem.69.1.383-389.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 10/11/2002] [Indexed: 11/20/2022] Open
Abstract
A new, coculture-inducible two-peptide bacteriocin named plantaricin NC8 (PLNC8) was isolated from Lactobacillus plantarum NC8 cultures which had been induced with Lactococcus lactis MG1363 or Pediococcus pentosaceus FBB63. This bacteriocin consists of two distinct peptides, named alpha and beta, which were separated by C(2)-C(18) reverse-phase chromatography and whose complementary action is necessary for full plantaricin NC8 activity. N-terminal sequencing of both purified peptides showed 28 and 34 amino acids residues for PLNC8 alpha and PLNC8 beta, respectively, which showed no sequence similarity to other known bacteriocins. Mass spectrometry analysis showed molecular masses of 3,587 Da (alpha) and 4,000 Da (beta). The corresponding genes, designated plNC8A and plNC8B, were sequenced, and their nucleotide sequences revealed that both peptides are produced as bacteriocin precursors of 47 and 55 amino acids, respectively, which include N-terminal leader sequences of the double-glycine type. The mature alpha and beta peptides contain 29 and 34 amino acids, respectively. An open reading frame, orfC, which encodes a putative immunity protein was found downstream of plNC8B and overlapping plNC8A. Upstream of the putative -35 region of plNC8B, two direct repeats of 9 bp were identified, which agrees with the consensus sequence and structure of promoters of class II bacteriocin operons whose expression is dependent on an autoinduction mechanism.
Collapse
Affiliation(s)
- Antonio Maldonado
- Departamento de Biotecnología de Alimentos, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | | | | |
Collapse
|
131
|
Wilkinson MHF. Model intestinal microflora in computer simulation: a simulation and modeling package for host-microflora interactions. IEEE Trans Biomed Eng 2002; 49:1077-85. [PMID: 12374331 DOI: 10.1109/tbme.2002.803548] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ecology of the human intestinal microflora and its interaction with the host are poorly understood. Though more and more data are being acquired, in part using modern molecular methods, development of a quantitative theory has not kept pace with this increase in observing power. This is in part due to the complexity of the system and to the lack of simulation environments in which to test what the ecological effect of a hypothetical mechanism of interaction would be, before resorting to laboratory experiments. The MIMICS project attempts to address this through the development of a cellular automaton for simulation of the intestinal microflora. In this paper, the design and evaluation of this simulator is discussed.
Collapse
Affiliation(s)
- Michael H F Wilkinson
- Institute for Mathematics and Computing Science, University of Groningen, The Netherlands.
| |
Collapse
|
132
|
Tait K, Sutherland IW. Antagonistic interactions amongst bacteriocin-producing enteric bacteria in dual species biofilms. J Appl Microbiol 2002; 93:345-52. [PMID: 12147084 DOI: 10.1046/j.1365-2672.2002.01692.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The objective of this study was to investigate the antagonistic interactions between bacteriocin-producing enteric bacteria in dual species biofilms and the interspecies interactions correlated with sensitivity to biocides. METHODS AND RESULTS When compared with their single species counterparts, the dual species biofilms formed by bacteriocin-producing strains exhibited a decrease in biofilm size and an increase in sensitivity to the antimicrobial agents hypochlorite, triclosan and benzalkonium chloride. The five dual species biofilms studied all resulted in biofilms containing a mixture of the two strains. This was attributed to the spatial distribution of cells within the biofilm, with each strain forming its own microcolonies. The production of a bacteriocin also gave a strain a competitive advantage when interacting with a bacteriocin-sensitive strain within a biofilm, both in gaining a foothold in a new environment and in preventing the colonization of a potential competitor into a pre-established biofilm. CONCLUSIONS It was concluded that bacteriocins might be used specifically for interacting with competing strains within a biofilm, as opposed to a planktonic, environment. SIGNIFICANCE AND IMPACT OF THE STUDY Unlike planktonically grown bacteriocin-producing populations, where one strain will always be out-competed, bacteriocin-producing and bacteriocin-sensitive strains can coexist in biofilm communities, clearly demonstrating major differences between biofilm and planktonic competition. This paper highlights the importance of bacteriocin production in the development of biofilm communities.
Collapse
Affiliation(s)
- K Tait
- Institute of Cell and Molecular Biology, Kings Buildings, Edinburgh University, Edinburgh, UK
| | | |
Collapse
|
133
|
Schamberger GP, Diez-Gonzalez F. Selection of recently isolated colicinogenic Escherichia coli strains inhibitory to Escherichia coli O157:H7. J Food Prot 2002; 65:1381-7. [PMID: 12233846 DOI: 10.4315/0362-028x-65.9.1381] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli strains were screened for their ability to inhibit E. coli O157:H7. An initial evaluation of 18 strains carrying previously characterized colicins determined that only colicin E7 inhibited all of the E. coli O157:H7 strains tested. A total of 540 strains that had recently been isolated from humans and nine different animal species (cats, cattle, chickens, deer, dogs, ducks, horses, pigs, and sheep) were tested by a flip-plating technique. Approximately 38% of these strains were found to inhibit noncolicinogenic E. coli K12 strains. The percentage of potentially colicinogenic E. coli per animal species ranged from 14% for horse isolates to 64% for sheep strains. Those isolates that inhibited E. coli K12 were screened against E. coli O157:H7, and 42 strains were found to be capable of inhibiting all 22 pathogenic strains tested. None of these 42 strains produced bacteriophages, and only 24 isolates inhibited serotype O157:H7 in liquid culture. The inhibitory activity of these strains was completely eliminated by treatment with proteinase K. When mixtures of these 24 colicinogenic strains were grown in anaerobic continuous culture, the four-strain E. coli O157:H7 population was reduced at a rate of 0.25 log10 cells per ml per h, which was fivefold faster than the washout rate. Two strains originally isolated from cat feces (F16) and human feces (H30) were identified by repetitive sequences polymerase chain reaction as the predominant isolates in continuous cultures. The results of this work indicate that animal species other than cattle can be sources of anti-O157 colicinogenic strains, and these results also lead to the identification of at least two isolates that could potentially be used in preharvest control strategies.
Collapse
Affiliation(s)
- Gerry P Schamberger
- Department of Food Science and Nutrition, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
134
|
Abstract
The replication control genes of bacterial plasmids face selection at two conflicting levels. Plasmid copies that systematically overreplicate relative to their cell mates have a higher chance of fixing in descendant cells, but these cells typically have a lower chance of fixing in the population. Apart from identifying the conflict, this mathematical discussion characterizes the efficiency of the selection levels and suggests how they drive the evolution of kinetic mechanisms. In particular it is hypothesized that: (1) tighter replication control is more vulnerable to selfishness; (2) cis-acting replication activators are relics of a conflict where a plasmid outreplicated its intracellular competitors by monopolizing activators; (3) high-copy plasmids with sloppy replication control arise because intracellular selection favors overreplication, thereby relieving intercellular selection for lower loss rates; (4) the excessive synthesis of cis-acting replication activators and trans-acting inhibitors is the result of an arms race between cis selfishness and trans retaliations; (5) site-specific recombination of plasmid dimers is equivalent to self-policing; and (6) plasmids modify their horizontal transfer to spread without promoting selfishness. It is also discussed how replication control may be subject to a third level of selection acting on the entire population of plasmid-containing cells.
Collapse
Affiliation(s)
- Johan Paulsson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
135
|
Kawamoto S, Shima J, Sato R, Eguchi T, Ohmomo S, Shibato J, Horikoshi N, Takeshita K, Sameshima T. Biochemical and genetic characterization of mundticin KS, an antilisterial peptide produced by Enterococcus mundtii NFRI 7393. Appl Environ Microbiol 2002; 68:3830-40. [PMID: 12147478 PMCID: PMC124038 DOI: 10.1128/aem.68.8.3830-3840.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mundticin KS, a bacteriocin produced by Enterococcus mundtii NFRI 7393 isolated from grass silage in Thailand, is active against closely related lactic acid bacteria and the food-borne pathogen Listeria monocytogenes. In this study, biochemical and genetic characterization of mundticin KS was done. Mundticin KS was purified to homogeneity by ammonium sulfate precipitation, sequential ion-exchange chromatography, and solid-phase extraction. The gene cluster (mun locus) for mundticin KS production was cloned, and DNA sequencing revealed that the mun locus consists of three genes, designated munA, munB, and munC. The munA gene encodes a 58-amino-acid mundticin KS precursor, munB encodes a protein of 674 amino acids involved in translocation and processing of the bacteriocin, and munC encodes a mundticin KS immunity protein of 98 amino acids. Amino acid and nucleotide sequencing revealed the complete, unambiguous primary structure of mundticin KS; mundticin KS comprises a 43-amino-acid peptide with an amino acid sequence similar to that of mundticin ATO6 produced by E. mundtii ATO6. Mundticin KS and mundticin ATO6 are distinguished by the inversion of the last two amino acids at their respective C termini. These two mundticins were expressed in Escherichia coli as recombinant peptides and found to be different in activity against certain Lactobacillus strains, such as Lactobacillus plantarum and Lactobacillus curvatus. Mundticin KS was successfully expressed by transformation with the recombinant plasmid containing the mun locus in heterogeneous hosts such as E. faecium, L. curvatus, and Lactococcus lactis. Based on our results, the mun locus is located on a 50-kb plasmid, pML1, of E. mundtii NFRI 7393.
Collapse
|
136
|
Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol 2002; 68:3780-9. [PMID: 12147472 PMCID: PMC124005 DOI: 10.1128/aem.68.8.3780-3789.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The luminescent entomopathogenic bacterium Photorhabdus luminescens produces several yet-uncharacterized broad-spectrum antibiotics. We report the identification and characterization of a cluster of eight genes (named cpmA to cpmH) responsible for the production of a carbapenem-like antibiotic in strain TT01 of P. luminescens. The cpm cluster differs in several crucial aspects from other car operons. The level of cpm mRNA peaks during exponential phase and is regulated by a Rap/Hor homolog identified in the P. luminescens genome. Marker-exchange mutagenesis of this gene in the entomopathogen decreased antibiotic production. The luxS-like signaling mechanism of quorum sensing also plays a role in the regulation of the cpm operon. Indeed, luxS, which is involved in the production of a newly identified autoinducer, is responsible for repression of cpm gene expression at the end of the exponential growth phase. The importance of this carbapenem production in the ecology of P. luminescens is discussed.
Collapse
Affiliation(s)
- Sylviane Derzelle
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
137
|
Poole TL, Hume ME, Genovese KJ, Anderson TJ, Sheffield CL, Bischoff KM, Nisbet DJ. Persistence of a vancomycin-resistant Enterococcus faecium in an anaerobic continuous-flow culture of porcine microflora in the presence of subtherapeutic concentrations of vancomycin. Microb Drug Resist 2002; 7:343-8. [PMID: 11822774 DOI: 10.1089/10766290152773356] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombined porcine continuous-flow culture (RPCF) maintained in a continuous-flow fermentation system is effective in protecting neonatal and weaned pigs against infection by enteropathogens. In the current study, we demonstrate the effect of RPCF on vancomycin-resistant enterococci (VRE) in the presence and absence of subtherapeutic levels of vancomycin. Also examined was the ability of VRE to transfer vancomycin resistance to endogenous Enterococcus faecalis 137.1. When RPCF was challenged with VRE, the rate of VRE clearance was dependent on the method of challenge. In the control experiment, RPCF was challenged with 7.0 log10/CFU/ml VRE. Clearance of VRE from the culture was observed within 7 days at a rate of 1.44 log10/day. RPCF containing 0.001 microg/ml vancomycin cleared VRE at a slightly lower rate of 0.94 log10/day. RPCF containing 0.01 microg/ml or 0.1 microg/ml vancomycin reduced the level of VRE from 7.0 log10/CFU/ml to 2.0 log10/CFU/ml within 9 days, but failed to clear the VRE after 24 days. During the period of decline, the VRE clearance rate for the 0.01 microg/ml and 0.1 microg/ml vancomycin-treated cultures was 0.52 log10/day, and 0.53 log10/day, respectively. E. faecalis 137.1 endogenous to RPCF did not acquire the vancomycin resistance genes throughout the experiment as evidenced by direct selection, ribotyping, and pulsed-field gel electrophoresis.
Collapse
Affiliation(s)
- T L Poole
- United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
138
|
Marcille F, Gomez A, Joubert P, Ladiré M, Veau G, Clara A, Gavini F, Willems A, Fons M. Distribution of genes encoding the trypsin-dependent lantibiotic ruminococcin A among bacteria isolated from human fecal microbiota. Appl Environ Microbiol 2002; 68:3424-31. [PMID: 12089024 PMCID: PMC126812 DOI: 10.1128/aem.68.7.3424-3431.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fourteen bacterial strains capable of producing a trypsin-dependent antimicrobial substance active against Clostridium perfringens were isolated from human fecal samples of various origins (from healthy adults and children, as well as from adults with chronic pouchitis). Identification of these strains showed that they belonged to Ruminococcus gnavus, Clostridium nexile, and Ruminococcus hansenii species or to new operational taxonomic units, all from the Clostridium coccoides phylogenetic group. In hybridization experiments with a probe specific for the structural gene encoding the trypsin-dependent lantibiotic ruminococcin A (RumA) produced by R. gnavus, seven strains gave a positive response. All of them harbored three highly conserved copies of rumA-like genes. The deduced peptide sequence was identical to or showed one amino acid difference from the hypothetical precursor of RumA. Our results indicate that the rumA-like genes have been disseminated among R. gnavus and phylogenetically related strains that can make up a significant part of the human fecal microbiota.
Collapse
Affiliation(s)
- F Marcille
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
During the years 1993-1999, altogether 1,043 Escherichia coli strains from colons of different persons were screened for colicinogeny using a most susceptible procedure and indicator system. In control persons (with healthy colons), 41.37% producers of colicins were found. In patients suffering from salmonelloses, the proportion of colicinogenic Escherichia coli was the same. In patients with non-specific inflammatory colon diseases, the proportion of colicinogenic Escherichia coli strains appeared slightly though weakly, significantly or unsignificantly increased: to 47.50% in morbus Crohn and to 56.10% in colitis ulcerosa. These results suggest some sort of engagement of colicinogeny in the pathogenesis thereof. In malignant tumours of the colon, the incidence of colicinogenic Escherichia coli was not altered (40.58%). This does not indicate any colicin participation in the pathology of malignant tumours. In colitis ulcerosa, the incidence of colicinogenic Escherichia coli strains inhibiting Shigella sonei 17 (the indicator for colicin Js which generally inhibits interoinvasive strains of both species) increased from 21.94% (control samples) to 41.46%. Uropathogenic Escherichia coli strains shared the same incidence of colicinogeny as controls (42.08%), if they were not haemolytic; haemolytic ones were colicinogenic with only 22.37%. This difference was highly significant. The patterns of some colicin activities in the set of five indicator strains used suggested that several wild strains produced new, so far unknown types of colicins and/or combinations thereof.
Collapse
Affiliation(s)
- J Smarda
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
140
|
Abstract
The bacteriocin family is the most abundant and diverse group of bacterial defense systems. Bacteriocins range from the well-studied narrow spectrum, high molecular weight colicins produced by Escherichia coli and the short polypeptide lantibiotics of lactic acid bacteria to the relatively unknown halocins produced almost universally by the haolobacteria. The abundance and diversity of this potent arsenal of weapons is clear. Less clear is their evolutionary origins and the role they play in mediating microbial interactions. The goal of this review is to explore what we know about the evolution and ecology of the best-characterized family of bacteriocins, the colicins. We summarize current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics.
Collapse
Affiliation(s)
- Margaret A Riley
- Department of Ecology and Evolutionary Biology, 165 Prospect Street, Yale University, New Haven, CT 06511, USA.
| | | |
Collapse
|
141
|
Abstract
Bacteriocins from lactic acid bacteria are ribosomally produced peptides (usually 30-60 amino acids) that display potent antimicrobial activity against certain other Gram-positive organisms. They function by disruption of the membrane of their targets, mediated in at least some cases by interaction of the peptide with a chiral receptor molecule (e.g., lipid II or sugar PTS proteins). Some bacteriocins are unmodified (except for disulfide bridges), whereas others (i.e. lantibiotics) possess extensive post-translational modifications which include multiple monosulfide (lanthionine) bridges and dehydro amino acids as well as possible keto amide residues at the N-terminus. Most known bacteriocins are biologically active as single peptides. However, there is a growing class of two peptide systems, both unmodified and lantibiotic, which are fully active only when both partners are present (usually 1:1). In some cases, neither peptide has activity by itself, whereas in others, the activity of one is enhanced by the other. This review discusses the classification, structure, production, regulation, biological activity, and potential applications of such two-peptide bacteriocins.
Collapse
Affiliation(s)
- Sylvie Garneau
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | | | |
Collapse
|
142
|
Hetz C, Bono MR, Barros LF, Lagos R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci U S A 2002; 99:2696-701. [PMID: 11880624 PMCID: PMC122410 DOI: 10.1073/pnas.052709699] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytotoxic effect of microcin E492, a low-molecular-mass channel-forming bacteriocin (7,887 Da) produced by a strain of Klebsiella pneumoniae, was characterized in HeLa cells. At low (5 microg/ml) and intermediate (10 microg/ml) concentrations, microcin E492 induced biochemical and morphological changes typical of apoptosis, such as cell shrinkage, DNA fragmentation, extracellular exposure of phosphatidylserine, caspase activation, and loss of mitochondrial membrane potential. Treatment with zVAD-fmk, a general caspase inhibitor, completely blocked the cytotoxic effect of this bacteriocin. At higher microcin concentrations (>20 microg/ml) a necrotic phenotype was observed. Induction of apoptosis by microcin E492 was associated with the release of calcium from intracellular stores, probably after microcin-triggered ion channel formation. Microcin E492 also presented a cytotoxic effect on Jurkat and RJ2.25 cells, but had no effect on KG-1 cells nor on a primary culture of human tonsil endothelial cells, suggesting that there is a specific interaction of the bacteriocin with components of the target cell surface. This report describes a bacteriocin that has the capacity to induce apoptosis in human cell lines.
Collapse
Affiliation(s)
- Claudio Hetz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | |
Collapse
|
143
|
Parret AHA, De Mot R. Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other gamma-proteobacteria. Trends Microbiol 2002; 10:107-12. [PMID: 11864811 DOI: 10.1016/s0966-842x(02)02307-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
144
|
Affiliation(s)
- Richard E Lenski
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
145
|
Abstract
Immunity proteins are high affinity inhibitors of colicins--SOS-induced toxins released by bacteria during times of stress. Recent work has shown that nuclease-specific immunity proteins are exosite inhibitors, binding adjacent to the enzyme active site and inhibiting colicin activity indirectly. Unusually, their binding sites comprise a near contiguous sequence that lies N-terminal to active site sequences, raising the possibility that immunity proteins bind colicins co-translationally. Exosite binding accounts for the extensive sequence diversity seen at the interfaces of colicin-immunity protein complexes, which is not only a selective advantage to colicin-producing bacteria, but also represents a powerful model system for studying specificity in protein-protein recognition.
Collapse
Affiliation(s)
- C Kleanthous
- School of Biological Sciences, University of East Anglia, Norwich, UK NR4 7TJ.
| | | |
Collapse
|
146
|
Abstract
The chemostat is a basic model for competition in an open system and a model for the laboratory bio-reactor (CSTR). Inhibitors in open systems are studied with a view of detoxification in natural systems and of control in bio-reactors. This study allows the amount of resource devoted to inhibitor production to depend on the state of the system. The feasibility of one dependence is provided by quorum sensing. In contrast to the constant allocation case, a much wider set of outcomes is possible including interior, stable rest points and stable limit cycles. These outcomes are important contrasts to competitive exclusion or bistable attractors that are often the outcomes for competitive systems. The model consists of four non-linear ordinary differential equations and computer software is used for most of the stability calculations.
Collapse
Affiliation(s)
- J P Braselton
- Department of Mathematics, Georgia Southern University, Statesboro, GA 30460, USA
| | | |
Collapse
|
147
|
Padilla C, Brevis P, Lobos O, Hubert E, Zamorano A. Production of antimicrobial substances, by hospital bacteria, active against other micro-organisms. J Hosp Infect 2001; 49:43-7. [PMID: 11516185 DOI: 10.1053/jhin.2001.1047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fifty-nine clinical strains of bacteria, isolated from patients in the Regional Hospital of Talca, were studied. Seventy-four percent of these strains produced antibacterial substances, in comparison with 18% of the same bacterial species obtained from patients from a non-hospital habitat. Almost all the bacteria isolated from hospitalized patients demonstrated in vitro resistance to different antimicrobial agents. Pseudomonas aeruginosa was the most frequent species producing antibacterial substances and its products were of high potency, with a wide spectrum of antimicrobial activity. Cure of plasmid DNA, in most of the antibacterial-producer strains, resulted in the loss of their lethal activity and they also became susceptible in vitro to anti-microbials. These results indicated that such properties are encoded in extrachromosomal DNA. We believe that the knowledge of the antimicrobial activity and resistance to antimicrobials of bacteria from a hospital habitat can help explain the selection and persistence of such strains in this particular ecological niche.
Collapse
Affiliation(s)
- C Padilla
- Laboratory of Microbiological Research, Institute of Biotechnology, University of Talca, Chile.
| | | | | | | | | |
Collapse
|
148
|
Dabard J, Bridonneau C, Phillipe C, Anglade P, Molle D, Nardi M, Ladiré M, Girardin H, Marcille F, Gomez A, Fons M. Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl Environ Microbiol 2001; 67:4111-8. [PMID: 11526013 PMCID: PMC93137 DOI: 10.1128/aem.67.9.4111-4118.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cultivated in the presence of trypsin, the Ruminococcus gnavus E1 strain, isolated from a human fecal sample, was able to produce an antibacterial substance that accumulated in the supernatant. This substance, called ruminococcin A, was purified to homogeneity by reverse-phase chromatography. It was shown to be a 2,675-Da bacteriocin harboring a lanthionine structure. The utilization of Edman degradation and tandem mass spectrometry techniques, followed by DNA sequencing of part of the structural gene, allowed the identification of 21 amino acid residues. Similarity to other bacteriocins present in sequence libraries strongly suggested that ruminococcin A belonged to class IIA of the lantibiotics. The purified ruminococcin A was active against various pathogenic clostridia and bacteria phylogenetically related to R. gnavus. This is the first report on the characterization of a bacteriocin produced by a strictly anaerobic bacterium from human fecal microbiota.
Collapse
Affiliation(s)
- J Dabard
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
The pore-forming colicins, the first proteins that were capable of forming voltage-dependent ion channels to be sequenced, have turned out to be both less tractable and more mysterious than imagined; yet they have proved interesting at every step of their short journey from producing cell to vanquished target cell. Starting out as a remarkably extended water-soluble protein, the colicin molecule is designed to interact simultaneously with several components of the complex membrane of the target cell, transform itself into a membrane protein, and become an ion channel with inscrutable properties. Unraveling how it does all this appears to be leading us into the dark recesses of protein/protein and protein/membrane interaction, where lurk fundamental processes reluctantly waiting to be revealed.
Collapse
Affiliation(s)
- J H Lakey
- School of Biochemistry and Genetics, Medical School, University of Newcastle, NE2 4HH, UK
| | | |
Collapse
|
150
|
Smajs D, Weinstock GM. Genetic organization of plasmid ColJs, encoding colicin Js activity, immunity, and release genes. J Bacteriol 2001; 183:3949-57. [PMID: 11395458 PMCID: PMC95277 DOI: 10.1128/jb.183.13.3949-3957.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5.2-kb ColJs plasmid of a colicinogenic strain of Shigella sonnei (colicin type 7) was isolated and sequenced. pColJs was partly homologous to pColE1 and to pesticin-encoding plasmid pPCP1, mainly in the rep, mob, and cer regions. A 1.2-kb unique region of pColJs showed significantly different G+C content (34%) compared to the rest of pColJs (53%). Within the unique region, seven open reading frames (ORFs) were identified. ORF94 was shown to code for colicin Js activity (cja), a 94-amino-acid polypeptide (molecular mass, 10.4 kDa); ORF129 (cji) was shown to code for the 129-amino-acid colicin Js immunity protein (molecular mass, 14.3 kDa); and ORF65 was shown to be involved in colicin Js release by producer bacteria (cjl) coding for a 65-amino-acid polypeptide (molecular mass, 7.5 kDa). In contrast to the gene order in other colicin operons, the cjl gene was found upstream from cja. Moreover, the promoter upstream from cjl was similar to promoters described upstream from several colicin activity genes. The cji gene was found to be located downstream from cja with a transcription polarity opposite to that of the cjl and cja genes. The cja, cji, and cjl genes were not similar to other known colicin genes. Colicin Js was purified as an inactive fusion protein with an N-terminal histidine tag. Activity of the purified fusion form of colicin Js was restored after cleavage of the amino acids fused to the colicin Js N terminus.
Collapse
Affiliation(s)
- D Smajs
- Department of Microbiology and Molecular Genetics and Center for the Study of Emerging and Re-emerging Pathogens, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|