101
|
Fischman JS, Sista S, Lee D, Cuadra GA, Palazzolo DL. Flavorless vs. Flavored Electronic Cigarette-Generated Aerosol and E-Liquid on the Growth of Common Oral Commensal Streptococci. Front Physiol 2020; 11:585416. [PMID: 33329035 PMCID: PMC7732452 DOI: 10.3389/fphys.2020.585416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction Electronic cigarette (ECIG) use or vaping has become popular globally. While the question “Is vaping safer than smoking?” continues, it is becoming clearer that one of the most dangerous components of E-liquids are the flavorings. Since the oral cavity is the first anatomical site to be assaulted by ECIG aerosol, the aim of this study is to test the hypothesis that flavored ECIG aerosols or E-liquids pose a more detrimental effect on the growth of commensal oral streptococcal bacteria compared to flavorless aerosols or E-liquids. Methods Kirby Bauer assays and 24-h planktonic growth curves were used to compare the effects of flavorless vs. flavored (tobacco, menthol, cinnamon, strawberry and blueberry) ECIG-generated aerosols and E-liquids on the growth of four common strains of oral commensal bacteria (Streptococcus gordonii, Streptococcus intermedius, Streptococcus mitis and Streptococcus oralis). Results Kirby Bauer assays revealed inhibition of growth for all bacteria tested when exposed to 100% menthol, cinnamon or strawberry flavors. In contrast, 5% flavor in E-liquid had no effect. When exposed to 100 puffs of ECIG-generated aerosol ± flavors (≈ 0.05% flavor in brain heart infusion media) or an equivalent amount of E-liquid ± flavors, twenty-four hour planktonic growth curves indicated no effect on growth for all streptococci tested. Subsequent twenty-four hour planktonic growth curves testing the effects of E-liquid ± flavors (0.0625, 0.125, 0.25, 0.3125, 0.625, and 1.25% flavor in brain heart infusion media) revealed dose-dependent inhibition of growth, particularly for menthol, cinnamon and strawberry), for all bacteria tested. Conclusion These results support the hypothesis that flavored E-liquids are more detrimental to the growth of oral commensal bacteria than unflavored E-liquids. The streptococci tested in this study are early colonizers and part of the foundation of oral biofilms and dental plaque. Disturbances in the composition and growth of these primary colonizers is crucial to the development of a healthy dental plaque and host-bacteria interactions. E-liquids and their aerosols containing flavoring agents alter the growth of these bacteria. Such perturbations of pioneering oral communities pose a potential risk to the health of the oral cavity and, ultimately, health in general.
Collapse
Affiliation(s)
- Jacob S Fischman
- Department of Biology, Muhlenberg College, Allentown, PA, United States
| | - Swapna Sista
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - DongKeun Lee
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | | | - Dominic L Palazzolo
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
102
|
Monleon‐Getino T, Frias‐Lopez J. A priori estimation of sequencing effort in complex microbial metatranscriptomes. Ecol Evol 2020; 10:13382-13394. [PMID: 33304545 PMCID: PMC7713979 DOI: 10.1002/ece3.6941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022] Open
Abstract
Metatranscriptome analysis or the analysis of the expression profiles of whole microbial communities has the additional challenge of dealing with a complex system with dozens of different organisms expressing genes simultaneously. An underlying issue for virtually all metatranscriptomic sequencing experiments is how to allocate the limited sequencing budget while guaranteeing that the libraries have sufficient depth to cover the breadth of expression of the community. Estimating the required sequencing depth to effectively sample the target metatranscriptome using RNA-seq is an essential first step to obtain robust results in subsequent analysis and to avoid overexpansion, once the information contained in the library reaches saturation. Here, we present a method to calculate the sequencing effort using a simulated series of metatranscriptomic/metagenomic matrices. This method is based on an extrapolation rarefaction curve using a Weibull growth model to estimate the maximum number of observed genes as a function of sequencing depth. This approach allowed us to compute the effort at different confidence intervals and to obtain an approximate a priori effort based on an initial fraction of sequences. The analytical pipeline presented here may be successfully used for the in-depth and time-effective characterization of complex microbial communities, representing a useful tool for the microbiome research community.
Collapse
Affiliation(s)
- Toni Monleon‐Getino
- Section of Statistics (Department of Genetics, Microbiology, and Statistics)University of BarcelonaBarcelonaSpain
- BIOSTGRBIO (Research Group in Biostatistics and Bioinformatics)BarcelonaSpain
| | | |
Collapse
|
103
|
van Zyl WF, Deane SM, Dicks LM. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 2020; 12:1831339. [PMID: 33112695 PMCID: PMC7595611 DOI: 10.1080/19490976.2020.1831339] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) diseases, and in particular those caused by bacterial infections, are a major cause of morbidity and mortality worldwide. Treatment is becoming increasingly difficult due to the increase in number of species that have developed resistance to antibiotics. Probiotic lactic acid bacteria (LAB) have considerable potential as alternatives to antibiotics, both in prophylactic and therapeutic applications. Several studies have documented a reduction, or prevention, of GI diseases by probiotic bacteria. Since the activities of probiotic bacteria are closely linked with conditions in the host's GI-tract (GIT) and changes in the population of enteric microorganisms, a deeper understanding of gut-microbial interactions is required in the selection of the most suitable probiotic. This necessitates a deeper understanding of the molecular capabilities of probiotic bacteria. In this review, we explore how probiotic microorganisms interact with enteric pathogens in the GIT. The significance of probiotic colonization and persistence in the GIT is also addressed.
Collapse
Affiliation(s)
- Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M.T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa,CONTACT Leon M.T. Dicks; Department of Microbiology; Stellenbosch University, Stellenbosch7602, South Africa
| |
Collapse
|
104
|
The Oral Microbiome of Healthy Japanese People at the Age of 90. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For a healthy oral cavity, maintaining a healthy microbiome is essential. However, data on healthy microbiomes are not sufficient. To determine the nature of the core microbiome, the oral-microbiome structure was analyzed using pyrosequencing data. Saliva samples were obtained from healthy 90-year-old participants who attended the 20-year follow-up Niigata cohort study. A total of 85 people participated in the health checkups. The study population consisted of 40 male and 45 female participants. Stimulated saliva samples were obtained by chewing paraffin wax for 5 min. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene were amplified by PCR. Pyrosequencing was performed using MiSeq. Operational taxonomic units (OTUs) were assigned on the basis of a 97% identity search in the EzTaxon-e database. Using the threshold of 100% detection on the species level, 13 species were detected: Streptococcus sinensis, Streptococcus pneumoniae, Streptococcus salivarius, KV831974_s, Streptococcus parasanguinis, Veillonella dispar, Granulicatella adiacens, Streptococcus_uc, Streptococcus peroris, KE952139_s, Veillonella parvula, Atopobium parvulum, and AFQU_vs. These species represent potential candidates for the core make-up of the human microbiome.
Collapse
|
105
|
Fujiwara N, Kitamura N, Yoshida K, Yamamoto T, Ozaki K, Kudo Y. Involvement of Fusobacterium Species in Oral Cancer Progression: A Literature Review Including Other Types of Cancer. Int J Mol Sci 2020; 21:ijms21176207. [PMID: 32867334 PMCID: PMC7504605 DOI: 10.3390/ijms21176207] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation caused by infections has been suggested to be one of the most important cause of cancers. It has recently been shown that there is correlation between intestinal bacteria and cancer development including metastasis. As over 700 bacterial species exist in an oral cavity, it has been concerning that bacterial infection may cause oral cancer. However, the role of bacteria regarding tumorigenesis of oral cancer remains unclear. Several papers have shown that Fusobacterium species deriving the oral cavities, especially, play a crucial role for the development of colorectal and esophageal cancer. F. nucleatum is a well-known oral bacterium involved in formation of typical dental plaque on human teeth and causing periodontal diseases. The greatest characteristic of F. nucleatum is its ability to adhere to various bacteria and host cells. Interestingly, F. nucleatum is frequently detected in oral cancer tissues. Moreover, detection of F. nucleatum is correlated with the clinical stage of oral cancer. Although the detailed mechanism is still unclear, Fusobacterium species have been suggested to be associated with cell adhesion, tumorigenesis, epithelial-to-mesenchymal transition, inflammasomes, cell cycle, etc. in oral cancer. In this review, we introduce the reports focused on the association of Fusobacterium species with cancer development and progression including oral, esophageal, and colon cancers.
Collapse
Affiliation(s)
- Natsumi Fujiwara
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; (N.F.); (K.O.)
- Department of Oral Biology & Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Japan; (N.K.); (T.Y.)
| | - Kaya Yoshida
- Department of Oral Health Care Education, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan;
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Japan; (N.K.); (T.Y.)
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; (N.F.); (K.O.)
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
- Correspondence: ; Tel.: +81-88-633-7325
| |
Collapse
|
106
|
Functional Analysis of a Fibronectin Binding Protein of Streptococcus parasanguinis FW213. Curr Microbiol 2020; 77:3430-3440. [PMID: 32761388 DOI: 10.1007/s00284-020-02152-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Streptococcus parasanguinis is a primary colonizer of dental plaque and an opportunistic pathogen for subacute endocarditis. A putative fibronectin binding protein (Spaf_1409) that lacks both an N-terminal signal peptide and a C-terminal cell wall-anchoring motif was identified from the S. parasanguinis FW213 genome. Spaf_1409 was abundantly present in the cytoplasm and also was found in the cell wall preparation and culture supernatant. By using an isogenic mutant strain, MPH4, Spaf_1409 was found to mediate the binding of S. parasanguinis FW213 to fibronectin. Inactivation of Spaf_1409 did not significantly alter the mass of static biofilm, but reduced the resistance of S. parasanguinis against the shearing force in a flow cell biofilm system, resulting in scattered biofilm. The mortality in Galleria mellonella larvae infected with MPH4 was higher than in those infected with wild-type S. parasanguinis. However, fewer viable bacterial cells were recovered from larvae infected with MPH4, compared to those infected with wild-type S. parasanguinis, up to 42 h post infection, suggesting that the infection by MPH4, but not the growth, was responsible for the elevated mortality. The phagocytic analysis using flow cytometry indicated that Spaf_1409 participates in the recognition of S. parasanguinis FW213 by RAW264.7 macrophages, suggesting that inactivation of Spaf_1409 intensified the immune responses in larvae, leading to larval death. Taken together, the data indicate that Spaf_1409 plays different roles in the development of dental biofilm and in systemic infections.
Collapse
|
107
|
Dioguardi M, Quarta C, Alovisi M, Crincoli V, Aiuto R, Crippa R, Angiero F, Laneve E, Sovereto D, De Lillo A, Troiano G, Lo Muzio L. Microbial Association with Genus Actinomyces in Primary and Secondary Endodontic Lesions, Review. Antibiotics (Basel) 2020; 9:E433. [PMID: 32707891 PMCID: PMC7460180 DOI: 10.3390/antibiotics9080433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
The main reason for root canal treatment failure is the persistence of microorganisms after therapy, or the recontamination of the root canal system due to an inadequate seal. In the mouth, Actinomyces spp. constitute a significant part of the normal flora, which is indicative of their ability to adhere to oral tissue and resist cleansing mechanisms, such as salivary flow. This review, performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), aims to clarify the prevalence of microbial genera that are associated with the genus Actinomyces in primary and secondary endodontic infections (primary outcome), and to identify the most prevalent species of the Actinomyces genus in endodontic lesions (secondary outcome). A total of 11 studies were included in the qualitative and quantitative analysis, and a total of 331 samples were analyzed. Bacteria of the genus Actinomyces were found in 58 samples, and 46 bacterial genera were detected in association with bacteria of the genus Actinomyces. Bacteria of the genus Streptococcus and Propionibacterium were those most frequently associated with Actinomyces in the endodontic lesions considered, and Actinomyces israelii was the most frequently involved species.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Cristian Quarta
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Mario Alovisi
- Department of Surgical Sciences, Dental School, University of Turin, 10127 Turin, Italy;
| | - Vito Crincoli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Division of Complex Operating Unit of Dentistry, “Aldo Moro” University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Riccardo Aiuto
- Department of Biomedical, Surgical, and Dental Science, University of Milan, 20122 Milan, Italy;
| | - Rolando Crippa
- Department of Oral Pathology, Italian Stomatological Institute, 20122 Milan, Italy;
| | - Francesca Angiero
- Department of Medical Sciences and Diagnostic Integrated, S. Martino Hospital, University of Genova, 16132 Genova, Italy;
| | - Enrica Laneve
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Alfredo De Lillo
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (C.Q.); (E.L.); (D.S.); (A.D.L.); (G.T.); (L.L.M.)
| |
Collapse
|
108
|
Lima RA, de Souza SLX, Lima LA, Batista ALX, de Araújo JTC, Sousa FFO, Rolim JPML, Bandeira TDJPG. Antimicrobial effect of anacardic acid-loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Braz J Microbiol 2020; 51:1623-1630. [PMID: 32562202 DOI: 10.1007/s42770-020-00320-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/11/2020] [Indexed: 11/25/2022] Open
Abstract
Bacterial biofilms play a key role in the pathogenesis of major oral diseases. Nanoparticles open new paths for drug delivery in complex structures such as biofilms. This study evaluated the antimicrobial effect of zein nanoparticles containing anacardic acid (AA) extracted from cashew shells of Anacardium occidentale on in vitro Streptococcus mutans biofilm formation and mature biofilms. The minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and antibiofilm assays were performed. Streptococcus mutans UA159 biofilms were formed on saliva-coated hydroxyapatite disk for 5 days. To evaluate the preventive effect on biofilm formation, before contact with the inoculum, the disks were immersed once for 2 min in (1) hydroethanolic solution; (2) blank zein nanoparticles; (3) zein nanoparticles containing AA; and (4) 0.12% chlorhexidine gluconate. To determine the effect against mature biofilms, the disks containing 5-day preformed biofilms were further treated using the same procedure. The bacterial viability and dry weight were determined for both assays and used to compare the groups using ANOVA followed by Tukey's test (p < 0.05). Both MIC and MBC for AA-loaded zein nanoparticles were 0.36 μg/mL. Groups 3 and 4 were very effective in inhibiting S. mutans biofilm formation, as no colony-forming units were detected. In contrast, for mature biofilms, no difference in bacterial viability (p = 0.28) or dry weight (p = 0.09) was found between the treatments. Therefore, the AA-based nanoformulation presented very high inhibitory and bactericidal activities against planktonic S. mutans, and the results indicate a strong antiplaque effect. However, the formulation showed no antimicrobial effect on the established biofilm.
Collapse
Affiliation(s)
- Ramille Araújo Lima
- Centro Universitário Christus (UNICHRISTUS), Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, CE, 60190-060, Brazil
| | | | - Lais Aragão Lima
- Centro Universitário Christus (UNICHRISTUS), Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, CE, 60190-060, Brazil
| | - Ana Larissa Ximenes Batista
- Centro Universitário Christus (UNICHRISTUS), Rua João Adolfo Gurgel, 133, Cocó, Fortaleza, CE, 60190-060, Brazil
| | | | | | | | | |
Collapse
|
109
|
Arredondo A, Blanc V, Mor C, Nart J, León R. Resistance to β-lactams and distribution of β-lactam resistance genes in subgingival microbiota from Spanish patients with periodontitis. Clin Oral Investig 2020; 24:4639-4648. [PMID: 32495224 DOI: 10.1007/s00784-020-03333-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-lactam-resistant subgingival bacteria from patients with periodontitis. MATERIALS AND METHODS Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic conditions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-lactamase genes was performed by the polymerase chain reaction (PCR) technique: blaTEM, blaSHV, blaCTX-M, blaCfxA, blaCepA, blaCblA, and blaampC. Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial. RESULTS β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different genera were obtained, with Prevotella and Streptococcus being the most identified genera. blaCfxA was the gene most detected, being observed in 24.8% of the isolates, followed by blaTEM (12.9%). Most of the isolates (81.3%) were multidrug-resistant. CONCLUSIONS This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes. CLINICAL RELEVANCE Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes.
Collapse
Affiliation(s)
- Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain.,Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Rubén León
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain.
| |
Collapse
|
110
|
Self-Assembled Monolayer Formation on a Dental Orthodontic Stainless Steel Wire Surface to Suppress Metal Ion Elution. COATINGS 2020. [DOI: 10.3390/coatings10040367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metal ion elution, including Cr and Ni from dental orthodontic stainless steel, accounts for some allergies. In this study, a self-assembled monolayer (SAM) on a wire surface is proposed for suppressing such elution. This method involves modifying the stainless steel surface using phosphonic acid containing a long alkyl chain. The uncoated and coated wires are immersed in different acidic solutions, and the supernatant is analyzed by inductively coupled plasma mass spectrometry after 1–4 weeks. The results reveal that Cr and Ni ion elution is significantly suppressed by SAM modification. These findings will help in minimizing potential allergens from dental orthodontics.
Collapse
|
111
|
Chen H, Fu K, Pang B, Wang J, Li H, Jiang Z, Feng Y, Tian W, Cao R. Determination of uterine bacterial community in postpartum dairy cows with metritis based on 16S rDNA sequencing. Vet Anim Sci 2020; 10:100102. [PMID: 32734024 PMCID: PMC7386775 DOI: 10.1016/j.vas.2020.100102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022] Open
Abstract
Metritis is a frequently occurring diseases in postpartum cows and is one of the important reasons for the infertility of dairy cows, accounting for 20-30% of dairy cow diseases and has serious implications for the dairy industry. It has been reported in the literature that the bacterial balance of genital tracts is directly related to the maintenance of physiological function and the development of various diseases of the reproductive system. By analyzing the changes in abundance and diversity of bacteria in the cow uterus from 1 to 35 days postpartum, the objective was to reveal the mechanism of metritis in cows and provide the basis for diagnosis, treatment and prevention of metritis in postpartum dairy cows. Uterine contents were taken from six cows (three healthy and three with metritis) on 1, 7, 14, 21 and 35 days after parturition. DNA genomes extracted from the samples were primed with 515F5'-GTGCCAGCMGCCGCGG-3' and 907R5'-CCGTCAATTCMTTRAGTTT-3' for PCR amplification of the V4+V5 regions of the 16S rDNA genes and construction of a gene library. The sequence of the bacterial structure of the cow uterine contents was analyzed using 16S rDNA high-throughput sequencing technology. A total of 30 samples were tested by PCR, and 29 samples qualified. The results of cluster analysis showed that except for one sample, the number of OTUs in the healthy cows was above 200, while in the cows with metritis, except for three samples, OTUs were below 200. The Chao1 and Shannon indices showed that the abundance of bacteria in the cow uterus was lower than that of healthy cows. Analysis of the relative abundance of bacteria in the cow uterus showed that there were six phyla present, including Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, Actinobacteria and Tenericutes. There were 10 dominant genera in healthy cows, including Bacteroides, Clostridium sensu stricto 1, Escherichia-Shigella, Fusobacterium, Halomonas, Helcococcus, Porphyromonas, Prevotella 6, Rikenellaceae RC9 gut group and Streptococcus. There were nine dominant genera in cows with metritis, including Bacteroides, Caviibacter, Clostridium sensu stricto 1, Falsiporphyromonas, Fusobacterium, Halomonas, Helcococcus, Porphyromonas and Prevotella 7. Phylogenetic tree analysis showed that uterine contents from 29 samples could be separated into two clusters. Eleven samples from the cows with metritis were clustered with one sample from the healthy group, and 13 samples from the healthy cows were clustered together with four samples from the metritis group. Principal co-ordinate analysis showed that the points representing healthy cows and those representing the metritis group were concentrated in two distinct regions, which shows that there were significant differences in the structure evolution between healthy cows and cows with metritis. The above results indicate that bacterial diversity declines with time postpartum in healthy cows and is lower in cows with metritis, with characteristic changes in the relative abundances, including increases in Bacteroidetes and Fusobacteria, decreases in Firmicutes and Proteobacteria, increases in Porphyromonas, Bacteroides and Fusobacterium, and a decrease in Clostridium sensu stricto 1.
Collapse
Affiliation(s)
- Hao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Kaiqiang Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Binbin Pang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jifang Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Huatao Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Zhongling Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yanni Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Wenru Tian
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rongfeng Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| |
Collapse
|
112
|
The antimicrobial and cytotoxic effects of a copper-loaded zinc oxide phosphate cement. Clin Oral Investig 2020; 24:3899-3909. [PMID: 32198658 PMCID: PMC7544705 DOI: 10.1007/s00784-020-03257-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/06/2020] [Indexed: 01/25/2023]
Abstract
Objectives Evidence about modifications of dental luting materials to minimize biological failure at the “marginal gap” between teeth and fixed prosthodontics is scarce. We compared a copper-modified (Co-ZOP) and a conventional zinc oxide phosphate cement (ZOP) in terms of antimicrobial and cytotoxic potentials in vitro and in vivo. Materials and methods Specimens of ZOP and Co-ZOP were characterized by the mean arithmetic roughness (Ra) and surface free energy (SFE). Powder components were examined using scanning electron microscopy (SEM). Energy-dispersive X-ray spectroscopy (EDX) showed elemental material compositions. In vitro microbial adhesion was shown using SEM, luminescence, and fluorescence assays. CCK-8 assays of mouse fibroblasts (L929) and human gingival fibroblasts (GF-1) were performed after 6, 24, and 48 h of specimen incubation. In vivo, ZOP and Co-ZOP specimens were applied intraorally for 12 h; biofilm accumulation was shown using SEM. Results Ra of ZOP and Co-ZOP showed no significant differences; SFE was significantly higher for Co-ZOP. EDX exhibited minor copper radiation for Co-ZOP, none for ZOP. In vitro fungal adhesion to Co-ZOP was significantly higher than to ZOP; in vitro streptococcal adhesion, cytotoxicity, and in vivo biofilm formation were not significantly different. Conclusions Co-ZOP showed low surface allocations of copper with no improved antimicrobial properties compared with conventional ZOP in vitro or in vivo. Clinical relevance Antimicrobial effects and low cytotoxicity of biomaterials are important for the clinical outcome. Based on our in vitro and in vivo results, no clinical recommendation can be given for the tested Co-ZOP.
Collapse
|
113
|
Xie Y, Zheng W, Jiang X. Near-Infrared Light-Activated Phototherapy by Gold Nanoclusters for Dispersing Biofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9041-9049. [PMID: 32011117 DOI: 10.1021/acsami.9b21777] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A bacterial biofilm is strongly associated with chronic infections and is difficult to be eradicated, posing serious threats to public health. Development of effective therapeutic strategies to prevent and control hospital-acquired infections via eradication of bacteria shielded by biofilms is challenging. Herein, we developed deoxyribonuclease (DNase)-functionalized gold nanoclusters (AuNCs) (DNase-AuNCs), which are capable of killing Gram-positive and Gram-negative bacteria, especially dispersing the surrounding biofilms. The DNase can break down the extracellular polymeric substance matrix to expose the defenseless bacteria to photothermal therapy (PTT) and photodynamic therapy (PDT) by DNase-AuNCs under 808 nm laser irradiation. The combination of enzymolysis, PDT, and PTT can effectively remove biofilms with a dispersion rate of up to 80% and kill ∼90% of the shielded bacteria. DNase-AuNCs exhibit an outstanding therapeutic effect in treating bacterial biofilm-coated orthodontic devices (Invisalign aligners), suggesting their potential applications in medical devices.
Collapse
Affiliation(s)
- Yangzhouyun Xie
- Department of Biomedical Engineering , Southern University of Science and Technology , No. 1088 Xueyuan Rd , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering , Southern University of Science and Technology , No. 1088 Xueyuan Rd , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , P. R. China
| |
Collapse
|
114
|
Xie Y, Zhang M, Zhang W, Liu X, Zheng W, Jiang X. Gold Nanoclusters-Coated Orthodontic Devices Can Inhibit the Formation of Streptococcus mutans Biofilm. ACS Biomater Sci Eng 2020; 6:1239-1246. [PMID: 33464842 DOI: 10.1021/acsbiomaterials.9b01647] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oral health is an issue that has attracted increasing attention recently. Poor oral hygiene may induce the formation of oral biofilm on orthodontic devices, and cause gingivitis and dental caries. Here, we present a strategy for modifying orthodontic devices (e.g., invisalign aligner) with quaternary ammonium (QA)-modified gold nanoclusters (QA-GNCs) as an antibiotic reagent to prevent bacterial contamination and biofilm formation. The QA-GNCs-coated aligner can efficiently inhibit the adhesion of cariogenic pathogenic Streptococcus mutans and the formation of biofilm. Moreover, the antibacterial activity of the coated QA-GNCs can be maintained for at least 3 months and after repeated usage (>3 cycles). Furthermore, the QA-GNCs coating shows excellent biosafety confirmed by the cell viability test, the hemolysis assay, and animal experiments. Our strategy for antibacterial coating has the advantages of broad applications, low cost, good stability, high antibacterial efficiency, good biocompatibility, and low risk of antibiotic contamination, which could be particularly useful in preventing infections involving implantable medical devices or wearable electronics.
Collapse
Affiliation(s)
- Yangzhouyun Xie
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, P. R. China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Mengqi Zhang
- Peking University School of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Wei Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Xiaomo Liu
- Peking University School of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, P. R. China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| |
Collapse
|
115
|
Shokeen B, Park J, Duong E, Rambhia S, Paul M, Weinberg A, Shi W, Lux R. Role of FAD-I in Fusobacterial Interspecies Interaction and Biofilm Formation. Microorganisms 2020; 8:E70. [PMID: 31906541 PMCID: PMC7023056 DOI: 10.3390/microorganisms8010070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022] Open
Abstract
: RadD, a major adhesin of oral fusobacteria, is part of a four-gene operon encoding the small lipoprotein FAD-I and two currently uncharacterized small proteins encoded by the rapA and rapB genes. Previously, we described a role for FAD-I in the induction of human B-defensin 2 (hBD2) upon contact with oral epithelial cells. Here, we investigated potential roles for fad-I, rapA, and rapB in interspecies interaction and biofilm formation. Gene inactivation mutants were generated for each of these genes in the nucleatum and polymorphum subspecies of Fusobacterium nucleatum and characterized for their adherence to partner species, biofilm formation, and operon transcription. Binding to Streptococcus gordonii was increased in all mutant strains with Δfad-I having the most significant effect. This increased adherence was directly proportional to elevated radD transcript levels and resulted in significantly different architecture and height of the biofilms formed by Δfad-I and S. gordonii compared to the wild-type parent. In conclusion, FAD-I is important for fusobacterial interspecies interaction as its lack leads to increased production of the RadD adhesin suggesting a role of FAD-I in its regulation. This regulatory effect does not require the presence of functional RadD.
Collapse
Affiliation(s)
- Bhumika Shokeen
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Jane Park
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Emily Duong
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sonam Rambhia
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Manash Paul
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH 44106-4905, USA
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA 02142, USA
| | - Renate Lux
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
116
|
Manoharan V, Fareed N, Battur H, Praveena J, Ishwar P. Probiotic potential of daily consumption of homemade curd on dental plaque among schoolchildren: A randomized controlled trial. JOURNAL OF INDIAN ASSOCIATION OF PUBLIC HEALTH DENTISTRY 2020. [DOI: 10.4103/jiaphd.jiaphd_127_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
117
|
Temporal development of the oral microbiome and prediction of early childhood caries. Sci Rep 2019; 9:19732. [PMID: 31874981 PMCID: PMC6930300 DOI: 10.1038/s41598-019-56233-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/05/2019] [Indexed: 11/08/2022] Open
Abstract
Human microbiomes are predicted to assemble in a reproducible and ordered manner yet there is limited knowledge on the development of the complex bacterial communities that constitute the oral microbiome. The oral microbiome plays major roles in many oral diseases including early childhood caries (ECC), which afflicts up to 70% of children in some countries. Saliva contains oral bacteria that are indicative of the whole oral microbiome and may have the ability to reflect the dysbiosis in supragingival plaque communities that initiates the clinical manifestations of ECC. The aim of this study was to determine the assembly of the oral microbiome during the first four years of life and compare it with the clinical development of ECC. The oral microbiomes of 134 children enrolled in a birth cohort study were determined at six ages between two months and four years-of-age and their mother's oral microbiome was determined at a single time point. We identified and quantified 356 operational taxonomic units (OTUs) of bacteria in saliva by sequencing the V4 region of the bacterial 16S RNA genes. Bacterial alpha diversity increased from a mean of 31 OTUs in the saliva of infants at 1.9 months-of-age to 84 OTUs at 39 months-of-age. The oral microbiome showed a distinct shift in composition as the children matured. The microbiome data were compared with the clinical development of ECC in the cohort at 39, 48, and 60 months-of-age as determined by ICDAS-II assessment. Streptococcus mutans was the most discriminatory oral bacterial species between health and current disease, with an increased abundance in disease. Overall our study demonstrates an ordered temporal development of the oral microbiome, describes a limited core oral microbiome and indicates that saliva testing of infants may help predict ECC risk.
Collapse
|
118
|
Pearce P, Song B, Skinner DJ, Mok R, Hartmann R, Singh PK, Jeckel H, Oishi JS, Drescher K, Dunkel J. Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms. PHYSICAL REVIEW LETTERS 2019; 123:258101. [PMID: 31922766 DOI: 10.1103/physrevlett.123.258101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 06/10/2023]
Abstract
Bacterial biofilms represent a major form of microbial life on Earth and serve as a model active nematic system, in which activity results from growth of the rod-shaped bacterial cells. In their natural environments, ranging from human organs to industrial pipelines, biofilms have evolved to grow robustly under significant fluid shear. Despite intense practical and theoretical interest, it is unclear how strong fluid flow alters the local and global architectures of biofilms. Here, we combine highly time-resolved single-cell live imaging with 3D multiscale modeling to investigate the mechanisms by which flow affects the dynamics of all individual cells in growing biofilms. Our experiments and cell-based simulations reveal three quantitatively different growth phases in strong external flow and the transitions between them. In the initial stages of biofilm development, flow induces a downstream gradient in cell orientation, causing asymmetrical dropletlike biofilm shapes. In the later developmental stages, when the majority of cells are sheltered from the flow by the surrounding extracellular matrix, buckling-induced cell verticalization in the biofilm core restores radially symmetric biofilm growth, in agreement with predictions of a 3D continuum model.
Collapse
Affiliation(s)
- Philip Pearce
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Boya Song
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Rachel Mok
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jeffrey S Oishi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
- Department of Physics, Bates College, Lewiston, Maine 04240, USA
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| |
Collapse
|
119
|
Orazi G, O'Toole GA. "It Takes a Village": Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J Bacteriol 2019; 202:e00530-19. [PMID: 31548277 PMCID: PMC6932244 DOI: 10.1128/jb.00530-19] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic infections are frequently caused by polymicrobial biofilms. Importantly, these infections are often difficult to treat effectively in part due to the recalcitrance of biofilms to antimicrobial therapy. Emerging evidence suggests that polymicrobial interactions can lead to dramatic and unexpected changes in the ability of antibiotics to eradicate biofilms and often result in decreased antimicrobial efficacy in vitro In this review, we discuss the influence of polymicrobial interactions on the antibiotic susceptibility of biofilms, and we highlight the studies that first documented the shifted antimicrobial susceptibilities of mixed-species cultures. Recent studies have identified several mechanisms underlying the recalcitrance of polymicrobial biofilm communities, including interspecies exchange of antibiotic resistance genes, β-lactamase-mediated inactivation of antibiotics, changes in gene expression induced by metabolites and quorum sensing signals, inhibition of the electron transport chain, and changes in properties of the cell membrane. In addition to elucidating multiple mechanisms that contribute to the altered drug susceptibility of polymicrobial biofilms, these studies have uncovered novel ways in which polymicrobial interactions can impact microbial physiology. The diversity of findings discussed highlights the importance of continuing to investigate the efficacy of antibiotics against biofilm communities composed of different combinations of microbial species. Together, the data presented here illustrate the importance of studying microbes as part of mixed-species communities rather than in isolation. In light of our greater understanding of how interspecies interactions alter the efficacy of antimicrobial agents, we propose that the methods for measuring the drug susceptibility of polymicrobial infections should be revisited.
Collapse
Affiliation(s)
- Giulia Orazi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
120
|
Slomka V, Herrero ER, Boon N, Bernaerts K, Trivedi HM, Daep C, Quirynen M, Teughels W. Oral prebiotics and the influence of environmental conditions in vitro. J Periodontol 2019; 89:708-717. [PMID: 29577296 DOI: 10.1002/jper.17-0437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/26/2017] [Accepted: 12/20/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Only recently the concept of prebiotics has been introduced in oral health. Few potential oral prebiotics have already been identified in dual species competition assays, showing a stimulatory effect on beneficial bacteria and by this suppressing the outgrowth of pathogenic species. This study aimed to validate the effect of previously identified potential prebiotic substrates on multispecies cultures by shifting the biofilm composition towards a more beneficial species dominated microbiota. METHODS A chemostat culture containing 14 model oral bacterial species was used to grow biofilms for 24 hours which subsequently were treated with prebiotic solutions three times a day for 3 consecutive days. Further the influence of environmental factors such as pH, nutrient availability, oxygen concentration and prebiotic dose on the efficacy of the prebiotic substances was investigated. RESULTS Three potential prebiotic substrates N-acetyl-D-mannosamine, succinic acid and Met-Pro were able to bring the beneficial proportion to > 95%. While the pH of the prebiotic solution did not have an influence on the prebiotic effect, the interplay of nutrient availability, oxygen concentration and prebiotic treatment resulted in significant changes of the microbial composition identifying N-acetyl-D-mannosamine as the most promising oral prebiotic substrate. Showing a clear dose dependent effect, concentrations of N-acetyl-D-mannosamine of 1.0 and 1.5 M resulted in a biofilm composition of 97% beneficial species. CONCLUSION Introducing the prebiotic concept in oral health might reveal a valid approach for treatment and prevention of oral diseases and promote oral health.
Collapse
Affiliation(s)
- Vera Slomka
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Esteban Rodriguez Herrero
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F (bus 2424), 3001, Leuven, Belgium
| | | | - Carlo Daep
- Colgate-Palmolive Technology Center, Piscataway, NJ
| | - Marc Quirynen
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| |
Collapse
|
121
|
Sun J, Eberhard J, Glage S, Held N, Voigt H, Schwabe K, Winkel A, Stiesch M. Development of a peri‐implantitis model in the rat. Clin Oral Implants Res 2019; 31:203-214. [DOI: 10.1111/clr.13556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jingqing Sun
- Affiliated Hospital of Stomatology School of Medicine Zhejiang University Hangzhou China
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| | - Joerg Eberhard
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
- Faculty of Dentistry University of Sydney Sydney NSW Australia
| | - Silke Glage
- Institution for Laboratory Animal Science Hannover Medical School Hannover Germany
| | - Nadine Held
- Institution for Laboratory Animal Science Hannover Medical School Hannover Germany
| | - Henning Voigt
- Department of Otorhinolaryngology Hannover Medical School Hannover Germany
| | - Kerstin Schwabe
- Department of Neurosurgery Hannover Medical School Hannover Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| |
Collapse
|
122
|
Mitova N, Rashkova MR, Popova CL. Saliva diagnostics of sex hormones and subgingival microflora in children in puberty. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1688190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Nadezhda Mitova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Rasheva Rashkova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Christina Lazarova Popova
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
123
|
Temponi EF, Souza PEA, Souto GR, Magalhães LMD, Dutra WO, Gollob KJ, Silva TA, Soares RV. Effect of porous tantalum on the biological response of human peripheral mononuclear cells exposed to Porphyromonas gingivalis. ACTA ACUST UNITED AC 2019; 10:e12472. [PMID: 31560456 DOI: 10.1111/jicd.12472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
Abstract
AIM To evaluate biological behavior of human peripheral mononuclear cells (PBMC) in contact with porous tantalum (PT) and Porphyromonas gingivalis (Pg). METHODS Pg was incubated for 8 hours. The groups formed were: PBMC (control), PBMC + PT, PBMC + Pg and PBMC + PT + Pg. Cell viability was evaluated using MTT assay. The morphology and adhesion of PBMC to PT was evaluated using scanning electron microscopy. Expression of interleukin (IL)-10, transforming growth factor (TGF)-β, matrix metallopeptidase (MMP)-9 and receptor activator of nuclear factor-κΒ ligand (RANKL) was determined by enzyme-linked immunosorbent assay. RESULTS MTT assay revealed that PT did not interfere in the mitochondrial activity of PBMC (P > .05). Scanning electron microscopy showed the adherence of PBMC to PT. IL-10 levels in PBMC + PT were similar to PBMC and lower than PBMC + Pg. TGF-β levels in PBMC + PT were higher than PBMC and PBMC + Pg. MMP-9 levels in PBMC + PT were similar to PBMC and lower than PBMC + Pg and PBMC + PT + Pg. RANKL levels in PBMC + PT were lower than in PBMC. CONCLUSION PT did not affect PBMC viability, allowed cell adhesion, reduced expression of RANKL and enhanced TGF-β in comparison with the control group.
Collapse
Affiliation(s)
- Eduardo Frois Temponi
- Graduate Program in Dentistry, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil.,Hospital Madre Teresa, Belo Horizonte, Brazil
| | - Paulo Eduardo Alencar Souza
- Graduate Program in Dentistry, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovanna Ribeiro Souto
- Graduate Program in Dentistry, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Walderez Ornelas Dutra
- Department of Morphology, ICB, Federal University of Minas Gerais UFMG, Belo Horizonte, Brazil
| | | | - Tarcília Aparecida Silva
- Graduate Program in Dentistry, School of Dentistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Rodrigo Villamarim Soares
- Graduate Program in Dentistry, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
124
|
Nilsson M, Givskov M, Twetman S, Tolker-Nielsen T. Inactivation of the pgmA Gene in Streptococcus mutans Significantly Decreases Biofilm-Associated Antimicrobial Tolerance. Microorganisms 2019; 7:microorganisms7090310. [PMID: 31484288 PMCID: PMC6780209 DOI: 10.3390/microorganisms7090310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022] Open
Abstract
Screening of a Streptococcus mutans mutant library indicated that pgmA mutants displayed a reduced biofilm-associated tolerance toward gentamicin. The biofilms formed by the S. mutanspgmA mutant also displayed decreased tolerance towards linezolid and vancomycin compared to wild-type biofilms. On the contrary, the resistance of planktonic S. mutanspgmA cells to gentamycin, linezolid, and vancomycin was more similar to wild-type levels. Investigations of biofilms grown in microtiter trays and on submerged glass slides showed that pgmA mutants formed roughly the same amount of biofilm as the wild type, indicating that the reduced antimicrobial tolerance of these mutants is not due to diminished biofilm formation. The pgmA gene product is known to be involved in the synthesis of precursors for cell wall components such as teichoic acids and membrane glycolipids. Accordingly, the S. mutanspgmA mutant showed increased sensitivity to Congo Red, indicating that it has impaired cell wall integrity. A changed cell wall composition of the S. mutanspgmA mutant may play a role in the increased sensitivity of S. mutanspgmA biofilms toward antibiotics.
Collapse
Affiliation(s)
- Martin Nilsson
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Svante Twetman
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
125
|
Scharnow AM, Solinski AE, Wuest WM. Targeting S. mutans biofilms: a perspective on preventing dental caries. MEDCHEMCOMM 2019; 10:1057-1067. [PMID: 31391878 PMCID: PMC6644389 DOI: 10.1039/c9md00015a] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The prevalence of biofilm diseases, and dental caries in particular, have encouraged extensive research on S. mutans biofilms, including methods of preventing its formation. Numerous small molecules with specific anti-biofilm activity against this pathogen have been isolated and synthesized. Generally, these molecules can be characterized into three categories: sucrose-dependent anti-adhesion, sucrose-independent anti-adhesion and cellular signaling interference. This review aims to provide an overview of the current small molecule strategies used for targeting S. mutans biofilms, and a perspective of the future for the field.
Collapse
Affiliation(s)
- Amber M Scharnow
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - Amy E Solinski
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| | - William M Wuest
- Emory University , Chemistry Department , 1515 Dickey Dr , Atlanta , GA 30322 , USA .
| |
Collapse
|
126
|
Shany-Kdoshim S, Polak D, Houri-Haddad Y, Feuerstein O. Killing mechanism of bacteria within multi-species biofilm by blue light. J Oral Microbiol 2019; 11:1628577. [PMID: 31275529 PMCID: PMC6598489 DOI: 10.1080/20002297.2019.1628577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Objectives: The aim of the study was to characterize the immediate and delayed effects of non-coherent blue-light treatment on the composition and viability of an in vitro biofilm composed of anaerobic multispecies, as well as the mechanisms involved. Methods: A multispecies biofilm was constructed of Streptococcus sanguinis, Actinomyces naeslundii, Porphyromonas gingivalis and Fusobacterium nucleatum, test groups were exposed to blue light. The multispecies biofilm was explored with a newly developed method based on flow cytometry and confocal microscopy. The involvement of the paracrine pathway in the phototoxic mechanism was investigated by a crossover of the supernatants between mono-species P. gingivalis and F. nucleatum biofilms. Results: Blue light led to a reduction of about 50% in the viable pathogenic bacteria P. gingivalis and F. nucleatum, vs that in the non-exposed biofilm. Biofilm thickness was also reduced by 50%. The phototoxic effect of blue light on mono-species biofilm was observed in P. gingivalis, whereas F. nucleatum biofilm was unaffected. A lethal effect was obtained when the supernatant of P. gingivalis biofilm previously exposed to blue light was added to the F. nucleatum biofilm. The effect was circumvented by the addition of reactive oxygen species (ROS) scavengers to the supernatant. Conclusion: Blue-light has an impact on the bacterial composition and viability of the multispecies biofilm. The phototoxic effect of blue light on P. gingivalis in biofilm was induced directly and on F. nucleatum via ROS mediators of the paracrine pathway. This phenomenon may lead to a novel approach for 'replacement therapy,' resulting in a less periodonto-pathogenic biofilm.
Collapse
Affiliation(s)
- Sharon Shany-Kdoshim
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - David Polak
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Osnat Feuerstein
- Department of Prosthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
127
|
Abstract
The microbiome and the human body constitute an integrated superorganism, which is the result of millions of years of coevolution with mutual adaptation and functional integration, and confers significant benefits for both parties. This evolutionary process has resulted in a highly diverse oral microbiome, which covers the full spectrum of acidogenic, aciduric, inflammatory, and anti-inflammatory properties. The relative proportions of members of the microbiome are affected by factors associated with modern life, such as general diet patterns, sugar consumption, tobacco smoking, oral hygiene, use of antibiotics and other antimicrobials, and vaccines. A perturbed balance in the oral microbiome may result in caries, periodontal disease, or candidiasis, and oral bacteria passively transferred to normally sterile parts of the body may cause extra-oral infections. Nevertheless, it should never be our goal to eliminate the oral microbiome, but rather we have to develop ways to re-establish a harmonious coexistence that is lost because of the modern lifestyle. With regard to oral diseases, this goal can normally be achieved by optimal oral hygiene, exposure to fluoride, reduction of sucrose consumption, stimulation of our innate immune defense, smoking cessation, and control of diabetes.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
128
|
Ganesh A, Veronica AK, Ashok R, Varadan P, Deivanayagam K. Quantification of Fusobacterium nucleatum at Depths of Root Dentinal Tubules in the Tooth Using Real-time Polymerase Chain Reaction: An In Vitro Study. Cureus 2019; 11:e4711. [PMID: 31355071 PMCID: PMC6650189 DOI: 10.7759/cureus.4711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/21/2019] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Microorganisms have been known to cause pain and infection in the tooth. Fusobacterium nucleatum was always found predominantly in failed root canal treatments. OBJECTIVE The aim of the present study was to quantify Fusobacterium nucleatum at the inner and peripheral half of coronal, middle and apical region of the root by using real-time polymerase chain reaction (qPCR). METHODS Extracted maxillary incisors were taken. After shaping and cleaning, the root canals were inoculated with Fusobacterium nucleatum. Samples were taken from both the inner and peripheral halves of dentin. The inoculated teeth were maintained in anaerobic jars for two weeks, and the bacterial isolates were changed every third day. The quantification was done using qPCR. RESULTS The cycle threshold (Ct) value in all groups showed the presence of Fusobacterium nucleatum. CONCLUSION Fusobacterium nucleatum penetrates to the entire thickness of dentin in the middle and apical region. The coaggregation with other microorganisms could be responsible for the symptomatic endodontic patients.
Collapse
Affiliation(s)
- Arathi Ganesh
- Conservative Dentistry and Endodontics, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | | - Rupa Ashok
- Conservative Dentistry and Endodontics, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Preethi Varadan
- Conservative Dentistry and Endodontics, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Kandaswamy Deivanayagam
- Conservative Dentistry and Endodontics, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
129
|
Cuadra GA, Smith MT, Nelson JM, Loh EK, Palazzolo DL. A Comparison of Flavorless Electronic Cigarette-Generated Aerosol and Conventional Cigarette Smoke on the Survival and Growth of Common Oral Commensal Streptococci. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1669. [PMID: 31091650 PMCID: PMC6572406 DOI: 10.3390/ijerph16101669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022]
Abstract
Background: The use of electronic cigarettes (ECIG) has become very common. Consequently, critical analysis of the biological effects of ECIG aerosol deserves attention. Flavorless ECIG aerosol is known to comprise fewer harmful constituents than cigarette smoke. Therefore, we hypothesize that aerosol has less immediate effect on the viability of oral commensal streptococci than smoke. Methods: Survival and growth of four strains of commensal streptococci were measured after exposure to flavorless ECIG aerosol ± nicotine and smoke. Peristaltic pumps were used to transport aerosol or smoke into chambers containing recently seeded colony-forming units (CFUs) of the oral commensal streptococci on agar plates. Bacterial survival and growth, based on colony counts and sizes, were determined 24 h post-exposure. Additionally, aerosol or smoke were delivered into chambers containing pre-adhered streptococci to plastic coverslips and biofilm formation was determined 24 h post-exposure via scanning electron microscopy. Results: The results suggest that flavorless aerosol ± nicotine has a modest effect on bacterial growth both as colonies on agar and as biofilms. In contrast, smoke dramatically decreased bacterial survival and growth in all parameters measured. Conclusion: Unlike cigarette smoke, flavorless ECIG aerosol has only a small effect on the survival and growth of oral commensal streptococci.
Collapse
Affiliation(s)
| | - Maxwell T Smith
- Department of Medical Laboratory Science, School of Allied Health Sciences, Lincoln Memorial University, Harrogate, TN 37752, USA.
| | - John M Nelson
- Department of Biology, School of Mathematics and Sciences, Lincoln Memorial University, Harrogate, TN 37752, USA.
| | - Emma K Loh
- Department of Biology, Muhlenberg College, Allentown, PA 18104, USA.
| | - Dominic L Palazzolo
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA.
| |
Collapse
|
130
|
Zhang Y, Shi W, Song Y, Wang J. Metatranscriptomic analysis of an in vitro biofilm model reveals strain-specific interactions among multiple bacterial species. J Oral Microbiol 2019; 11:1599670. [PMID: 31007867 PMCID: PMC6461087 DOI: 10.1080/20002297.2019.1599670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Interactions among bacteria can affect biofilm properties. Method: Here, we investigated the role of different bacteria in functional dysbiosis of an in vitro polymicrobial subgingival plaque model using both 16S rRNA and metatranscriptomic sequencing. Results: We found that high-virulence Porphyromonas gingivalis W83 had greater effects on the symbiotic species than the low-virulence P. gingivalis ATCC33277, and that Prevotella intermedia exacerbated the effects of W83. P. gingivalis significantly influenced the expression of genes related to metabolic pathways and quorum sensing of commensal oral species in a strain-specific manner. P. intermedia exerted synergistic effects with P. gingivalis W83 but antagonistic effects with strain ATCC33277, which may regulate the expression of virulence factors of P. gingivalis through the clp regulator. Discussion: The interaction networks indicated that the strongest correlation was between Fusobacterium nucleatum and Streptococcus mitis, which demonstrated their bridge and cornerstone roles in biofilm. Changes in the expression of genes relating to outer membrane proteins in F. nucleatum indicated that the addition of different bacteria can interfere with the co-adherence among F. nucleatum and other partners. Conclusion: We report here the existence of strain-specific interactions in subgingival plaque, which may enhance our understanding of periodontal micro-ecology and facilitate the development of improved plaque control strategies.
Collapse
Affiliation(s)
- Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wenyu Shi
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jinfeng Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
131
|
Wang Q, Zhao L, Xu C, Zhou J, Wu Y. Fusobacterium nucleatum stimulates monocyte adhesion to and transmigration through endothelial cells. Arch Oral Biol 2019; 100:86-92. [PMID: 30818128 DOI: 10.1016/j.archoralbio.2019.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Fusobacterium nucleatum (F. nucleatum) is an important pathogen in periodontitis. Previous studies have demonstrated its ability to spread via haematogenesis and modulate host immune responses. However, little is known regarding its effect on endothelial cells (ECs) and leukocytes. The aim of this study was to assess the effect of F. nucleatum on monocyte attachment and transmigration through ECs. DESIGN Human umbilical vein endothelial cells (HUVECs) and human leukemic monocyte (THP-1) cells were infected with F. nucleatum and assessed for monocyte adhesion, transendothelial migration, and HUVEC proliferation/apoptosis. Real-time PCR, western blotting and ELISA were performed to assess the expression of proinflammatory cytokines, adhesion molecules and chemokines in both cells. RESULTS F. nucleatum challenge significantly induced THP-1 cell adhesion and transmigration and markedly impaired cell proliferation and apoptosis in HUVECs. A parallel increase in vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and E-selectin expression in HUVECs and an upregulation of tumour necrosis factor-α, interleukin (IL)-1β, IL-6, IL-8, and monocyte chemoattractant protein-1 in both HUVECs and THP-1 cells were observed. The expression of nuclear factor-kappa B was also enhanced in HUVECs and THP-1 cells upon F. nucleatum infection. CONCLUSIONS F. nucleatum triggers an inflammatory response against infection in cells and promotes the recruitment and transmigration of monocytes through ECs.
Collapse
Affiliation(s)
- Qianting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieyu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
132
|
Ramos TN, Borsanelli AC, Saraiva JR, Vaccari J, Schweitzer CM, Gaetti-Jardim Jr E, Dutra IS. Efficacy of virginiamycin for the control of periodontal disease in calves. PESQUISA VETERINÁRIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-5922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Periodontal diseases are multifactorial infectious processes caused by complexes of microorganisms, with damage to health, production, and animal welfare. The aim of the present study was to evaluate the efficacy of virginiamycin in the prevention and control of two early forms of periodontal disease: gingivitis and necrotizing gingivitis. Ten weaned calves, aged four to six months, were permanently kept in a single lot under the same rotational grazing regime in a newly reformed area of Panicum maximum. Five of the calves were orally administered 340mg of virginiamycin (Virginiamycin Group) daily for a period of 18 weeks, while the remaining five calves (Control Group) remained under the same food management but did not receive virginiamycin. During this period, animals underwent 18 weekly evaluations regarding periodontal health, with monitoring and recording of clinical parameters of the eight deciduous incisor teeth on the labial and lingual faces. At approximately two-week intervals, nine collections of subgingival sulcus material from five sites of the four right incisor teeth of each animal were performed and subjected to microbiological evaluation using polymerase chain reaction with primers of 25 microorganisms considered potentially pathogenic. After 1440 periodontal clinical evaluations of incisor teeth of the 10 calves, a total of 395 episodes of gingivitis were recorded, of which 267 occurred in the Control Group and 128 in the Virginiamycin Group. Similarly, 89 episodes of necrotizing gingivitis were recorded; 58 in the Control Group and 31 in the Virginiamycin Group. Comparison of between-group means found significant differences for teeth with gingivitis and necrotizing gingivitis (t test; p<0.05). The total number of teeth with gingivitis (p<0.01) and necrotizing gingivitis (p<0.01) in Control Group was significantly higher than that of gingivitis (p<0.01) and necrotizing gingivitis (p<0.05) in the Virginiamycin Group. There was a positive correlation between total occurrence of gingivitis and necrotizing gingivitis in the Virginiamycin Group by Pearson’s test. Virginiamycin had a protective effect on treated animals compared with the Control Group (OR = 0.36: CI (95%) = 0.27-0.43). In the Control Group, Actinomyces israelli (4.74%), domain Archaea (1.58%), Eikenella corrodens (1.05%), Fusobacterium nucleatum (27.37%), class Mollicutes (5.26%); Porphyromonas endodontalis(5.26%); Porphyromonas gulae(0.53%), Prevotella buccae (6.32%), Prevotella loescheii (3.68%), Prevotella nigrescens (8.42%), Prevotella oralis (1.58%), Tannerella forsythia (0.53%), and Treponema denticola (4.21%) were detected at healthy sites, and gingivitis or necrotizing gingivitis samples. In the Virginiamycin Group, A. israelli (3.41%), domain Archaea (0.98%), F. nucleatum (9.27%), class Mollicutes(4.39%), P. endodontalis (4.39%), P. gulae (0.49%), P. buccae (8.29%), P. loescheii (6.83%), P. nigrescens (15.61%), P. oralis (1.46%), Selenomonas sputigena (0.49%), T. forsythia (0.49%), and T. denticola (2.44%) were detected. In conclusion, virginiamycin administered at a dosage of 340mg/animal/day significantly reduced the occurrence of gingivitis and necrotizing gingivitis in cattle maintained on reformed pastures, and was revealed to have action against periodontal bacterial microbiota considered to be potentially pathogenic.
Collapse
|
133
|
Fang F, Xu J, Li Q, Xia X, Du G. Characterization of a Lactobacillus brevis strain with potential oral probiotic properties. BMC Microbiol 2018; 18:221. [PMID: 30577728 PMCID: PMC6303927 DOI: 10.1186/s12866-018-1369-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The microflora composition of the oral cavity affects oral health. Some strains of commensal bacteria confer probiotic benefits to the host. Lactobacillus is one of the main probiotic genera that has been used to treat oral infections. The objective of this study was to select lactobacilli with a spectrum of probiotic properties and investigate their potential roles in oral health. RESULTS An oral isolate characterized as Lactobacillus brevis BBE-Y52 exhibited antimicrobial activities against Streptococcus mutans, a bacterial species that causes dental caries and tooth decay, and secreted antimicrobial compounds such as hydrogen peroxide and lactic acid. Compared to other bacteria, L. brevis BBE-Y52 was a weak acid producer. Further studies showed that this strain had the capacity to adhere to oral epithelial cells. Co-incubation of L. brevis BBE-Y52 with S. mutans ATCC 25175 increased the IL-10-to-IL-12p70 ratio in peripheral blood mononuclear cells, which indicated that L. brevis BBE-Y52 could alleviate inflammation and might confer benefits to host health by modulating the immune system. CONCLUSIONS L. brevis BBE-Y52 exhibited a spectrum of probiotic properties, which may facilitate its applications in oral care products.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jie Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiaoyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoxuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
134
|
Abellán R, Gómez C, Iglesias-Linares A, Palma JC. Impact of photodynamic therapy versus ultrasonic scaler on gingival health during treatment with orthodontic fixed appliances. Lasers Surg Med 2018; 51:256-267. [PMID: 30575059 DOI: 10.1002/lsm.23035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Poor oral hygiene during treatment with fixed appliances results in plaque accumulation. The presence of bacteria in the gingival crevice triggers an inflammatory reaction in the gingival tissues. The aim of this study was to compare the impact of two preventive treatments, photodynamic therapy (PDT), and ultrasonic scaler (US), on gingival health in patients under fixed orthodontic treatment. METHODS Twenty orthodontic patients were randomly allocated to two groups: PDT or US. Each group received seven sessions [days 0, 15, 30, 45, 90 (3-months follow-up), 180 (6-months follow-up), 270 (9-months follow-up)] of experimental interventions, and clinical parameters [Plaque index(PI); gingival index(GI); probing depth(PD)], periodontopathogens [Agreggatibacter actinomycetemcomitans; Porphyromonas gingivalis; Prevotella intermedia; Micromonas micros; Fusobacterium nucleatum; Tannerella forsythia; Campylobacter rectus; Eikenella corrodens; Capnocytopaga sp.] and protein markers [IL-1β;IL-1ra;IL-6;IL-10;TNF-α;FGF-2/FGF basic] were monitored at baseline and at 3, 6, and 9 months. ANOVA, Student's t-test with Bonferroni correction and ANOVA with multiple rank test were used to identify differences between groups (P < 0.05). RESULTS Clinical assessments [PI, GI, and PD] yielded no differences (P > 0.05) between groups, which showed a major decrease at the start of the trial. Reductions in total colony forming units (log CFU reduction) were observed with both treatments, although to a greater extent in the PDT group, but with no differences between groups (P > 0.05). Similar reductions in log CFU counts of P. gingivalis, P. intermedia, and F. nucleatum were observed in both groups (P > 0.05). The two groups also showed similar trends for inflammatory mediators with decreased levels of IL-1β, IL-10, and TNF-α, whereas IL-6 and IL-1ra levels remained stable and those of FGF-2 were increased after both interventions, with no differences (P > 0.05) between groups. CONCLUSION Both PDT and US methods proved similar effectiveness for the treatment of gingival inflammation induced by fixed orthodontic appliances. Lasers Surg. Med. 51:256-267, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosa Abellán
- Complutense University of Madrid, School of Dentistry, Stomatology IV Department, Plaza Ramón y Cajal sn, 28040, Madrid, Spain
| | - Clara Gómez
- Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Alejandro Iglesias-Linares
- Complutense University of Madrid, School of Dentistry, Stomatology IV Department, Plaza Ramón y Cajal sn, 28040, Madrid, Spain
| | - Juan Carlos Palma
- Complutense University of Madrid, School of Dentistry, Stomatology IV Department, Plaza Ramón y Cajal sn, 28040, Madrid, Spain
| |
Collapse
|
135
|
Hickl J, Argyropoulou A, Sakavitsi ME, Halabalaki M, Al-Ahmad A, Hellwig E, Aligiannis N, Skaltsounis AL, Wittmer A, Vach K, Karygianni L. Mediterranean herb extracts inhibit microbial growth of representative oral microorganisms and biofilm formation of Streptococcus mutans. PLoS One 2018; 13:e0207574. [PMID: 30540782 PMCID: PMC6291084 DOI: 10.1371/journal.pone.0207574] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/02/2018] [Indexed: 11/18/2022] Open
Abstract
In light of the growing antibiotic resistance, the usage of plant-derived antimicrobial agents could serve as an effective alternative treatment against oral infections. The aim of this study was to investigate the antimicrobial and antibiofilm activity of Mediterranean herb extracts against representative oral microorganisms. The extraction procedures and the analysis of the obtained extracts were performed under established experimental conditions. The minimum inhibitory (MIC) and bactericidal (MBC) concentrations of the methanol extracts of Cistus creticus ssp. creticus, Cistus monspeliensis, Origanum vulgare, Rosmarinus officinalis, Salvia sclarea and Thymus longicaulis against eight typical oral bacteria and the fungus Candida albicans were determined. The antibiofilm activity against Streptococcus mutans was also quantified using the microtiter plate test. Overall, all tested extracts inhibited effectively the screened obligate anaerobic microorganisms and in concentrations ≥0.3 mg ml-1 had moderate to high antibiofilm activity comparable to that of chlorhexidine (CHX) against S. mutans. In particular, R. officinalis (MIC: 0.08-5.00 mg ml-1) and S. sclarea (MIC: 0.08-2.50 mg ml-1) showed the highest antibacterial activity, while Cistus spp., R. officinalis and S. sclarea significantly inhibited S. mutans biofilm formation at 0.60, 1.25 and 2.50 mg ml-1, respectively. Porphyromonas gingivalis and Parvimonas micra were high susceptible to O. vulgare (MIC = 0.30 mg ml-1), whereas T. longicaulis eradicated all oral bacteria (MBC: 0.15-2.50 mg ml-1). Nevertheless, C. albicans showed no sensitivity to the tested extracts. In conclusion, the tested plant extracts could serve as alternative natural antibacterial and antibiofilm components against oral infections.
Collapse
Affiliation(s)
- Joachim Hickl
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Eleni Sakavitsi
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Annette Wittmer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kirstin Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Lamprini Karygianni
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic for Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
136
|
Edlund A, Yang Y, Yooseph S, He X, Shi W, McLean JS. Uncovering complex microbiome activities via metatranscriptomics during 24 hours of oral biofilm assembly and maturation. MICROBIOME 2018; 6:217. [PMID: 30522530 PMCID: PMC6284299 DOI: 10.1186/s40168-018-0591-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 11/06/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Dental plaque is composed of hundreds of bacterial taxonomic units and represents one of the most diverse and stable microbial ecosystems associated with the human body. Taxonomic composition and functional capacity of mature plaque is gradually shaped during several stages of community assembly via processes such as co-aggregation, competition for space and resources, and by bacterially produced reactive agents. Knowledge on the dynamics of assembly within complex communities is very limited and derives mainly from studies composed of a limited number of bacterial species. To fill current knowledge gaps, we applied parallel metagenomic and metatranscriptomic analyses during assembly and maturation of an in vitro oral biofilm. This model system has previously demonstrated remarkable reproducibility in taxonomic composition across replicate samples during maturation. RESULTS Time course analysis of the biofilm maturation was performed by parallel sampling every 2-3 h for 24 h for both DNA and RNA. Metagenomic analyses revealed that community taxonomy changed most dramatically between three and six hours of growth when pH dropped from 6.5 to 5.5. By applying comparative metatranscriptome analysis we could identify major shifts in overall community activities between six and nine hours of growth when pH dropped below 5.5, as 29,015 genes were significantly up- or down- expressed. Several of the differentially expressed genes showed unique activities for individual bacterial genomes and were associated with pyruvate and lactate metabolism, two-component signaling pathways, production of antibacterial molecules, iron sequestration, pH neutralization, protein hydrolysis, and surface attachment. Our analysis also revealed several mechanisms responsible for the niche expansion of the cariogenic pathogen Lactobacillus fermentum. CONCLUSION It is highly regarded that acidic conditions in dental plaque cause a net loss of enamel from teeth. Here, as pH drops below 5.5 pH to 4.7, we observe blooms of cariogenic lactobacilli, and a transition point of many bacterial gene expression activities within the community. To our knowledge, this represents the first study of the assembly and maturation of a complex oral bacterial biofilm community that addresses gene level functional responses over time.
Collapse
Affiliation(s)
- Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92137, USA.
| | - Youngik Yang
- National Marine Biodiversity Institute of Korea, 75, Jansang-ro 101beon-gil, Janghang-eup, Seocheon-gun, Chungcheongnam-do, 33662, Korea
| | - Shibu Yooseph
- Department of Computer Science, University of Central Florida, 4328 Scorpius Street, Orlando, FL, 32816, USA
| | - Xuesong He
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
137
|
Tsunoda Y, Asahara T, Nomoto K, Yoshioka Y, Fukuma E. Bacterial profile of infant feces associated with lactation infectious breasts. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2018; 9:173-180. [PMID: 30584388 PMCID: PMC6287549 DOI: 10.2147/phmt.s184637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Mastitis is a common complication in lactating women. However, the diversity of intestinal bacteria in infant exclusively fed infectious milk remains uncharacterized. Our colleagues recently established a method based on 16S and 23S rRNA-targeted reverse transcription–quantitative PCR (RT-qPCR) for detecting bacteria. Materials and methods In the present study, the bacteria present in 14 samples of milk and infant feces were characterized using the RT-qPCR method, and concentrations of fecal organic acids were measured during the period of breast massage using HPLC. Results Streptococcus agalactiae and Str. parasanguinis were detected in milk from mastitis patients, whereas Str. salivarius and Str. thermophilus were the predominant bacteria in milk from engorged breasts. In feces of breastfed infants, Str. salivarius, Str. thermophiles, and Str. parasanguinis were isolated. Levels of lactate were high in fecal samples, whereas the pH of infant feces stabilized during breast massage. The bacterial diversity of milk from lactation infectious breasts was similar to that in feces of infant fed milk from lactation infectious breasts. Streptococcus species isolated from the feces of breastfed infants are related to oral cavity health. Conclusion These results suggest that Streptococcus species, which are part of the healthy oral microflora, may play an important role in preserving the intestinal bacterial flora in infants fed infectious milk.
Collapse
Affiliation(s)
- Yuko Tsunoda
- Department of Breast Surgery, Breast Center, Kameda Medical Center, Kamogawa, Chiba 296-8602, Japan,
| | - Takashi Asahara
- Department of Microbiological Research, Yakult Central Institute, Kunitachi, Tokyo 186-8650, Japan
| | - Koji Nomoto
- Department of Molecular Microbiology, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yukiko Yoshioka
- Department of Breast Management Research, Oketani Breast Management Research Institute, Shinjuku-ku, Tokyo 162-0044, Japan
| | - Eisuke Fukuma
- Department of Breast Surgery, Breast Center, Kameda Medical Center, Kamogawa, Chiba 296-8602, Japan,
| |
Collapse
|
138
|
Wang JC, Pillutla P, Cordero J, Hamood AN. Prospective observational case series evaluating middle ear fluid and tympanostomy tubes through pyrosequencing. Int J Pediatr Otorhinolaryngol 2018; 114:159-165. [PMID: 30262357 DOI: 10.1016/j.ijporl.2018.08.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE One of the most common sequelae of tympanostomy tube (TT) placement is post-tympanostomy tube otorrhea (PTTO). Granulation tissue formation has been reported in 5-13.8% of patients with TT placement. The purpose of this study is to determine the biodistribution of microorganisms on TTs and middle ear fluid obtained from patients with PTTO. METHODS This was a prospective observational study of subjects (6-months-16-years) who underwent standard of care treatment for chronic PTTO. Data was collected on diagnosis, existence of antibiotic resistance, duration of tube placement, and evidence of recurrent infection and/or PTTO. TTs and middle ear fluid were subjected to pyrosequencing; additionally, ear fluid samples were sent for culture-based laboratory diagnostics. RESULTS DNA-pyrosequencing analysis of bacteria from fluid and TTs of pediatric subjects with PTTO revealed a mixture of both aerobic and anaerobic populations. Retained tubes with minimal otorrhea revealed a predominance of Staphylococcus species, normal external auditory canal (EAC) microbiome, within middle ear fluid as well as on TTs. However, TTs with active mucopurulent otorrhea and granulation tissue unveiled prominence of Gram-negative facultative anaerobes such as Pseudomonas and Eikenella. Discrepancies in prominent bacteria were seen between standard culture-based techniques versus pyrosequencing. CONCLUSION Retained tympanostomy tubes are colonized primarily with normal flora of the EAC. However, mucopurulent otorrhea associated with granulation tissue formation revealed a prominence of Gram-negative facultative anaerobes. Standard culture-based diagnostics may identify bacteria, which are not predominant species of infection. Future studies are necessary to assess the association of Gram-negative facultative anaerobes with granulation tissue formation.
Collapse
Affiliation(s)
- James C Wang
- Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA; Department of Otolaryngology - Head and Neck Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Pranati Pillutla
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Joehassin Cordero
- Department of Otolaryngology - Head and Neck Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
139
|
Bedree JK, Bor B, Cen L, Edlund A, Lux R, McLean JS, Shi W, He X. Quorum Sensing Modulates the Epibiotic-Parasitic Relationship Between Actinomyces odontolyticus and Its Saccharibacteria epibiont, a Nanosynbacter lyticus Strain, TM7x. Front Microbiol 2018; 9:2049. [PMID: 30319555 PMCID: PMC6166536 DOI: 10.3389/fmicb.2018.02049] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
The ultra-small, obligate parasitic epibiont, TM7x, the first and only current member of the long-elusive Saccharibacteria (formerly the TM7 phylum) phylum to be cultivated, was isolated in co-culture with its bacterial host, Actinomyces odontolyticus subspecies actinosynbacter, XH001. Initial phenotypic characterization of the TM7x-associated XH001 co-culture revealed enhanced biofilm formation in the presence of TM7x compared to XH001 as monoculture. Genomic analysis and previously published transcriptomic profiling of XH001 also revealed the presence of a putative AI-2 quorum sensing (QS) operon, which was highly upregulated upon association of TM7x with XH001. This analysis revealed that the most highly induced gene in XH001 was an lsrB ortholog, which encodes a putative periplasmic binding protein for the auto inducer (AI)-2 QS signaling molecule. Further genomic analyses suggested the lsrB operon in XH001 is a putative hybrid AI-2/ribose transport operon as well as the existence of a luxS ortholog, which encodes the AI-2 synthase. In this study, the potential role of AI-2 QS in the epibiotic-parasitic relationship between XH001 and TM7x in the context of biofilm formation was investigated. A genetic system for XH001 was developed to generate lsrB and luxS gene deletion mutants in XH001. Phenotypic characterization demonstrated that deletion mutations in either lsrB or luxS did not affect XH001's growth dynamic, mono-species biofilm formation capability, nor its ability to associate with TM7x. TM7x association with XH001 induced lsrB gene expression in a luxS-dependent manner. Intriguingly, unlike wild type XH001, which displayed significantly increased biofilm formation upon establishing the epibiotic-parasitic relationship with TM7x, XH001ΔlsrB, and XH001ΔluxS mutants failed to achieve enhanced biofilm formation when associated with TM7x. In conclusion, we demonstrated a significant role for AI-2 QS in modulating dual-species biofilm formation when XH001 and TM7x establish their epibiotic-parasitic relationship.
Collapse
Affiliation(s)
- Joseph K Bedree
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Batbileg Bor
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Lujia Cen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Anna Edlund
- Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, United States
| | - Renate Lux
- Section of Periodontics, Division of Constitutive and Regenerative Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey S McLean
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Wenyuan Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| |
Collapse
|
140
|
Rupf S, Laczny CC, Galata V, Backes C, Keller A, Umanskaya N, Erol A, Tierling S, Lo Porto C, Walter J, Kirsch J, Hannig M, Hannig C. Comparison of initial oral microbiomes of young adults with and without cavitated dentin caries lesions using an in situ biofilm model. Sci Rep 2018; 8:14010. [PMID: 30228377 PMCID: PMC6143549 DOI: 10.1038/s41598-018-32361-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
Dental caries is caused by acids released from bacterial biofilms. However, the in vivo formation of initial biofilms in relation to caries remains largely unexplored. The aim of this study was to compare the oral microbiome during the initial phase of bacterial colonization for individuals with (CC) and without (NC) cavitated dentin caries lesions. Bovine enamel slabs on acrylic splints were worn by the volunteers (CC: 14, NC: 13) for in situ biofilm formation (2 h, 4 h, 8 h, 1 ml saliva as reference). Sequencing of the V1/V2 regions of the 16S rRNA gene was performed (MiSeq). The relative abundances of individual operational taxonomic units (OTUs) were compared between samples from the CC group and the NC group. Random forests models were furthermore trained to separate the groups. While the overall heterogeneity did not differ substantially between CC and NC individuals, several individual OTUs were found to have significantly different relative abundances. For the 8 h samples, most of the significant OTUs showed higher relative abundances in the CC group, while the majority of significant OTUs in the saliva samples were more abundant in the NC group. Furthermore, using OTU signatures enabled a separation between both groups, with area-under-the-curve (AUC) values of ~0.8. In summary, the results suggest that initial oral biofilms provide the potential to differentiate between CC and NC individuals.
Collapse
Affiliation(s)
- Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center, Homburg, Germany.
| | - Cedric C Laczny
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Valentina Galata
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Natalia Umanskaya
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center, Homburg, Germany
| | - Arzu Erol
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center, Homburg, Germany
| | - Sascha Tierling
- Faculty of Natural Sciences and Technology, Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Christina Lo Porto
- Faculty of Natural Sciences and Technology, Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Faculty of Natural Sciences and Technology, Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jasmin Kirsch
- Policlinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center, Homburg, Germany
| | - Christian Hannig
- Policlinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
141
|
Tavares LJ, de Avila ED, Klein MI, Panariello BHD, Spolidório DMP, Pavarina AC. Antimicrobial photodynamic therapy alone or in combination with antibiotic local administration against biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 188:135-145. [PMID: 30267963 DOI: 10.1016/j.jphotobiol.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) kills several planktonic pathogens. However, the susceptibility of biofilm-derived anaerobic bacteria to aPDT is poorly characterized. Here, we evaluated the effect of Photodithazine (PDZ)-mediated aPDT on Fusobacterium nucleatum and Porphyromonas gingivalis biofilms. In addition, aPDT was tested with metronidazole (MTZ) to explore the potential antimicrobial effect of the treatment. The minimum inhibitory concentration (MIC) of MTZ was defined for each bacterial species. Single-species biofilms of each species were grown on polystyrene plates under anaerobic conditions for five days. aPDT was performed by applying PDZ at concentrations of 50, 75 and 100 mg/L, followed by exposure to 50 J/cm2 LED light (660 nm) with or without MTZ. aPDT exhibited a significant reduction in bacterial viability at a PDZ concentration of 100 mg/L, with 1.12 log10 and 2.66 log10 reductions for F. nucleatum and P. gingivalis in biofilms, respectively. However, the antimicrobial effect against F. nucleatum was achieved only when aPDT was combined with MTZ at 100× MIC. Regarding P. gingivalis, the combination of PDZ-mediated aPDT at 100 mg/L with MTZ 100× MIC resulted in a 5 log10 reduction in the bacterial population. The potential antimicrobial effects of aPDT in combination with MTZ for both single pathogenic biofilms were confirmed by live/dead staining. These results suggest that localized antibiotic administration may be an adjuvant to aPDT to control F. nucleatum and P. gingivalis biofilms.
Collapse
Affiliation(s)
- Lívia J Tavares
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903 Araraquara, SP, Brazil
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903 Araraquara, SP, Brazil
| | - Marlise I Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903 Araraquara, SP, Brazil
| | - Beatriz H D Panariello
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, 1121 W Michigan St, DS406, Indianapolis, IN 46202, USA
| | - Denise M P Spolidório
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903 Araraquara, SP, Brazil.
| |
Collapse
|
142
|
Litsea japonica Leaf Extract Suppresses Proinflammatory Cytokine Production in Periodontal Ligament Fibroblasts Stimulated with Oral Pathogenic Bacteria or Interleukin-1β. Int J Mol Sci 2018; 19:ijms19092494. [PMID: 30142971 PMCID: PMC6163774 DOI: 10.3390/ijms19092494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
Periodontal disease, a chronic disease caused by bacterial infection, eventually progresses to severe inflammation and bone loss. Regulating excessive inflammation of inflamed periodontal tissues is critical in treating periodontal diseases. The periodontal ligament (PDL) is primarily a connective tissue attachment between the root and alveolar bone. PDL fibroblasts (PDLFs) produce pro-inflammatory cytokines in response to bacterial infection, which could further adversely affect the tissue and cause bone loss. In this study, we determined the ability of Litsea japonica leaf extract (LJLE) to inhibit pro-inflammatory cytokine production in PDLFs in response to various stimulants. First, we found that LJLE treatment reduced lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (interleukin-6 and interleukin-8) mRNA and protein expression in PDLFs without cytotoxicity. Next, we observed the anti-inflammatory effect of LJLE in PDLFs after infection with various oral bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. These anti-inflammatory effects of LJLE were dose-dependent, and the extract was effective following both pretreatment and posttreatment. Moreover, we found that LJLE suppressed the effect of interleukin-1 beta-induced pro-inflammatory cytokine production in PDLFs. Taken together, these results indicate that LJLE has anti-inflammatory activity that could be exploited to prevent and treat human periodontitis by controlling inflammation.
Collapse
|
143
|
Habluetzel A, Schmid C, Carvalho TS, Lussi A, Eick S. Impact of honey on dental erosion and adhesion of early bacterial colonizers. Sci Rep 2018; 8:10936. [PMID: 30026515 PMCID: PMC6053432 DOI: 10.1038/s41598-018-29188-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/05/2018] [Indexed: 01/20/2023] Open
Abstract
The aim was to investigate if honey causes erosion and if salivary pellicle modified with honey, or its components, or the by-product propolis has a protective effect against dental erosion and adhesion of early bacterial colonizers. The tested substances were: 3 types of honey, methylglyoxal (MGO), hydrogen peroxide, propolis. First in the erosion experiment, 120 human enamel specimens were covered with salivary pellicle and modified with the substances. Then they were eroded with 1% citric acid, pH 3.6 for 2 min, before surface hardness was measured. In the microbiological assay, the enamel specimens (n = 126) covered with modified salivary pellicle were contaminated with bacterial suspensions. The antimicrobial activity of each substance and their effect on early bacterial colonizer adhesion and biofilm formation were determined. Despite a low pH, honey did not cause erosion. On the other hand, pellicle modification with the tested solutions did not protect the enamel from erosion. Microbiologically, the 3 honeys inhibited species-specific growth of oral bacteria. Propolis decreased initial attachment of Streptococcus gordonii, while one honey inhibited demineralization of enamel by biofilm. In conclusion, pellicle modification with honey, or its components, or propolis did neither protect against erosion nor promote it. Propolis presented some bacterial adhesion inhibition.
Collapse
Affiliation(s)
- Alexandra Habluetzel
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Christoph Schmid
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Thiago S Carvalho
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Adrian Lussi
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
144
|
Yoshikawa K, Kikuchi Y, Kokubu E, Imamura K, Saito A, Ishihara K. Identification of a specific domain of Porphyromonas gingivalis Hgp44 responsible for adhesion to Treponema denticola. Pathog Dis 2018; 76:4995196. [PMID: 29771309 DOI: 10.1093/femspd/fty047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/09/2018] [Indexed: 11/12/2022] Open
Abstract
Interaction between two periodontal pathogens, Porphyromonas gingivalis and Treponema denticola, contributes to plaque biofilm formation. Porphyromonas gingivalis forms aggregates with T. denticola through its adhesion/hemagglutinin domain (Hgp44). In this study, we investigated the specific domain of P. gingivalis Hgp44 responsible for adhesion to T. denticola using expression vectors harboring P. gingivalis Hgp44 DNA sequences encoding amino acid residues 1-419. Six plasmids harboring fragments in this region were generated by PCR amplification and self-ligation, and recombinant proteins r-Hgp44 (residues 1-419), r-Hgp441 (residues 1-124), r-Hgp442 (1-199), r-Hgp443 (1-316), r-Hgp444 (199-419), r-Hgp445 (124-198) and r-Hgp446 (199-316) were produced, as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. r-Hgp44, r-Hgp443 and r-Hgp446 showed greater adhesion to T. denticola sonicates than the control, as determined by enzyme-linked immunosorbent assay. r-Hgp446 reduced the coaggregation of P. gingivalis and T. denticola. Scanning electron and confocal laser scanning microscopy analyses revealed that r-Hgp446 reduced dual-species biofilm formation. Our results indicate that residues 199-316 of P. gingivalis Hgp44 are mainly responsible for adhesion to T. denticola; inhibiting this domain could potentially disrupt periodontopathic biofilm formation and maturation.
Collapse
Affiliation(s)
- Kouki Yoshikawa
- Department of Periodontology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, Tokyo 101-0061, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Tokyo 101-0061, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo 101-0061, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, Tokyo 101-0061, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo 101-0061, Japan
| |
Collapse
|
145
|
Glucan Binding Protein C of Streptococcus mutans Mediates both Sucrose-Independent and Sucrose-Dependent Adherence. Infect Immun 2018; 86:IAI.00146-18. [PMID: 29685986 DOI: 10.1128/iai.00146-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/18/2018] [Indexed: 01/11/2023] Open
Abstract
The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans, has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii, GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (β-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire.
Collapse
|
146
|
Deschaine BM, Heysel AR, Lenhart BA, Murphy HA. Biofilm formation and toxin production provide a fitness advantage in mixed colonies of environmental yeast isolates. Ecol Evol 2018; 8:5541-5550. [PMID: 29938072 PMCID: PMC6010761 DOI: 10.1002/ece3.4082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Microbes can engage in social interactions ranging from cooperation to warfare. Biofilms are structured, cooperative microbial communities. Like all cooperative communities, they are susceptible to invasion by selfish individuals who benefit without contributing. However, biofilms are pervasive and ancient, representing the first fossilized life. One hypothesis for the stability of biofilms is spatial structure: Segregated patches of related cooperative cells are able to outcompete unrelated cells. These dynamics have been explored computationally and in bacteria; however, their relevance to eukaryotic microbes remains an open question. The complexity of eukaryotic cell signaling and communication suggests the possibility of different social dynamics. Using the tractable model yeast, Saccharomyces cerevisiae, which can form biofilms, we investigate the interactions of environmental isolates with different social phenotypes. We find that biofilm strains spatially exclude nonbiofilm strains and that biofilm spatial structure confers a consistent and robust fitness advantage in direct competition. Furthermore, biofilms may protect against killer toxin, a warfare phenotype. During biofilm formation, cells are susceptible to toxin from nearby competitors; however, increased spatial use may provide an escape from toxin producers. Our results suggest that yeast biofilms represent a competitive strategy and that principles elucidated for the evolution and stability of bacterial biofilms may apply to more complex eukaryotes.
Collapse
Affiliation(s)
| | - Angela R. Heysel
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| | - B. Adam Lenhart
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| | - Helen A. Murphy
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| |
Collapse
|
147
|
Datta A, Stapleton F, Willcox MDP. Bacterial Coaggregation and Cohesion Among Isolates From Contact Lens Cases. Invest Ophthalmol Vis Sci 2018; 59:2729-2735. [PMID: 29860459 DOI: 10.1167/iovs.17-23155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study was to examine cohesion, coaggregation, and coculture between bacteria commonly isolated from contact lens cases. Methods Staphylococcus epidermidis, Staphylococcus haemolyticus, Micrococcus luteus, and Acinetobacter radioresistens (two strains each) isolated from contact lens cases of two asymptomatic wearers were used in this study. In the cohesion assay, bacteria were grown, washed, and examined by incubating lens cases with two different types of bacteria sequentially and assessing the number of adhered cells of each isolate. The ability of isolates to interfere with the growth of other isolates was tested by growing strains in cocultures for 24 hours and determining the numbers of cells of individual strains. For coaggregation, equal proportions of two bacterial suspensions were mixed and allowed to coaggregate for 24 hours. Inhibition of coaggregation was tested by the addition of lactose (0.06 M) or sucrose (0.06 M) or pronase. Results The initial adhesion of M. luteus or A. radioresistens significantly (P < 0.05) enhanced the subsequent adhesion of the staphylococci. The addition of A. radioresistens in liquid media significantly (P < 0.05) enhanced the growth of staphylococci. S. epidermidis or S. haemolyticus coaggregated with M. luteus or A. radioresistens. The degree of coaggregation varied between 30% and 54%. The highest coaggregation (54% ± 5%) was seen between A. radioresistens 22-1 and S. epidermidis 22-1, isolated from the same lens case. Only lactose or sucrose treatment of staphylococci could partly inhibit coaggregation of some pairs. Conclusions Coaggregation, cohesion, and growth promotion may facilitate the process of bacterial colonization of contact lens cases.
Collapse
Affiliation(s)
- Ananya Datta
- School of Optometry and Vision Science, University of New South Wales Sydney, New South Wales, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales Sydney, New South Wales, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales Sydney, New South Wales, Australia
| |
Collapse
|
148
|
Kommerein N, Doll K, Stumpp NS, Stiesch M. Development and characterization of an oral multispecies biofilm implant flow chamber model. PLoS One 2018; 13:e0196967. [PMID: 29771975 PMCID: PMC5957423 DOI: 10.1371/journal.pone.0196967] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Peri-implant infections are the most common cause of implant failure in modern dental implantology. These are caused by the formation of biofilms on the implant surface and consist of oral commensal and pathogenic bacteria, which harm adjacent soft and hard tissues and may ultimately lead to implant loss. In order to improve the clinical situation, there has to be a better understanding of biofilm formation on abiotic surfaces. Therefore, we successfully developed a system to cultivate an oral multispecies biofilm model in a flow chamber system, optimized for the evaluation of biofilm formation on solid materials by direct microscopic investigation. The model contains four relevant oral bacterial species: Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar and Porphyromonas gingivalis in ratios similar to the native situation. The reliability of the developed “Hanoverian Oral Multispecies Biofilm Implant Flow Chamber” (HOBIC) model was verified. Biofilm volume and live/dead distribution within biofilms were determined by fluorescence staining and confocal laser scanning microcopy (CLSM). The individual species distribution was analyzed using quantitative real time PCR with propidium monoazide pretreatment (PMA-qRT-PCR) and by urea-NaCl fluorescence in situ hybridization (urea-NaCl-FISH). This in vitro model may be used to analyze biofilm formation on dental implants in more detail and to develop future implant systems with improved material properties.
Collapse
Affiliation(s)
- Nadine Kommerein
- Clinic for Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- * E-mail: (NK); (KD)
| | - Katharina Doll
- Clinic for Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- * E-mail: (NK); (KD)
| | - Nico S. Stumpp
- Clinic for Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Clinic for Dental Prosthetics and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
149
|
Pavlova SI, Wilkening RV, Federle MJ, Lu Y, Schwartz J, Tao L. Streptococcus endopeptidases promote HPV infection in vitro. Microbiologyopen 2018; 8:e00628. [PMID: 29675996 PMCID: PMC6341032 DOI: 10.1002/mbo3.628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
Both cervical and throat cancers are associated with human papillomavirus (HPV). HPV infection requires cleavage of the minor capsid protein L2 by furin. While furin is present in the vaginal epithelium, it is absent in oral epithelial basal cells where HPV infection occurs. The objective of this study was to investigate whether common oral bacteria express furin‐like peptidases. By screening strains representing 12 oral Streptococcus and Enterococcus species, we identified that eight Streptococcus strains displayed high levels of furin‐like peptidase activity, with S. gordonii V2016 the highest. We constructed null mutations for 14 genes encoding putative endopeptidases in S. gordonii V2016. Results showed that three endopeptidases, PepO, PulO, and SepM, had furin‐like activities. All three mutants showed decreased natural transformation by chromosomal DNA, while the pepO mutant also showed reduced transformation by plasmid DNA, indicating involvement of these endopeptidases in competence development. The purified S. gordonii PepO protein promoted infection of epithelial 293TT cells in vitro by HPV16 pseudovirus. In conclusion, oral bacteria might promote HPV infection and contribute to HPV tissue tropism and subsequent carcinogenesis in the oral cavity and throat by providing furin‐like endopeptidases.
Collapse
Affiliation(s)
- Sylvia I Pavlova
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Reid V Wilkening
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu Lu
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Tao
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
150
|
Micro-scale intermixing: a requisite for stable and synergistic co-establishment in a four-species biofilm. ISME JOURNAL 2018; 12:1940-1951. [PMID: 29670216 DOI: 10.1038/s41396-018-0112-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 01/14/2023]
Abstract
Microorganisms frequently coexist in complex multispecies communities, where they distribute non-randomly, reflective of the social interactions that occur. It is therefore important to understand how social interactions and local spatial organization influences multispecies biofilm succession. Here the localization of species pairs was analyzed in three dimensions in a reproducible four-species biofilm model, to study the impact of spatial positioning of individual species on the temporal development of the community. We found, that as the biofilms developed, species pairs exhibited distinct intermixing patterns unique to the four-member biofilms. Higher biomass and more intermixing were found in four-species biofilms compared to biofilms with fewer species. Intriguingly, in local regions within the four member biofilms where Microbacterium oxydans was scant, both biomass and intermixing of all species were lowered, compared to regions where M. oxydans was present at typical densities. Our data suggest that Xanthomonas retroflexus and M. oxydans, both low abundant biofilm-members, intermixed continuously during the development of the four-species biofilm, hereby facilitating their own establishment. In turn, this seems to have promoted distinct spatial organization of Stenotrophomonas rhizophila and Paenibacillus amylolyticus enabling enhanced growth of all four species. Here local intermixing of bacteria advanced the temporal development of a multi-species biofilm.
Collapse
|