101
|
Mattes RD. Hunger and thirst: issues in measurement and prediction of eating and drinking. Physiol Behav 2010; 100:22-32. [PMID: 20060847 DOI: 10.1016/j.physbeh.2009.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 01/03/2023]
Abstract
Associations between hunger and eating and between thirst and drinking are generally weak. This stems, in part, from limitations in the measurement of these sensations which generally rely on temporal, motivational, metabolic and/or self-reported descriptive indices. Each is critically reviewed. Also problematic is the fact that the deterministic depletion-repletion concept of ingestive behavior fails to account for influences of a multitude of contravening cognitive, social, sensory and logistical factors. Although hunger and thirst serve some parallel purposes, sharp distinctions are also present with health implications. Of particular note are the observations that thirst ratings are higher and more stable over the day compared to hunger and thirst may be more motivating to drink than hunger is to eat. Coupling these observations with evidence that beverages have limited satiety value, they pose particular challenges and opportunities. Beverages can facilitate the delivery of nutrients to those desiring or requiring them, but also to those where they are not desired or required. The benefits and risks are a function of their use rather than their inherent properties.
Collapse
Affiliation(s)
- Richard D Mattes
- Department of Foods and Nutrition, Purdue University, 212 Stone Hall, 700 W State Street, West Lafayette, IN 47907-2059, USA.
| |
Collapse
|
102
|
The Brain-insulin Connection, Metabolic Diseases and Related Pathologies. DIABETES, INSULIN AND ALZHEIMER'S DISEASE 2010. [DOI: 10.1007/978-3-642-04300-0_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
103
|
Grayson BE, Kievit P, Smith MS, Grove KL. Critical determinants of hypothalamic appetitive neuropeptide development and expression: species considerations. Front Neuroendocrinol 2010; 31:16-31. [PMID: 19822169 PMCID: PMC2813940 DOI: 10.1016/j.yfrne.2009.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/05/2009] [Indexed: 01/21/2023]
Abstract
Over the last decade there has been a striking increase in the early onset of metabolic disease, including obesity and diabetes. The regulation of energy homeostasis is complex and involves the intricate integration of peripheral and central systems, including the hypothalamus. This review provides an overview of the development of brain circuitry involved in the regulation of energy homeostasis as well as recent findings related to the impact of both prenatal and postnatal maternal environment on the development of these circuits. There is surprising evidence that both overnutrition and undernutrition impact the development of these circuits in a similar manner as well as having similar consequences of increased obesity and diabetes later in life. There is also a special focus on relevant species differences in the development of hypothalamic circuits. A deeper understanding of the mechanisms involved in the development of brain circuitry is needed to fully understand how the nutritional and/or maternal environments impact the functional circuitry as well as the behavior and physiological outcomes.
Collapse
Affiliation(s)
- B E Grayson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
104
|
Grill HJ. Leptin and the systems neuroscience of meal size control. Front Neuroendocrinol 2010; 31:61-78. [PMID: 19836413 PMCID: PMC2813996 DOI: 10.1016/j.yfrne.2009.10.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 12/14/2022]
Abstract
The development of effective pharmacotherapy for obesity will benefit from a more complete understanding of the neural pathways and the neurochemical signals whose actions result in the reduction of the size of meals. This review examines the neural control of meal size and the integration of two principal sources of that control--satiation signals arising from the gastrointestinal tract and CNS leptin signaling. Four types of integrations that are central to the control of meal size are described and each involves the neurons of the nucleus tractus solitarius (NTS) in the dorsal hindbrain. Data discussed show that NTS neurons integrate information arising from: (1) ascending GI-derived vagal afferent projections, (2) descending neuropeptidergic projections from leptin-activated arcuate and paraventricular nucleus neurons, (3) leptin signaling in NTS neurons themselves and (4) melanocortinergic projections from NTS and hypothalamic POMC neurons to NTS neurons and melanocortinergic modulation of vagal afferent nerve terminals that are presynaptic to NTS neurons.
Collapse
Affiliation(s)
- Harvey J Grill
- Graduate Groups of Psychology and Neuroscience, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
105
|
Balleine BW, O'Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 2010; 35:48-69. [PMID: 19776734 PMCID: PMC3055420 DOI: 10.1038/npp.2009.131] [Citation(s) in RCA: 1217] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 11/08/2022]
Abstract
Recent behavioral studies in both humans and rodents have found evidence that performance in decision-making tasks depends on two different learning processes; one encoding the relationship between actions and their consequences and a second involving the formation of stimulus-response associations. These learning processes are thought to govern goal-directed and habitual actions, respectively, and have been found to depend on homologous corticostriatal networks in these species. Thus, recent research using comparable behavioral tasks in both humans and rats has implicated homologous regions of cortex (medial prefrontal cortex/medial orbital cortex in humans and prelimbic cortex in rats) and of dorsal striatum (anterior caudate in humans and dorsomedial striatum in rats) in goal-directed action and in the control of habitual actions (posterior lateral putamen in humans and dorsolateral striatum in rats). These learning processes have been argued to be antagonistic or competing because their control over performance appears to be all or none. Nevertheless, evidence has started to accumulate suggesting that they may at times compete and at others cooperate in the selection and subsequent evaluation of actions necessary for normal choice performance. It appears likely that cooperation or competition between these sources of action control depends not only on local interactions in dorsal striatum but also on the cortico-basal ganglia network within which the striatum is embedded and that mediates the integration of learning with basic motivational and emotional processes. The neural basis of the integration of learning and motivation in choice and decision-making is still controversial and we review some recent hypotheses relating to this issue.
Collapse
Affiliation(s)
- Bernard W Balleine
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia.
| | | |
Collapse
|
106
|
Celi P, Miller DW, Blache D, Martin GB. Interactions between nutritional and opioidergic pathways in the control of LH secretion in male sheep. Anim Reprod Sci 2010; 117:67-73. [DOI: 10.1016/j.anireprosci.2009.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 02/13/2009] [Accepted: 03/25/2009] [Indexed: 11/26/2022]
|
107
|
Scomparin DX, Gomes RM, Grassiolli S, Rinaldi W, Martins AG, de Oliveira JC, Gravena C, de Freitas Mathias PC. Autonomic activity and glycemic homeostasis are maintained by precocious and low intensity training exercises in MSG-programmed obese mice. Endocrine 2009; 36:510-7. [PMID: 19856134 DOI: 10.1007/s12020-009-9263-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 09/18/2009] [Indexed: 12/13/2022]
Abstract
Current research employed electrical records from superior vagus and sympathetic nerve branch that supply fat retroperitoneal tissue (RS nerve) to investigate whether very moderate swim training in obese-programmed mice would change sympathetic and parasympathetic autonomic nervous system activities. Neonatal mice were treated with monosodium L: -glutamate (MSG), during their first 5 days of life, to induce obesity. Mice started training on weaning, comprising free swimming 3 days/week, 15 min/day for 10 weeks. After 12 h fasting, the nerve electrical signals of the 90-day-old mice were processed to obtain firing rates. Blood samples were collected to measure glucose and insulin levels. Adrenal catecholamine content was measured. MSG treatment caused obesity. Hyperglycemia and hyperinsulinemia in MSG-obese mice, without any change in food intake, were obtained. Vagus firing rates were higher in obese mice than those in lean ones. A decrease in RS nerve activity and lower adrenal catecholamine stores have been observed. Swimming normalized blood glucose and insulin levels and MSG-obesity onset was attenuated by exercise. Vagus activity from obese mice decreased, whereas RS nerve activity and adrenal catecholamine levels increased in trained ones. Results suggest that autonomic activity imbalance and metabolic dysfunctions observed in MSG-obese mice were inhibited by precocious and moderate exercise training.
Collapse
Affiliation(s)
- Dionizia Xavier Scomparin
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, State University of Maringá, Avenida Colombo 5790, Bloco H-67, S/019, Maringá, PR 87020-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Shi H, Seeley RJ, Clegg DJ. Sexual differences in the control of energy homeostasis. Front Neuroendocrinol 2009; 30:396-404. [PMID: 19341761 PMCID: PMC4517605 DOI: 10.1016/j.yfrne.2009.03.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 03/09/2009] [Accepted: 03/17/2009] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity has reached epidemic proportion with enormous costs in both human lives and healthcare dollars spent. Obesity-related metabolic disorders are much lower in premenopausal women than men; however, there is a dramatic increase following menopause in women. The health risks associated with obesity vary depending on the location of adipose tissue. Adipose tissue distributed in the abdominal visceral carry a much greater risk for metabolic disorders than does adipose tissue distributed subcutaneously. There are distinct sex-dependent differences in the regional fat distribution, women carry more fat subcutaneously whereas men carry more fat viscerally. Males and females differ with respect to their regulation of energy homeostasis. Peripheral adiposity hormones such as leptin and insulin as well as sex hormones directly influence energy balance. Sexual dimorphisms in energy balance, body fat distribution, and the role sex hormones have in mediating these differences are the focus of this review.
Collapse
Affiliation(s)
- Haifei Shi
- Obesity Research Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | |
Collapse
|
109
|
Shin AC, Zheng H, Berthoud HR. An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav 2009; 97:572-80. [PMID: 19419661 PMCID: PMC2765252 DOI: 10.1016/j.physbeh.2009.02.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 01/01/2023]
Abstract
The traditional view of neural regulation of body energy homeostasis focuses on internal feedback signals integrated in the hypothalamus and brainstem and in turn leading to balanced activation of behavioral, autonomic, and endocrine effector pathways leading to changes in food intake and energy expenditure. Recent observations have demonstrated that many of these internal signals encoding energy status have much wider effects on the brain, particularly sensory and cortico-limbic systems that process information from the outside world by detecting and interpreting food cues, forming, storing, and recalling representations of experience with food, and assigning hedonic and motivational value to conditioned and unconditioned food stimuli. Thus, part of the metabolic feedback from the internal milieu regulates food intake and energy balance by acting on extrahypothalamic structures, leading to an expanded view of neural control of energy homeostasis taking into account the need to adapt to changing conditions in the environment. The realization that metabolic signals act directly on these non-traditional targets of body energy homeostasis brings opportunities for novel drug targets for the fight against obesity and eating disorders.
Collapse
Affiliation(s)
- Andrew C Shin
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | |
Collapse
|
110
|
Köhnke R, Lindqvist A, Göransson N, Emek SC, Albertsson PÅ, Rehfeld JF, Hultgårdh-Nilsson A, Erlanson-Albertsson C. Thylakoids suppress appetite by increasing cholecystokinin resulting in lower food intake and body weight in high-fat fed mice. Phytother Res 2009; 23:1778-83. [DOI: 10.1002/ptr.2855] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
111
|
Sandoval DA, Obici S, Seeley RJ. Targeting the CNS to treat type 2 diabetes. Nat Rev Drug Discov 2009; 8:386-98. [PMID: 19404312 DOI: 10.1038/nrd2874] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research on the role of peripheral organs in the regulation of glucose homeostasis has led to the development of various monotherapies that aim to improve glucose uptake and insulin action in these organs for the treatment of type 2 diabetes. It is now clear that the central nervous system (CNS) also plays an important part in orchestrating appropriate glucose metabolism, with accumulating evidence linking dysregulated CNS circuits to the failure of normal glucoregulatory mechanisms. There is evidence that there is substantial overlap between the CNS circuits that regulate energy balance and those that regulate glucose levels, suggesting that their dysregulation could link obesity and diabetes. These findings present new targets for therapies that may be capable of both inducing weight loss and improving glucose regulation.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Department of Psychiatry, Genome Research Institute, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | | | | |
Collapse
|
112
|
Horvath TL, Andrews ZB, Diano S. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metab 2009; 20:78-87. [PMID: 19084428 DOI: 10.1016/j.tem.2008.10.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 02/06/2023]
Abstract
The hypothalamus plays a major part in regulating energy homeostasis by integrating hormonal and nutritional signals. Increasing evidence shows that specific neurons in the hypothalamus respond to changing glucose, lipid and amino acid levels. However, the intracellular substrate for such 'fuel sensing' and its integration into the neuronal doctrine as it relates to energy homeostasis remains elusive. Evidence points to differential fuel utilization in response to nutrient availability and free radical formation as crucial components in regulating neuronal functions. This review places these components in the context of neurobiological aspects of circuit-specific hypothalamic output, focusing on the melanocortin system. The effects of glucose and fatty acids are discussed with emphasis on free radical production in orexigenic and anorexigenic neurons of the arcuate nucleus.
Collapse
Affiliation(s)
- Tamas L Horvath
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
113
|
Myers MG, Münzberg H, Leinninger GM, Leshan RL. The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab 2009; 9:117-23. [PMID: 19187770 PMCID: PMC2648854 DOI: 10.1016/j.cmet.2008.12.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 11/10/2008] [Accepted: 12/04/2008] [Indexed: 01/07/2023]
Abstract
Leptin signals the repletion of fat stores, acting in the CNS to permit energy utilization by a host of autonomic and neuroendocrine processes and to decrease feeding. While much recent research has focused on the leptin-regulated circuitry of the hypothalamic arcuate nucleus (ARC), the majority of brain leptin receptor (LepRb)-expressing neurons lie outside the ARC in other CNS regions known to modulate energy balance. Each set of LepRb neurons throughout the brain presumably mediates unique aspects of leptin action, and understanding the function for LepRb-expressing neurons throughout the brain represents a crucial next step in the study of energy homeostasis.
Collapse
Affiliation(s)
- Martin G Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
114
|
Chen M, Cai M, McPherson D, Hruby V, Harmon CM, Yang Y. Contribution of the transmembrane domain 6 of melanocortin-4 receptor to peptide [Pro5, DNal (2')8]-gamma-MSH selectivity. Biochem Pharmacol 2009; 77:114-24. [PMID: 18930713 PMCID: PMC2701352 DOI: 10.1016/j.bcp.2008.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/15/2008] [Accepted: 09/18/2008] [Indexed: 01/11/2023]
Abstract
The melanocortin receptor (MCR) subtype family is a member of the GPCR superfamily and each of them has a different pharmacological profile regarding the relative potency of the endogenous and synthetic melanocortin peptides. Substitution of Trp with DNal (2') in gamma-MSH resulted in the loss of binding affinity and potency at hMC4R. However, the molecular mechanism of this ligand selectivity is unclear. In this study, we utilized chimeric receptors and site-directed mutagenesis approaches to investigate the molecular basis of MC4R responsible for peptide [Pro5, DNal (2')8]-gamma-MSH selectivity. Cassette substitutions of the second, third, fourth, fifth, and sixth TM of the human MC4R (hMC4R) with the homologous regions of hMC1R were constructed and the binding affinity of peptide [Pro5, DNal (2')8]-gamma-MSH at these chimeric receptors was evaluated. Our results indicate that the cassette substitutions of TM2, TM3, TM4 and TM5 of hMC4R with homologous regions of the hMC1R did not significantly increase peptide [Pro5, DNal (2')8]-gamma-MSH binding affinity and potency but substitution of the TM6 of the hMC4R with the same region of the hMC1R significantly enhances [Pro5, DNal (2')8]-gamma-MSH binding affinity and potency. Further site-directed mutagenesis study indicates that four amino acid residues, Phe267, Tyr268, Ile269 and Ser270, in TM6 of the hMC4R may play an important role in [Pro5, DNal (2')-gamma-MSH selective activity at MC4R.
Collapse
Affiliation(s)
- Min Chen
- Department of Nutrition, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Minying Cai
- Department of Chemistry, University of Arizona Tucson, AZ 85721, United States
| | - David McPherson
- Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Victor Hruby
- Department of Chemistry, University of Arizona Tucson, AZ 85721, United States
| | - Carroll M. Harmon
- Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Yingkui Yang
- Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| |
Collapse
|
115
|
Zhang X, Che FY, Berezniuk I, Sonmez K, Toll L, Fricker LD. Peptidomics of Cpe(fat/fat) mouse brain regions: implications for neuropeptide processing. J Neurochem 2008; 107:1596-613. [PMID: 19014391 PMCID: PMC2663970 DOI: 10.1111/j.1471-4159.2008.05722.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quantitative peptidomics was used to compare levels of peptides in wild type (WT) and Cpe(fat/fat) mice, which lack carboxypeptidase E (CPE) activity because of a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in WT mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpe(fat/fat) mouse brain, relative to WT mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpe(fat/fat) mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpe(fat/fat) mouse brain at levels similar to those in WT mouse brain. Many peptides were greatly elevated in the Cpe(fat/fat) mice; these peptide processing intermediates with C-terminal Lys and/or Arg were generally not detectable in WT mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
116
|
Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:482-96. [PMID: 19026743 DOI: 10.1016/j.bbadis.2008.10.014] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 12/22/2022]
Abstract
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Abeta), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Abeta aggregation may not only be the consequence of excitotoxicity, aberrant Ca(2+) signals, and proinflammatory cytokines such as TNF-alpha, but may also promote these pathological effectors. At the molecular level, insulin resistance and Abeta disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.
Collapse
|
117
|
van der Linden AM, Wiener S, You YJ, Kim K, Avery L, Sengupta P. The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans. Genetics 2008; 180:1475-91. [PMID: 18832350 PMCID: PMC2581950 DOI: 10.1534/genetics.108.094771] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/15/2008] [Indexed: 11/18/2022] Open
Abstract
The regulation of chemoreceptor (CR) gene expression by environmental signals and internal cues may contribute to the modulation of multiple physiological processes and behavior in Caenorhabditis elegans. We previously showed that KIN-29, a homolog of salt-inducible kinase, acts in sensory neurons to regulate the expression of a subset of CR genes, as well as sensory behaviors. Here we show that the cGMP-dependent protein kinase EGL-4 acts partly in parallel with KIN-29 to regulate CR gene expression. Sensory inputs inhibit both EGL-4 and KIN-29 functions, and KIN-29 function is inhibited in turn by cAMP-dependent protein kinase (PKA) activation. EGL-4 and KIN-29 regulate CR gene expression by antagonizing the gene repression functions of the class II HDAC HDA-4 and the MEF-2 transcription factor, and KIN-29, EGL-4, and PKA target distinct residues in HDA-4 to regulate its function and subcellular localization. While KIN-29 acts primarily via MEF-2/HDA-4 to regulate additional sensory signal-regulated physiological processes and behaviors, EGL-4 acts via both MEF-2-dependent and -independent pathways. Our results suggest that integration of complex sensory inputs via multiple signaling pathways allows animals to precisely regulate sensory gene expression, thereby appropriately modulating physiology and behavior.
Collapse
|
118
|
Figlewicz DP, Benoit SC. Insulin, leptin, and food reward: update 2008. Am J Physiol Regul Integr Comp Physiol 2008; 296:R9-R19. [PMID: 18945945 DOI: 10.1152/ajpregu.90725.2008] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hormones insulin and leptin have been demonstrated to act in the central nervous system (CNS) as regulators of energy homeostasis at medial hypothalamic sites. In a previous review, we described new research demonstrating that, in addition to these direct homeostatic actions at the hypothalamus, CNS circuitry that subserves reward and motivation is also a direct and an indirect target for insulin and leptin action. Specifically, insulin and leptin can decrease food reward behaviors and modulate the function of neurotransmitter systems and neural circuitry that mediate food reward, i.e., midbrain dopamine and opioidergic pathways. Here we summarize new behavioral, systems, and cellular evidence in support of this hypothesis and in the context of research into the homeostatic roles of both hormones in the CNS. We discuss some current issues in the field that should provide additional insight into this hypothetical model. The understanding of neuroendocrine modulation of food reward, as well as food reward modulation by diet and obesity, may point to new directions for therapeutic approaches to overeating or eating disorders.
Collapse
Affiliation(s)
- Dianne P Figlewicz
- Metabolism/Endocrinology (151) VA Puget Sound Health Care System, 1660 So. Columbian Way, Seattle, WA 98108, USA.
| | | |
Collapse
|
119
|
Abizaid A, Horvath TL. Brain circuits regulating energy homeostasis. REGULATORY PEPTIDES 2008; 149:3-10. [PMID: 18514925 PMCID: PMC2605273 DOI: 10.1016/j.regpep.2007.10.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 10/30/2007] [Indexed: 11/21/2022]
Abstract
Recent years have seen an impetus in the study for central mechanisms regulating energy balance, and caloric intake possibly as a response to the obesity pandemic. This renewed interest as well as drastic improvements in the tools that are now currently available to neuroscientists, has yielded a great deal of insight into the mechanisms by which the brain regulates metabolic function, and volitional aspects of feeding in response to metabolic signals like leptin, insulin and ghrelin. Among these mechanisms are the complex intracellular signals elicited by these hormones in neurons. Moreover, these signals produce and modulate the metabolism of the cell at the level of the mitochondria. Finally, these signals promote plastic changes that alter the synaptic circuitry in a number of circuits and ultimately affect cellular, physiological and behavioral responses in defense of energy homeostasis. These mechanisms are surveyed in this review.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, USA.
| | | |
Collapse
|
120
|
Stroebe W, Papies EK, Aarts H. From Homeostatic to Hedonic Theories of Eating: Self-Regulatory Failure in Food-Rich Environments. APPLIED PSYCHOLOGY-AN INTERNATIONAL REVIEW-PSYCHOLOGIE APPLIQUEE-REVUE INTERNATIONALE 2008. [DOI: 10.1111/j.1464-0597.2008.00360.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
121
|
Abstract
Animal obesity models differ widely in type and extent of obesity. They are either based on environmental factors (e.g., high-fat diet-induced obesity), spontaneous mutants (i.e., ob/ob mice), genetically engineered animals (e.g., mice with melanocortin receptor subtype-4 gene disruption (knock-out), or mechanical intervention (e.g., chemical lesion of the ventromedial hypothalamus). This unit reviews available rodent models to study obesity and attempts to highlight the greatest utility for each model.
Collapse
|
122
|
|
123
|
LeBel JL, Lu J, Dubé L. Weakened biological signals: Highly-developed eating schemas amongst women are associated with maladaptive patterns of comfort food consumption. Physiol Behav 2008; 94:384-92. [DOI: 10.1016/j.physbeh.2008.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/21/2007] [Accepted: 02/05/2008] [Indexed: 11/15/2022]
|
124
|
van Dijk G, Buwalda B. Neurobiology of the metabolic syndrome: An allostatic perspective. Eur J Pharmacol 2008; 585:137-46. [DOI: 10.1016/j.ejphar.2007.11.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 10/31/2007] [Accepted: 11/14/2007] [Indexed: 11/25/2022]
|
125
|
McKiernan F, Hollis JH, Mattes RD. Short-term dietary compensation in free-living adults. Physiol Behav 2008; 93:975-83. [PMID: 18261752 PMCID: PMC2323337 DOI: 10.1016/j.physbeh.2007.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 11/20/2022]
Abstract
Evidence suggests that compensatory behaviors operate in infants and pre-school children, such that the high variance characteristic of single eating occasions is much reduced over the day. However, the concept has not been fully explored in adults. The present within-subject, observational study investigated short-term dietary compensation patterns in fifty, weight-stable, normal weight (n=27), overweight (n=14), and obese (n=9) free-living adults (11 M, 39 F; age 30+/-11 y; BMI 26.3+/-5.9). Twenty four-hour diet recalls were obtained for 7 consecutive days, by the multi-pass technique. Each 24-h period was divided into 7 eating occasions. The coefficient of variation for energy intake was calculated for each adult, for each eating occasion, and over each 24-h period. Sub-group variability was assessed by BMI and frequency of consumption of sweetened energy-yielding beverages. The mean coefficient of variation for energy intake for the 7 eating occasions was 110.5%, compared to 28.9% for the day as a whole. Correlations between energy intakes at successive eating events were uniformly negative. No significant differences were noted in the sub-group analyses. Significantly greater variation in energy intake was noted for snacks compared to meals (P<0.0001). These data suggest that adults regulate energy intake over a 24-h period more closely than they do at individual eating occasions, similar to the pattern previously observed in children. Further studies of compensatory responses by larger sub-groups of individuals at risk for weight gain are warranted.
Collapse
Affiliation(s)
- F McKiernan
- Purdue University, W Lafayette, IN, 47907, USA
| | | | | |
Collapse
|
126
|
Gerozissis K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol 2008; 585:38-49. [PMID: 18407262 DOI: 10.1016/j.ejphar.2008.01.050] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 11/30/2007] [Accepted: 01/21/2008] [Indexed: 11/18/2022]
Abstract
The central nervous system is essential in maintaining energy and glucose homeostasis. In both animals and humans, efficient cerebral insulin signalling is a pivotal control element in these pathophysiological processes. The action of insulin in the brain is under a multilevel control via metabolic, endocrine and neural signals induced by nutrients, integrated mainly by the hypothalamus. Of particular interest is the interaction of insulin with the anabolic and catabolic neuroregulators. The anorexic peptides insulin, leptin and the neurotransmitter serotonin share common signalling pathways involved in food intake, in particular the insulin receptor substrate, phosphatidylinositol-3-kinase (PI3K) pathway. The dialogue of neurotransmitters and peptides via this signalling pathway is potentially of major importance in the pathophysiology of the brain in general and specifically in the regulation of feeding behaviour. At this time, a new concept in the aetiopathology of type 2 diabetes is immerging. This concept proposes that the combination of defective pancreatic beta-cell function and insulin resistance not only in classical insulin target tissues but in every tissue, contributes to the onset of the disease. It highlights the importance of the disruption of cerebral insulin signal transmission and its direct relation to metabolic diseases. Impaired brain insulin signalling, a link coupling obesity to diabetes, may be related to either genetic factors, or environmental factors such as stress, over or under-feeding and unbalanced diets: such factors may work either independently or in concert. Current approaches used for the prevention and treatment of type 2 diabetes are not adequately effective. Most of the anti-diabetic therapies induce many adverse effects, in particular obesity, and thus may initiate a vicious cycle of problems. In order to develop new, more efficient, preventive and therapeutic strategies for metabolic pathologies, there is an urgent need for increased understanding of the complexity of insulin signalling in the brain and on the interactive, central and peripheral effects of insulin.
Collapse
Affiliation(s)
- Kyriaki Gerozissis
- Chercheur INSERM, UMR 7059 CNRS, University Paris 7, 2 place Jussieu, case 7126, 75251 Paris CEDEX 05, France.
| |
Collapse
|
127
|
Abstract
Neuronal control of body energy homeostasis is the key mechanism by which animals and humans regulate their long-term energy balance. Various hypothalamic neuronal circuits (which include the hypothalamic melanocortin, midbrain dopamine reward and caudal brainstem autonomic feeding systems) control energy intake and expenditure to maintain body weight within a narrow range for long periods of a life span. Numerous peripheral metabolic hormones and nutrients target these structures providing feedback signals that modify the default "settings" of neuronal activity to accomplish this balance. A number of molecular genetic tools for manipulating individual components of brain energy homeostatic machineries, in combination with anatomical, electrophysiological, pharmacological and behavioral techniques, have been developed, which provide a means for elucidating the complex molecular and cellular mechanisms of feeding behavior and metabolism. This review will highlight some of these advancements and focus on the neuronal circuitries of energy homeostasis.
Collapse
Affiliation(s)
- Qian Gao
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, United States.
| | | |
Collapse
|
128
|
Abstract
Recent conceptualizations of food intake have divided ingestive behavior into multiple distinct phases. Here, we present a temporally and operationally defined classification of ingestive behaviors. Importantly, various physiological signals including hypothalamic peptides are thought to impact these distinct behavioral phases of ingestion differently. In this review, we summarize a number of behavioral assays designed to delineate the effects of hormone and peptide signals that influence food intake on these ingestive mechanisms. Finally, we discuss two issues that we have encountered in our laboratory which may obstruct the interpretation of results from these types of studies. First, the influence of previous experience with foods used in these behavioral tests and second, the importance of the nutrient composition of the selected test foods. The important conclusion discussed here is that the behavioral analysis of ingestion is accompanied by theoretical constructs and artificial divisions of biological realities and the appreciation of this fact can only increase the opportunities of contemporary behavioral scientists to make significant and novel observations of ingestive behaviors.
Collapse
Affiliation(s)
- Stephen C Benoit
- University of Cincinnati, Department of Psychiatry, Obesity Research Center, 2170 East Galbraith Road, Cincinnati, OH 45237, USA. <>
| | | |
Collapse
|
129
|
Dailey ME, Bartness TJ. Fat pad-specific effects of lipectomy on foraging, food hoarding, and food intake. Am J Physiol Regul Integr Comp Physiol 2007; 294:R321-8. [PMID: 18003790 DOI: 10.1152/ajpregu.00230.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unlike most species, after food deprivation, Siberian hamsters increase foraging and food hoarding, two appetitive ingestive behaviors, but not food intake, a consummatory ingestive behavior. We previously demonstrated (Wood AD, Bartness TJ, Am J Physiol Regul Integr Comp Physiol 272: R783-R792, 1997) that increases in food hoarding are triggered by directly decreasing body fat levels through partial surgical lipectomy; however, we did not test if lipectomy affected foraging, nor if the magnitude of the lipid deficit affected food hoard size. Therefore, we tested whether varying the size of the lipectomy-induced lipid deficit and/or foraging effort affected foraging, food hoarding, or food intake. This was accomplished by housing adult male Siberian hamsters in a foraging/hoarding system and removing (x) both epididymal white adipose tissue (EWATx) pads, both inguinal white adipose tissue (IWATx) pads, or both EWAT and IWAT pads (EWATx + IWATx) and measuring foraging, food hoarding, and food intake for 12 wk. The lipectomy-induced lipid deficit triggered different patterns of white adipose tissue mass compensation that varied with foraging effort. Foraging for food (10 wheel revolutions to earn a food pellet) abolished the EWATx-induced compensation in IWAT pad mass. The magnitude of the lipid deficit did not engender a proportional change in any of the appetitive or consummatory ingestive behaviors. EWATx caused the greatest increase in food hoarding compared with IWATx or EWATx + IWATx, when animals were required to forage for their food. Collectively, it appears that the magnitude of a lipid deficit does not affect appetitive or consummatory behaviors; rather, when energy (foraging) demands are increased, loss of specific (gonadal) fat pads can preferentially stimulate increases in food hoarding.
Collapse
Affiliation(s)
- Megan E Dailey
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue NE, Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
130
|
Meyering-Vos M, Müller A. RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:840-8. [PMID: 17560597 DOI: 10.1016/j.jinsphys.2007.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 05/15/2023]
Abstract
In the Mediterranean field cricket, Gryllus bimaculatus, the action of sulfakinin (SK) gene expression on food intake, food transport in the gut and carbohydrate digestion (alpha-amylase activity) was investigated by using the RNA interference (RNAi) method. Injection of SK double-stranded (ds) RNA into the abdomen of female adults and last instar larvae led to a systemic silencing of the SK gene, as was shown by RT-PCR studies. In adults, suppression of SK gene expression was effective from the first day after injection up to at least the third day. Treatment of the adult crickets by injection or feeding of dsRNA led to a stimulation of the food intake. Assuming that the gene silencing is followed by a depletion of the SK in tissues and/or haemolymph implies an inhibitiory role of the native SK peptides on food intake. The alpha-amylase activity in vitro in the midgut tissue and in the secretions of adult females was not affected by silencing the SK gene.
Collapse
Affiliation(s)
- Martina Meyering-Vos
- Department of Animal Ecology I, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| | | |
Collapse
|
131
|
Huang LZ, Winzer-Serhan UH. Nicotine regulates mRNA expression of feeding peptides in the arcuate nucleus in neonatal rat pups. Dev Neurobiol 2007; 67:363-77. [PMID: 17443794 DOI: 10.1002/dneu.20348] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maternal smoking results in low birth weight. Using a neonatal gastric intubation model corresponding to the third trimester in humans, nicotine, the major psychoactive ingredient in tobacco, causes growth retardation in rat pups. Here, we wanted to determine the underlying mechanisms of nicotine's anorexic effects. In adults, body weight and energy expenditure are regulated by the adiposity hormone leptin and the orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP) and anorexic peptides proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) expressed in the hypothalamic arcuate (Arc) nucleus. Activation of nicotinic acetylcholine receptors (nAChRs) could regulate leptin release and/or peptide expression in the Arc. Neonatal rat pups were treated twice daily with nicotine (0.25, 1.5, and 3 mg/kg) from postnatal day 1 to 8 (P1-8). This resulted in an upregulation of heteromeric nAChR binding sites in the ventromedial nucleus of the hypothalamus and Arc. Nicotine at all three doses significantly reduced body weight gain and increased mRNA expression of NPY, AgRP, and POMC effects, which were blocked by dihydro-beta-erythroidine (DHbetaE), an alpha4beta2* nAChR antagonist, but CART expression was unaffected. In contrast, serum leptin levels were significantly increased only by 3 and 1.5 mg/kg, and the increase was only partially blocked by DHbetaE. These data suggest that in neonates chronic nicotine regulates body weight gain independent from serum leptin levels by a central mechanism involving alpha4beta2* heteromeric nAChRs and stimulated increased expression of the anorexic peptide POMC. Whereas, increased NPY and AgRP expression could be a secondary response to reduction in weight gain.
Collapse
Affiliation(s)
- L Z Huang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University System, Health Sciences Center, Texas 77843-1114, USA
| | | |
Collapse
|
132
|
Schiltz CA, Bremer QZ, Landry CF, Kelley AE. Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression. BMC Biol 2007; 5:16. [PMID: 17462082 PMCID: PMC1868707 DOI: 10.1186/1741-7007-5-16] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 04/26/2007] [Indexed: 12/20/2022] Open
Abstract
Background Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain. Results Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes homer1a, arc, zif268, ngfi-b and c-fos in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues. Conclusion The results implicate correlated activity between the cortex and the striatum, especially the nucleus accumbens core and the basolateral amygdala, in the generation of a conditioned motivated state that may promote excessive food intake. The upregulation of a number of genes in unique patterns within corticostriatal, thalamic, and hypothalamic networks suggests that food cues are capable of powerfully altering neuronal processing in areas mediating the integration of emotion, cognition, arousal, and the regulation of energy balance. As many of these genes play a role in plasticity, their upregulation within these circuits may also indicate the neuroanatomic and transcriptional correlates of extinction learning.
Collapse
Affiliation(s)
- Craig A Schiltz
- Medical Scientist and Neuroscience Training Programs, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | - Quentin Z Bremer
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | - Charles F Landry
- Medical Scientist and Neuroscience Training Programs, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | - Ann E Kelley
- Medical Scientist and Neuroscience Training Programs, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53705, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, 6001 Research Park Boulevard, Madison, WI 53719, USA
| |
Collapse
|
133
|
Stricker EM, Hoffmann ML. Presystemic signals in the control of thirst, salt appetite, and vasopressin secretion. Physiol Behav 2007; 91:404-12. [PMID: 17482653 DOI: 10.1016/j.physbeh.2007.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presystemic signals play an important role in the control of ingestive behavior by allowing animals to anticipate imminent physiological changes. The significance of such signals in the control of food intake has been amply demonstrated and is widely appreciated. Our recent experiments have revealed that presystemic signals also provide important early feedback when rats drink water or NaCl solution, before the ingested fluids are absorbed and influence cerebral osmoreceptors or cardiovascular baroreceptors. These early signals clearly affect vasopressin (VP) secretion and thirst. They relate either to the distension of the stomach and proximal small intestine (presumably mediated by local stretch receptors) or to the concentration of fluid that empties from the stomach into the small intestine (presumably mediated by visceral osmo- or Na(+)-receptors). Dehydrated dogs use functionally comparable signals from the oropharynx while drinking in order to inhibit both VP secretion and thirst. However, that system differs in several respects from the system in rats aside from the fact that the presystemic signals in rats are not oropharyngeal: in rodents, (a) separate early signals influence VP secretion and thirst, (b) early signals can provide both stimulation and inhibition of VP secretion and thirst, and (c) the early signals are associated with both the volume and concentration of ingested fluid. These presystemic signals also inhibit the intake of NaCl solution by rats with salt appetite.
Collapse
Affiliation(s)
- Edward M Stricker
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| | | |
Collapse
|
134
|
Król E, Tups A, Archer ZA, Ross AW, Moar KM, Bell LM, Duncan JS, Mayer C, Morgan PJ, Mercer JG, Speakman JR. Altered expression of SOCS3 in the hypothalamic arcuate nucleus during seasonal body mass changes in the field vole, Microtus agrestis. J Neuroendocrinol 2007; 19:83-94. [PMID: 17214870 DOI: 10.1111/j.1365-2826.2006.01507.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that cold-acclimated (8 degrees C) male field voles (Microtus agrestis) transferred from short day (SD, 8 h light) to long day (LD, 16 h light) photoperiod exhibit an increase in body mass lasting 4 weeks, after which they stabilise at a new plateau approximately 7.5 g (24.8%) higher than animals maintained in SD. By infusing voles with exogenous leptin, we have also demonstrated that SD voles respond to the hormone by reducing body mass and food intake, whereas LD animals increasing body mass are resistant to leptin treatment. In the present study, we investigated whether seasonal changes in body mass could be linked to modulation of the leptin signal by suppressor of cytokine signalling-3 (SOCS3). We used in situ hybridisation to examine hypothalamic arcuate nucleus (ARC) expression of SOCS3, neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) genes in 90 voles exposed to either SD or LD for up to 11 weeks. LD voles increasing body mass had significantly higher levels of SOCS3 mRNA than SD or LD voles with a stable body mass. There were no associated changes in expression of NPY, AgRP, POMC and CART genes. These results suggest that voles that regulate body mass at either the lower (SD) or upper (LD) plateau remain sensitive to leptin action, whereas SOCS3-mediated leptin resistance is a short-term mechanism that enables animals to move between the stable body mass plateaus. Our data provide evidence that expression of SOCS3 in the ARC is involved in the modulation of the strength of the leptin signal to facilitate seasonal cycles in body mass and adiposity.
Collapse
Affiliation(s)
- E Król
- Division of Obesity and Metabolic Health, Rowett Research Institute, Aberdeen Centre for Energy Regulation and Obesity (ACERO), Bucksburn, Aberdeen, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Obese FY, Whitlock BK, Steele BP, Buonomo FC, Sartin JL. Long-term feed intake regulation in sheep is mediated by opioid receptors. J Anim Sci 2007; 85:111-7. [PMID: 17179546 DOI: 10.2527/jas.2006-404] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
These experiments were conducted to determine if 1) syndyphalin-33 (SD33), a mu-opioid receptor ligand, affects feed intake; 2) SD33 effects on feed intake are mediated by actions on opioid receptors; and 3) its activity can counteract the reduction in feed intake associated with administration of bacterial endotoxin. In Exp. 1, 5 mixed-breed, castrate male sheep were housed indoors in individual pens. Animals had ad libitum access to water and concentrate feed. Saline (SAL; 0.9% NaCl) or SD33 (0.05 or 0.1 micromol/kg of BW) was injected i.v., and feed intake was determined at 2, 4, 6, 8, 24, and 48 h after the i.v. injections. Both doses of SD33 increased (at least P < 0.01) feed intake at 48 h relative to saline. In Exp. 2, SAL + SAL, SAL + SD33 (0.1 micromol/kg of BW), naloxone (NAL; 1 mg/kg of BW) + SAL, and NAL + SD33 were injected i.v. Food intake was determined as in Exp. 1. The SAL + SD33 treatment increased (P = 0.022) feed intake at 48 h relative to SAL + SAL. The NAL + SAL treatment reduced (at least P < 0.01) feed intake at 4, 6, 8, 24, and 48 h, whereas the combination of NAL and SD33 did not reduce feed intake at 24 (P = 0.969) or 48 h (P = 0.076) relative to the saline-treated sheep. In Exp. 3, sheep received 1 of 4 treatments: SAL + SAL, SAL + 0.1 micromol of SD33/kg of BW, 0.1 microg of lipopolysaccharide (LPS)/kg of BW + SAL, or LPS + SD33, and feed intake was monitored as in Exp. 1. Lipopolysaccharide suppressed cumulative feed intake for 48 h (P < 0.01) relative to saline control, but SD33 failed to reverse the reduction in feed intake during this period. These data indicate that SD33 increases feed intake in sheep after i.v. injection, and its effects are mediated via opioid receptors. However, the LPS-induced suppression in feed intake cannot be overcome by the opioid receptor ligand, SD33.
Collapse
Affiliation(s)
- F Y Obese
- Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849, USA
| | | | | | | | | |
Collapse
|
136
|
Pliner P, Zec D. Meal schemas during a preload decrease subsequent eating. Appetite 2007; 48:278-88. [PMID: 17250926 DOI: 10.1016/j.appet.2006.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 03/28/2006] [Accepted: 04/24/2006] [Indexed: 10/23/2022]
Abstract
Two studies examined the effects of the induction of a meal schema on participants' behavior. In the first, participants ate identical preloads either in a traditional meal context or in a non-meal ("tasting session") context where the usual cues associated with meals, such as the use of dishes/utensils and being seated at a table, were present or absent, respectively. In a questionnaire assessing their impressions of the situation, participants in the meal condition gave evidence of the activation of a meal schema while the latter did not. That is, the former, in comparison with the latter, were more likely to spontaneously describe the situation using meal-related words, less likely to describe the situation using taste-related words, and rated the situation as feeling more like a meal. In the second study, participants eating the preload in an identical meal context, in comparison with those eating it in a non-meal context, ate less at a subsequent test meal. It was concluded that social cues in the form of Abstract knowledge about eating in one's culture may sometimes have a greater influence on food intake than physiological cues related to nutritional status.
Collapse
Affiliation(s)
- Patricia Pliner
- Department of Psychology, University of Toronto at Mississauga, 3359 Missisissauga Road, Mississauga, Ont., Canada L5L 1C6.
| | | |
Collapse
|
137
|
Berthoud HR. Interactions between the "cognitive" and "metabolic" brain in the control of food intake. Physiol Behav 2007; 91:486-98. [PMID: 17307205 DOI: 10.1016/j.physbeh.2006.12.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/28/2006] [Accepted: 12/28/2006] [Indexed: 01/22/2023]
Abstract
If the new environment and modern lifestyle cause obesity in individuals with thrifty genes by increasing energy intake, it is important to know by what mechanisms hyperphagia occurs and why energy balance is not kept in check by the homeostatic regulator. The argument is developed that procuring and ingesting food is an evolutionarily conserved survival mechanism that occupies large parts of the brain's computing capacity including not only the hypothalamus but also a number of cortico-limbic structures. These forebrain systems evolved to engage powerful emotions for guaranteed supply and ingestion of beneficial foods from a sparse and often hostile environment. They are now simply overwhelmed with an abundance of food and food cues that is no longer interrupted by frequent famines. After briefly reviewing structure and functions of the relevant cortico-limbic structures and the better-known hypothalamic homeostatic regulator, the review focuses mainly on interactions between the two systems. Although several cortico-limbic processes are sensitive to metabolic depletion and repletion signals, it appears that they are underlying the same reversible leptin resistance that renders hypothalamic circuits insensible to continuously high leptin levels during periods of feast. It is hypothesized that this naturally occurring leptin resistance allowed temporary neutralization of satiety mechanisms and evolved as a response to survive subsequent periods of famine. With today's continuous and abundant food availability for a segment of the population, the powerful cognitive processes to eat and the resulting overweight can partially escape negative feedback control in prone individuals most strongly expressing such thrifty genes.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
138
|
Abstract
The intent of this paper is to address the obesity epidemic, which is a term used to describe the sudden and rapid increase in obesity rates that began in the 1980s and continues unabated today. Since 1980, the entire population, regardless of starting weight, is gradually gaining weight. This has led to escalating obesity rates and to obesity being considered one of the most serious public health challenges facing the world. At one level, the obesity epidemic is a classic gene-environment interaction where the human genotype is susceptible to environmental influences that affect energy intake and energy expenditure. It is also a problem of energy balance. Understanding the etiology of obesity requires the study of how behavioral and environmental factors have interacted to produce positive energy balance and weight gain. Reversing the epidemic of obesity will require modifying some combination of these factors to help the population achieve energy balance at a healthy body weight. While body weight is strongly influenced by biological and behavioral factors, changes in the environment promoting positive energy balance have been most responsible for the obesity epidemic. Our best strategy for reversing the obesity epidemic is to focus on preventing positive energy balance in the population through small changes in diet and physical activity that take advantage of our biological systems for regulating energy balance. Simultaneously, we must address the environment to make it easier to make better food and physical activity choices. This is a very long-term strategy for first stopping and then reversing the escalating obesity rates, but one that can, over time, return obesity rates to pre-1980s levels.
Collapse
Affiliation(s)
- James O Hill
- Center for Human Nutrition, University of Colorado School of Medicine, Denver, Colorado 80262, USA.
| |
Collapse
|
139
|
Beglinger C, Degen L. Gastrointestinal satiety signals in humans — Physiologic roles for GLP-1 and PYY ? Physiol Behav 2006; 89:460-4. [PMID: 16828127 DOI: 10.1016/j.physbeh.2006.05.048] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/23/2006] [Accepted: 05/30/2006] [Indexed: 11/23/2022]
Abstract
The present review summarizes the appetite suppressing effects of PYY and GLP-1 in the regulation of food intake in humans. Current evidence supports a role for gastrointestinal peptides as regulators of satiety. The regulation of satiety is, however, complex and it is not surprising that multiple control systems exist. It is interesting to note that nutrients in the small intestine such as hydrolysis products of fat stimulate the release of satiety peptides such as GLP-1 or PYY that serve as satiety signals. Both peptides, released from L-cells from the gastrointestinal tract by the local action of digested food, exert various regulatory functions: stimulation of insulin secretion and inhibition of glucagon secretion as typical actions of GLP-1, inhibition of gastric emptying, and inhibition of appetite for both GLP-1 and PYY. The review focuses on the question, whether the two peptides are true endocrine factors that act as physiologic, hormonal regulators of appetite.
Collapse
Affiliation(s)
- Christoph Beglinger
- Division of Gastroenterology University Hospital CH-4031 Basel, Switzerland.
| | | |
Collapse
|
140
|
Padmadas SS, Dias JG, Willekens FJ. Disentangling women's responses on complex dietary intake patterns from an Indian cross-sectional survey: a latent class analysis. Public Health Nutr 2006; 9:204-11. [PMID: 16571174 DOI: 10.1079/phn2005842] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the degree of individual heterogeneity related to complex dietary behaviour and to further examine the associations of different dietary compositions with selected characteristics. DESIGN Latent class analysis was applied to data from the recent cross-sectional National Family Health Survey that collected information on the intake frequency of selected foods. Different responses regarding intake frequency were condensed into a set of five meaningful latent clusters representing different dietary patterns and these clusters were then labelled based on the reported degree of diet mixing. SETTING Indian states. Subjects In total, 90,180 women aged 15-49 years. RESULTS Three clusters were predominantly non-vegetarian and two were vegetarian. A very high or high mixed-diet pattern was observed particularly in the southern and a few north-eastern states. Many women in the very high mixed-diet cluster consumed mostly non-green/leafy vegetables on a daily basis, and fruits and other non-vegetarian diet on a weekly basis. In contrast, those in the low mixed-diet cluster consumed more than three-fifths of the major vegetarian diet ingredients alone on a daily basis. The affluent group that represented the low mixed-diet cluster were primarily vegetarians and those who represented the very high mixed-diet cluster were mostly non-vegetarians. The significant interrelationships of different characteristics highlight not only socio-economic, spatial and cultural disparities related to dietary practices, but also the substantial heterogeneity in diet mixing behaviour. CONCLUSIONS The results of this study confirmed our hypothesis of heterogeneous dietary behaviour of Indian women and yielded useful policy-oriented results which might be difficult to establish otherwise.
Collapse
Affiliation(s)
- Sabu S Padmadas
- Division of Social Statistics & Southampton Statistical Sciences Research Institute, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | | | |
Collapse
|
141
|
Will MJ, Vanderheyden WM, Kelley AE. Striatal opioid peptide gene expression differentially tracks short-term satiety but does not vary with negative energy balance in a manner opposite to hypothalamic NPY. Am J Physiol Regul Integr Comp Physiol 2006; 292:R217-26. [PMID: 16931647 DOI: 10.1152/ajpregu.00852.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has long been known that central opioid systems play an important role in certain aspects of appetite and food intake, particularly with regard to the hedonic or rewarding impact of calorically dense food, such as fat and sugar. Ventral striatal enkephalin may be a key component of this system, as infusions of mu-opiate agonists into this region strongly increase feeding, whereas infusions of opiate antagonists decrease food intake. While pharmacological analysis has consistently supported such a role, direct measurement of enkephalin gene expression in relation to differing food motivational conditions has not been examined. In this study, the effects of a restricted laboratory chow diet (resulting in negative energy balance) as well has recent consumption of chow (short-term satiety) on striatal preproenkephalin (PPE) and prodynorphin (PD) mRNA expression were measured in rats, using both Northern blot analysis and in situ hybridization methods. As a comparison, hypothalamic (arcuate nucleus) neuropeptide Y (NPY) was also measured in these conditions. PPE expression was broadly downregulated throughout the striatum in animals that had recently consumed a meal, whereas it was unaffected by negative energy balance. Expression of an additional striatal peptide gene, PD, did not follow this pattern, although diet restriction caused a decrease in accumbens core dynorphin mRNA. Conversely, as expected, arcuate nucleus NPY mRNA expression was markedly upregulated by negative energy balance, but was unchanged by recent food consumption. This double dissociation between striatal and hypothalamic peptide systems suggests a specific role for striatal PPE in relatively short-term food motivational states, but not in long-term metabolic responses to diet restriction.
Collapse
Affiliation(s)
- Matthew J Will
- Department of Psychiatry, University of Wisconsin-Madison Medical School, 6001 Research Park Blvd., Madison, WI 53719, USA
| | | | | |
Collapse
|
142
|
Ronnett GV, Kleman AM, Kim EK, Landree LE, Tu Y. Fatty acid metabolism, the central nervous system, and feeding. Obesity (Silver Spring) 2006; 14 Suppl 5:201S-207S. [PMID: 17021367 DOI: 10.1038/oby.2006.309] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A potential role for fatty acid metabolism in the regulation of energy balance in the brain or in the periphery has been considered only recently. Fatty acid synthase (FAS) catalyzes the synthesis of long-chain fatty acids, whereas the breakdown of fatty acids by beta-oxidation is regulated by carnitine palmitoyltransferase-1, the rate-limiting enzyme for the entry of fatty acids into the mitochondria for oxidation. While the question of the physiological role of fatty acid metabolism remains to be resolved, studies indicate that inhibition of FAS or stimulation of carnitine palmitoyltransferase-1 using cerulenin or synthetic FAS inhibitors reduces food intake and incurs profound and reversible weight loss. Several hypotheses regarding the mechanisms by which these small molecules mediate their effects have been entertained. Centrally, these compounds alter the expression of hypothalamic neuropeptides, generally reducing the expression of orexigenic peptides. Whether through central, peripheral, or combined central and peripheral mechanisms, these compounds also increase energy consumption to augment weight loss. In vitro and in vivo studies indicate that at least part of C75's effects is mediated by modulation of adenosine monophosphate-activated protein kinase, a member of an energy-sensing kinase family. These compounds, with chronic treatment, also alter gene expression peripherally to favor a state of enhanced energy consumption. Together, these effects raise the possibility that pharmacological alterations in fatty acid synthesis/degradation may serve as a target for obesity therapeutics.
Collapse
Affiliation(s)
- Gabriele V Ronnett
- Department of Neuroscience, 1006B Preclinical Teaching Building, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
143
|
van den Bos R, de Ridder D. Evolved to satisfy our immediate needs: Self-control and the rewarding properties of food. Appetite 2006; 47:24-9. [PMID: 16678304 DOI: 10.1016/j.appet.2006.02.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/22/2006] [Accepted: 02/25/2006] [Indexed: 11/21/2022]
Abstract
Evolutionary explanations of overeating in modern society emphasize that humans have evolved to eat to their physiological limits when food is available. The present paper challenges the idea that eating is driven by the availability of food only and proposes that it is regulated by strategic anticipatory behaviour in service of the most profitable long-term scenario as well. Our alternative explanation emphasizes the interaction between the reward system that regulates the liking and wanting of food and the role of self-control, which is involved in maintaining the best outcome in the long run.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Ethology and Welfare, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | |
Collapse
|
144
|
Abstract
Males have proportionally more visceral fat and are more likely to develop complications associated with obesity than females, and the male brain is relatively more sensitive to the catabolic action of insulin and less sensitive to that of leptin than the female brain. To understand the underlying mechanism, we manipulated estrogen through ovariectomy (OVX) and estradiol administration. Rats with relatively high systemic estrogen (intact females and OVX females and males administered estrogen subcutaneously) were significantly more sensitive to leptin's anorexic action in the brain (i3vt), as well as significantly less sensitive to insulin's i3vt action, than intact males. Administering estradiol directly into the brain of our females increased i3vt leptin sensitivity while decreasing i3vt insulin sensitivity and changed the body fat distribution of our females to resemble that of intact females. These data indicate that estrogen acts within the brain to increase leptin sensitivity, decrease insulin sensitivity, and favor subcutaneous over visceral fat.
Collapse
Affiliation(s)
- Deborah J Clegg
- Department of Psychiatry, University of Cincinnati, PO Box 670559, Cincinatti, OH 45267-0559, USA.
| | | | | | | |
Collapse
|
145
|
King BM. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav 2006; 87:221-44. [PMID: 16412483 DOI: 10.1016/j.physbeh.2005.10.007] [Citation(s) in RCA: 351] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
Early researchers found that lesions of the ventromedial hypothalamus (VMH) resulted in hyperphagia and obesity in a variety of species including humans, which led them to designate the VMH as the brain's "satiety center." Many researchers later dismissed a role for the VMH in feeding behavior when Gold claimed that lesions restricted to the VMH did not result in overeating and that obesity was observed only with lesions or knife cuts that extended beyond the borders of the VMH and damaged or severed the ventral noradrenergic bundle (VNAB) or paraventricular nucleus (PVN). However, anatomical studies done both before and after Gold's study did not replicate his results with lesions, and in nearly every published direct comparison of VMH lesions vs. PVN or VNAB lesions, the group with VMH lesions ate substantially more food and gained twice as much weight. Several other important differences have also been found between VMH and both PVN and VNAB lesion-induced obesity. Concerns regarding (a) motivation to work for food and (b) the effects of nonirritative lesions have also been addressed and answered in many studies. Lesion studies with weanling rats and adult pair-tube-fed rats, as well as recent studies of knockout mice deficient in the orphan nuclear receptor steroidogenic factor 1, indicate that VMH lesion-induced obesity is in large part a metabolic obesity (due to autonomic nervous system disorders) independent of hyperphagia. However, there is ample evidence that the VMH also plays a primary role in feeding behavior. Neuroimaging studies in humans have shown a marked increase in activity in the area of the VMH during feeding. The VMH has a large population of glucoresponsive neurons that dynamically respond to blood glucose levels and numerous histamine, dopamine, serotonin, and GABA neurons that respond to feeding-related stimuli. Recent studies have implicated melanocortins in the VMH regulation of feeding behavior: food intake decreases when arcuate nucleus pro-opiomelanocortin (POMC) neurons activate VMH brain-derived neurotrophic factor (BDNF) neurons. Moderate hyperphagia and obesity have also been observed in female rats with damage to the efferent projections from the posterodorsal amygdala to the VMH. Hypothalamic obesity can result from damage to either the POMC or BDNF neurons. The concept of hypothalamic feeding and satiety centers is outdated and unnecessary, and progress in understanding hypothalamic mechanisms of feeding behavior will be achieved only by appreciating the different types of neural and blood-borne information received by the various nuclei, and then attempting to determine how this information is integrated to obtain a balance between energy intake and energy output.
Collapse
Affiliation(s)
- Bruce M King
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
146
|
Celi P, Blache D, Blackberry MA, Martin GB. Intracerebroventricular infusion of leptin into mature merino rams of different metabolic status: effects on blood concentrations of glucose and reproductive and metabolic hormones. Reprod Domest Anim 2006; 41:79-90. [PMID: 16420334 DOI: 10.1111/j.1439-0531.2006.00637.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mature Merino rams, nutrition is one of the external cues that most strongly affects the reproductive centres of the preoptic-hypothalamic continuum. The signalling pathways that link dietary status and the activity of the neurones that produce gonadotrophin-releasing hormone signals are thought to be partly hormonal in nature to reflect the amount of body reserves. Among the hormones thought to be involved are insulin and leptin. This study tested whether recombinant bovine leptin infused (0.4 microg/h) into the third cerebral ventricle would stimulate pulsatile luteinizing hormone (LH) secretion in mature Merino rams when their energy status was low or decreasing, during both chronic (fasting) and acute reductions of energy balance. Leptin may interact with other hormones that depend on energy availability, so we also monitored changes in circulating concentrations of insulin, thyroid hormones, growth hormone, prolactin and adrenocorticotrophin. Overall, our data do not support this hypothesis. The dietary regimes induced clear responses in the metabolic profiles of the animals but there was no clear effect of central leptin administration on LH pulse frequency. The relationships between the hormonal systems measured in the present study add weight to the contention that leptin plays only a permissive role in the nutritional control of the reproductive axis and that other hormonal signals (particularly insulin) or pathways are acting in concert with leptin to stimulate the reproductive axis.
Collapse
Affiliation(s)
- P Celi
- Faculty of Natural and Agricultural Sciences, School of Animal Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | | | |
Collapse
|
147
|
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
148
|
Abstract
Appetite regulation is part of a feedback system that controls the energy balance, involving a complex interplay of hunger and satiety signals, produced in the hypothalamus as well as in peripheral organs. Hunger signals may be generated in peripheral organs (e.g. ghrelin) but most of them are expressed in the hypothalamus (neuropeptide Y, orexins, agouti-related peptide, melanin concentrating hormone, endogenous opiates and dopamine) and are expressed during situations of energy deficiency. Some satiety signals, such as cholecystokinin, glucagon-like peptide 1, peptide YY and enterostatin are released from the digestive tract in response to food intake. Others, such as leptin and insulin, are mobilized in response to perturbations in the nutritional state. Still others are generated in neurones of the hypothalamus (alpha-melanocyte-stimulating hormone and serotonin). Satiety signals act by inhibiting the expression of hunger signals and/or by blunting their effect. Palatable food, i.e. food rich in fat and sugar, up-regulates the expression of hunger signals and satiety signals, at the same time blunting the response to satiety signals and activating the reward system. Hence, palatable food offsets normal appetite regulation, which may explain the increasing problem of obesity worldwide.
Collapse
|
149
|
Adam TCM, Westerterp-Plantenga MS. Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br J Nutr 2005; 93:845-51. [PMID: 16022753 DOI: 10.1079/bjn20041335] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was conducted to assess whether glucagon-like peptide-1 (GLP-1) release and appetite after a breakfast with or without an additional galactose/guar gum stimulation is different in normal-weight compared with overweight/obese subjects. Twenty-eight overweight/obese (BMI 30.3 (sd 2.7) kg/m2; age 44.3 (sd 9.7) years) and thirty normal-weight subjects (BMI 22.8 (sd 1.4), age 31.5 (sd12.8) years) participated in a crossover study. Fasting and postprandial plasma GLP-1, insulin, glucose and free fatty acid concentrations were measured in response to either a galactose (50 g)/guar gum (2.5 g) load (836 kJ) and a standard breakfast (1.9 MJ; GG), or water (250 ml) and the standard breakfast (W) every 30 min relative to the ingestion for 120 min. Appetite was assessed using 100 mm visual analogue scales. GLP-1 concentrations were significantly increased after GG at 30 and 60 min compared with W in both groups. Plasma GLP-1 concentrations in the W condition were higher in normal-weight than overweight/obese subjects (P=0.03). No difference was observed in the GG condition between groups. Satiety was increased in normal-weight compared with overweight/obese subjects in the GG condition at 30 (P=0.02) and 60 (P=0.04) min. We conclude that after a standard breakfast with water, GLP-1 release was lower in the overweight/obese than the normal-weight subjects. However, postprandial GLP-1 release in overweight/obese subjects was no different from that of normal-weight subjects when galactose/guar gum was added to the breakfast. The latter was not mirrored by subjective feelings of satiety. Disturbed perception of the physiological feedback of a satiety hormone rather than disturbed feedback itself might contribute to obesity.
Collapse
Affiliation(s)
- Tanja C M Adam
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
150
|
Abstract
Animal models have been invaluable for studying aspects of food intake regulation that for various reasons cannot be observed in humans. The dairy cow is a unique animal model because of an unrivaled energy requirement; its great drive to eat results in feeding behavior responses to treatments within the physiological range. Cows' docile nature and large size make them ideal for measuring temporal treatment effects because digestion and absorption kinetics and responses in endocrine systems, gene expression, metabolite pools and fluxes, and feeding behavior can be measured simultaneously. Thus, cows are important models to investigate interactions of short-term signals regulating food intake. Furthermore, different physiological states throughout the lactation cycle provide powerful models to study how short- and long-term signals interact to affect long-term energy status. The use of the cow as a model can lead to breakthroughs in understanding the complex interactions of signals regulating food intake.
Collapse
Affiliation(s)
- Michael S Allen
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|