101
|
Zhang Y, Hailati J, Ma X, Midilibieke H, Liu Z. Ubiquitin-specific protease 11 Aggravates Ischemia-reperfusion-induced Cardiomyocyte Pyroptosis and Injury by Promoting TRAF3 Deubiquitination. Balkan Med J 2023; 40:205-214. [PMID: 37000116 PMCID: PMC10175892 DOI: 10.4274/balkanmedj.galenos.2023.2022-12-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Background In myocardial ischemia-reperfusion injury, myocardial damage is aggravated when blood perfusion is restored in myocardial infarction. Ubiquitin-specific protease 11 (USP11), a deubiquitinating enzyme, could remove the ubiquitination of substrate proteins and regulate protein stability, thereby affecting multiple pathological processes. Aims To investigate the potential function of USP11 in myocardial ischemia-reperfusion injury and its underlying mechanisms. Study Design In vivo and in vitro experimental study. Methods The ischemia-reperfusion rat model in vivo was evolved, wherein the left anterior descending coronary artery was ligated for 30 min, followed by ligature release for 120 min. Meanwhile, H9C2 cells were brought to hypoxia for 6 h and then reoxygenated for 18 h to establish a cell hypoxia-reoxygenation (H/R) injury in vitro. Then, the loss-of-function experiments of USP11 were performed. Triphenyltetrazolium chloride and hematoxylin and eosin staining were performed to observe myocardial injury. The MTT assay was utilized to detect H9C2 cell viability. Pyroptosis was analyzed by TUNEL staining and flow cytometry. Pyroptosis-related protein expression and TRAF3 were analyzed via Western blot. The content of inflammatory factors was examined by enzyme-linked immunoassay. Co-immunoprecipitation and ubiquitination assays were performed to analyze for USP11 interacting with TRAF3. Results USP11 was upregulated in the ischemic heart tissue. Ischemia-reperfusion and H/R injuries increased USP11 expression. USP11 loss-of-function assays showed that USP11 knockdown alleviated ischemia-reperfusion- and H/R-induced myocardial cell damage, pyroptosis, pro-inflammatory factor secretion, and IKKβ/NF-κB pathway activation. In H9C2 cells, USP11 stabilized TRAF3 by deubiquitination. Furthermore, rescue experiments revealed that TRAF3 overexpression reversed the protection of silencing USP11 on H/R-induced H9C2 cell injury. Conclusion This study confirmed that USP11 knockdown ameliorated myocardial ischemia-reperfusion injury by downregulating TRAF3, suggesting that USP11 silencing can be a novel target of myocardial infarction.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of General Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juledezi Hailati
- Department of General Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaoyun Ma
- Centre of Cadre Health, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hasidaer Midilibieke
- Department of General Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Liu
- Department of General Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
102
|
Wang S, Cai Y, Bu R, Wang Y, Lin Q, Chen Y, Wu C. PPARγ Regulates Macrophage Polarization by Inhibiting the JAK/STAT Pathway and Attenuates Myocardial Ischemia/Reperfusion Injury In Vivo. Cell Biochem Biophys 2023:10.1007/s12013-023-01137-0. [PMID: 37129843 DOI: 10.1007/s12013-023-01137-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to investigate the role of PPARγ and underlying mechanisms in myocardial ischemia/reperfusion injury (IRI). IRI was surgically induced in mice and neonatal rat cardiomyocytes (NRCM) were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R). Quantitative genetic analysis and western blotting were performed to assess mRNA and protein levels, respectively, of PPARγ, as well as of different inflammatory, fibrosis, and apoptosis markers in cells and tissues. PPARγ was overexpressed in the heart of mice and NRCMs by viral transfection. Apoptosis and fibrosis were detected by TUNEL and Masson's trichrome staining, respectively. Enzyme-linked immunosorbent assay was performed to detect M1 and M2 macrophage-related inflammatory factors present in mouse sera. PPARγ overexpression significantly inhibited OGD/R- and IRI-induced cardiomyocyte apoptosis and fibrosis in vitro and in vivo. Moreover, PPARγ overexpression inhibited IRI-induced secretion of M1-related proinflammatory factors, whereas it supported the secretion of M2-related anti-inflammatory factors. Notably, these events were found to be mediated by the JAK/STAT pathway. In conclusion, PPARγ regulates macrophage polarization upon IRI via the JAK/STAT pathway, which will in turn prevent myocardial apoptosis and fibrosis. Hence, PPARγ may represent a valuable target for myocardial IRI treatment.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China
| | - Yinlian Cai
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China
| | - Rongsheng Bu
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China
| | - Yaoguo Wang
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China
| | - Qingfan Lin
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou City, 362000, Fujian, China
| | - Youfang Chen
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou City, 362000, Fujian, China
| | - Chunchun Wu
- Department of Cardiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian, China.
| |
Collapse
|
103
|
Tian H, Zhao X, Zhang Y, Xia Z. Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2023; 163:114827. [PMID: 37141734 DOI: 10.1016/j.biopha.2023.114827] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
Myocardial ischemia-reperfusion injury is a common condition in cardiovascular diseases, and the mechanism of its occurrence involves multiple complex metabolic pathways and signaling pathways. Among these pathways, glucose metabolism and lipid metabolism play important roles in regulating myocardial energy metabolism. Therefore, this article focuses on the roles of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion injury, including glycolysis, glucose uptake and transport, glycogen metabolism and the pentose phosphate pathway; and triglyceride metabolism, fatty acid uptake and transport, phospholipid metabolism, lipoprotein metabolism, and cholesterol metabolism. Finally, due to the different alterations and development of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion, there are also complex interregulatory relationships between them. In the future, modulating the equilibrium between glucose metabolism and lipid metabolism in cardiomyocytes and ameliorating aberrations in myocardial energy metabolism represent highly promising novel strategies for addressing myocardial ischemia-reperfusion injury. Therefore, a comprehensive exploration of glycolipid metabolism can offer novel theoretical and clinical insights into the prevention and treatment of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
104
|
Wu H, Xiong X, CUI X, Xiong J, Zhang Y, Xiang L, Xu TAO. Analysis of the influence of pyroptosis-related genes on molecular characteristics in patients with acute myocardial infarction. Medicine (Baltimore) 2023; 102:e33620. [PMID: 37083810 PMCID: PMC10118340 DOI: 10.1097/md.0000000000033620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Pyroptosis is a newly identified mode of programmed cell death, but the potential role in patients with acute myocardial infarction (AMI) remains unclear. In this study, bioinformatics methods were used to identify differentially expressed genes from peripheral blood transcriptome data between normal subjects and patients with AMI which were downloaded by the Gene Expression Omnibus database. Comparing Random Forest (RF) and Support Vector Machine (SVM) training algorithms were used to identify pyroptosis-related genes, predicting patients with AMI by nomogram based on informative genes. Moreover, clustering was used to amplify the feature of pyroptosis, in order to facilitate analysis distinct biological differences. Diversity analysis indicated that a majority of pyroptosis-related genes are expressed at higher levels in patients with AMI. The receiver operating characteristic curves show that the RF model is more responsive than the SVM machine learning model to the pyroptosis characteristics of these patients in vivo. We obtained a column line graph diagnostic model which was developed based on 19 genes established by the RF model. After the consensus clustering algorithm of single sample Gene Set Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis, the results for them found that pyroptosis-related genes mediate the activation of multiple immune cells and many inflammatory pathways in the body. We used RF and SVM algorithms to determine 19 pyroptosis-related genes and evaluate their immunological effects in patients with AMI. We also constructed a series of by nomogram related to pyroptosis-related genes to predict the risk of developing AMI.
Collapse
Affiliation(s)
- Huan Wu
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xiaoman Xiong
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xueying CUI
- Qingyun County People’s Hospital, Qingyun, Shandong, China
| | - Jianlong Xiong
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yan Zhang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Liubo Xiang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - TAO Xu
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
105
|
Li L, Liu B, Wang M, Ye J, Sun G. Protective effect of Guanxin Danshen formula on myocardial ischemiareperfusion injury in rats. Acta Cir Bras 2023; 38:e380123. [PMID: 37098925 PMCID: PMC10129295 DOI: 10.1590/acb380123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/04/2022] [Indexed: 04/27/2023] Open
Abstract
PURPOSE Myocardial ischemia/reperfusion injury (MIRI) leads to myocardial tissue necrosis, which will increase the size of myocardial infarction. The study examined the protective effect and mechanism of the Guanxin Danshen formula (GXDSF) on MIRI in rats. METHODS MIRI model was performed in rats; rat H9C2 cardiomyocytes were hypoxia-reoxygenated to establish a cell injury model. RESULTS The GXDSF significantly reduced myocardial ischemia area, reduced myocardial structural injury, decreased the levels of interleukin (IL-1β, IL-6) in serum, decreased the activity of myocardial enzymes, increased the activity of superoxide dismutase (SOD), and reduced glutathione in rats with MIRI. The GXDSF can reduce the expression of nucleotide- binding oligomerization domain, leucine-rich repeat and pyrin domain containing nod-like receptor family protein 3 (NLRP3), IL-1β, caspase-1, and gasdermin D (GSDMD) in myocardial tissue cells. Salvianolic acid B and notoginsenoside R1 protected H9C2 cardiomyocytes from hypoxia and reoxygenation injury and reduced the levels of tumor necrosis factor α (TNF-α) and IL-6 in the cell supernatant, decreasing the NLRP3, IL-18, IL-1β, caspase-1, and GSDMD expression in H9C2 cardiomyocytes. GXDSF can reduce the myocardial infarction area and alleviate the damage to myocardial structure in rats with MIRI, which may be related to the regulation of the NLRP3. CONCLUSIONS GXDSF reduces MIRI in rat myocardial infarction injury, improves structural damage in myocardial ischemia injury, and reduces myocardial tissue inflammation and oxidative stress by lowering inflammatory factors and controlling focal cell death signaling pathways.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| | - Bo Liu
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development – Peking Union Medical College and Chinese Academy of Medical Sciences - Beijing, China
| |
Collapse
|
106
|
Clasen L, Angendohr S, Becher S, Bartsch B, Enkel S, Meyer C, Kelm M, Makimoto H, Klöcker N. Cardiac ischemia and reperfusion in mice: a comprehensive hemodynamic, electrocardiographic and electrophysiological characterization. Sci Rep 2023; 13:5693. [PMID: 37029160 PMCID: PMC10082073 DOI: 10.1038/s41598-023-32346-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/26/2023] [Indexed: 04/09/2023] Open
Abstract
Malignant ventricular arrhythmias (VA) after acute myocardial infarction remain a major threat. Aim of this study was to characterize the electrophysiological and autonomic sequelae of cardiac ischemia and reperfusion (I/R) in mice during the first week post incident. Left ventricular function was serially assessed using transthoracic echocardiography. VA were quantified by telemetric electrocardiogram (ECG) recordings and electrophysiological studies on the 2nd and 7th day after I/R. Cardiac autonomic function was evaluated by heart rate variability (HRV) and heart rate turbulence (HRT). Infarct size was quantified by planimetric measures. I/R caused significant myocardial scarring and diminished left ventricular ejection fraction. The ECG intervals QRS, QT, QTc, and JTc were prolonged in I/R mice. Both spontaneous VA scored higher and the inducibility of VA was raised in I/R mice. An analysis of HRV and HRT indicated a relative reduction in parasympathetic activity and disturbed baroreflex sensitivity up to 7 days after I/R. In summary, during the first week after I/R, the murine heart reflects essential features of the human heart after myocardial infarction, including a greater vulnerability for VA and a decreased parasympathetic tone accompanied by decelerated depolarization and repolarization parameters.
Collapse
Affiliation(s)
- Lukas Clasen
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology, Rhythmology and Angiology, Josephs-Hospital Warendorf, Academic Teaching Hospital, University of Münster, Warendorf, Germany
| | - Stephan Angendohr
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Becher
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Benedikt Bartsch
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Stephan Enkel
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Meyer
- Division of Cardiology, Angiology, Intensive Care Medicine, EVK Düsseldorf, cNEP, Cardiac Neuro- and Electrophysiology Research Consortium, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hisaki Makimoto
- Department of Cardiology, Pulmonary and Vascular Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
107
|
Marwarha G, Slagsvold KH, Høydal MA. NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression. Int J Mol Sci 2023; 24:ijms24076618. [PMID: 37047592 PMCID: PMC10095479 DOI: 10.3390/ijms24076618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia–reperfusion (I-R) injury is a cardinal pathophysiological hallmark of ischemic heart disease (IHD). Despite significant advances in the understanding of what causes I-R injury and hypoxia–reoxygenation (H-R) stress, viable molecular strategies that could be targeted for the treatment of the deleterious biochemical pathways activated during I-R remain elusive. The master hypoxamiR, microRNA-210 (miR-210), is a major determinant of protective cellular adaptation to hypoxia stress but exacerbates apoptotic cell death during cellular reoxygenation. While the hypoxia-induced transcriptional up-regulation of miR-210 is well delineated, the cellular mechanisms and molecular entities that regulate the transcriptional induction of miR-210 during the cellular reoxygenation phase have not been elucidated yet. Herein, in immortalized AC-16 cardiomyocytes, we delineated the indispensable role of the ubiquitously expressed transcription factor, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in H-R-induced miR-210 expression during cellular reoxygenation. Using dominant negative and dominant active expression vectors encoding kinases to competitively inhibit NF-κB activation, we elucidated NF-κB activation as a significant mediator of H-R-induced miR-210 expression. Ensuing molecular assays revealed a direct NF-κB-mediated transcriptional up-regulation of miR-210 expression in response to the H-R challenge that is characterized by the NF-κB-mediated reorchestration of the entire repertoire of histone modification changes that are a signatory of a permissive actively transcribed miR-210 promoter. Our study confers a novel insight identifying NF-κB as a potential novel molecular target to combat H-R-elicited miR-210 expression that fosters augmented cardiomyocyte cell death.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Katrine Hordnes Slagsvold
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Department of Cardiothoracic Surgery, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| |
Collapse
|
108
|
Yang T, Zhang D. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury. Ageing Res Rev 2023; 86:101884. [PMID: 36801379 DOI: 10.1016/j.arr.2023.101884] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Acute myocardial infarction (AMI) reperfusion is associated with ischemia/reperfusion (I/R) injury, which leads to enlarged myocardial infarction size, poor healing of the infarcted myocardium, and poor left ventricular remodeling, thus increasing the risk of major adverse cardiovascular events (MACEs). Diabetes increases myocardial susceptibility to I/R injury, decreases myocardial responsiveness to cardioprotective strategies, exacerbates myocardial I/R injury, and expands the infarct size of AMI, thereby increasing the incidence of malignant arrhythmias and heart failure. Currently, evidence regarding pharmacological interventions for diabetes combined with AMI and I/R injury is lacking. Traditional hypoglycemic drugs have a limited role in the prevention and treatment of diabetes combined with I/R injury. Current evidence suggests that novel hypoglycemic drugs may exert a preventive effect on diabetes combined with myocardial I/R injury, especially glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-dependent glucose transporter protein 2 inhibitors (SGLT2i), which may increase coronary blood flow, reduce acute thrombosis, attenuate I/R injury, decrease myocardial infarction size, inhibit structural and functional remodeling of the ischemic heart, improve cardiac function, and reduce the occurrence of MACEs of diabetes patients combined with AMI via mechanisms such as reduction of inflammatory response, inhibition of oxidative stress, and improvement of vascular endothelial function. This paper will systematically elaborate the protective role and molecular mechanisms of GLP-1 RA and SGLT2i in diabetes combined with myocardial I/R injury, aiming to provide clinical assistance.
Collapse
Affiliation(s)
- Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| | - Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
109
|
Liu X, Dou B, Tang W, Yang H, Chen K, Wang Y, Qin J, Yang F. Cardioprotective effects of circ_0002612 in myocardial ischemia/reperfusion injury correlate with disruption of miR-30a-5p-dependent Ppargc1a inhibition. Int Immunopharmacol 2023; 117:110006. [PMID: 37012879 DOI: 10.1016/j.intimp.2023.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
INTRODUCTION Novel mechanistic insights into the effects of circular RNAs (circRNAs) on the physiology and pathology of cardiovascular diseases are under increasingly active investigation. This study defined the cardioprotective role and mechanistic actions of circ_0002612 in myocardial ischemia/reperfusion injury (MI/RI). METHODS MI/RI was induced in mice by ligation of the left anterior descending (LAD) artery followed by reperfusion, and the in vitro model was established in cultured cardiomyocytes under hypoxia/reoxygenation (H/R) conditions. Interaction among circ_0002612, miR-30a-5p, Ppargc1a, and NLRP3 was predicted by bioinformatics analysis and further experimentally identified. Gain- and loss-of-function experiments were performed to evaluate the effect of the circ_0002612/miR-30a-5p/Ppargc1a/NLRP3 axis on the cardiac function and myocardial infarction of I/R-injured mice, as well as viability and apoptosis of H/R-challenged cardiomyocytes. RESULTS In the myocardial tissues of MI/RI mice, miR-30a-5p was negatively correlated with circ_0002612 or Ppargc1a, but circ_0002612 was positively correlated with the expression of Ppargc1a. circ_0002612 competitively bound to miR-30a-5p to release expression of its target gene Ppargc1a. circ_0002612 promoted cardiomyocyte viability while suppressing the apoptosis by impairing the miR-30a-5p-mediated inhibition of Ppargc1a. Additionally, Ppargc1a inhibited the expression of NLRP3 and consequently facilitated cardiomyocyte proliferation while suppressing cell apoptosis. By inhibiting the expression of NLRP3, circ_0002612 protected mice from MI/RI. CONCLUSION Overall, this study demonstrates the cardioprotective role of circ_0002612 against MI/RI, which may be a viable target for MI/RI.
Collapse
|
110
|
He W, Duan L, Zhang L. LOXL1-AS1 Aggravates Myocardial Ischemia/Reperfusion Injury Through the miR-761/PTEN Axis. Korean Circ J 2023:53.e25. [PMID: 37161797 DOI: 10.4070/kcj.2022.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Myocardial ischemia and reperfusion injury (MIRI) has high morbidity and mortality worldwide. We aimed to explore the role of long noncoding RNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) in cardiomyocyte pyroptosis. METHODS Hypoxia/reoxygenation (H/R) injury was constructed in human cardiomyocyte (HCM). The level of LOXL1-AS1, miR-761, phosphatase and tensin homolog (PTEN) and pyroptosis-related proteins was monitored by quantitative real-time polymerase chain reaction or western blot. Flow cytometry examined the pyroptosis level. Lactate dehydrogenase (LDH), creatine kinase-MB and cardiac troponin I levels were detected by test kits. Enzyme-linked immunosorbent assay measured the release of inflammatory cytokines. Dual-luciferase assay validated the binding relationship among LOXL1-AS1, miR-761, and PTEN. Finally, ischemia/reperfusion (I/R) animal model was constructed. Hematoxylin and eosin staining assessed morphological changes of myocardial tissue. NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and casepase-1 expression was determined by immunohistochemistry. RESULTS After H/R treatment, LOXL1-AS1 and PTEN were highly expressed but miR-761 level was suppressed. LOXL1-AS1 inhibition or miR-761 overexpression increased cell viability, blocked the release of LDH and inflammatory cytokines (interleukin [IL]-1β, IL-18), inhibited pyroptosis level, and downregulated pyroptosis-related proteins (ASC, cleaved caspase-1, gasdermin D-N, NLRP3, IL-1β, and IL-18) levels in HCMs. LOXL1-AS1 sponged miR-761 to up-regulate PTEN. Knockdown of miR-761 reversed the effect of LOXL1-AS1 down regulation on H/R induced HCM pyroptosis. LOXL1-AS1 aggravated the MIRI by regulating miR-761/PTEN axis in vivo. CONCLUSIONS LOXL1-AS1 targeted miR-761 to regulate PTEN expression, then enhance cardiomyocyte pyroptosis, providing a new alternative target for the treatment of MIRI.
Collapse
Affiliation(s)
- Wenhua He
- Department of Cardiovascular Medicine, The First People's Hospital of Chenzhou, Chenzhou, China
- Department of Intensive Care Unit (ICU), Hunan Chest Hospital, Changsha, China
| | - Lili Duan
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Li Zhang
- Department of Cardiovascular Medicine, The First People's Hospital of Chenzhou, Chenzhou, China.
| |
Collapse
|
111
|
Xia Y, Zhang W, He K, Bai L, Miao Y, Liu B, Zhang X, Jin S, Wu Y. Hydrogen sulfide alleviates lipopolysaccharide-induced myocardial injury through TLR4-NLRP3 pathway. Physiol Res 2023; 72:15-25. [PMID: 36545872 PMCID: PMC10069815 DOI: 10.33549/physiolres.934928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
To investigate the effect of hydrogen sulfide (H2S) on myocardial injury in sepsis-induced myocardial dysfunction (SIMD), male C57BL/6 mice were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg, i.p.) to induce cardiac dysfunction without or with the H2S donor sodium hydrosulfide (NaHS) (50 µmol/kg, i.p.) administration 3 h after LPS injection. Six hours after the LPS injection, echocardiography, cardiac hematoxylin and eosin (HE) staining, myocardial damage and inflammatory biomarkers and Western blot results were analyzed. In mice, the administration of LPS decreased left ventricular ejection fraction (LVEF) by 30 % along with lowered H2S levels (35 % reduction). It was observed that cardiac troponin I (cTnI), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) levels were all increased (by 0.22-fold, 2000-fold and 0.66-fold respectively). HE staining revealed structural damage and inflammatory cell infiltration in the myocardial tissue after LPS administration. Moreover, after 6 h of LPS treatment, toll-like receptor 4 (TLR4) and nod-like receptor protein 3 (NLRP3) expressions were up-regulated 2.7-fold and 1.6-fold respectively. When compared to the septic mice, NaHS enhanced ventricular function (by 0.19-fold), decreased cTnI, TNF-alpha, and IL-1beta levels (by 11 %, 33 %, and 16 % respectively) and downregulated TLR4 and NLRP3 expressions (by 64 % and 31 % respectively). Furthermore, NaHS did not further improve cardiac function and inflammation in TLR4-/- mice or mice in which NLRP3 activation was inhibited by MCC950, after LPS injection. In conclusion, these findings imply that decreased endogenous H2S promotes the progression of SIMD, whereas exogenous H2S alleviates SIMD by inhibiting inflammation via the TLR4-NLRP3 pathway suppression.
Collapse
Affiliation(s)
- Y Xia
- Department of Physiology, Hebei Medical University, Hebei, China. ;
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Volkova MV, Boyarintsev VV, Trofimenko AV, Kovaleva EV, Othman AA, Melerzanov AV, Filkov GI, Rybalkin SP, Durymanov MO. Local injection of bone-marrow derived mesenchymal stromal cells alters a molecular expression profile of a contact frostbite injury wound and improves healing in a rat model. Burns 2023; 49:432-443. [PMID: 35610075 DOI: 10.1016/j.burns.2022.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Frostbite is a traumatic injury of the tissues upon low temperature environment exposure, which is characterized by direct cell injury due to freezing-thawing followed by development of an acute inflammatory process. Severe frostbite can lead to necrosis of soft tissues and loss of a limb. Mesenchymal stromal cells (MSCs) have a unique ability to modulate pathogenic immune response by secretion of paracrine factors, which suppress inflammation and mediate more efficient tissue regeneration. It should be noted that potential of stem cell therapy for frostbite injury treatment has not been investigated so far. Here, we evaluated a healing capacity of bone-marrow derived MSCs for the treatment of contact frostbite injury wound in a rat model. METHODS Cold-contact injury in a Wistar rat model was induced by 1-minute tight application of the cooled probe (-196 ⁰C) to the skin surface of the left hip. Rat bone marrow MSCs were phenotypically characterized and used for local injections into non-damaged tissues surrounding the wound of animals from the experimental group. The second group of rats was treated in the same manner with 1 mL of isotonic sodium chloride solution. Analysis of cytokine and growth factor expression profile in сold-contact injury wounds was performed on days 5, 9, and 16 using immunoblotting and enzyme-linked immunosorbent assay. Animal recovery in MSC-treated and vehicle-treated groups was evaluated by several criteria including body weight recording, determination of eschar desquamation and re-epithelialization terms, assessment of wound closure kinetics, and histological scoring of the wounds on day 23. RESULTS It turned out that a single subcutaneous administration of MSCs around the wound site resulted in elevated expression of pro-survival and pro-angiogenic VEGF-A and PDGF and 3-5-fold decrease in pro-inflammatory IL-1β as compared with the frostbite wound treated with a vehicle. Moreover, treatment with MSCs caused accelerated wound re-epithelialization (p < 0.05) as well as a better histological score of the MSC-treated wounds. CONCLUSIONS Thus, our data suggested that the use of MSCs is a promising therapeutic strategy for the treatment of cold-induced injury wounds.
Collapse
Affiliation(s)
- Marina V Volkova
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Valery V Boyarintsev
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Alexander V Trofimenko
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Elena V Kovaleva
- Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Dashkovka, Serpukhov district, Moscow Region 142253, Russia
| | - Aya Al Othman
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Alexander V Melerzanov
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Gleb I Filkov
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Sergey P Rybalkin
- Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Dashkovka, Serpukhov district, Moscow Region 142253, Russia
| | - Mikhail O Durymanov
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia.
| |
Collapse
|
113
|
Torp MK, Vaage J, Stensløkken KO. Mitochondria-derived damage-associated molecular patterns and inflammation in the ischemic-reperfused heart. Acta Physiol (Oxf) 2023; 237:e13920. [PMID: 36617670 DOI: 10.1111/apha.13920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/01/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
Cardiac cell death after myocardial infarction release endogenous structures termed damage-associated molecular patterns (DAMPs) that trigger the innate immune system and initiate a sterile inflammation in the myocardium. Cardiomyocytes are energy demanding cells and 30% of their volume are mitochondria. Mitochondria are evolutionary endosymbionts originating from bacteria containing molecular patterns similar to bacteria, termed mitochondrial DAMPs (mDAMPs). Consequently, mitochondrial debris may be particularly immunogenic and damaging. However, the role of mDAMPs in myocardial infarction is not clarified. Identifying the most harmful mDAMPs and inhibiting their early inflammatory signaling may reduce infarct size and the risk of developing post-infarct heart failure. The focus of this review is the role of mDAMPs in the immediate pro-inflammatory phase after myocardial infarction before arrival of immune cells in the myocardium. We discuss different mDAMPs, their role in physiology and present knowledge regarding their role in the inflammatory response of acute myocardial infarction.
Collapse
Affiliation(s)
- May-Kristin Torp
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
114
|
Volkova MV, Shen N, Polyanskaya A, Qi X, Boyarintsev VV, Kovaleva EV, Trofimenko AV, Filkov GI, Mezentsev AV, Rybalkin SP, Durymanov MO. Tissue-Oxygen-Adaptation of Bone Marrow-Derived Mesenchymal Stromal Cells Enhances Their Immunomodulatory and Pro-Angiogenic Capacity, Resulting in Accelerated Healing of Chemical Burns. Int J Mol Sci 2023; 24:4102. [PMID: 36835513 PMCID: PMC9963537 DOI: 10.3390/ijms24044102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Transplantation of mesenchymal stromal cells (MSCs) provides a powerful tool for the management of multiple tissue injuries. However, poor survival of exogenous cells at the site of injury is a major complication that impairs MSC therapeutic efficacy. It has been found that tissue-oxygen adaptation or hypoxic pre-conditioning of MSCs could improve the healing process. Here, we investigated the effect of low oxygen tension on the regenerative potential of bone-marrow MSCs. It turned out that incubation of MSCs under a 5% oxygen atmosphere resulted in increased proliferative activity and enhanced expression of multiple cytokines and growth factors. Conditioned growth medium from low-oxygen-adapted MSCs modulated the pro-inflammatory activity of LPS-activated macrophages and stimulated tube formation by endotheliocytes to a much higher extent than conditioned medium from MSCs cultured in a 21% oxygen atmosphere. Moreover, we examined the regenerative potential of tissue-oxygen-adapted and normoxic MSCs in an alkali-burn injury model on mice. It has been revealed that tissue-oxygen adaptation of MSCs accelerated wound re-epithelialization and improved the tissue histology of the healed wounds in comparison with normoxic MSC-treated and non-treated wounds. Overall, this study suggests that MSC adaptation to 'physiological hypoxia' could be a promising approach for facilitating skin injuries, including chemical burns.
Collapse
Affiliation(s)
- Marina V. Volkova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Ningfei Shen
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Anna Polyanskaya
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Xiaoli Qi
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Valery V. Boyarintsev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Elena V. Kovaleva
- Department of Pathomorphology and Reproductive Toxicology, Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Serpukhov 142253, Russia
| | - Alexander V. Trofimenko
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Gleb I. Filkov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Alexandre V. Mezentsev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| | - Sergey P. Rybalkin
- Department of Pathomorphology and Reproductive Toxicology, Research Center of Toxicology and Hygienic Regulation of Biopreparations, NRC Institute of Immunology FMBA of Russia, Ul. Lenina 102A, Serpukhov 142253, Russia
| | - Mikhail O. Durymanov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, National Research University, Dolgoprudny 141701, Russia
| |
Collapse
|
115
|
Abstract
Bronchopulmonary dysplasia (BPD) in neonates is the most common pulmonary disease that causes neonatal mortality, has complex pathogenesis, and lacks effective treatment. It is associated with chronic obstructive pulmonary disease, pulmonary hypertension, and right ventricular hypertrophy. The occurrence and development of BPD involve various factors, of which premature birth is the most crucial reason for BPD. Under the premise of abnormal lung structure and functional product, newborns are susceptible to damage to oxides, free radicals, hypoxia, infections and so on. The most influential is oxidative stress, which induces cell death in different ways when the oxidative stress balance in the body is disrupted. Increasing evidence has shown that programmed cell death (PCD), including apoptosis, necrosis, autophagy, and ferroptosis, plays a significant role in the molecular and biological mechanisms of BPD and the further development of the disease. Understanding the mode of PCD and its signaling pathways can provide new therapeutic approaches and targets for the clinical treatment of BPD. This review elucidates the mechanism of BPD, focusing on the multiple types of PCD in BPD and their molecular mechanisms, which are mainly based on experimental results obtained in rodents.
Collapse
|
116
|
Tian H, Xiong Y, Xia Z. Resveratrol ameliorates myocardial ischemia/reperfusion induced necroptosis through inhibition of the Hippo pathway. J Bioenerg Biomembr 2023; 55:59-69. [PMID: 36562913 DOI: 10.1007/s10863-022-09954-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a major cause of poor hemodynamic reconstitution outcomes after myocardial infarction or circulatory arrest. Currently, the search for effective therapeutic agents and tools is a focus of research in the field of myocardial I/R injury. Resveratrol (Res) has been extensively studied in recent years because of its good cardiovascular therapeutic effects, but its specific mechanism of action has not been fully elucidated. Therefore, the aim of this study was to investigate the mechanism of interaction between myocardial I/R injury and Res in vitro and in vivo. In our in vivo study, we used PI/TUNEL staining and western blotting to detect relevant necroptotic key molecules such as RIP1, RIP3 and p-MLKL/MLKL to observe myocardial necroptosis. The extent of myocardial injury was determined using hematoxylin and eosin (HE) staining and 2,3,5-triphenyltetrazolium chloride (TTC) staining as well as serum levels of CK-MB and LDH and echocardiography. In the in vitro study, cellular injury was assessed by CCK-8 and cell supernatant LDH levels. In addition, we used small interfering RNA (siRNA) transfection to knock down YAP, a key effector molecule of the Hippo pathway, to validate the molecular mechanism of action by which Res exerts myocardial protection. The localization of YAP in H9c2 cardiomyocytes was examined using immunofluorescence. Our data demonstrated that Res could ameliorate myocardial I/R-induced necroptosis by modulating the Hippo pathway, and that the beneficial effect of Res might be associated with nuclear translocation of the transcriptional regulator YAP.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China.
| |
Collapse
|
117
|
Liao Y, Fu Z, Huang Y, Wu S, Wang Z, Ye S, Zeng W, Zeng G, Li D, Yang Y, Pei K, Yang J, Hu Z, Liang X, Hu J, Liu M, Jin J, Cai C. Interleukin-18-primed human umbilical cord-mesenchymal stem cells achieve superior therapeutic efficacy for severe viral pneumonia via enhancing T-cell immunosuppression. Cell Death Dis 2023; 14:66. [PMID: 36707501 PMCID: PMC9883134 DOI: 10.1038/s41419-023-05597-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
Coronavirus disease 2019 (COVID-19) treatments are still urgently needed for critically and severely ill patients. Human umbilical cord-mesenchymal stem cells (hUC-MSCs) infusion has therapeutic benefits in COVID-19 patients; however, uncertain therapeutic efficacy has been reported in severe patients. In this study, we selected an appropriate cytokine, IL-18, based on the special cytokine expression profile in severe pneumonia of mice induced by H1N1virus to prime hUC-MSCs in vitro and improve the therapeutic effect of hUC-MSCs in vivo. In vitro, we demonstrated that IL-18-primed hUC-MSCs (IL18-hUCMSC) have higher proliferative ability than non-primed hUC-MSCs (hUCMSCcon). In addition, VCAM-1, MMP-1, TGF-β1, and some chemokines (CCL2 and CXCL12 cytokines) are more highly expressed in IL18-hUCMSCs. We found that IL18-hUCMSC significantly enhanced the immunosuppressive effect on CD3+ T-cells. In vivo, we demonstrated that IL18-hUCMSC infusion could reduce the body weight loss caused by a viral infection and significantly improve the survival rate. Of note, IL18-hUCMSC can also significantly attenuate certain clinical symptoms, including reduced activity, ruffled fur, hunched backs, and lung injuries. Pathologically, IL18-hUCMSC transplantation significantly enhanced the inhibition of inflammation, viral load, fibrosis, and cell apoptosis in acute lung injuries. Notably, IL18-hUCMSC treatment has a superior inhibitory effect on T-cell exudation and proinflammatory cytokine secretion in bronchoalveolar lavage fluid (BALF). Altogether, IL-18 is a promising cytokine that can prime hUC-MSCs to improve the efficacy of precision therapy against viral-induced pneumonia, such as COVID-19.
Collapse
Affiliation(s)
- Yan Liao
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Zeqin Fu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Yinfu Huang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Shiduo Wu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weijie Zeng
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Guifang Zeng
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Duanduan Li
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Yulin Yang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Ke Pei
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Jian Yang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Zhiwei Hu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Xiao Liang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China.
| | - Muyun Liu
- National-Local Associated Engineering Laboratory for Personalized Cell Therapy, Shenzhen, 518054, China.
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China.
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
118
|
Chen RX, Jiang WJ, Liu SC, Wang ZY, Wang ZB, Zhou T, Chen YAL, Wang JF, Chang J, Wang YR, Zhang YD, Wang XH, Li XC, Li CX. Apolipoprotein A-1 protected hepatic ischaemia-reperfusion injury through suppressing macrophage pyroptosis via TLR4-NF-κB pathway. Liver Int 2023; 43:234-248. [PMID: 36203339 DOI: 10.1111/liv.15448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Apolipoprotein A-1 (ApoA-1), the major apolipoprotein of high-density lipoprotein, plays anti-atherogenic role in cardiovascular diseases and exerts anti-inflammation effect in various inflammatory and infectious diseases. However, the role and mechanism of ApoA-1 in hepatic ischaemia-reperfusion (I/R) injury is unknown. METHODS In this study, we measured ApoA-1 expression in human liver grafts after transplantation. Mice partial hepatic I/R injury model was made in ApoA-1 knockout mice, ApoA-1 mimetic peptide D-4F treatment mice and corresponding control mice to examine the effect of ApoA-1 on liver damage, inflammation response and cell death. Primary hepatocytes and macrophages were isolated for in vitro study. RESULTS The results showed that ApoA-1 expression was down-regulated in human liver grafts after transplantation and mice livers subjected to hepatic I/R injury. ApoA-1 deficiency aggravated liver damage and inflammation response induced by hepatic I/R injury. Interestingly, we found that ApoA-1 deficiency increased pyroptosis instead of apoptosis during acute phase of hepatic I/R injury, which mainly occurred in macrophages rather than hepatocytes. The inhibition of pyroptosis compensated for the adverse impact of ApoA-1 deficiency. Furthermore, the up-regulated pyroptosis process was testified to be mediated by ApoA-1 through TLR4-NF-κB pathway and TLR4 inhibition significantly improved hepatic I/R injury. In addition, we confirmed that D-4F ameliorated hepatic I/R injury. CONCLUSIONS Our study has identified the protective role of ApoA-1 in hepatic I/R injury through inhibiting pyroptosis in macrophages via TLR4-NF-κB pathway. The effect of ApoA-1 may provide a novel therapeutic approach for hepatic I/R injury.
Collapse
Affiliation(s)
- Rui-Xiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wang-Jie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Shuo-Chen Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zi-Yi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhi-Bo Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yan-An-Lan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ji-Fei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yi-Rui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yao-Dong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xue-Hao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiang-Cheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chang-Xian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
119
|
Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun 2022; 635:194-202. [PMID: 36279681 DOI: 10.1016/j.bbrc.2022.09.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) by causing histopathological changes is considered one of the most important causes of liver failure and dysfunction after surgery which affect graft outcomes. Stem cells are new promising approaches to treating different diseases. One of the critical strategies to improve their function is the preconditioning of their culture medium. This study compared the effect of NaHS-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice. METHODS Human umbilical cord-derived MSC (MSC) cultured in a 75 cm3 flask and when confluency reached about 80%, the culture medium replaced with a serum-free medium, and 48 h later supernatants collected, concentrated, and then MSC-Exo extracted. To obtain H2S-Exo, MSC was treated with NaHS (1 μmol),the supernatant collected after 48 h, concentrated and exosomes extracted. Twenty-four male mice were randomly divided into four groups (n = 6) including: 1-ischemia, 2-sham-operated, 3- MSC-Exo, and 4- H2S-Exo. To induce ischemia, the hepatic artery and portal vein clamped using an atraumatic clip for 60 min followed by 3 h of reperfusion. Just upon ending the time of ischemia (removal of clamp artery), animals in MSC-Exo, and H2S-Exo groups received 100 μg exosomes in 100 μl PBS via tail vein. At the end of reperfusion, blood, and liver samples were collected for further serological, molecular, and histological analyses. RESULTS Administration of both MSC-Exo and H2S-Exo improved liver function by reducing inflammatory cytokines, cellular apoptosis, liver levels of total oxidant status, and liver aminotransferases. The results showed that protecting effect of MSC exosomes enhanced following NaHS preconditioning of cell culture medium. CONCLUSION MSC-Exo and H2S-Exo had hepato-protective effects against injuries induced by ischemia-reperfusion in mice. NaHS preconditioning of mesenchymal stem cells could enhance the therapeutic effects of MSC-derived exosomes.
Collapse
Affiliation(s)
- Maryam J Sameri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Feryal Savari
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Khojasteh Hoseinynejad
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Danyaei
- Department of Medical Physics, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
120
|
Mo DG, Wang L, Han QF, Yu K, Liu JH, Yao HC. NLRP3 Inflammasome May Be a Biomarker for Risk Stratification in Patients with Acute Coronary Syndrome. J Inflamm Res 2022; 15:6595-6605. [PMID: 36510493 PMCID: PMC9739063 DOI: 10.2147/jir.s383903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Acute coronary syndrome (ACS) has a high incidence and mortality rate worldwide, which has a considerable negative impact on the global economy. This study aimed to identify a group of ACS patients at a high risk of recurrent adverse cardiac events using the plasma NLRP3 inflammasome. Patients and methods ACS patients admitted to Liaocheng People's Hospital between June 2021 and March 2022 were enrolled in this study. Patients were divided into low (levels < 3.84 ng/mL) and high (levels ≥ 3.84 ng/mL) groups based on the median NLRP3 inflammasome levels. The patients were divided into three groups according to the Thrombolysis in Myocardial Infarction Risk Score for Secondary Prevention (TRS-2P): low (scores ≤ 2 points), intermediate (scores = 3 points), and high (score ≥ 4 points) risk. We investigated the relationship between NLRP3 inflammasome and laboratory indicators. Additionally, we examined whether the NLRP3 inflammasome was an independent predictor of high TRS-2P and explored the applicability of the plasma NLRP3 inflammasome for predicting high TRS-2P. Results Logistic regression analysis revealed that NLRP3 inflammasome was an independent predictor of high TRS-2P (odds ratio [OR]:2.013; 95% confidence interval [CI]: 1.174-3.452). The area under the receiver operating characteristic curve value of the NLRP3 inflammasome was 0.674 (95% CI: 0.611-0.737; P < 0.001). Conclusion NLRP3 inflammasome levels are an independent predictive factor for high TRS-2P levels, which indicates that the NLRP3 inflammasome may help predict the prognosis of ACS patients.
Collapse
Affiliation(s)
- De-Gang Mo
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong First Medical University, Liaocheng, People’s Republic of China
| | - Lin Wang
- Cardiologic Color Doppler Room, Liaocheng People’s Hospital Affiliated to Shandong First Medical University, Liaocheng, People’s Republic of China
| | - Qian-Feng Han
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong First Medical University, Liaocheng, People’s Republic of China
| | - Kang Yu
- Department of Laboratory Medicine, Liaocheng People’s Hospital Affiliated to Shandong First Medical University, Liaocheng, People’s Republic of China
| | - Jia-Hui Liu
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong First Medical University, Liaocheng, People’s Republic of China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong First Medical University, Liaocheng, People’s Republic of China,Correspondence : Heng-Chen Yao, Department of Cardiology, Liaocheng People’s Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, People’s Republic of China, Email
| |
Collapse
|
121
|
Song M, Cui X, Zhang J, Li Y, Li J, Zang Y, Li Q, Yang Q, Chen Y, Cai W, Weng X, Wang Y, Zhu X. Shenlian extract attenuates myocardial ischaemia-reperfusion injury via inhibiting M1 macrophage polarization by silencing miR-155. PHARMACEUTICAL BIOLOGY 2022; 60:2011-2024. [PMID: 36239618 PMCID: PMC9578494 DOI: 10.1080/13880209.2022.2117828] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Shenlian extract (SL) is a combination of Salvia miltiorrhiza Bge. (Labiatae) and Andrographis paniculata (Burm. F.) Wall. Ex Nees (Acanthaceae) extracts, which promote blood circulation and clear endogenous heat toxins. Myocardial ischaemia-reperfusion injury (MI/RI) is aggravated myocardial tissue damage induced by reperfusion therapy after myocardial infarction. OBJECTIVES This study explores the effect of SL on MI/RI and the underlying mechanism. MATERIALS AND METHODS Primary peritoneal macrophages (pMACs) were treated with LPS and SL (5, 10 or 20 μg/mL) for 24 h. The myocardial ischaemia-reperfusion (MI/R) model was established after administration of different doses of SL (90, 180 or 360 mg/kg). Myocardial tissue injury was assessed by methylthiazolyl tetrazolium (TTC) staining and levels of creatine kinase (CK), lactate dehydrogenase (LDH) and superoxide dismutase (SOD) in mice. The double immunofluorescence staining of iNOS/F4/80 and CD86/F4/80 was used to detect macrophage M1 polarization. The levels of miR-155, inflammatory factors and chemokines were detected by qRT-PCR or ELISA. CD86, iNOS, SOCS3, JAK2, p-JAK2, STAT3 and p-STAT3 proteins expressions in macrophages were analyzed by western blotting. Conditioned medium transfer systems were designed to unite M1 macrophages with H/R cardiomyocytes, and cell apoptosis was detected by TUNEL staining, western blotting or immunohistochemistry. RESULTS SL reduced apoptosis, diminished CK and LDH levels, raised SOD concentration and decreased infarct size in the MI/R model. Meanwhile, SL decreased miR-155 level, inhibited M1 macrophage polarization and inflammation. Furthermore, SL promoted SOCS3 expression and blocked JAK2/STAT3 pathway in vitro. CONCLUSIONS SL may be a promising TCM candidate for MI/RI. The underlying mechanisms could be associated with inhibition of M1 macrophage polarization via down-regulating miR-155.
Collapse
Affiliation(s)
- Min Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xihe Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Jingjing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yuanlong Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
122
|
Dong L, Shen Z, Chi H, Wang Y, Shi Z, Fang H, Yang Y, Rong J. Research Progress of Chinese Medicine in the Treatment of Myocardial Ischemia-Reperfusion Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:1-17. [PMID: 36437553 DOI: 10.1142/s0192415x23500015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vascular recanalization is the essential procedure in which severe coronary artery stenosis is diagnosed. However, the blood flow recovery associated with this procedure may cause myocardial ischemia-reperfusion injury (MIRI), which aggravates heart failure. Unfortunately, the mechanism of MIRI has historically been poorly understood. As we now know, calcium overloading, oxidative stress, mitochondrial dysfunction, inflammatory responses, and ferroptosis take part in the process of MIRI. Modern medicine has shown through clinical studies its own limited effects in the case of MIRI, whereas Chinese traditional medicine demonstrates a strong vitality. Multiple-target effects, such as anti-inflammatory, anti-oxidant, and cardio-protection effects, are central to this vitality. In our clinic center, Yixin formula is commonly used in patients with MIRI. This formula contains Astragalus, Ligusticum Wallichii, Salvia, Rhodiola Rosea, Radix Angelicae Sinensis, Cyperus Rotundus, and Cassia Twig. Its effects include warming yang energy, activating blood circulation, and eliminating blood stasis. In our previous laboratory studies, we have proved that it can reduce MIRI and oxidative stress injury in rats suffering from ischemia myocardiopathy. It can also inhibit apoptosis and protect myocardium. In this paper, we review the research of Yixin formula and other related herbal medicines in MIRI therapy.
Collapse
Affiliation(s)
- Li Dong
- Institute of Cardiology of Integrated Traditional, Chinese and Western Medicine, P. R. China
| | - Zhijie Shen
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Hao Chi
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Yingjie Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Zhaofeng Shi
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Hongjun Fang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Yanling Yang
- Institute of Cardiology of Integrated Traditional, Chinese and Western Medicine, P. R. China
| | - Jingfeng Rong
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| |
Collapse
|
123
|
Adams JA, Uryash A, Lopez JR. Non-Invasive Pulsatile Shear Stress Modifies Endothelial Activation; A Narrative Review. Biomedicines 2022; 10:biomedicines10123050. [PMID: 36551807 PMCID: PMC9775985 DOI: 10.3390/biomedicines10123050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The monolayer of cells that line both the heart and the entire vasculature is the endothelial cell (EC). These cells respond to external and internal signals, producing a wide array of primary or secondary messengers involved in coagulation, vascular tone, inflammation, and cell-to-cell signaling. Endothelial cell activation is the process by which EC changes from a quiescent cell phenotype, which maintains cellular integrity, antithrombotic, and anti-inflammatory properties, to a phenotype that is prothrombotic, pro-inflammatory, and permeable, in addition to repair and leukocyte trafficking at the site of injury or infection. Pathological activation of EC leads to increased vascular permeability, thrombosis, and an uncontrolled inflammatory response that leads to endothelial dysfunction. This pathological activation can be observed during ischemia reperfusion injury (IRI) and sepsis. Shear stress (SS) and pulsatile shear stress (PSS) are produced by mechanical frictional forces of blood flow and contraction of the heart, respectively, and are well-known mechanical signals that affect EC function, morphology, and gene expression. PSS promotes EC homeostasis and cardiovascular health. The archetype of inducing PSS is exercise (i.e., jogging, which introduces pulsations to the body as a function of the foot striking the pavement), or mechanical devices which induce external pulsations to the body (Enhanced External Pulsation (EECP), Whole-body vibration (WBV), and Whole-body periodic acceleration (WBPA aka pGz)). The purpose of this narrative review is to focus on the aforementioned noninvasive methods to increase PSS, review how each of these modify specific diseases that have been shown to induce endothelial activation and microcirculatory dysfunction (Ischemia reperfusion injury-myocardial infarction and cardiac arrest and resuscitation), sepsis, and lipopolysaccharide-induced sepsis syndrome (LPS)), and review current evidence and insight into how each may modify endothelial activation and how these may be beneficial in the acute and chronic setting of endothelial activation and microvascular dysfunction.
Collapse
Affiliation(s)
- Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence:
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
124
|
Li W, Yang K, Li B, Wang Y, Liu J, Chen D, Diao Y. Corilagin alleviates intestinal ischemia/reperfusion-induced intestinal and lung injury in mice via inhibiting NLRP3 inflammasome activation and pyroptosis. Front Pharmacol 2022; 13:1060104. [PMID: 36506567 PMCID: PMC9727192 DOI: 10.3389/fphar.2022.1060104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Intestinal ischemia reperfusion (II/R) is a clinical emergency that frequently occurs in a variety of clinical conditions. Severe intestinal injury results in the release of cytotoxic substances and inflammatory mediators which can activate local inflammatory response and bacterial translocation. This triggers multi-organ failure, including lung injury, which is a common complication of II/R injury and contributes to the high mortality rate. Corilagin (Cor) is a natural ellagitannin found in a variety of plants. It has many biological and pharmacological properties, including antioxidant, anti-inflammatory and anti-apoptosis activities. However, no studies have evaluated the effects and molecular mechanisms of Cor in alleviating II/R-induced intestinal and lung damage. In this study, Cor was found to significantly alleviate II/R-induced pathological damage, inflammatory response, oxidative stress, NLRP3 inflammasome activation, and pyroptosis in intestinal and lung tissues both in vivo and in vitro. Further, Cor inhibited the NLRP3 inflammasome activation and pyroptosis in RAW264.7 and MLE-12 cells induced by LPS/nigericin and that in IEC-6 cells induced by nigericin, indicating an amelioration of Cor in II/R-induced intestinal and lung injury via inhibiting NLRP3 inflammasome activation and pyroptosis. Thus, Cor might be a potential therapeutic agent for II/R-induced inflammation and tissue injury.
Collapse
Affiliation(s)
- Wenlian Li
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kejia Yang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| |
Collapse
|
125
|
Sousa Oliveira CV, Moreno-Loaiza O, Figueiredo-Vanzan D, Peroba Ramos I, Mata-Santos H, Torres Bozza M, Neto Paiva C, Medei E. IL-1β is not critical to chronic heart dysfunction in mice with Chagas disease. Front Immunol 2022; 13:1010257. [PMID: 36341442 PMCID: PMC9627615 DOI: 10.3389/fimmu.2022.1010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Long after Trypanosoma cruzi infection, 40% of individuals develop a progressive chronic chagasic cardiomyopathy (CCC), with systolic dysfunction and arrhythmias. Since we previously showed IL-1β mediates the development of systolic dysfunction and cardiac arrhythmias in diabetes mellitus and cardiorenal syndrome, and IL-1β remains elevated in Chagas disease patients, here we tested the role of IL-1β in CCC using a mouse model. Mice deficient in IL-1R expression (Il-1r−/−) survived acute T. cruzi infection with greater parasitemia than controls but did not lose weight as wild-type (WT) did. At the chronic stage, WT presented prolonged ventricular repolarization intervals (QJ), while Il-1r−/− presented intervals like noninfected controls. Infected Il-1r−/− and WT did not differ in stroke volume (SV), the incidence of cardiac arrhythmias on electrocardiography (EKG), whole heart action potential duration (APD), or the incidence of triggered activity after S1–S2 protocol, which is a measure of susceptibility to cardiac arrhythmias. We also treated chronically infected WT mice with an IL-1R antagonist, anakinra. Treatment shortened the QJ interval but did not improve the SV or the incidence of cardiac arrhythmias on EKG. Anakinra failed to reduce triggered activity following the electrical extra-stimulation protocol. In conclusion, the absence of functional IL-1β/IL-1R signaling did not prevent or reverse the decrease of SV or the incidence of cardiac arrhythmias induced by chronic T. cruzi infection, implying this is not a critical mechanism in generating or maintaining CCC. Since similar cardiac abnormalities were previously credited to IL-1β signaling, ruling out this mechanism is important to discourage further attempts of IL-1β blockade as a therapeutical measure.
Collapse
Affiliation(s)
- Camila Victória Sousa Oliveira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Oscar Moreno-Loaiza
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Isalira Peroba Ramos
- National Center for Structural Biology and Bioimage (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Hilton Mata-Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo Torres Bozza
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia Neto Paiva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Emiliano Medei, ; Claudia Neto Paiva,
| | - Emiliano Medei
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimage (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- *Correspondence: Emiliano Medei, ; Claudia Neto Paiva,
| |
Collapse
|
126
|
Dong Z, Yang L, Jiao J, Jiang Y, Li H, Yin G, Yang P, Sun L. Aspirin in combination with gastrodin protects cardiac function and mitigates gastric mucosal injury in response to myocardial ischemia/reperfusion. Front Pharmacol 2022; 13:995102. [PMID: 36238560 PMCID: PMC9553090 DOI: 10.3389/fphar.2022.995102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury after percutaneous coronary intervention (PCI) is common in acute myocardial infarction. Aspirin is commonly prescribed as anti-thrombotic therapy with coronary heart disease (CHD). However, long-term use of aspirin causes severe gastric mucosal damage. Gastrodin is a Chinese natural medicine with anti-inflammatory and anti-oxidative properties. In this study, we investigated the effects of combined therapy with aspirin and gastrodin on the myocardial and gastric mucosal injury in response to myocardial I/R injury and underlying mechanisms using the Sprague-Dawley (SD) rat model. Our results demonstrated that myocardial I/R caused significant cardiac dysfunction and gastric mucosal damage. Administration of aspirin led to significantly reduce myocardial infarction size and myocardial enzyme release, as well as significantly improved cardiac function through exerting anti-inflammatory effects. However, aspirin exacerbated gastric mucosal damage by increasing the levels of inflammatory mediators and endothelin (ET) while reducing prostaglandin E2 (PGE2) levels. The combined treatment with aspirin and gastrodin not only significantly protected gastric mucosa by normalizing the expression levels of the inflammatory factors, ET and PGE2, but also significantly reduced myocardial infarction size and improved cardiac function by inhibiting inflammation in response to I/R. The combination therapy also dramatically down-regulated the levels of pyroptosis-related proteins in the myocardium and gastric mucosa. The combination therapy showed obviously reduced level of thromboxane B2 (TXB2), which was simultaneously accompanied with increased levels of the tissue plasminogen activator (t-PA). This suggested that gastrodin did not inhibit the anti-thrombotic function of aspirin. Accordingly, aspirin in combination with gasrtodin protected the structural and functional integrity of the heart and stomach by suppressing pyroptosis and inflammation. Therefore, combination of aspirin and gastrodin is a promising treatment for cardiac dysfunction and gastric mucosa injury after myocardial I/R.
Collapse
Affiliation(s)
- Zhiwu Dong
- Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Lin Yang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jianlin Jiao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Yongliang Jiang
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Hao Li
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Gaosheng Yin
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Ping Yang
- Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Ping Yang, ; Lin Sun,
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Ping Yang, ; Lin Sun,
| |
Collapse
|
127
|
Sacubitril/valsartan attenuates myocardial ischemia/reperfusion injury via inhibition of the GSK3β/NF-κB pathway in cardiomyocytes. Arch Biochem Biophys 2022; 730:109415. [PMID: 36179911 DOI: 10.1016/j.abb.2022.109415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022]
Abstract
In ischemia/reperfusion (I/R) injury, both inflammation and apoptosis play a vital role, and the inhibition of excessive inflammation and apoptosis show substantial clinical potential in the treatment of I/R disease. The role of sacubitril/valsartan (SAC/VAL)-a first-in-class angiotensin receptor-neprilysin inhibitor (ARNI)-in inflammation regulation and apoptosis in the context of I/R injury needs to be further explored. In this study, we investigate the short- and long-term effects of SAC/VAL administration in treating adult murine I/R injury both in vivo and in vitro. Our results verified that the application of SAC/VAL could reduce infarct size and suppress apoptosis and the inflammatory response in the acute phase post I/R. Long-term application of SAC/VAL for four weeks significantly improved ventricular function and reversed pathological ventricular remodeling. Mechanistically, SAC/VAL treatment induces the inhibition of the GSK3β-mediated NF-κB pathway through synergistically blocking angiotensin 1 receptor (AT1R) and activating natriuretic peptide receptor (NPR). In summary, we reported the therapeutic role of SAC/VAL in regulating the GSK3β/NF-κB signaling pathway to suppress the inflammatory response and apoptosis, thereby reducing cardiac dysfunction and remodeling post I/R.
Collapse
|
128
|
Li Y, Sun X, Liu X, Li J, Li X, Wang G, Liu Y, Lu X, Cui L, Shao M, Wang Y, Wang W, Li C. P2X7R-NEK7-NLRP3 Inflammasome Activation: A Novel Therapeutic Pathway of Qishen Granule in the Treatment of Acute Myocardial Ischemia. J Inflamm Res 2022; 15:5309-5326. [PMID: 36124207 PMCID: PMC9482414 DOI: 10.2147/jir.s373962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background Acute myocardial ischemia (AMI) is a common heart disease with increasing morbidity and mortality year by year. Persistent and sterile inflammatory infiltration of myocardial tissue is an important factor triggering of acute myocardial ischemia secondary to acute myocardial infarction, and NLRP3 inflammasome activation is an important part of sterile inflammatory response after acute myocardial ischemia. Previous studies have shown that Qishen granule (QSG) can significantly inhibit the inflammatory injury of myocardial tissue caused by ischemia, but its effect and specific mechanism of inhibiting the activation of NLRP3 inflammasome have not been reported. This study was to investigate the specific mechanism of QSG inhibiting inflammation after AMI, and to validate the possible targets. Methods The myocardial ischemia model in mice was established by ligation of the left anterior descending coronary artery. Echocardiography was used to evaluate the cardiac function of the mice. Plasma CK-MB and cTnl were detected by ELISA to evaluate the degree of myocardial injury. The extent of myocardial tissue inflammation in mice was assessed by HE staining and immunohistochemistry of IL-18, IL-1β. The expressions of NLRP3, ASC, Caspase-1, and CD86 were detected by immunofluorescence; detection of key pathway proteins P2X7R, NEK7, NLRP3, ASC, Caspase-1, and effector proteins IL-18, IL-1β by Western blot. In vitro experiments, ATP+LPS was used to construct a RAW264.7 macrophage NLRP3 inflammasome activation model. Immunofluorescence and Western blot analysis were performed to detect the expression of NLRP3 pathway activator and effector proteins. Plasmid-transfected P2X7R overexpression and immunoprecipitation assays were used to evaluate the QSG-regulated NLRP3 inflammasome activation pathway. Results QSG rescued cardiac function and further reduced inflammatory effects in mice by inhibiting NLRP3 inflammasome activation. In vitro, QSG inhibited LPS combined with ATP-induced NLRP3 inflammasome activation in RAW264.7 macrophages by downregulating the expression of NLRP3 inflammasome key pathway proteins. In addition, inhibition or overexpression of P2X7R in RAW264.7 macrophages and immunoprecipitated protein interactions further confirmed that QSG reduces macrophages inflammasome activation via the P2X7R-NEK7-NLRP3 pathway. Conclusion P2X7R-NEK7-NLRP3 inflammasome activation is a novel therapeutic mechanism of QSG in the treatment of acute myocardial ischemia.
Collapse
Affiliation(s)
- Yanqin Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiangning Liu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Junjun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xuan Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Gang Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yizhou Liu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiangyu Lu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Lingwen Cui
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Guangzhou University of Chinese Medicine, Guangdong, 510006, People's Republic of China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
129
|
TRIM16 exerts protective function on myocardial ischemia/reperfusion injury through reducing pyroptosis and inflammation via NLRP3 signaling. Biochem Biophys Res Commun 2022; 632:122-128. [DOI: 10.1016/j.bbrc.2022.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
|
130
|
Oxytocin ameliorates high glucose- and ischemia/reperfusion-induced myocardial injury by suppressing pyroptosis via AMPK signaling pathway. Biomed Pharmacother 2022; 153:113498. [DOI: 10.1016/j.biopha.2022.113498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022] Open
|
131
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
132
|
Zhang J, Lu Y, Yu P, Li Z, Liu Y, Zhang J, Tang X, Yu S. Therapeutic hypothermia alleviates myocardial ischaemia-reperfusion injury by inhibiting inflammation and fibrosis via the mediation of the SIRT3/NLRP3 signalling pathway. J Cell Mol Med 2022; 26:4995-5007. [PMID: 36036085 PMCID: PMC9549509 DOI: 10.1111/jcmm.17523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022] Open
Abstract
Therapeutic hypothermia (TH) may attenuate myocardial ischaemia–reperfusion injury, thereby improving outcomes in acute myocardial infarction. However, the specific mechanism by which TH alleviates MIRI has not been elucidated so far. In this study, 120 healthy male Sprague‐Dawley rats were randomly divided into five groups. Haemodynamic parameters, myocardial infarction area, histological changes and the levels of cardiac enzymes, caspase‐1 and inflammatory cytokines were determined. In addition, the extent of myocardial fibrosis, the degree of cardiomyocyte apoptosis and the expression levels of SIRT3, GSDMD‐N, fibrosis‐related proteins and inflammation‐related proteins were estimated.TH reduced myocardial infarct area and cardiac enzyme levels, improved cardiomyopathic damage and haemodynamic indexes, and attenuated myocardial fibrosis, the protein expression levels of collagen I and III, myocardial apoptosis, the levels of inflammatory cytokines and inflammation‐related proteins. Notably, the immunofluorescence and protein expression levels of SIRT3 were upregulated in the 34H+DMSO group compared to the I/R group, but this protective effect was abolished by the SIRT3 inhibitor 3‐TYP. After administration of Mcc950, the reversal effects of 3‐TYP were significantly abolished, and TH could protect against MIRI in a rat isolated heart model by inhibiting inflammation and fibrosis. The SIRT3/NLRP3 signalling pathway is one of the most important signalling pathways in this regard.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yimei Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yang Liu
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jun Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
133
|
He L, Wang Y, Luo J. Epigenetic modification mechanism of histone demethylase KDM1A in regulating cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury. PeerJ 2022; 10:e13823. [PMID: 35959481 PMCID: PMC9359132 DOI: 10.7717/peerj.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023] Open
Abstract
Hypoxia and reoxygenation (H/R) play a prevalent role in heart-related diseases. Histone demethylases are involved in myocardial injury. In this study, the mechanism of the lysine-specific histone demethylase 1A (KDM1A/LSD1) on cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury (MIRI) was investigated. Firstly, HL-1 cells were treated with H/R to establish the MIRI models. The expressions of KDM1A and Sex Determining Region Y-Box Transcription Factor 9 (SOX9) in H/R-treated HL-1 cells were examined. The cell viability, markers of myocardial injury (LDH, AST, and CK-MB) and apoptosis (Bax and Bcl-2), and Caspase-3 and Caspase-9 protein activities were detected, respectively. We found that H/R treatment promoted cardiomyocyte apoptosis and downregulated KDM1A, and overexpressing KDM1A reduced apoptosis in H/R-treated cardiomyocytes. Subsequently, tri-methylation of lysine 4 on histone H3 (H3K4me3) level on the SOX9 promoter region was detected. We found that KDM1A repressed SOX9 transcription by reducing H3K4me3. Then, HL-1 cells were treated with CPI-455 and plasmid pcDNA3.1-SOX9 and had joint experiments with pcDNA3.1-KDM1A. We disclosed that upregulating H3K4me3 or overexpressing SOX9 reversed the inhibitory effect of overexpressing KDM1A on apoptosis of H/R-treated cardiomyocytes. In conclusion, KDM1A inhibited SOX9 transcription by reducing the H3K4me3 on the SOX9 promoter region and thus inhibited H/R-induced apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Lin He
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Yanbo Wang
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Jin Luo
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|
134
|
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 2022; 236:108053. [PMID: 34906598 PMCID: PMC9187780 DOI: 10.1016/j.pharmthera.2021.108053] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicola Potere
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W Van Tassell
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
135
|
Wrublewsky S, Speer T, Nalbach L, Boewe AS, Pack M, Alansary D, Roma LP, Hoffmann MDA, Schmitt BM, Weinzierl A, Menger MD, Laschke MW, Ampofo E. Targeting Pancreatic Islet NLRP3 Improves Islet Graft Revascularization. Diabetes 2022; 71:1706-1720. [PMID: 35622000 DOI: 10.2337/db21-0851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Hypoxia-induced islet cell death, caused by an insufficient revascularization of the grafts, is a major obstacle for successful pancreatic islet transplantation. Recently, it has been reported that the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is expressed in pancreatic islets and that its loss protects against hypoxia-induced cell death. Therefore, we hypothesized that the inhibition of NLRP3 in islets improves the survival and endocrine function of the grafts. The transplantation of Nlrp3-/- islets or wild-type (WT) islets exposed to the NLRP3 inhibitor CY-09 into mouse dorsal skinfold chambers resulted in an improved revascularization compared with controls. An increased insulin release after NLRP3 inhibition caused the enhanced angiogenic response. Moreover, the inhibition of NLRP3 in hypoxic β-cells triggered insulin gene expression by inducing the shuttling of MafA and pancreatic and duodenal homeobox-1 into the nucleus. This was mediated by a reduced interaction of NLRP3 with the thioredoxin-interacting protein (TXNIP). Transplantation of Nlrp3-/- islets or WT islets exposed to CY-09 under the kidney capsule of diabetic mice markedly improved the restoration of normoglycemia. These findings indicate that the inhibition of NLRP3 in isolated islets represents a promising therapeutic strategy to improve engraftment and function of the islets.
Collapse
Affiliation(s)
- Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Thimoteus Speer
- Department of Internal Medicine IV (Nephrology and Hypertension) and Translational Cardio-Renal Medicine, Saarland University, Homburg/Saar, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Anne S Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Dalia Alansary
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Markus D A Hoffmann
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Beate M Schmitt
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
136
|
Xie N, Fan F, Jiang S, Hou Y, Zhang Y, Cairang N, Wang X, Meng X. Rhodiola crenulate alleviates hypobaric hypoxia-induced brain injury via adjusting NF-κB/NLRP3-mediated inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154240. [PMID: 35691080 DOI: 10.1016/j.phymed.2022.154240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rhodiola crenulate (R. crenulate), a famous Tibetan medicine, has been demonstrated to possess superiorly protective effects in high-altitude hypoxic brain injury (HHBI). However, its mechanisms on HHBI are still largely unknown. METHODS Herein, the protective effects and underlying mechanisms of R. crenulate on HHBI of BABL/c mice were explored through in vivo experiments. The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE) (0.5, 1.0 and 2.0 g/kg) was given by gavage for 7 days. Pathological changes and neuronal viability of mice hippocampus and cortex were evaluated using H&E and Nissl staining, respectively. The brain water content (BWC) in mice was determined by calculating the ratio of dry to wet weight of brain tissue. And serum of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH-Px) and lactate dehydrogenase (LDH) were detected via commercial biochemical kits. Synchronously, the contents of total antioxidant capacity (T-AOC), lactic acid (LA), adenosine triphosphate (ATP), succinate dehydrogenase (SDH), pyruvate kinase (PK), Ca2+-Mg2+-ATPcase, Na+-K+-ATPcase, TNF-α, IL-1β and IL-6 in brain tissue were quantitative analysis by corresponding ELISA assay. Subsequently, NLRP3, ZO-1, claudin-5, occluding, p-p65, p65, ASC, cleaved-caspase-1, caspase-1 and IL-18 were determined by immunofluorescent and western blot analyses. RESULTS The results demonstrated that RCE remarkably alleviated pathological damage, BWC, as well enhanced neuronal viability. Furthermore, the oxidative stress injuries were reversely abrogated after RCE treatment, evidenced by the increases of SOD, GSH-Px and T-AOC, while the decreases of MDA and LDH contents. Marvelously, the administration of RCE rectified and balanced the abnormal energy metabolism via elevating the levels of ATP, SDH, PK, Ca2+-Mg2+-ATPcase and Na+-K+-ATPcase, and lowering LA. Simultaneously, the expression of tight junction proteins (ZO-1, claudin-5 and occludin) was enhanced, illustrating RCE treatment might maintain the integrity of blood-brain barrier (BBB). Additionally, RCE treatment confined the contents of IL-6, IL-1β and TNF-α, and attenuated fluorescent signal of NLRP3 protein. Concurrently, the results of western blot indicated that RCE treatment dramatically restrained p-p65/p65, ASC, NLRP3, cleaved-caspase-1/caspase-1 and IL-18 protein expressions in brain tissues of mice. CONCLUSION RCE may afford a protectively intervention in HHBI of mice through suppressing the oxidative stress, improving energy metabolism and the integrity of BBB, and subsiding inflammatory responses via the NF-κB/NLRP3 signaling pathway. As a promising agent for the treatment of mice HHBI, the deep-crossing molecular mechanisms of R. crenulate still needs to be further elucidated to identify novel core hub targets.
Collapse
Affiliation(s)
- Na Xie
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengnan Jiang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Hou
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | | | - Xiaobo Wang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xianli Meng
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
137
|
Copic D, Direder M, Schossleitner K, Laggner M, Klas K, Bormann D, Ankersmit HJ, Mildner M. Paracrine Factors of Stressed Peripheral Blood Mononuclear Cells Activate Proangiogenic and Anti-Proteolytic Processes in Whole Blood Cells and Protect the Endothelial Barrier. Pharmaceutics 2022; 14:pharmaceutics14081600. [PMID: 36015226 PMCID: PMC9415091 DOI: 10.3390/pharmaceutics14081600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Tissue-regenerative properties have been attributed to secreted paracrine factors derived from stem cells and other cell types. In particular, the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) has been shown to possess high tissue-regenerative and proangiogenic capacities in a variety of preclinical studies. In light of future therapeutic intravenous applications of PBMCsec, we investigated the possible effects of PBMCsec on white blood cells and endothelial cells lining the vasculature. To identify changes in the transcriptional profile, whole blood was drawn from healthy individuals and stimulated with PBMCsec for 8 h ex vivo before further processing for single-cell RNA sequencing. PBMCsec significantly altered the gene signature of granulocytes (17 genes), T-cells (45 genes), B-cells (72 genes), and, most prominently, monocytes (322 genes). We detected a strong upregulation of several tissue-regenerative and proangiogenic cyto- and chemokines in monocytes, including VEGFA, CXCL1, and CXCL5. Intriguingly, inhibitors of endopeptidase activity, such as SERPINB2, were also strongly induced. Measurement of the trans-endothelial electrical resistance of primary human microvascular endothelial cells revealed a strong barrier-protective effect of PBMCsec after barrier disruption. Together, we show that PBMCsec induces angiogenic and proteolytic processes in the blood and is able to attenuate endothelial barrier damage. These regenerative properties suggest that systemic application of PBMCsec might be a promising novel strategy to restore damaged organs.
Collapse
Affiliation(s)
- Dragan Copic
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Direder
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaudia Schossleitner
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniel Bormann
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.)
| |
Collapse
|
138
|
Current knowledge of pyroptosis in heart diseases. J Mol Cell Cardiol 2022; 171:81-89. [PMID: 35868567 DOI: 10.1016/j.yjmcc.2022.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Pyroptosis is a form of pro-inflammatory, necrotic cell death mediated by proteins of the gasdermin family. Various heart diseases, including myocardial ischemia/reperfusion injury, myocardial infarction, and heart failure, involve cardiomyocyte and non-myocyte pyroptosis. Cardiomyocyte pyroptosis also causes the release of pro-inflammatory cytokines. Recent studies have confirmed that pyroptosis is predominantly triggered by both the canonical and non-canonical inflammasome pathways, which independently facilitate caspase-1 or caspase-11/4/5 activation and gasdermin D (GSDMD) cleavage. Cardiac fibroblast and myeloid cell pyroptosis also contributes to the pathogenesis and development of heart diseases. This review summarizes the recent studies on pyroptosis in heart diseases and discusses the associated therapeutic targets.
Collapse
|
139
|
Owen A, Patel JM, Parekh D, Bangash MN. Mechanisms of Post-critical Illness Cardiovascular Disease. Front Cardiovasc Med 2022; 9:854421. [PMID: 35911546 PMCID: PMC9334745 DOI: 10.3389/fcvm.2022.854421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prolonged critical care stays commonly follow trauma, severe burn injury, sepsis, ARDS, and complications of major surgery. Although patients leave critical care following homeostatic recovery, significant additional diseases affect these patients during and beyond the convalescent phase. New cardiovascular and renal disease is commonly seen and roughly one third of all deaths in the year following discharge from critical care may come from this cluster of diseases. During prolonged critical care stays, the immunometabolic, inflammatory and neurohumoral response to severe illness in conjunction with resuscitative treatments primes the immune system and parenchymal tissues to develop a long-lived pro-inflammatory and immunosenescent state. This state is perpetuated by persistent Toll-like receptor signaling, free radical mediated isolevuglandin protein adduct formation and presentation by antigen presenting cells, abnormal circulating HDL and LDL isoforms, redox and metabolite mediated epigenetic reprogramming of the innate immune arm (trained immunity), and the development of immunosenescence through T-cell exhaustion/anergy through epigenetic modification of the T-cell genome. Under this state, tissue remodeling in the vascular, cardiac, and renal parenchymal beds occurs through the activation of pro-fibrotic cellular signaling pathways, causing vascular dysfunction and atherosclerosis, adverse cardiac remodeling and dysfunction, and proteinuria and accelerated chronic kidney disease.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jaimin M. Patel
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mansoor N. Bangash
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Mansoor N. Bangash
| |
Collapse
|
140
|
Abstract
The quest of defeating cancer and improving prognosis in survivors has generated remarkable strides forward in research and have advanced the development of new antineoplastic therapies. These achievements, combined with rapid screening and early detection, have considerably extended the life expectancy of patients surviving multiple types of malignancies. Consequently, chemotherapy-related toxicity in several organ systems, especially the cardiovascular system, has surfaced as one of the leading causes of morbidity and mortality among cancer survivors. Recent evidence classifies chemotherapy-induced cardiotoxicity as the second-leading cause of morbidity and mortality, closely comparing with secondary cancer malignancies. While a certain degree of cardiotoxicity has been reported to accompany most chemotherapies, including anthracyclines, anti-metabolites, and alkylating agents, even the latest targeted cancer therapies such as immune checkpoint inhibitors and tyrosine kinase inhibitors have been associated with acute and chronic cardiac sequelae. In this chapter, we focus on describing the principal mechanism(s) for each class of chemotherapeutic agents that lead to cardiotoxicity and the innovative translational research approaches that are currently being explored to prevent or treat cancer therapy-induced cardiotoxicity and related cardiac complications.
Collapse
Affiliation(s)
- Adolfo G Mauro
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA, United States
| | - Katherine Hunter
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA, United States
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA, United States.
| |
Collapse
|
141
|
Zhang B, Sun C, Liu Y, Bai F, Tu T, Liu Q. Exosomal miR-27b-3p Derived from Hypoxic Cardiac Microvascular Endothelial Cells Alleviates Rat Myocardial Ischemia/Reperfusion Injury through Inhibiting Oxidative Stress-Induced Pyroptosis via Foxo1/GSDMD Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8215842. [PMID: 35847592 PMCID: PMC9279077 DOI: 10.1155/2022/8215842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022]
Abstract
Background Exosomes derived from cardiac microvascular endothelial cells (CMECs) under hypoxia can mediate cardiac repair functions and alleviate pyroptosis and oxidative stress during ischemia-reperfusion (I/R) injury. This study is aimed at investigating the effect and mechanism of miR-27b-3p underlying hypoxic CMECs-derived exosomes against I/R injury. Methods CMECs were isolated from the left ventricle of Sprague-Dawley rats, followed by culturing under hypoxic conditions or pretreatment with the miR-27b-3p inhibitor. CMECs-derived exosomes were added into H9C2 cells before hypoxia/reoxygenation (H/R) or injected into the rat heart before I/R injury. An in vivo I/R injury model was established by ligating and releasing the left anterior descending coronary artery. Expression of pyroptosis-related factors was detected using Western blot, and heart infarcted size was determined by the 2,3,5-triphenyl-2H-tetrazpinolium chloride staining method. Dual-Luciferase Reporter assays were performed to analyze the interactions of nmiR-27b-3p-forkhead box O1 (Foxo1) and Gasdermin D- (GSDMD-) Foxo1. Chromatin-immunoprecipitation (ChIP) assays were performed to validate the interactions between forkhead box O1 (Foxo1) and Gasdermin D (GSDMD) and Foxo1-mediated histone acetylation of GSDMD. Results CMECs were successfully identified from left ventricle of Sprague-Dawley rats. The expressions of Foxo1 and pyroptosis-related proteins (GSDMD, NLPR3, cleaved caspase 1, IL-1β, and IL-18) were upregulated in the rat heart after I/R injury. Treatment of CMEC-derived exosomes, especially that under hypoxic conditions, significantly reduced pyroptosis in the rat heart. miR-27b-3p was significantly upregulated in CMEC-derived exosomes under hypoxic conditions, and miR-27b-3p inhibition in exosomes alleviated its cytoprotection and inhibited oxidative stress in H9C2 cells. Treatment with Foxo1 overexpression plasmids aggravated in vitro H/R and in vivo I/R injury by upregulating pyroptosis-related proteins. Further experiments validated that miR-27b-3p negatively targeted Foxo1, which bound to the promoter region of GSDMD. Conclusions These results demonstrated a great therapeutic efficacy of miR-27b-3p overexpression in hypoxic CMEC-derived exosomes in preventing the development of myocardial damage post I/R injury through inhibiting Foxo1/GSDMD signaling-induced oxidative stress and pyroptosis.
Collapse
Affiliation(s)
- Baojian Zhang
- Cardiac Care Unit, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Sun
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaozhong Liu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fan Bai
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Tu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiming Liu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
142
|
Gao G, Fu L, Xu Y, Tao L, Guo T, Fang G, Zhang G, Wang S, Qin T, Luo P, Shen X. Cyclovirobuxine D Ameliorates Experimental Diabetic Cardiomyopathy by Inhibiting Cardiomyocyte Pyroptosis via NLRP3 in vivo and in vitro. Front Pharmacol 2022; 13:906548. [PMID: 35865939 PMCID: PMC9294384 DOI: 10.3389/fphar.2022.906548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the common complications of diabetic patients, which can induce myocardial hypertrophy, cardiac fibrosis, and heart failure. Growing evidence has shown that the occurrence and development of DCM are accompanied by pyroptosis which is an NLRP3-mediated intense inflammatory cell death. Cyclovirobuxine D (CVB-D) has been shown to significantly ameliorate DCM and anti-inflammatory effects associated with cardiomyopathy, but it is unclear whether it has an effect on cardiomyocyte pyroptosis accompanying DCM. Therefore, the purpose of the present study was to explore the ameliorating effect of CVB-D on cardiomyocyte pyroptosis associated with DCM and its molecular regulation mechanism. Type 2 diabetes in C57BL/6 mice was reproduced by the high-fat and high-glucose diet (HFD) combined with low-dose streptozotocin (STZ). The characteristics of DCM were evaluated by cardiac ultrasonography, serum detection, and histopathological staining. The results suggested that CVB-D could significantly alleviate the cardiac pathology of DCM. Then, we explored the mechanism of CVB-D on primary neonatal rat cardiomyocyte (PNRCM) injury with high glucose (HG) in vitro to simulate the physiological environment of DCM. Preincubation with CVB-D could significantly increase cell viability, attenuate cytopathological changes and inhibit the expression levels of pyroptosis-related proteins. Further research found that the myocardial improvement effect of CVB-D was related to its inhibition of NLRP3 expression. In conclusion, our data suggest that CVB-D can ameliorate DCM by inhibiting cardiomyocyte pyroptosis via NLRP3, providing a novel molecular target for CVB-D clinical application.
Collapse
Affiliation(s)
- Ge Gao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lingyun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ting Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Guanqin Fang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Guangqiong Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ti Qin
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
143
|
Du J, Li H, Song J, Wang T, Dong Y, Zhan A, Li Y, Liang G. AMPK Activation Alleviates Myocardial Ischemia-Reperfusion Injury by Regulating Drp1-Mediated Mitochondrial Dynamics. Front Pharmacol 2022; 13:862204. [PMID: 35860026 PMCID: PMC9289369 DOI: 10.3389/fphar.2022.862204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial dysfunction is a salient feature of myocardial ischemia/reperfusion injury (MIRI), while the potential mechanism of mitochondrial dynamics disorder remains unclear. This study sought to explore whether activation of Adenosine monophosphate-activated protein kinase (AMPK) could alleviate MIRI by regulating GTPase dynamin-related protein 1 (Drp1)-mediated mitochondrial dynamics. Isolated mouse hearts in a Langendorff perfusion system were subjected to ischemia/reperfusion (I/R) treatment, and H9C2 cells were subjected to hypoxia /reoxygenation (H/R) treatment in vitro. The results showed that AICAR, the AMPK activator, could significantly improve the function of left ventricular, decrease arrhythmia incidence and myocardial infarction area of isolated hearts. Meanwhile, AICAR increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) content in myocardial homogenate. Mechanistically, AICAR inhibited the phosphorylation of Drp1 at Ser 616 while enhanced phosphorylation of Drp1 at Ser 637. In addition, AICAR reduced the expression of inflammatory cytokines including TNF-ɑ, IL-6, and IL-1β, as well as mitochondrial fission genes Mff and Fis1, while improved the expression of mitochondrial fusion genes Mfn1 and Mfn2. Similar results were also observed in H9C2 cells. AICAR improved mitochondrial membrane potential (MMP), reduced reactive oxygen species (ROS) production, and inhibited mitochondrial damage. To further prove if Drp1 regulated mitochondrial dynamics mediated AMPK protection effect, the mitochondrial fission inhibitor Mdivi-1 was utilized. We found that Mdivi-1 significantly improved MMP, inhibited ROS production, reduced the expression of TNF-a, IL-6, IL-1β, Fis1, and Mff, and improved the expression of Mfn1 and Mfn2. However, the protection effect of Mdivi-1 was not reversed by AMPK inhibitor Compound C. In conclusion, this study confirmed that activation of AMPK exerted the protective effects on MIRI, which were largely dependent on the inhibition of Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Jingxia Du
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Hongchao Li
- Pathology Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Jingjing Song
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Tingting Wang
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yibo Dong
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - An Zhan
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yan Li
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Gaofeng Liang
- Pathology Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
144
|
Circ_0050908 up-regulates TRAF3 by sponging miR-324-5p to aggravate myocardial ischemia-reperfusion injury. Int Immunopharmacol 2022; 108:108740. [DOI: 10.1016/j.intimp.2022.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022]
|
145
|
Zhou C, Yin X. Wogonin Ameliorated Obesity-Induced Lipid Metabolism Disorders and Cardiac Injury via Suppressing Pyroptosis and Deactivating IL-17 Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1553-1564. [PMID: 35770725 DOI: 10.1142/s0192415x22500653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obesity leads to structural and functional changes in the heart and has become a global burden of disease. Wogonin is a natural flavonoid which possesses cardioprotective, neuroprotective, and anti-cancer properties. However, the effects of wogonin on obesity-induced cardiac injury remain unclear. In this study, the high-fat diet (HFD)-induced obese mice model was successfully established. Moreover, HFD induced a fat mass and cardiac injury in mice. More importantly, wogonin treatment reduced fat mass and improved cardiac function of HFD mice. Consistently, wogonin ameliorated myocardial lipid metabolism in HFD-induced obese mice by reducing triglyceride (TC), total cholesterol (TG), and non-esterified fatty acid (NEFA) levels in serum, as well as the TG and free fatty acids (FFA) levels in heart tissues. Interestingly, wogonin treatment alleviated myocardial pyroptosis in HFD-induced obese mice. Through bioinformatic analysis, the IL-17 signaling pathway was predicted to be modulated by wogonin. Results showed that wogonin deactivated the IL-17 signaling pathway in HFD mice. These findings suggested that wogonin ameliorated obesity-induced disorders of lipid metabolism and cardiac injury via suppressing pyroptosis and deactivating the IL-17 signaling pathway, which provided a novel therapeutic strategy for HFD-induced cardiac injury.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Paediatrics, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiaoling Yin
- Department of Paediatrics, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
146
|
Ji ZJ, Shi Y, Li X, Hou R, Yang Y, Liu ZQ, Duan XC, Liu Q, Chen WD, Peng DY. Neuroprotective Effect of Taohong Siwu Decoction on Cerebral Ischemia/Reperfusion Injury via Mitophagy-NLRP3 Inflammasome Pathway. Front Pharmacol 2022; 13:910217. [PMID: 35754465 PMCID: PMC9213799 DOI: 10.3389/fphar.2022.910217] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: Globally, cerebral ischemia has been shown to be the second leading cause of death. Our previous studies have shown that Taohong Siwu Decoction (THSWD) exhibits obvious neuroprotective effects on cerebral ischemia/reperfusion (I/R) injury (CIRI). In this study, we further explored the modulatory effect of THSWD on mitochondrial autophagy in CIRI and the relationship between modulatory effect and NLRP3 inflammatory vesicle activation, so as to further explain the mechanism of neuroprotective effect of THSWD. Methods: Middle cerebral artery occlusion reperfusion (MCAO/R) model in rats was built to simulate I/R. Adult male SD rats (220–270 g) were randomly divided into the following four groups: the sham group, the MCAO/R group, the MCAO/R + THSWD group, and the MCAO/R + THSWD + Mitochondrial division inhibitor 1 (Mdivi-1) group. Neurological defect scores were used to evaluate neurological function. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was conducted to measure cerebral infarct volume. Nissl staining, H&E staining and TUNEL staining were executed to detect ischemic cortical neuronal cell viability and apoptosis. Electron microscopy was used to observe the ultrastructural changes of mitochondria. Total Reactive Oxygen Species (ROS) in tissue were measured by fluorescence spectrophotometry, and the activation status of microglia was evaluated by Iba-1/CD16 immunofluorescence staining. The levels of mitophagy-related proteins (LC3, Parkin, PINK1), NLRP3 inflammasome-related proteins (NLRP3, ASC, Pro-caspase-1, Cleaved-caspase-1), and inflammatory cytokines (Pro-IL-18, Pro-IL-1β, IL-18, IL-1β) were evaluated by western blotting. Results: The studies showed that THSWD treatment alleviated cerebral infarction and neurological deficiencies. THSWD upregulated the expressions of autophagy markers (LC3-II/LC3-I and Beclin1) mitochondrial autophagy markers (Parkin and PINK1) after CIRI. Furthermore, THSWD treatment attenuated microglia activation and damage to mitochondrial structures, thereby reducing ROS production and NLRP3 inflammasome activation. In contrast, the mitochondrial autophagy inhibitor Mdivi-1 inhibited the above beneficial effects of THSWD. Conclusions: THSWD exhibits neuroprotective effects against MCAO/R in rats by enhancing mitochondrial autophagy and reducing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Zhao-Jie Ji
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rui Hou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yu Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhu-Qing Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Xian-Chun Duan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Dong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
147
|
Li F, Chang Z, Li Y, Sun J. In vivo and in vitro impact of atorvastatin against myocardial ischaemia-reperfusion injury by upregulation of silent information regulator l and attenuation of endoplasmic reticulum stress-induced apoptosis. J Drug Target 2022; 30:1076-1087. [PMID: 35722944 DOI: 10.1080/1061186x.2022.2091577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We aimed to investigate the effects and mechanism of Atorvastatin on Myocardial Ischaemia-Reperfusion Injury in vitro and in vivo. The effects of Atorvastatin on Silent information regulator l (SIRT1) and endoplasmic reticulum (ER) stress were investigated in Myocardial ischaemia-reperfusion (MI/R) injury rat model and hypoxia/reoxygenation (H/R)-treated H9c2 cells. Pathological changes, inflammatory and heart injury markers, cell apoptosis and cell death, SIRT1 and cleaved Caspase-12 expressions, and ER stress relative proteins were measured through HE, enzyme-linked immunosorbent assay, quantitative TUNEL and flow cytometry, immunofluorescence and Western blotting with the assistance of the SIRT1 specific inhibitor EX527 and ER stress pathway blocker treatment. The results of our study demonstrated that atorvastatin treatment attenuated MI/R and H/R mediated inflammatory and heart injury markers, cell apoptosis and cell death, SIRT1 and cleaved Caspase-12 expressions, and ER stress relative protein levels. Finally, we found that atorvastatin reversed SIRT1 expression and blockade the ER stress pathway and increase the cardiomyocytes survival rate in the presence of MI/R and H/R. Our findings provided a new rationale for subsequent academic and clinical research on MI/R injury.
Collapse
Affiliation(s)
- Fei Li
- The First Ward of Cardiovascular Medicine, YanTaiShan Hospital, Yantai, Shandong, China
| | - ZiJuan Chang
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Ying Li
- The First Ward of Cardiovascular Medicine, YanTaiShan Hospital, Yantai, Shandong, China
| | - Junjie Sun
- Department of Ultrasonic Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
148
|
Wang H, Miao F, Ning D, Shan C. Ellagic acid Alleviates hepatic ischemia-reperfusion injury in C57 mice via the Caspase-1-GSDMD pathway. BMC Vet Res 2022; 18:229. [PMID: 35717170 PMCID: PMC9206301 DOI: 10.1186/s12917-022-03326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Ellagic acid (EA) has improving function against oxidative damage and inflammatory reaction in many disorders. Hepatic ischemia-reperfusion injury (IRI) is a common pathophysiological phenomenon in the veterinary clinic. In the present study, the protective effects of EA pretreatment against hepatic IRI-induced injury and the underlying mechanisms were investigated. RESULTS We found that pyroptosis is involved in hepatic IRI, which is manifested in increasing the expression of pyroptosis-related genes and promoting the expression of active caspase-1, thereby cleaving GSDMD-N to cause pyroptosis, and caspase-1-/- mice were used to verify this conclusion. In addition, we found that EA protects against hepatic IRI by inhibiting pyroptosis, including reducing the activity of caspase-1 and its expression in the liver, inhibiting the lysis of GSDMD-N, and reducing the levels of IL-18 and IL-1β. CONCLUSIONS The present results have demonstrated that prophylactic administration of EA ameliorated hepatic IRI by inhibiting pyroptosis induced in hepatic ischemia-reperfusion in vivo through the caspase-1-GSDMD axis, providing a potential therapeutic option prevent hepatic IRI in pets.
Collapse
Affiliation(s)
- Hao Wang
- College of Animal Science, Guizhou University, Guiyang, 550000, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Delu Ning
- College of Animal Science, Guizhou University, Guiyang, 550000, China.
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China.
| | - Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang, 550000, China.
| |
Collapse
|
149
|
Therapeutic Effects of Modified Si-Miao-Yong-An Decoction in the Treatment of Rat Myocardial Ischemia/Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1442405. [PMID: 35707475 PMCID: PMC9192308 DOI: 10.1155/2022/1442405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Objective Modified Si-Miao-Yong-An decoction (MSMYA) was empirically originated from Si-Miao-Yong-An Decoction, which has been utilized for centuries to treat vasculopathy as well as heart diseases through clearing heat and detoxifying. This study aimed at confirming MSMYA's therapeutic effects for treating myocardial ischemia/reperfusion (I/R) injury and its underlying mechanisms. Methods Rats were intragastrically administered with MSMYA for 4 weeks after ischemia/reperfusion (I/R) operation. Superoxide dismutase (SOD) and malondialdehyde (MDA) concentration were determined by calorimetry. Coagulation function was determined using an automated coagulation analyzer. Levels of cysteinyl aspartate specific proteinase (caspase)-1, interleukin (IL)-1β, interleukin (IL)-18, and lactate dehydrogenase (LDH) were measured by an enzyme-linked immunosorbent assay (ELISA). Infarct size was determined by triphenyltetrazolium chloride (TTC) staining. Myocardial histopathological and ultrastructure changes were examined by H&E staining and electron microscopy, respectively. Relative mRNA expression of NLRP3, an apoptosis-associated speck-like proteins containing the caspase activation and recruitment domain (ASC), caspase-1, IL-1β, and IL-18 were analyzed using quantitative real-time polymerase chain reaction (PCR). Meanwhile, their relative protein expressions were measured using western blotting. Results The results showed MSMYA can inhibit oxidative stress by increasing SOD and reducing MDA, suppress inflammatory reaction by decreasing NLRP3 inflammasome-related cytokines' level, improve coagulation function by increasing prothrombin time (PT) and activating partial thromboplastin time (APTT), and ameliorate myocardial histopathological and ultrastructural changes. In addition, MSMYA's cardioprotective effects probably related to suppressing NLRP3 inflammasome pathway activation by reducing NLRP3 inflammasome molecular mRNA and protein relative expression. Conclusion The results indicated that MSMYA played an important role in protecting the myocardium from I/R injury. The likely mechanism is the inhibition of oxidative stress, improvement of cardiac injury, and the reduction of NLRP3-related inflammatory cytokines release. This provides a basis for further research on the mechanism and clinical application of MSMYA to improve myocardial I/R injury.
Collapse
|
150
|
Luo L, Liu M, Fan Y, Zhang J, Liu L, Li Y, Zhang Q, Xie H, Jiang C, Wu J, Xiao X, Wu Y. Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice. J Neuroinflammation 2022; 19:141. [PMID: 35690810 PMCID: PMC9188077 DOI: 10.1186/s12974-022-02501-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Background Neuronal pyroptosis and neuroinflammation with excess microglial activation are widely involved in the early pathological process of ischemic stroke. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulatory technique, has recently been reported to be anti-inflammatory and regulate microglial function. However, few studies have elucidated the role and mechanism of rTMS underlying regulating neuronal pyroptosis and microglial polarization. Methods We evaluated the motor function in middle cerebral artery occlusion/reperfusion (MCAO/r) injury mice after 1-week intermittent theta-burst rTMS (iTBS) treatment in the early phase with or without depletion of microglia by colony-stimulating factor 1 receptor (CSF1R) inhibitor treatment, respectively. We further explored the morphological and molecular biological alterations associated with neuronal pyroptosis and microglial polarization via Nissl, EdU, TTC, TUNEL staining, electron microscopy, multiplex cytokine bioassays, western blot assays, immunofluorescence staining and RNA sequencing. Results ITBS significantly protected against cerebral ischemia/reperfusion (I/R) injury-induced locomotor deficits and neuronal damage, which probably relied on the regulation of innate immune and inflammatory responses, as evidenced by RNA sequencing analysis. The peak of pyroptosis was confirmed to be later than that of apoptosis during the early phase of stroke, and pyroptosis was mainly located and more severe in the peri-infarcted area compared with apoptosis. Multiplex cytokine bioassays showed that iTBS significantly ameliorated the high levels of IL-1β, IL-17A, TNF-α, IFN-γ in MCAO/r group and elevated the level of IL-10. ITBS inhibited the expression of neuronal pyroptosis-associated proteins (i.e., Caspase1, IL-1β, IL-18, ASC, GSDMD, NLRP1) in the peri-infarcted area rather than at the border of infarcted core. KEGG enrichment analysis and further studies demonstrated that iTBS significantly shifted the microglial M1/M2 phenotype balance by curbing proinflammatory M1 activation (Iba1+/CD86+) and enhancing the anti-inflammatory M2 activation (Iba1+/CD206+) in peri-infarcted area via inhibiting TLR4/NFκB/NLRP3 signaling pathway. Depletion of microglia using CSF1R inhibitor (PLX3397) eliminated the motor functional improvements after iTBS treatment. Conclusions rTMS could alleviate cerebral I/R injury induced locomotor deficits and neuronal pyroptosis by modulating the microglial polarization. It is expected that these data will provide novel insights into the mechanisms of rTMS protecting against cerebral I/R injury and potential targets underlying neuronal pyroptosis in the early phase of stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02501-2. rTMS significantly ameliorated cerebral ischemia/reperfusion injury-induced locomotor deficits and neuronal damage in the early phase probably through the anti-inflammatory mechanism. The peak of pyroptosis was later than that of apoptosis during the early phase of stroke, and pyroptosis was mainly located and more severe in the peri-infarcted area compared with apoptosis. rTMS inhibited neuronal pyroptosis in the peri-infarcted area rather than at the border of infarcted core. rTMS modulated microglial polarization in the peri-infarcted area via inhibiting TLR4/NFκB/NLRP3 signaling pathway. Depletion of microglia eliminated the motor functional improvements after rTMS treatment.
Collapse
Affiliation(s)
- Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Meixi Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Yunhui Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Yun Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Qiqi Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Congyu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. .,National Center for Neurological Disorders, Shanghai, 200040, China.
| |
Collapse
|