101
|
Grau M, Friederichs P, Krehan S, Koliamitra C, Suhr F, Bloch W. Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage. Clin Hemorheol Microcirc 2016; 60:215-29. [PMID: 24928922 DOI: 10.3233/ch-141850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During storage, red blood cells (RBC) become more susceptible to hemolysis and it has also been shown that RBC deformability, which is influenced by RBC nitric oxide synthase (RBC-NOS) activity, decreases during blood storage while a correlation between these two parameters under storage conditions has not been investigated so far. Therefore, blood from 15 male volunteers was anticoagulated, leuko-reduced and stored as either concentrated RBC or RBC diluted in saline-adenine-glucose-mannitol (SAGM) for eight weeks at 4°C and results were compared to data obtained from freshly drawn blood. During storage, decrease of RBC deformability was related to increased mean cellular volume and increased cell lysis but also to a decrease in RBC-NOS activation. The changes were more pronounced in concentrated RBC than in RBC diluted in SAGM suggesting that the storage method affects the quality of blood. These data shed new light on mechanisms underlying the phenomenon of storage lesion and reveal that RBC-NOS activation and possibly nitric oxide production in RBC are key elements that are influenced by storage and in turn alter deformability. Further studies should therefore also focus on improving these parameters during storage to improve the quality of stored blood with respect to blood transfusion.
Collapse
|
102
|
Yagi H, Sumino H, Aoki T, Tsunekawa K, Araki O, Kimura T, Nara M, Ogiwara T, Murakami M. Impaired blood rheology is associated with endothelial dysfunction in patients with coronary risk factors. Clin Hemorheol Microcirc 2016; 62:139-50. [PMID: 26444592 PMCID: PMC4927888 DOI: 10.3233/ch-151960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the relationship between blood rheology and endothelial function in patients with coronary risk factors, brachial arterial flow-mediated vasodilatation (FMD), an index of endothelial function and blood passage time (BPT), an index of blood rheology, and fasting blood cell count, glucose metabolism, and plasma fibrinogen, lipid, C-reactive protein, and whole blood viscosity levels were measured in 95 patients with coronary risk factors and 37 healthy controls. Brachial arterial FMD after reactive hyperemia was assessed by ultrasonography. BPT was assessed using the microchannel method. In healthy controls, BPT significantly correlated with FMD (r = - 0.325, p < 0.05), HDL cholesterol (r = - 0.393, p < 0.05), body mass index (BMI; r = 0.530, p < 0.01), and plasma fibrinogen concentration (r = 0.335, p < 0.05). In a multivariate regression analysis adjusted for all clinical variables, BPT remained significantly associated with BMI and fibrinogen, but not with FMD, in healthy controls. In patients with coronary risk factors, BPT significantly correlated with FMD (r = - 0.331, p < 0.01), HDL cholesterol (r = - 0.241, p < 0.05), BMI (r = 0.290, p < 0.01), hematocrit (r = 0.422, p < 0.001), white blood cell count (r = 0.295, p < 0.01), platelet count (r = 0.204, p < 0.05), and insulin (r = 0.210, p < 0.05). In a multivariate regression analysis adjusted for all clinical variables, BPT remained strongly associated with FMD and hematocrit in patients with coronary risk factors. These data indicate that BPT is closely associated with FMD in patients with coronary risk factors and suggest that the measurement of blood rheology using the microchannel method may be useful in evaluating brachial arterial endothelial function as a marker of atherosclerosis in these patients.
Collapse
Affiliation(s)
| | - Hiroyuki Sumino
- Corresponding author: Hiroyuki Sumino, MD, Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511, Japan. Tel.: +81 27 220 8576; Fax: +81 27 220 8583; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Alkaitis MS, Ackerman HC. Tetrahydrobiopterin Supplementation Improves Phenylalanine Metabolism in a Murine Model of Severe Malaria. ACS Infect Dis 2016; 2:827-838. [PMID: 27641435 PMCID: PMC6289270 DOI: 10.1021/acsinfecdis.6b00124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for both phenylalanine hydroxylase and nitric oxide synthase. Patients with severe malaria have low urinary BH4, elevated plasma phenylalanine, and impaired endothelium-dependent vasodilation, suggesting that BH4 depletion may limit phenylalanine metabolism and nitric oxide synthesis. We infected C57BL/6 mice with Plasmodium berghei ANKA to characterize BH4 availability and to investigate the effects of BH4 supplementation. P. berghei ANKA infection lowered BH4 in plasma, erythrocytes, and brain tissue but raised it in aorta and liver tissue. The ratio of BH4 to 7,8-BH2 (the major product of BH4 oxidation) was decreased in plasma, erythrocytes, and brain tissue, suggesting that oxidation contributes to BH4 depletion. The continuous infusion of sepiapterin (a BH4 precursor) and citrulline (an arginine precursor) raised the concentrations of BH4 and arginine in both blood and tissue compartments. The restoration of systemic BH4 and arginine availability in infected mice produced only a minor improvement in whole blood nitrite concentrations, a biomarker of NO synthesis, and failed to prevent the onset of severe disease symptoms. However, sepiapterin and citrulline infusion reduced the ratio of phenylalanine to tyrosine in plasma, aortic tissue, and brain tissue. In summary, BH4 depletion in P. berghei infection may compromise both nitric oxide synthesis and phenylalanine metabolism; however, these findings require further investigation in human patients with severe malaria.
Collapse
Affiliation(s)
- Matthew S. Alkaitis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, United Kingdom
| | - Hans C. Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
104
|
Grau M, Lauten A, Hoeppener S, Goebel B, Brenig J, Jung C, Bloch W, Suhr F. Regulation of red blood cell deformability is independent of red blood cell-nitric oxide synthase under hypoxia. Clin Hemorheol Microcirc 2016; 63:199-215. [DOI: 10.3233/ch-162044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marijke Grau
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
- The German Research Center of Elite Sport (momentum), German Sport University Cologne, Germany
| | - Alexander Lauten
- Department of Internal Medicine I (Cardiology, Angiology, Pneumology), Friedrich-Schiller University, Jena, Germany
| | - Steffen Hoeppener
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| | - Bjoern Goebel
- Department of Internal Medicine I (Cardiology, Angiology, Pneumology), Friedrich-Schiller University, Jena, Germany
| | - Julian Brenig
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
| | - Christian Jung
- Department of Internal Medicine I (Cardiology, Angiology, Pneumology), Friedrich-Schiller University, Jena, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
- The German Research Center of Elite Sport (momentum), German Sport University Cologne, Germany
| | - Frank Suhr
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany
- The German Research Center of Elite Sport (momentum), German Sport University Cologne, Germany
| |
Collapse
|
105
|
Fatini C, Mannini L, Sticchi E, Cecchi E, Bruschettini A, Leprini E, Pagnini P, Gensini GF, Prisco D, Abbate R. eNOS Gene Affects Red Cell Deformability: Role of T-786C, G894T, and 4a/4b Polymorphisms. Clin Appl Thromb Hemost 2016; 11:481-8. [PMID: 16244776 DOI: 10.1177/107602960501100417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasma viscosity and erythrocyte deformability play a key role in maintaining and regulating microcirculation. In vitro and in vivo studies suggested a role for nitric oxide (NO) in modulating flow-mediated vasodilatation and red blood cell deformability. Impaired NO availability due to mutations in eNOS gene might contribute to the altered haemorheologic state. The aim of this study was to investigate the role of eNOS T-786C, G894T, and 4a/4b polymorphisms in modulating the haemorheologic state in a clinical condition characterized by a microcirculatory disorder. Eighty patients with idiopathic sudden sensorineural hearing loss (ISSHL) and 80 healthy subjects were studied. By using a dominant model of inheritance, we found a significant association between eNOS 894T rare variant and ISSHL (odds ratio [OR] 894TT+GT = 2.08, p = 0.03) after adjustment with traditional vascular risk factors. A higher percentage of altered red cell deformability both in patients and in controls carrying the eNOS rare variants was found in comparison to subjects carrying the wild type. Apart from the disease, eNOS T-786C and G894T polymorphisms independently affected the deformability index (OR,-786CC+TC = 2.81, p = 0.01 and OR, 894TT+GT = 2.5, p = 0.02, respectively), in particular in subjects in whom the contemporary presence of the two rare alleles was observed (OR,-786CC+TC and 894TT+GT combined genotype = 6.9, p<0.0001). Our study documented that eNOS gene affects the red blood cell deformability, so possibly contributing to ISSHL, which may represent a suitable model of microcirculatory disorder.
Collapse
Affiliation(s)
- Cinzia Fatini
- Department of Medical and Surgical Critical Care, Section of Clinical Medicine and Cardiology, Thrombosis Centre, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Nitric oxide synthetic pathway and cGMP levels are altered in red blood cells from end-stage renal disease patients. Mol Cell Biochem 2016; 417:155-67. [PMID: 27206740 DOI: 10.1007/s11010-016-2723-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/13/2016] [Indexed: 01/22/2023]
Abstract
Red blood cells (RBCs) enzymatically produce nitric oxide (NO) by a functional RBC-nitric oxide synthase (RBC-NOS). NO is a vascular key regulatory molecule. In RBCs its generation is complex and influenced by several factors, including insulin, acetylcholine, and calcium. NO availability is reduced in end-stage renal disease (ESRD) and associated with endothelial dysfunction. We previously demonstrated that, through increased phosphatidylserine membrane exposure, ESRD-RBCs augmented their adhesion to human cultured endothelium, in which NO bioavailability decreased. Since RBC-NOS-dependent NO production in ESRD is unknown, this study aimed to investigate RBC-NOS levels/activation, NO production/bioavailability in RBCs from healthy control subjects (C, N = 18) and ESRD patients (N = 27). Although RBC-NOS expression was lower in ESRD-RBCs, NO, cyclic guanosine monophosphate (cGMP), RBC-NOS Serine1177 phosphorylation level and eNOS/Calmodulin (CaM)/Heat Shock Protein-90 (HSP90) interaction levels were higher in ESRD-RBCs, indicating increased enzyme activation. Conversely, following RBCs stimulation with insulin or ionomycin, NO and cGMP levels were significantly lower in ESRD- than in C-RBCs, suggesting that uremia might reduce the RBC-NOS response to further stimuli. Additionally, the activity of multidrug-resistance-associated protein-4 (MRP4; cGMP-membrane transporter) was significantly lower in ESRD-RBCs, suggesting a possible compromised efflux of cGMP across the ESRD-RBCs membrane. This study for the first time showed highest basal RBC-NOS activation in ESRD-RBCs, possibly to reduce the negative impact of decreased NOS expression. It is further conceivable that high NO production only partially affects cell function of ESRD-RBCs maybe because in vivo they are unable to respond to physiologic stimuli, such as calcium and/or insulin.
Collapse
|
107
|
Carelli-Alinovi C, Pirolli D, Giardina B, Misiti F. Protein kinase C mediates caspase 3 activation: A role for erythrocyte morphology changes. Clin Hemorheol Microcirc 2016; 59:345-54. [PMID: 24840342 DOI: 10.3233/ch-141845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously showed that morphological alterations in Red Blood Cells (RBCs) are correlated to an impaired eNOS enzymatic activity and a concomitant reduced NO derived metabolites formation. Here we extend our previous observations, reporting that RBC morphology is regulated by a series of specific cell signaling events linked to Protein Kinase C (PKC)-mediated activation of caspase 3. Pretreatment of RBCs with the PKC inhibitor chelerythrine, prior to the addition of phorbol-12-myristate-13-acetate (PMA), an activator of PKC, blocks the appearance of the morphology alterations and the sustained decrease in nitrates and nitrites levels induced by PMA. Inhibition of PKC also completely inhibits PMA mediated caspase-3 activation. On the other hand, caspase 3 inhibition, lessens the PMA induced-effects on the appearance of RBC morphology alterations, although it enhances PMA-mediated effects on nitric oxide (NO) derived metabolites levels. These data demonstrate that PKC-mediated activation of caspase 3 is an integral and essential part of signaling pathway in RBCs, that may be a regulatory factor of RBC mechanical properties, through regulation of NO metabolism.
Collapse
Affiliation(s)
- Cristiana Carelli-Alinovi
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, Rome, Italy
| | - Davide Pirolli
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, Rome, Italy
| | - Bruno Giardina
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, Rome, Italy.,Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council (CNR), Rome, Italy
| | - Francesco Misiti
- Human, Social and Health Department, University of Cassino and Southern Lazio, V.S. Angelo, Loc. Folcara, Cassino (FR), Italy
| |
Collapse
|
108
|
Zhao J, Xing H, Liu C, Zhang Z, Xu S. Effect of Selenium Deficiency on Nitric Oxide and Heat Shock Proteins in Chicken Erythrocytes. Biol Trace Elem Res 2016; 171:208-13. [PMID: 26440477 DOI: 10.1007/s12011-015-0527-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
Selenium (Se) deficiency induces various types of diseases, including hemolytic anemia, which is one of the basic pathologies of erythrocyte damage. To investigate the effect of Se deficiency on chicken erythrocytes, we detected the effects of Se deficiency on the nitric oxide (NO) content and the levels of heat shock proteins (Hsps) in chicken erythrocytes, including Hsp27, Hsp40, Hsp60, Hsp70, and Hsp90. One-day-old chickens (180) were randomly divided into two groups, a low-Se group (L group, fed with a 0.008 mg/kg Se diet) and a control group (C group, fed with a 0.2 mg/kg Se diet). Next, erythrocytes were collected at 35 days old, and the NO content, activity of inducible nitric oxide synthase (iNOS), and levels of Hsps (27, 40, 60, 70, and 90) were examined. Compared with the C group, the NO and iNOS levels were significantly higher (P < 0.05), and the Hsps in the mRNA and protein levels were generally higher (P < 0.05) in the L group. Meanwhile, the correlation analysis showed that there were positive correlations between Hsps and NO. Thus, as typical damage biomarkers, NO and Hsps may play special roles in chicken erythrocyte injury by Se deficiency.
Collapse
Affiliation(s)
- Jinxin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Houjuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chunpeng Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
109
|
Filipovic A, Kleinöder H, Plück D, Hollmann W, Bloch W, Grau M. Influence of Whole-Body Electrostimulation on Human Red Blood Cell Deformability. J Strength Cond Res 2016; 29:2570-8. [PMID: 26308832 DOI: 10.1519/jsc.0000000000000916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Red blood cell-nitric oxide synthase (RBC-NOS)-dependent NO production is essential for the maintenance of RBC deformability, which is known to improve oxygen supply to the working tissue. Electrostimulation of the whole body (WB-EMS) has been shown to improve maximal strength, springiness, and jumping power of trained and untrained athletes. To examine whether these 2 parameters are associated, this study, for the first time, aimed to investigate the effects of an 18-week dynamic WB-EMS program on RBC deformability in addition to maximal strength performance (1 repetition maximum [1RM]) in elite soccer players. Fifteen test persons were assigned in either WB-EMS group (EG, n = 10) or training group (TG, n = 5). Next to their weekly training sessions, EG performed 3 × 10 squat jumps under the influence of WB-EMS twice per week between weeks 1 and 14 and once per week between weeks 14 and 18. Training group only performed 3 × 10 squat jumps. Performance was assessed by a maximal strength test on the leg press machine (1RM). Subjects were tested at baseline and after weeks 7, 14, and 18 with blood sampling before (Pre), 15-30 minutes after (Post), and 24 hours after (24-hour Post) the training. The results showed that maximal strength was significantly improved in EG (p < 0.01). Maximum RBC deformability (EImax) increased on EMS stimulus in EG while it remained unaffected in the TG. Acute increase in EImax at baseline was explained by an increase in RBC-NOS activation while chronic increase of deformability must be caused by different, yet unknown, mechanisms. EImax decreased between weeks 14 and 18 suggesting that 1 WB-EMS session per week is not sufficient to alter deformability (EImax). In contrast, the deformability at low shear stress (EI 3 Pa), comparable with conditions found in the microcirculation, significantly increased in EG until week 14, whereas in TG deformability only, increased until week 7 due to increasing training volume after the winter break. The results indicate that WB-EMS represents a useful and time-saving addition to conventional training sessions to improve RBC deformability and possibly oxygen supply to the working tissue and thus promoting general force components in high performance sport.
Collapse
Affiliation(s)
- Andre Filipovic
- 1Institute of Sport Science and Sport Informatics, German Sport University Cologne, Cologne, Germany; and 2Institute of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
110
|
Grau M, Bölck B, Bizjak DA, Stabenow CJA, Bloch W. The red-vine-leaf extract AS195 increases nitric oxide synthase-dependent nitric oxide generation and decreases oxidative stress in endothelial and red blood cells. Pharmacol Res Perspect 2016; 4:e00213. [PMID: 26977302 PMCID: PMC4777269 DOI: 10.1002/prp2.213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/24/2015] [Indexed: 12/29/2022] Open
Abstract
The red‐vine‐leaf extract AS195 improves cutaneous oxygen supply and the microcirculation in patients suffering from chronic venous insufficiency. Regulation of blood flow was associated to nitric oxide synthase (NOS)‐dependent NO (nitric oxide) production, and endothelial and red blood cells (RBC) have been shown to possess respective NOS isoforms. It was hypothesized that AS195 positively affects NOS activation in human umbilical vein endothelial cells (HUVECs) and RBC. Because patients with microvascular disorders show increased oxidative stress which limits NO bioavailability, it was further hypothesized that AS195 increases NO bioavailability by decreasing the content of reactive oxygen species (ROS) and increasing antioxidant capacity. Cultured HUVECs and RBCs from healthy volunteers were incubated with AS195 (100 μmol/L), tert‐butylhydroperoxide (TBHP, 1 mmol/L) to induce oxidative stress and with both AS195 and TBHP. Endothelial and red blood cell–nitric oxide synthase (RBC‐NOS) activation significantly increased after AS195 incubation. Nitrite concentration, a marker for NO production, increased in HUVEC but decreased in RBC after AS195 application possibly due to nitrite scavenging potential of flavonoids. S‐nitrosylation of RBC cytoskeletal spectrins and RBC deformability were increased after AS195 incubation. TBHP‐induced ROS were decreased by AS195, and antioxidative capacity was significantly increased in AS195‐treated cells. TBHP also reduced RBC deformability, but reduction was attenuated by parallel incubation with AS195. Adhesion of HUVEC was also reduced after AS195 treatment. Red‐vine‐leaf extract AS195 increases NOS activation and decreases oxidative stress. Both mechanisms increase NO bioavailability, improve cell function, and may thus account for enhanced microcirculation in both health and disease.
Collapse
Affiliation(s)
- Marijke Grau
- Departments Molecular and Cellular Sports Medicine German Sport University Cologne Institute of Cardiovascular Research and Sports Medicine Am Sportpark Müngersdorf 6 Cologne Germany
| | - Birgit Bölck
- Departments Molecular and Cellular Sports Medicine German Sport University Cologne Institute of Cardiovascular Research and Sports Medicine Am Sportpark Müngersdorf 6 Cologne Germany
| | - Daniel Alexander Bizjak
- Departments Molecular and Cellular Sports Medicine German Sport University Cologne Institute of Cardiovascular Research and Sports Medicine Am Sportpark Müngersdorf 6 Cologne Germany
| | - Christina Julia Annika Stabenow
- Departments Molecular and Cellular Sports Medicine German Sport University Cologne Institute of Cardiovascular Research and Sports Medicine Am Sportpark Müngersdorf 6 Cologne Germany
| | - Wilhelm Bloch
- Departments Molecular and Cellular Sports Medicine German Sport University Cologne Institute of Cardiovascular Research and Sports Medicine Am Sportpark Müngersdorf 6 Cologne Germany
| |
Collapse
|
111
|
Nagababu E, Scott AV, Johnson DJ, Dwyer IM, Lipsitz JA, Barodka VM, Berkowitz DE, Frank SM. Oxidative stress and rheologic properties of stored red blood cells before and after transfusion to surgical patients. Transfusion 2016; 56:1101-11. [PMID: 26825863 DOI: 10.1111/trf.13458] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND The loss of structural and functional integrity of red blood cells (RBCs) during storage, collectively referred to as "storage lesion," has been implicated in reduced oxygen delivery after transfusion. RBCs are highly susceptible to oxidative damage from generation of reactive oxygen species by autoxidation of hemoglobin. Therefore, we examined whether increased oxidative stress (OS) in stored RBCs is associated with impaired cell membrane deformability before or after transfusion. STUDY DESIGN AND METHODS Thirty-four patients undergoing multilevel spine fusion surgery were enrolled. OS in RBCs was assessed by the presence of fluorescent heme degradation products and methemoglobin, which were measured with fluorimetric and spectrophotometric methods, respectively. Deformability and aggregation were determined by ektacytometry in stored RBCs, autologous salvaged RBCs, and posttransfusion blood samples. RESULTS OS in stored RBCs was significantly increased with longer storage (R = 0.54, p = 0.032) and significantly higher than that in fresh RBCs (9.1 ± 1.3 fluorescent arbitrary units vs. 7.7 ± 0.9 fluorescent arbitrary units, p < 0.001). Deformability decreased (R = -0.60, p = 0.009) with increasing storage duration. OS was elevated (p < 0.05) and deformability was decreased (p < 0.05) in postoperative blood from patients who had undergone moderate (≥4 RBC units) but not minimal or no transfusion. Neither the decrease in deformability of RBCs nor the aggregation changes were correlated with OS. CONCLUSIONS Although stored RBCs show signs of increased OS and loss of cell membrane deformability, these changes were not directly correlated and were only evident after moderate but not lower dose transfusion in postoperative surgical patients. These findings suggest that factors other than OS may contribute to impaired rheology with stored RBCs in the clinical setting.
Collapse
Affiliation(s)
- Enika Nagababu
- Department of Anesthesiology/Critical Care Medicine, the Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Andrew V Scott
- Department of Anesthesiology/Critical Care Medicine, the Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Daniel J Johnson
- Department of Anesthesiology/Critical Care Medicine, the Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ian M Dwyer
- Department of Anesthesiology/Critical Care Medicine, the Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Joshua A Lipsitz
- Department of Anesthesiology/Critical Care Medicine, the Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Viachaslau M Barodka
- Department of Anesthesiology/Critical Care Medicine, the Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Dan E Berkowitz
- Department of Anesthesiology/Critical Care Medicine, the Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Steven M Frank
- Department of Anesthesiology/Critical Care Medicine, the Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
112
|
Shu X, Keller TCS, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 2015; 72:4561-75. [PMID: 26390975 PMCID: PMC4628887 DOI: 10.1007/s00018-015-2021-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/21/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.
Collapse
Affiliation(s)
- Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Lauren Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA.
| |
Collapse
|
113
|
Teixeira P, Napoleão P, Saldanha C. S-nitrosoglutathione efflux in the erythrocyte. Clin Hemorheol Microcirc 2015; 60:397-404. [DOI: 10.3233/ch-141855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
114
|
Connes P, Alexy T, Detterich J, Romana M, Hardy-Dessources MD, Ballas SK. The role of blood rheology in sickle cell disease. Blood Rev 2015; 30:111-8. [PMID: 26341565 DOI: 10.1016/j.blre.2015.08.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/17/2015] [Accepted: 08/20/2015] [Indexed: 01/29/2023]
Abstract
Studies performed in the last decades have highlighted the need to better understand the contribution of the endothelium, vascular function, oxidative stress, inflammation, coagulation, hemolysis and vascular adhesion mechanisms to the pathophysiology of acute vaso-occlusive like events and chronic organ damages in sickle cell disease (SCD). Although SCD is a hemorheological disease, a few works focused on the contribution of blood viscosity, plasma viscosity, red blood cell deformability and aggregation in the pathophysiology of SCD. After a brief description of basic hemorheology, the present review focuses on the role of the hemorheological abnormalities in the causation of several SCD complications, mainly in sickle cell anemia and hemoglobin (Hb) SC disease. Several genetic and cellular modulators of blood rheology in SCD are discussed, as well as unresolved questions and perspectives.
Collapse
Affiliation(s)
- Philippe Connes
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157 Pointe-à-Pitre, Guadeloupe; Laboratory of Excellence GR-Ex «The red cell: from genesis to death», PRES Sorbonne Paris Cité, 75015 Paris, France; Institut Universitaire de France, Paris, France; Laboratoire CRIS EA647, Section "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.
| | - Tamas Alexy
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA; Section of Cardiology, Atlanta VA Medical Center, Decatur, GA, USA
| | - Jon Detterich
- Children's Hospital Los Angeles, Division of Cardiology, USA
| | - Marc Romana
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157 Pointe-à-Pitre, Guadeloupe; Laboratory of Excellence GR-Ex «The red cell: from genesis to death», PRES Sorbonne Paris Cité, 75015 Paris, France
| | - Marie-Dominique Hardy-Dessources
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-à-Pitre, 97157 Pointe-à-Pitre, Guadeloupe; Laboratory of Excellence GR-Ex «The red cell: from genesis to death», PRES Sorbonne Paris Cité, 75015 Paris, France
| | - Samir K Ballas
- Department of Medicine, Cardeza Foundation for Hematologic Research, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
115
|
Waltz P, Escobar D, Botero AM, Zuckerbraun BS. Nitrate/Nitrite as Critical Mediators to Limit Oxidative Injury and Inflammation. Antioxid Redox Signal 2015; 23:328-39. [PMID: 26140517 PMCID: PMC4692126 DOI: 10.1089/ars.2015.6256] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) is a critical signaling molecule marked by complex chemistry and varied biological responses depending on the context of the redox environment. In the setting of inflammation, NO can not only contribute to tissue injury and be causative of oxidative damage but can also signal as an adaptive molecule to limit inflammatory signaling in multiple cell types and tissues. RECENT ADVANCES An advance in our understanding of NO biology was the recognition of the nitrate-nitrite-NO axis, whereby nitrate (predominantly from dietary sources) could be converted to nitrite and nitrite could be reduced to NO. CRITICAL ISSUES Intriguingly, the recognition of multiple enzymes that serve as nitrite reductases in the setting of hypoxia or ischemia established the concept of nitrite as a circulating endocrine reservoir of NO, with the selective release of NO at sites that were primed for this reaction. This review highlights the anti-inflammatory roles of nitrite in numerous clinical conditions, including ischemia/reperfusion, transplant, cardiac arrest, and vascular injury, and in gastrointestinal inflammation. FUTURE DIRECTIONS These preclinical and clinical investigations set up further clinical trials and studies that elucidate the endogenous role this pathway plays in protection against inflammatory signaling.
Collapse
Affiliation(s)
- Paul Waltz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel Escobar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ana Maria Botero
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian S. Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- The Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
116
|
Kim J, Lee H, Shin S. Advances in the measurement of red blood cell deformability: A brief review. ACTA ACUST UNITED AC 2015. [DOI: 10.3233/jcb-15007] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
117
|
Riccio DA, Zhu H, Foster MW, Huang B, Hofmann CL, Palmer GM, McMahon TJ. Renitrosylation of banked human red blood cells improves deformability and reduces adhesivity. Transfusion 2015; 55:2452-63. [PMID: 26098062 DOI: 10.1111/trf.13189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transfusion of red blood cells (RBCs) is a frequent health care practice. However, unfavorable consequences may occur from transfusions of stored RBCs and are associated with RBC changes during storage. Loss of S-nitrosohemoglobin (SNO-Hb) and other S-nitrosothiols (SNOs) during storage is implicated as a detriment to transfusion efficacy. It was hypothesized that restoring SNOs within banked RBCs would improve RBC functions relevant to successful transfusion outcomes, namely, increased deformability and decreased adhesivity. STUDY DESIGN AND METHODS Stored human RBCs were incubated with nitric oxide (NO) donors PROLI/NO and DEA/NO (disodium 1-[2-(carboxylato)-pyrrolidin-1-yl]diazen-1-ium-1,2-diolate and diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate) under varying experimental conditions (e.g., aerobic/anaerobic incubation, NO donor to RBC ratio). SNO restoration was evaluated in vitro and in vivo as a means to improve RBC function after storage. RESULTS Incubation of RBCs with the NO donors resulted in 10-fold greater levels of SNO-Hb versus untreated control or sham RBCs, with significantly higher Hb-bound NO yields from an NO dose delivered by DEA/NO. RBC incubation with DEA/NO at a stoichiometry of 1:62.5 NO:Hb significantly increased RBC deformabilty and reduced adhesion to cultured endothelial cells. RBC incubation with DEA/NO also increased S-nitrosylation of RBC cytoskeletal and membrane proteins, including the β-spectrin chain. Renitrosylation attenuated both RBC sequestration in the lung and the mild blood oxygen saturation impairments seen with banked RBCs in a mouse model of transfusion. CONCLUSIONS RBC renitrosylation using NO donors has promise for correcting deficient properties (e.g., adhesivity, rigidity, and SNO loss) of banked RBCs and in turn improving transfusion outcomes.
Collapse
Affiliation(s)
- Daniel A Riccio
- Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Hongmei Zhu
- Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Matthew W Foster
- Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Brendan Huang
- Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | | | - Gregory M Palmer
- Department of Radiation Oncology, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Tim J McMahon
- Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| |
Collapse
|
118
|
Erythrocyte: A systems model of the control of aggregation and deformability. Biosystems 2015; 131:1-8. [DOI: 10.1016/j.biosystems.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/08/2023]
|
119
|
Belanger AM, Keggi C, Kanias T, Gladwin MT, Kim-Shapiro DB. Effects of nitric oxide and its congeners on sickle red blood cell deformability. Transfusion 2015; 55:2464-72. [PMID: 25912054 DOI: 10.1111/trf.13134] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sickle cell disease (SCD) is characterized by hemoglobin polymerization upon deoxygenation. Polymerization causes the sickle cells to become rigid and misshapen (sickling). Red blood cell (RBC) dehydration greatly increases polymerization. Cycles of sickling and unsickling cause an influx of calcium that leads to loss of potassium via the calcium-activated Gardos channel, which dehydrates the cells leading to increased polymerization. In this study the effects of nitric oxide (NO) and its congeners on RBC deformability were examined, focusing on sickle RBCs (sRBCs). STUDY DESIGN AND METHODS RBCs from patients with SCD and from nonpatients were exposed to various compounds that release NO or its congeners. Intracellular calcium was increased using a calcium ionophore or cycling of oxygen tension for sRBCs. Deformability was measured by laser-assisted osmotic gradient ektacytometry. RESULTS Consistent with a previous report, sodium nitroprusside (SNP) was found to protect against calcium-induced loss of deformability in normal RBCs, but (contrary to some previous reports) no effect of any NO donors was observed when calcium influx was not induced. Importantly, in studies of deoxygenation-induced dehydration of sRBCs, SNP resulted in substantial improvements in deformability (p = 0.036) and hydration (p = 0.024). Sodium nitrite showed similar trends. SNP was shown to have no effect on calcium influx, but reduced potassium efflux. CONCLUSION These data suggest that SNP and perhaps certain nitrogen oxides (like nitrite) inhibit the Gardos channel and may be able to protect sickle cells from dehydration and thereby improve outcome in the disease.
Collapse
Affiliation(s)
| | | | - Tamir Kanias
- Heart, Lung, Blood and Vascular Medicine Institute.,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Heart, Lung, Blood and Vascular Medicine Institute.,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel B Kim-Shapiro
- Department of Physics.,Translational Science Center, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
120
|
Bizjak DA, Brinkmann C, Bloch W, Grau M. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells. PLoS One 2015; 10:e0125206. [PMID: 25902315 PMCID: PMC4406474 DOI: 10.1371/journal.pone.0125206] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
AIM To investigate RBC-NOS dependent NO signaling during in vivo RBC aging in health and disease. METHOD RBC from fifteen healthy volunteers (HC) and four patients with type 2 diabetes mellitus (DM) were separated in seven subpopulations by Percoll density gradient centrifugation. RESULTS The proportion of old RBC was significantly higher in DM compared to HC. In both groups, in vivo aging was marked by changes in RBC shape and decreased cell volume. RBC nitrite, as marker for NO, was higher in DM and increased in both HC and DM during aging. RBC deformability was lower in DM and significantly decreased in old compared to young RBC in both HC and DM. RBC-NOS Serine1177 phosphorylation, indicating enzyme activation, increased during aging in both HC and DM. Arginase I activity remained unchanged during aging in HC. In DM, arginase I activity was significantly higher in young RBC compared to HC but decreased during aging. In HC, concentration of L-arginine, the substrate of RBC-NOS and arginase I, significantly dropped from young to old RBC. In DM, L-arginine concentration was significantly higher in young RBC compared to HC and significantly decreased during aging. In blood from healthy subjects, RBC-NOS activation was additionally inhibited by N5-(1-iminoethyl)-L-Ornithine dihydrochloride which decreased RBC nitrite, and impaired RBC deformability of all but the oldest RBC subpopulation. CONCLUSION This study first-time showed highest RBC-NOS activation and NO production in old RBC, possibly to counteract the negative impact of cell shrinkage on RBC deformability. This was even more pronounced in DM. It is further suggested that highly produced NO only insufficiently affects cell function of old RBC maybe because of isolated RBC-NOS in old RBC thus decreasing NO bioavailability. Thus, increasing NO availability may improve RBC function and may extend cell life span in old RBC.
Collapse
Affiliation(s)
- Daniel Alexander Bizjak
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Christian Brinkmann
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Marijke Grau
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
121
|
Yang WH, Heine O, Pauly S, Kim P, Bloch W, Mester J, Grau M. Rapid rather than gradual weight reduction impairs hemorheological parameters of Taekwondo athletes through reduction in RBC-NOS activation. PLoS One 2015; 10:e0123767. [PMID: 25875585 PMCID: PMC4396988 DOI: 10.1371/journal.pone.0123767] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/21/2015] [Indexed: 11/23/2022] Open
Abstract
Purpose Rapid weight reduction is part of the pre-competition routine and has been shown to negatively affect psychological and physiological performance of Taekwondo (TKD) athletes. This is caused by a reduction of the body water and an electrolyte imbalance. So far, it is unknown whether weight reduction also affects hemorheological properties and hemorheology-influencing nitric oxide (NO) signaling, important for oxygen supply to the muscles and organs. Methods For this purpose, ten male TKD athletes reduced their body weight by 5% within four days (rapid weight reduction, RWR). After a recovery phase, athletes reduced body weight by 5% within four weeks (gradual weight reduction, GWR). Each intervention was preceded by two baseline measurements and followed by a simulated competition. Basal blood parameters (red blood cell (RBC) count, hemoglobin concentration, hematocrit, mean corpuscular volume, mean cellular hemoglobin and mean cellular hemoglobin concentration), RBC-NO synthase activation, RBC nitrite as marker for NO synthesis, RBC deformability and aggregation parameters were determined on a total of eight investigation days. Results Basal blood parameters were not affected by the two interventions. In contrast to GWR, RWR decreased activation of RBC-NO synthase, RBC nitrite, respective NO concentration and RBC deformability. Additionally, RWR increased RBC aggregation and disaggregation threshold. Conclusion The results point out that a rapid weight reduction negatively affects hemorheological parameters and NO signaling in RBC which might limit performance capacity. Thus, GWR should be preferred to achieve the desired weight prior to a competition to avoid these negative effects.
Collapse
Affiliation(s)
- Woo Hwi Yang
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Cologne, Germany
- Olympic Training Centre Rhineland, Cologne, Germany
| | - Oliver Heine
- Olympic Training Centre Rhineland, Cologne, Germany
| | - Sebastian Pauly
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Pilsang Kim
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
- German Research Centre for Elite Sports, German Sport University, Cologne, Germany
| | - Joachim Mester
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Cologne, Germany
- German Research Centre for Elite Sports, German Sport University, Cologne, Germany
| | - Marijke Grau
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
- German Research Centre for Elite Sports, German Sport University, Cologne, Germany
- * E-mail:
| |
Collapse
|
122
|
Rinalducci S, Zolla L. Biochemistry of storage lesions of red cell and platelet concentrates: A continuous fight implying oxidative/nitrosative/phosphorylative stress and signaling. Transfus Apher Sci 2015; 52:262-9. [PMID: 25910536 DOI: 10.1016/j.transci.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanisms responsible for the reduced lifespan of transfused red blood cells (RBCs) and platelets (PLTs) are still under investigation, however one explanation refers to the detrimental biochemical changes occurring during ex vivo storage of these blood products. A myriad of historical and more recent studies has contributed to advance our understanding of storage lesion. Without any doubts, proteomics had great impact on transfusion medicine by profiling the storage-dependent changes in the total detectable protein pool of both RBCs and PLTs. This review article focuses on the role of oxidative/nitrosative stress in developing RBC and PLT storage lesions, with a special glance at its biochemistry and cross-talk with phosphorylative signal transduction. In this sense, we enlighten the potential contribution of new branches of proteomics in identifying novel points of intervention for the improvement of blood product quality.
Collapse
Affiliation(s)
- Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| |
Collapse
|
123
|
Rabai M, Detterich JA, Wenby RB, Hernandez TM, Toth K, Meiselman HJ, Wood JC. Deformability analysis of sickle blood using ektacytometry. Biorheology 2015; 51:159-70. [PMID: 24898336 DOI: 10.3233/bir-140660] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sickle cell disease (SCD) is characterized by decreased erythrocyte deformability, microvessel occlusion and severe painful infarctions of different organs. Ektacytometry of SCD red blood cells (RBC) is made difficult by the presence of rigid, poorly-deformable irreversibly sickled cells (ISC) that do not align with the fluid shear field and distort the elliptical diffraction pattern seen with normal RBC. In operation, the computer software fits an outline to the diffraction pattern, then reports an elongation index (EI) at each shear stress based on the length and width of the fitted ellipse: EI=(length-width)/(length+width). Using a commercial ektacytometer (LORCA, Mechatronics Instruments, The Netherlands) we have approached the problem of ellipse fitting in two ways: (1) altering the height of the diffraction image on a computer monitor using an aperture within the camera lens; (2) altering the light intensity level (gray level) used by the software to fit the image to an elliptical shape. Neither of these methods affected deformability results (elongation index-shear stress relations) for normal RBC but did markedly affect results for SCD erythrocytes: (1) decreasing image height by 15% and 30% increased EI at moderate to high stresses; (2) progressively increasing the light level increased EI over a wide range of stresses. Fitting data obtained at different image heights using the Lineweaver-Burke routine yielded percentage ISC results in good agreement with microscopic cell counting. We suggest that these two relatively simple approaches allow minimizing artifacts due to the presence of rigid discs or ISC and also suggest the need for additional studies to evaluate the physiological relevance of deformability data obtained via these methods.
Collapse
Affiliation(s)
- Miklos Rabai
- 1st Department of Medicine, School of Medicine, University of Pecs, Pecs, Hungary Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jon A Detterich
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rosalinda B Wenby
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tatiana M Hernandez
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Kalman Toth
- 1st Department of Medicine, School of Medicine, University of Pecs, Pecs, Hungary
| | - Herbert J Meiselman
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John C Wood
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
124
|
Abstract
Since the identification of the elusive endothelium-derived relaxing factor as nitric oxide (NO), much attention has been devoted to understanding its physiological effects. NO is a free radical with many roles, and owing to its neutral charge and high diffusion capacity, it appears NO is involved in every mammalian biological system. Most attention has been focused on the NO generating pathways within the endothelium; however, the recent discovery of a NO synthase (NOS)-like enzyme residing in red blood cells (RBC) has increased our understanding of the blood flow and oxygen delivery modulation by RBC. In the present review, pathways of NO generation are summarized, with attention to those residing within RBC. While the bioactivity of RBC-derived NO is still debated due to its generation within proximity of NO scavengers, current theories for NO export from RBC are explored, which are supported by recent findings demonstrating an extracellular response to RBC-derived NO. The importance of NO in the active regulation of RBC deformability is discussed in the context of the subsequent effects on blood fluidity, and the complex interplay between blood rheology and NO are summarized. This review provides a summary of recent advances in understanding the role played by RBC in NO equilibrium and vascular regulation.
Collapse
Affiliation(s)
- Michael J Simmonds
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Queensland, Australia
| | - Jon A Detterich
- Division of Cardiology, Childrens Hospital Los Angeles, Los Angeles, CA, USA
| | - Philippe Connes
- UMR Inserm 1134, Hôpital Ricou, CHU de Pointe à Pitre, Pointe à Pitre, Guadeloupe Institut Universitaire de France, Paris, France Laboratory of Excellence GR-Ex "The red cell: from genesis to death", PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
125
|
Rubach MP, Mukemba J, Florence S, Lopansri BK, Hyland K, Volkheimer AD, Yeo TW, Anstey NM, Weinberg JB, Mwaikambo ED, Granger DL. Impaired systemic tetrahydrobiopterin bioavailability and increased oxidized biopterins in pediatric falciparum malaria: association with disease severity. PLoS Pathog 2015; 11:e1004655. [PMID: 25764173 PMCID: PMC4357384 DOI: 10.1371/journal.ppat.1004655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022] Open
Abstract
Decreased bioavailability of nitric oxide (NO) is a major contributor to the pathophysiology of severe falciparum malaria. Tetrahydrobiopterin (BH4) is an enzyme cofactor required for NO synthesis from L-arginine. We hypothesized that systemic levels of BH₄ would be decreased in children with cerebral malaria, contributing to low NO bioavailability. In an observational study in Tanzania, we measured urine levels of biopterin in its various redox states (fully reduced [BH₄] and the oxidized metabolites, dihydrobiopterin [BH₂] and biopterin [B₀]) in children with uncomplicated malaria (UM, n = 55), cerebral malaria (CM, n = 45), non-malaria central nervous system conditions (NMC, n = 48), and in 111 healthy controls (HC). Median urine BH4 concentration in CM (1.10 [IQR:0.55-2.18] μmol/mmol creatinine) was significantly lower compared to each of the other three groups - UM (2.10 [IQR:1.32-3.14];p<0.001), NMC (1.52 [IQR:1.01-2.71];p = 0.002), and HC (1.60 [IQR:1.15-2.23];p = 0.005). Oxidized biopterins were increased, and the BH4:BH2 ratio markedly decreased in CM. In a multivariate logistic regression model, each Log10-unit decrease in urine BH4 was independently associated with a 3.85-fold (95% CI:1.89-7.61) increase in odds of CM (p<0.001). Low systemic BH4 levels and increased oxidized biopterins contribute to the low NO bioavailability observed in CM. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.
Collapse
Affiliation(s)
- Matthew P. Rubach
- Department of Medicine, Duke University and VA Medical Centers, Durham, North Carolina, United States of America
| | - Jackson Mukemba
- Department of Pediatrics, Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| | - Salvatore Florence
- Department of Pediatrics, Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| | - Bert K. Lopansri
- Department of Medicine, Intermountain Healthcare, Salt Lake City, Utah, United States of America
- Department of Medicine, University of Utah School of Medicine and VA Medical Center, Salt Lake City, Utah, United States of America
| | - Keith Hyland
- Neurochemistry Division, Medical Neurogenetics, Atlanta, Georgia, United States of America
| | - Alicia D. Volkheimer
- Department of Medicine, Duke University and VA Medical Centers, Durham, North Carolina, United States of America
| | - Tsin W. Yeo
- Global and Tropical Health Division, Menzies School for Health Research and Charles Darwin University, Darwin, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Department of Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School for Health Research and Charles Darwin University, Darwin, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - J. Brice Weinberg
- Department of Medicine, Duke University and VA Medical Centers, Durham, North Carolina, United States of America
| | - Esther D. Mwaikambo
- Department of Pediatrics, Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| | - Donald L. Granger
- Department of Medicine, University of Utah School of Medicine and VA Medical Center, Salt Lake City, Utah, United States of America
| |
Collapse
|
126
|
Berra L, Pinciroli R, Stowell CP, Wang L, Yu B, Fernandez BO, Feelisch M, Mietto C, Hod EA, Chipman D, Scherrer-Crosbie M, Bloch KD, Zapol WM. Autologous transfusion of stored red blood cells increases pulmonary artery pressure. Am J Respir Crit Care Med 2015; 190:800-7. [PMID: 25162920 DOI: 10.1164/rccm.201405-0850oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE Transfusion of erythrocytes stored for prolonged periods is associated with increased mortality. Erythrocytes undergo hemolysis during storage and after transfusion. Plasma hemoglobin scavenges endogenous nitric oxide leading to systemic and pulmonary vasoconstriction. OBJECTIVES We hypothesized that transfusion of autologous blood stored for 40 days would increase the pulmonary artery pressure in volunteers with endothelial dysfunction (impaired endothelial production of nitric oxide). We also tested whether breathing nitric oxide before and during transfusion could prevent the increase of pulmonary artery pressure. METHODS Fourteen obese adults with endothelial dysfunction were enrolled in a randomized crossover study of transfusing autologous, leukoreduced blood stored for either 3 or 40 days. Volunteers were transfused with 3-day blood, 40-day blood, and 40-day blood while breathing 80 ppm nitric oxide. MEASUREMENTS AND MAIN RESULTS The age of volunteers was 41 ± 4 years (mean ± SEM), and their body mass index was 33.4 ± 1.3 kg/m(2). Plasma hemoglobin concentrations increased after transfusion with 40-day and 40-day plus nitric oxide blood but not after transfusing 3-day blood. Mean pulmonary artery pressure, estimated by transthoracic echocardiography, increased after transfusing 40-day blood (18 ± 2 to 23 ± 2 mm Hg; P < 0.05) but did not change after transfusing 3-day blood (17 ± 2 to 18 ± 2 mm Hg; P = 0.5). Breathing nitric oxide decreased pulmonary artery pressure in volunteers transfused with 40-day blood (17 ± 2 to 12 ± 1 mm Hg; P < 0.05). CONCLUSIONS Transfusion of autologous leukoreduced blood stored for 40 days was associated with increased plasma hemoglobin levels and increased pulmonary artery pressure. Breathing nitric oxide prevents the increase of pulmonary artery pressure produced by transfusing stored blood. Clinical trial registered with www.clinicaltrials.gov (NCT 01529502).
Collapse
Affiliation(s)
- Lorenzo Berra
- 1 Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Chen G, Yin Y, Wang B, Li P, Liu Q, You G, Zhao J, Xia S, Zhao L, Zhou H. Impaired erythrocyte deformability in transgenic HO-1G143H mutant mice. Transgenic Res 2015; 24:173-178. [PMID: 25141966 DOI: 10.1007/s11248-014-9829-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 08/12/2014] [Indexed: 12/28/2022]
Abstract
To investigate the potential effects of variation of HO-1 activity on hemorheology, this study compared the hemorheological properties between transgenic HO-1G143H mutant mice and wild-type (WT) control mice. Fresh blood samples were obtained from mice via the ocular venous sinus. The whole blood viscosity was measured using a cone-plate viscometer. Erythrocyte deformability and aggregation was measured using ektacytometry. The elongation index was significantly reduced in the HO-1G143H mutant mice compared to the WT mice at the shear rates of 600, 800, and 1,000 s(-1). The integrated elongation index was decreased in the HO-1G143H mutant mice compared to the WT mice. There was no statistically significant difference between the HO-1G143H mutant mice and the WT mice in terms of whole blood viscosity, aggregation index, amplitude of aggregation, and aggregation half time. The present study demonstrated that a reduction in HO-1 activity results in an impaired erythrocyte deformability. Although the mechanism underlying this effect remains unclear, our study brings to light the participation of HO-1 in the variations of hemorheology.
Collapse
Affiliation(s)
- Gan Chen
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27th Taiping Road, HaiDian, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Grau M, Mozar A, Charlot K, Lamarre Y, Weyel L, Suhr F, Collins B, Jumet S, Hardy-Dessources MD, Romana M, Lemonne N, Etienne-Julan M, Antoine-Jonville S, Bloch W, Connes P. High red blood cell nitric oxide synthase activation is not associated with improved vascular function and red blood cell deformability in sickle cell anaemia. Br J Haematol 2014; 168:728-36. [PMID: 25316332 DOI: 10.1111/bjh.13185] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
Abstract
Human red blood cells (RBC) express an active and functional endothelial-like nitric oxide (NO) synthase (RBC-NOS). We report studies on RBC-NOS activity in sickle cell anaemia (SCA), a genetic disease characterized by decreased RBC deformability and vascular dysfunction. Total RBC-NOS content was not significantly different in SCA patients compared to healthy controls; however, using phosphorylated RBC-NOS-Ser(1177) as a marker, RBC-NOS activation was higher in SCA patients as a consequence of the greater activation of Akt (phosphorylated Akt-Ser(473) ). The higher RBC-NOS activation in SCA led to higher levels of S-nitrosylated α- and β-spectrins, and greater RBC nitrite and nitrotyrosine levels compared to healthy controls. Plasma nitrite content was not different between the two groups. Laser Doppler flowmetric experiments demonstrated blunted microcirculatory NO-dependent response under hyperthermia in SCA patients. RBC deformability, measured by ektacytometry, was reduced in SCA in contrast to healthy individuals, and pre-shearing RBC in vitro did not improve deformability despite an increase of RBC-NOS activation. RBC-NOS activation is high in freshly drawn blood from SCA patients, resulting in high amounts of NO produced by RBC. However, this does not result in improved RBC deformability and vascular function: higher RBC-NO is not sufficient to counterbalance the enhanced oxidative stress in SCA.
Collapse
Affiliation(s)
- Marijke Grau
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany; The German Research Centre of Elite Sport, German Sport University Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Carelli-Alinovi C, Tellone E, Russo AM, Ficarra S, Pirolli D, Galtieri A, Giardina B, Misiti F. NO Metabolites Levels in Human Red Blood Cells are Affected by Palytoxin, an Inhibitor of Na(+)/K(+)-ATPase Pump. Open Biochem J 2014; 8:68-73. [PMID: 25246985 PMCID: PMC4157343 DOI: 10.2174/1874091x01408010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/22/2022] Open
Abstract
Palytoxin (PTX), a marine toxin, represents an increasing hazard for human health. Despite its high toxicity for biological systems, the mechanisms triggered by PTX, are not well understood. The high affinity of PTX for erythrocyte Na(+)/K(+)-ATPase pump is largely known, and it indicates PTX as a sensitive tool to characterize the signal transducer role for Na(+)/K(+)-ATPase pump. Previously, it has been reported that in red blood cells (RBC), probably via a signal transduction generated by the formation of a PTX-Na(+)/K(+)-ATPase complex, PTX alters band 3 functions and glucose metabolism. The present study addresses the question of which other signaling pathways are regulated by Na(+)/K(+)-ATPase in RBC. Here it has been evidenced that PTX following its interaction with Na(+)/K(+)-ATPase pump, alters RBC morphology and this event is correlated to decreases by 30% in nitrites and nitrates levels, known as markers of plasma membrane eNOS activity. Orthovanadate (OV), an antagonist of PTX binding to Na(+)/K(+)-ATPase pump, was able to reverse the effects elicited by PTX. Finally, current investigation firstly suggests that Na(+)/K(+)-ATPase pump, following its interaction with PTX, triggers a signal transduction involved in NO metabolism regulation.
Collapse
Affiliation(s)
- Cristiana Carelli-Alinovi
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy
| | - Ester Tellone
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Anna Maria Russo
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Davide Pirolli
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy
| | - Antonio Galtieri
- Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod'Alcontres 31, 98166 Messina, Italy
| | - Bruno Giardina
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy ; Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council (CNR), L.go F. Vito n.1, 00168 Rome, Italy
| | - Francesco Misiti
- Human, Social and Health Department, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 03043 Cassino (FR), Italy
| |
Collapse
|
130
|
Kumar P, Maurya PK. Epigallocatechin-3-Gallate Protects Erythrocyte Ca(2+)-ATPase and Na(+)/K(+)-ATPase Against Oxidative Induced Damage During Aging in Humans. Adv Pharm Bull 2014; 4:443-7. [PMID: 25364660 DOI: 10.5681/apb.2014.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/11/2014] [Accepted: 04/20/2014] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The main purpose of this study was to investigate the protective role of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced oxidative damage in erythrocyte during aging in humans. METHODS Human erythrocyte membrane bound Ca(2+)-ATPase and Na(+)/K(+)-ATPase activities were determined as a function of human age. Protective role of epigallocatechin-3-gallate was evaluated by in vitro experiments by adding epigallocatechin-3-gallate in concentration dependent manner (final concentration range 10(-7)M to 10(-4)M) to the enzyme assay medium. Oxidative stress was induced in vitro by incubating washed erythrocyte ghosts with tertiary butyl hydroperoxide (10(-5) M final concentration). RESULTS We have reported concentration dependent effect of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced damage on activities of Ca(2+)-ATPase and Na(+)/K(+)-ATPase during aging in humans. We have detected a significant (p < 0.001) decreased activity of Ca(2+)-ATPase and Na(+)/K(+) -ATPase as a function of human age. Epigallocatechin-3-gallate protected ATPases against tertiary butyl hydroperoxide induced damage in concentration dependent manner during aging in humans. CONCLUSION Epigallocatechin-3-gallate is a powerful antioxidant that is capable of protecting erythrocyte Ca(2+)-ATPase and Na(+)/K(+) -ATPase against oxidative stress during aging in humans. We may propose hypothesis that a high intake of catechin rich diet may provide some protection against development of aging and age related diseases.
Collapse
Affiliation(s)
- Prabhanshu Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303, India
| | - Pawan Kumar Maurya
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303, India
| |
Collapse
|
131
|
C4d deposits on the surface of RBCs in trauma patients and interferes with their function. Crit Care Med 2014; 42:e364-72. [PMID: 24448198 DOI: 10.1097/ccm.0000000000000231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Complement system is activated in patients with trauma. Although complement activation is presumed to contribute to organ damage and constitutional symptoms, little is known about the involved mechanisms. Because complement components may deposit on RBCs, we asked whether complement deposits on the surface of RBC in trauma and whether such deposition alters RBC function. DESIGN A prospective experimental study. SETTING Research laboratory. SUBJECTS Blood samples collected from 42 trauma patients and 21 healthy donors. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS RBC and sera were collected from trauma patients and control donors. RBCs from trauma patients (n = 40) were found to display significantly higher amounts of C4d on their surface by flow cytometry compared with RBCs from control (n = 17) (p < 0.01). Increased amounts of iC3b were found in trauma sera (n = 27) (vs 12 controls, p < 0.01) by enzyme-linked immunosorbent assay. Incubation of RBC from universal donors (type O, Rh negative) with trauma sera (n = 10) promoted C4d deposition on their surface (vs six controls, p< 0.05). Complement-decorated RBC (n = 6) displayed limited their deformability (vs six controls, p < 0.05) in two-dimensional microchannel arrays. Incubation of RBC with trauma sera (n = 10) promoted the phosphorylation of band 3, a cytoskeletal protein important for the function of the RBC membrane (vs eight controls, p < 0.05), and also accelerated calcium influx (n = 9) and enhanced nitric oxide production (n = 12) (vs four and eight controls respectively, p < 0.05) in flow cytometry. CONCLUSIONS Our study found the presence of extensive complement activation in trauma patients and presents new evidence in support of the hypothesis that complement activation products deposit on the surface of RBC. Such deposition could limit RBC deformability and promote the production of nitric oxide. Our findings suggest that RBC in trauma patients malfunctions, which may explain organ damage and constitutional symptoms that is not accounted for otherwise by previously known pathophysiologic mechanisms.
Collapse
|
132
|
Tiftik RN, Başkurt OK, Kul S, Büyükafşar K. The functional significance of the rho/rho-kinase pathway in human erythrocytes. Turk J Haematol 2014; 31:168-74. [PMID: 25035675 PMCID: PMC4102045 DOI: 10.4274/tjh.2013.0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/19/2013] [Indexed: 01/16/2023] Open
Abstract
Objective: Erythrocyte deformability, which can be influenced by various intracellular signaling mechanisms, such as nitric oxide, cAMP, cGMP, and protein kinases, is the most important physiological factor providing the blood flow in microcirculation. However, the functional significance of the Rho/Rho-kinase pathway, which contributes cell shape changes and the reorganization of the actin cytoskeleton, has yet to be explored in erythrocytes. Therefore, we examined the influence of several activators and inhibitors of Rho/Rho-kinase signaling on human erythrocyte deformability. Materials and Methods: RhoA and ROCK-2 proteins were studied by western blotting. Influences of 2 Rho-kinase inhibitors, fasudil and Y-27632 (both 10-7 to 10-4 M), on erythrocyte deformability was determined by ektacytometer at various shear stresses (0-30 Pa) in the presence or absence of a known Rho activator, lysophosphatidic acid (LPA, 10-5 to 5x10-5 M, 1-15 min). Results: LPA incubation reduced deformability with concomitant RhoA-GTP inhibition. Y-27632 and fasudil also decreased deformability, but had no effect on LPA-induced reduction of deformability. Rho inhibitor C3 had no effect on RhoA activation. Reduction in RhoA activation was induced by sub-hemolytic mechanical stress. Conclusion: Our findings may indicate that the Rho/Rho-kinase pathway could contribute to the regulation of deformability of human erythrocytes.
Collapse
Affiliation(s)
- R Nalan Tiftik
- Mersin University Faculty of Medicine, Department of Pharmacology, Mersin, Turkey
| | | | - Seval Kul
- Gaziantep University Faculty of Medicine, Department of Biostatistics, Gaziantep, Turkey
| | - Kansu Büyükafşar
- Mersin University Faculty of Medicine, Department of Pharmacology, Mersin, Turkey
| |
Collapse
|
133
|
Barvitenko NN, Aslam M, Filosa J, Matteucci E, Nikinmaa M, Pantaleo A, Saldanha C, Baskurt OK. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature. Microcirculation 2014; 20:484-501. [PMID: 23441854 DOI: 10.1111/micc.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/19/2013] [Indexed: 12/20/2022]
Abstract
The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed.
Collapse
|
134
|
Yapislar H, Taskin E. L-carnosine alters some hemorheologic and lipid peroxidation parameters in nephrectomized rats. Med Sci Monit 2014; 20:399-405. [PMID: 24614724 PMCID: PMC3958568 DOI: 10.12659/msm.890528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Chronic kidney disease (CKD) is a major health problem worldwide. Oxidative stress is one of the mediators of this disease. Systemic complications of oxidative stress are involved in the pathogenesis of hypertension, endothelial dysfunction, shortened erythrocyte lifespan, deformability, and nitric oxide (NO) dysfunction. L-carnosine is known as an antioxidant. In this study, our aim was to investigate the effect of carnosine on hemorheologic and cardiovascular parameters in CKD-induced rats. Material/Methods We used 4-month-old male Sprague-Dawley rats divided into 4 groups of 6 rats each. Three days after subtotal nephrectomy and sham operations, the surviving rats were divided into the 4 groups; 1) Sham (S), 2) Sham+Carnosine (S-C), 3) Subtotal nephrectomy (Nx), and 4) Subtotal nephrectomy + Carnosine (N-C). Carnosine was injected intraperitoneally (i.p.) (50 mg/kg) for 15 days. The control group received the same volume of physiological saline. Results In CKD rats, malondialdehyde (MDA) levels were increased, and NO and RBC deformability were decreased compared to Sham. Carnosine treatment decreased MDA levels, improved RBC (red blood cell) ability to deform, and increased NO levels. However, carnosine did not affect blood pressure levels in these rats. Conclusions We found that carnosine has beneficial effects on CKD in terms of lipid peroxidation and RBC deformability. Carnosine may have a healing effect in microcirculation level, but may not have any effect on systemic blood pressure in CKD-induced rats.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Istanbul Bilim University, Medical Faculty, Istanbul, Turkey
| | - Eylem Taskin
- Department of Physiotherapy and Rehabilitation, Istanbul Bilim University, School of Health Sciences, Istanbul, Turkey
| |
Collapse
|
135
|
Lockwood SY, Erkal JL, Spence DM. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea. Nitric Oxide 2014; 38:1-7. [PMID: 24530476 DOI: 10.1016/j.niox.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/17/2014] [Accepted: 02/05/2014] [Indexed: 01/11/2023]
Abstract
Red blood cells (RBCs) release adenosine triphosphate (ATP) in response to a variety of stimuli, including flow-induced deformation. Hydroxyurea (HU), a proven therapy for individuals with sickle cell disease (SCD), is known to improve blood flow. However, the exact mechanism leading to the improved blood flow is incomplete. Here, we report that the incubation of human RBCs with HU enhances ATP release from these cells and that this ATP is capable of stimulating nitric oxide (NO) production in an endothelium. RBCs incubated with HU were pumped through micron-size flow channels in a microfluidic device. The release of ATP from the RBCs was measured using the luciferin-luciferase assay in detection wells on the device that were separated from the flow channels by a porous polycarbonate membrane. NO released from a layer of bovine artery endothelial cells (bPAECs) cultured on the polycarbonate membrane was also measured using the extracellular NO probe DAF-FM. ATP release from human RBCs incubated with 100 μM HU was observed to be 2.06±0.37-fold larger than control samples without HU (p<0.05, N ≥ 3). When HU-incubated RBCs were flowed under a layer of bPAECs, NO released from the bPAEC layer was measured to be 1.34±0.10-fold higher than controls. An antagonist of the P2Y receptor established that this extra 30% increase in NO release is ATP mediated. Furthermore, when RBCs were incubated with L-NAME, a significant decrease in endothelium-derived NO production was observed. Control experiments suggest that RBC-generated NO indirectly affects endothelial NO production via its effects on RBC-derived ATP release.
Collapse
Affiliation(s)
- Sarah Y Lockwood
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Jayda L Erkal
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Dana M Spence
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
136
|
Roback JD, Josephson CD, Waller EK, Newman JL, Karatela S, Uppal K, Jones DP, Zimring JC, Dumont LJ. Metabolomics of ADSOL (AS-1) red blood cell storage. Transfus Med Rev 2014; 28:41-55. [PMID: 24636780 DOI: 10.1016/j.tmrv.2014.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 01/13/2023]
Abstract
Population-based investigations suggest that red blood cells (RBCs) are therapeutically effective when collected, processed, and stored for up to 42 days under validated conditions before transfusion. However, some retrospective clinical studies have shown worse patient outcomes when transfused RBCs have been stored for the longest times. Furthermore, studies of RBC persistence in the circulation after transfusion have suggested that considerable donor-to-donor variability exists and may affect transfusion efficacy. To understand the limitations of current blood storage technologies and to develop approaches to improve RBC storage and transfusion efficacy, we investigated the global metabolic alterations that occur when RBCs are stored in AS-1 (AS1-RBC). Leukoreduced AS1-RBC units prepared from 9 volunteer research donors (12 total donated units) were serially sampled for metabolomics analysis over 42 days of refrigerated storage. Samples were tested by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry, and specific biochemical compounds were identified by comparison to a library of purified standards. Over 3 experiments, 185 to 264 defined metabolites were quantified in stored RBC samples. Kinetic changes in these biochemicals confirmed known alterations in glycolysis and other pathways previously identified in RBCs stored in saline, adenine, glucose and mannitol solution (SAGM-RBC). Furthermore, we identified additional alterations not previously seen in SAGM-RBCs (eg, stable pentose phosphate pathway flux, progressive decreases in oxidized glutathione), and we delineated changes occurring in other metabolic pathways not previously studied (eg, S-adenosyl methionine cycle). These data are presented in the context of a detailed comparison with previous studies of SAGM-RBCs from human donors and murine AS1-RBCs. Global metabolic profiling of AS1-RBCs revealed a number of biochemical alterations in stored blood that may affect RBC viability during storage as well as therapeutic effectiveness of stored RBCs in transfusion recipients. These results provide future opportunities to more clearly pinpoint the metabolic defects during RBC storage, to identify biomarkers for donor screening and prerelease RBC testing, and to develop improved RBC storage solutions and methodologies.
Collapse
Affiliation(s)
- John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA.
| | - Cassandra D Josephson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Edmund K Waller
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - James L Newman
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sulaiman Karatela
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Karan Uppal
- Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Dean P Jones
- Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | | | | |
Collapse
|
137
|
Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol 2014; 2:251-8. [PMID: 24494200 PMCID: PMC3909820 DOI: 10.1016/j.redox.2013.12.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 02/06/2023] Open
Abstract
Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as "NO sinks", but exert an erythrocrine function - i.e an endocrine function of RBC - by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
138
|
Twomley KM, Rao SV, Becker RC. Proinflammatory, immunomodulating, and prothrombotic properties of anemia and red blood cell transfusions. J Thromb Thrombolysis 2014; 21:167-74. [PMID: 16622613 DOI: 10.1007/s11239-006-5206-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
For many years, the traditional treatment for hospitalized patients in the United States who have developed anemia, whether associated with medical illness, surgical procedures or trauma, has been red blood cell transfusion, despite the absence of supporting data in many patient populations. Emerging evidence suggests that transfusions may, in fact, be associated with risk beyond commonly held concerns of microbial transmission and acute antigen-antibody reactions. The following overview represents a biological paradigm for understanding the relationship between medical illness, surgical procedures, inflammatory states, anemia, red blood cell transfusion and immunothrombotic phenomena among hospitalized patients.
Collapse
Affiliation(s)
- Katie M Twomley
- Department of Medicine, Duke University Medical Center, Cardiovascular Thrombosis Center, Duke Clinical Research Institute, Durham, NC 27715, USA
| | | | | |
Collapse
|
139
|
Depletion of circulating blood NOS3 increases severity of myocardial infarction and left ventricular dysfunction. Basic Res Cardiol 2013; 109:398. [PMID: 24346018 PMCID: PMC3898535 DOI: 10.1007/s00395-013-0398-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/25/2013] [Accepted: 12/06/2013] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) derived from endothelial NO synthase (NOS3) plays a central role in myocardial ischemia/reperfusion (I/R)-injury. Subsets of circulating blood cells, including red blood cells (RBCs), carry a NOS3 and contribute to blood pressure regulation and RBC nitrite/nitrate formation. We hypothesized that the circulating blood born NOS3 also modulates the severity of myocardial infarction in disease models. We cross-transplanted bone marrow in wild-type and NOS3−/− mice with wild-type mice, producing chimeras expressing NOS3 only in vascular endothelium (BC−/EC+) or in both blood cells and vascular endothelium (BC+/EC+). After 60-min closed-chest coronary occlusion followed by 24 h reperfusion, cardiac function, infarct size (IS), NOx levels, RBCs NO formation, RBC deformability, and vascular reactivity were assessed. At baseline, BC−/EC+ chimera had lower nitrite levels in blood plasma (BC−/EC+: 2.13 ± 0.27 μM vs. BC+/EC+ 3.17 ± 0.29 μM; *p < 0.05), reduced DAF FM associated fluorescence within RBCs (BC−/EC+: 538.4 ± 12.8 mean fluorescence intensity (MFI) vs. BC+/EC+: 619.6 ± 6.9 MFI; ***p < 0.001) and impaired erythrocyte deformability (BC−/EC+: 0.33 ± 0.01 elongation index (EI) vs. BC+/EC+: 0.36 ± 0.06 EI; *p < 0.05), while vascular reactivity remained unaffected. Area at risk did not differ, but infarct size was higher in BC−/EC+ (BC−/EC+: 26 ± 3 %; BC+/EC+: 14 ± 2 %; **p < 0.01), resulting in decreased ejection fraction (BC−/EC+ 46 ± 2 % vs. BC+/EC+: 52 ± 2 %; *p < 0.05) and increased end-systolic volume. Application of the NOS inhibitor S-ethylisothiourea hydrobromide was associated with larger infarct size in BC+/EC+, whereas infarct size in BC−/EC+ mice remained unaffected. Reduced infarct size, preserved cardiac function, NO levels in RBC and RBC deformability suggest a modulating role of circulating NOS3 in an acute model of myocardial I/R in chimeric mice.
Collapse
|
140
|
Pathophysiology of perioperative anaemia. Best Pract Res Clin Anaesthesiol 2013; 26:431-9. [PMID: 23351230 DOI: 10.1016/j.bpa.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/07/2012] [Indexed: 12/14/2022]
Abstract
Perioperative anaemia is a common clinical entity. It is usually due to combination of various mechanisms, including: pre-existing anaemia prior to surgery; anaemia due to impaired erythropoiesis, including alterations of metabolism of iron and erythropoietin (EPO); anaemia due to increased destruction of red blood cells (RBCs); and anaemia due to iatrogenic causes. Postoperatively, anaemia resembles anaemia of chronic disease and is probably related to the effects of inflammatory mediators released during and after surgery on the production and survival of RBCs. Pro-inflammatory cytokines, such as tumour necrosis factor, impair erythropoietin-dependent signalling and iron homeostasis. Iatrogenic causes, notably excessive phlebotomies, remain a major cause of perioperative anaemia. With increasing emphasis on restrictive blood transfusion strategies, understanding these mechanisms is important for the clinician.
Collapse
|
141
|
Wang Y, Zhang Y, Zhao L, Yin Y, Wang Q, Zhou H. Addition of haptoglobin to RBCs storage, a new strategy to improve quality of stored RBCs and transfusion. Med Hypotheses 2013; 82:125-8. [PMID: 24365278 DOI: 10.1016/j.mehy.2013.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/18/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Transfusion of red blood cells (RBCs) is an effective therapy in surgery and critical care. Comparing to fresh RBCs, the therapeutic effect of stored RBCs is greatly limited because of its loss of NO during storage, which leads to vasodilatation dysfunction upon transfusion. So far, there is no effective solution to this problem. Here, we summarize the protective effects of Haptoglobin (Hp) in RBCs storage and transfusion, by using data extracted from literature review. Because Free Hemoglobin (FHb) is the major factor responsible for rapid NO loss during storage, addition of FHb-sequestering protein Haptoglobin will prevent the loss of NO and improve the quality of stored RBCs.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Yuhua Zhang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Lian Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Yujing Yin
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Quanli Wang
- Department of Blood Transfusion, Affiliated Hospital of Academy of Military Medical Sciences, No. 8 Dongda Street, FengTai, Beijing 100071, China.
| | - Hong Zhou
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China.
| |
Collapse
|
142
|
Simmonds MJ, Connes P, Sabapathy S. Exercise-induced blood lactate increase does not change red blood cell deformability in cyclists. PLoS One 2013; 8:e71219. [PMID: 23940722 PMCID: PMC3733956 DOI: 10.1371/journal.pone.0071219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The effect of exercise-induced lactate production on red blood cell deformability and other blood rheological changes is controversial, given heavy-exercise induces biochemical processes (e.g., oxidative stress) known to perturb haemorheology. The aim of the present study was to examine the haemorheological response to a short-duration cycling protocol designed to increase blood lactate concentration, but of duration insufficient to induce significant oxidative stress. METHODS Male cyclists and triathletes (n = 6; 27±7 yr; body mass index: 23.7±3.0 kg/m²; peak oxygen uptake 4.02±0.51 L/min) performed unloaded (0 W), moderate-intensity, and heavy-intensity cycling. Blood was sampled at rest and during the final minute of each cycling bout. Blood chemistry, blood viscosity, red blood cell aggregation and red blood cell deformability were measured. RESULTS Blood lactate concentration increased significantly during heavy-intensity cycling, when compared with all other conditions. Methaemoglobin fraction did not change during any exercise bout when compared with rest. Blood viscosity at native haematocrit increased during heavy-intensity cycling at higher-shear rates when compared with rest, unloaded and moderate-intensity cycling. Heavy-intensity exercise increased the amplitude of red blood cell aggregation in native haematocrit samples when compared with all other conditions. Red blood cell deformability was not changed by exercise. CONCLUSION Acute exercise perturbs haemorheology in an intensity dose-response fashion; however, many of the haemorheological effects appear to be secondary to haemoconcentration, rather than increased lactate concentration.
Collapse
Affiliation(s)
- Michael J Simmonds
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Australia.
| | | | | |
Collapse
|
143
|
Derivation of human peripheral blood derived endothelial progenitor cells and the role of osteopontin surface modification and eNOS transfection. Biomaterials 2013; 34:7292-301. [PMID: 23810253 DOI: 10.1016/j.biomaterials.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 11/22/2022]
Abstract
Endothelial coverage of blood-contacting biomaterial surfaces has been difficult to achieve. A readily available autologous source of endothelium combined with an appropriate attachment substrate would improve the chances of developing functional surfaces. Here we describe methods to derive high quantities of human endothelial progenitor cells (EPCs) from peripheral blood monocytes (PBMCs) obtained by leukapheresis. These cells are morphologically and phenotypically similar to human umbilical vein endothelial cells (HUVECs); however, their expression of the key vascular factor - endothelial nitric oxide synthase (eNOS) - is markedly lower than that observed in HUVECs. We demonstrate that eNOS levels can be restored with plasmid-based transfection. To promote EPC adherence we examined substrate enhancement with a matricellular protein associated with vascular repair, osteopontin (OPN). We observed dose- and time-dependent responses of OPN in EPC adhesion, spreading, and haptotactic migration of EPCs in Boyden chamber assays. In addition, the combination of the OPN coating and enhanced eNOS expression in EPCs maximally enhanced cell adhesion (39.6 ± 1.7 and 49.4 ± 2.4 cells/field for 0 and 1 nM OPN) and spreading (84.7 ± 3.5% and 92.1 ± 3.9% for 0 nM and 1 nM OPN). These data highlight the direct effects of OPN on peripheral blood derived EPCs, suggesting that OPN works by mediating progenitor cell adhesion during vascular injury. The combination of autologous EPCs and OPN coatings could be a promising method of developing functional endothelialized surfaces.
Collapse
|
144
|
Barodka V, Mohanty JG, Mustafa AK, Santhanam L, Nyhan A, Bhunia AK, Sikka G, Nyhan D, Berkowitz DE, Rifkind JM. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability. Transfusion 2013; 54:434-44. [PMID: 23781865 DOI: 10.1111/trf.12291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/10/2013] [Accepted: 04/21/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Red blood cell (RBC) deformation is critical for microvascular perfusion and oxygen delivery to tissues. Abnormalities in RBC deformability have been observed in aging, sickle cell disease, diabetes, and preeclampsia. Although nitric oxide (NO) prevents decreases in RBC deformability, the underlying mechanism is unknown. STUDY DESIGN AND METHODS As an experimental model, we used ionophore A23187-mediated calcium influx in RBCs to reduce their deformability and investigated the role of NO donor sodium nitroprusside (SNP) and KCa3.1 (Gardos) channel blockers on RBC deformability (measured as elongation index [EI] by microfluidic ektacytometry). RBC intracellular Ca(2+) and extracellular K(+) were measured by inductively coupled plasma mass spectrometry and potassium ion selective electrode, respectively. RESULTS SNP treatment of RBCs blocked the Ca(2+) (approx. 10 μmol/L)-induced decrease in RBC deformability (EI 0.34 ± 0.02 vs. 0.09 ± 0.01, control vs. Ca(2+) loaded, p < 0.001; and EI 0.37 ± 0.02 vs. 0.30 ± 0.01, SNP vs. SNP plus Ca(2+) loaded) as well as Ca(2+) influx and K(+) efflux. The SNP effect was similar to that observed after pharmacologic blockade of the KCa3.1 channel (with charybdotoxin or extracellular medium containing isotonic K(+) concentration). In RBCs from KCa3.1(-/-) mice, 10 μmol/L Ca(2+) loading did not decrease cellular deformability. A preliminary attempt to address the molecular mechanism of SNP protection suggests the involvement of cell surface thiols. CONCLUSION Our results suggest that nitroprusside treatment of RBCs may protect them from intracellular calcium increase-mediated stiffness, which may occur during microvascular perfusion in diseased states, as well as during RBC storage.
Collapse
Affiliation(s)
- Viachaslau Barodka
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins Hospital; Molecular Dynamics Section, National Institute on Aging, National Institutes of Health; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Stress-induced hyperviscosity in the pathophysiology of takotsubo cardiomyopathy. Am J Cardiol 2013; 111:1523-9. [PMID: 23465096 DOI: 10.1016/j.amjcard.2013.01.304] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 01/14/2023]
Abstract
Takotsubo cardiomyopathy (TC) is characterized by transient hypokinesis of the left ventricular apex or midventricular segments with coronary arteries without significant stenosis. It is often associated with emotional or physical stress; however, its pathophysiology is still unclear. In the present study, we analyzed the alterations in blood viscosity and markers of endothelial damage induced by sympathetic stimulation in patients with previous TC. Seventeen women (mean age 71 years) with previous TC, included and investigated in the TC Tuscany Registry, were compared to a control group of 8 age- and risk factor-matched women with chest pain and coronary arteries free of stenosis. All subjects underwent the cold pressor test (CPT). Before and after the CPT, the hemorheologic parameters (whole blood viscosity at 0.512 s(-1) and 94.5 s(-1), plasma viscosity, erythrocyte deformability index, and erythrocyte aggregation), catecholamines, plasminogen activator inhibitor-1 (PAI-1), and von Willebrand factor levels were assessed. The patients with TC had significantly greater baseline PAI-1 levels (p <0.01) and lower erythrocyte deformability index values (p <0.01). After CPT, both the patients with TC and the controls had a significant increase in several hemorheologic parameters, catecholamines, and von Willebrand factor levels and a decrease in erythrocyte deformability index. However, the PAI-1 levels were significantly increased only in the patients with TC. Compared to the controls, the patients with TC had significantly greater values of whole blood viscosity at 94.5 s(-1) (p <0.05), PAI-1 (p <0.01), von Willebrand factor (p <0.05) and lower erythrocyte deformability index values (p <0.01) after CPT. In conclusion, the results of the present study suggest that in patients with TC, the alterations in erythrocyte membranes and endothelial integrity induced by catecholaminergic storm could determine microvascular hypoperfusion, possibly favoring the occurrence of left ventricular ballooning.
Collapse
|
146
|
Effect of antioxidants and nitric oxide on activity of peritoneal macrophages in albino rats during normal pregnancy. Bull Exp Biol Med 2013; 154:581-3. [PMID: 23658872 DOI: 10.1007/s10517-013-2003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We compared activity of peritoneal macrophages in rats during normal pregnancy and under the action of NO-synthase inhibitor L-NAME, of E. coli LPS, SOD, and α-tocopherol analogue trolox. In non-pregnant rats, E. coli LPS stimulated peritoneal macrophages, while L-NAME produced a dose-dependent effect. During pregnancy, E. coli LPS activated phagocytosis, while antioxidants trolox, SOD, and L-NAME produced an inhibitory effect.
Collapse
|
147
|
Zhu XY, Li P, Yang YB, Liu ML. Xuezhikang, extract of red yeast rice, improved abnormal hemorheology, suppressed caveolin-1 and increased eNOS expression in atherosclerotic rats. PLoS One 2013; 8:e62731. [PMID: 23675421 PMCID: PMC3651163 DOI: 10.1371/journal.pone.0062731] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 03/24/2013] [Indexed: 11/25/2022] Open
Abstract
Background Xuezhikang is the extract of red yeast rice, which has been widely used for the management of atherosclerotic disease, but the molecular basis of its antiatherosclerotic effects has not yet been fully identified. Here we investigated the changes of eNOS in vascular endothelia and RBCs, eNOS regulatory factor Caveolin-1 in endothelia, and hemorheological parameters in atherosclerotic rats to explore the protective effects of Xuezhikang. Methodology/Principal Findings Wistar rats were divided into 4 groups (n = 12/group) group C, controls; group M, high-cholesterol diet (HCD) induced atherosclerotic models; group X, HCD+Xuezhikang; and group L, HCD +Lovastatin. In group X, Xuezhikang inhibited oxidative stress, down-regulated caveolin-1 in aorta wall (P<0.05), up-regulated eNOS expression in vascular endothelia and erythrocytes (P<0.05), increased NOx (nitrite and nitrate) in plasma and cGMP in erythrocyte plasma and aorta wall (P<0.05), increased erythrocyte deformation index (EDI), and decreased whole blood viscosity and plasma viscosity (P<0.05), with the improvement of arterial pathology. Conclusions/Significance Xuezhikang up-regulated eNOS expression in vascular endothelia and RBCs, increased plasma NOx and improved abnormal hemorheology in high cholesterol diet induced atherosclerotic rats. The elevated eNOS/NO and improved hemorheology may be beneficial to atherosclerotic disease.
Collapse
Affiliation(s)
- Xin-Yuan Zhu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | | | | | | |
Collapse
|
148
|
Frank SM, Abazyan B, Ono M, Hogue CW, Cohen DB, Berkowitz DE, Ness PM, Barodka VM. Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration. Anesth Analg 2013; 116:975-981. [PMID: 23449853 DOI: 10.1213/ane.0b013e31828843e6] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Erythrocyte cell membranes undergo morphologic changes during storage, but it is unclear whether these changes are reversible. We assessed erythrocyte cell membrane deformability in patients before and after transfusion to determine the effects of storage duration and whether changes in deformability are reversible after transfusion. METHODS Sixteen patients undergoing posterior spinal fusion surgery were studied. Erythrocyte deformability was compared between those who required moderate transfusion (≥ 5 units erythrocytes) and those who received minimal transfusion (0-4 units erythrocytes). Deformability was measured in samples drawn directly from the blood storage bags before transfusion and in samples drawn from patients before and after transfusion (over 3 postoperative days). In samples taken from the blood storage bags, we compared deformability of erythrocytes stored for a long duration (≥ 21 days), those stored for a shorter duration (<21 days), and cell-salvaged erythrocytes. Deformability was assessed quantitatively using the elongation index (EI) measured by ektacytometry, a method that determines the ability for the cell to elongate when exposed to shear stress. RESULTS Erythrocyte deformability was significantly decreased from the preoperative baseline in patients after moderate transfusion (EI decreased by 12% ± 4% to 20% ± 6%; P = 0.03) but not after minimal transfusion (EI decreased by 3% ± 1% to 4% ± 1%; P = 0.68). These changes did not reverse over 3 postoperative days. Deformability was significantly less in erythrocytes stored for ≥ 21 days (EI = 0.28 ± 0.02) than in those stored for <21 days (EI = 0.33 ± 0.02; P = 0.001) or those drawn from patients preoperatively (EI = 0.33 ± 0.02; P = 0.001). Cell-salvaged erythrocytes had intermediate deformability (EI = 0.30 ± 0.03) that was greater than that of erythrocytes stored ≥ 21 days (P = 0.047), but less than that of erythrocytes stored <21 days (P = 0.03). CONCLUSIONS The findings demonstrate that increased duration of erythrocyte storage is associated with decreased cell membrane deformability and that these changes are not readily reversible after transfusion.
Collapse
Affiliation(s)
- Steven M Frank
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Grau M, Pauly S, Ali J, Walpurgis K, Thevis M, Bloch W, Suhr F. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One 2013; 8:e56759. [PMID: 23424675 PMCID: PMC3570529 DOI: 10.1371/journal.pone.0056759] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Background Red blood cells (RBC) possess a nitric oxide synthase (RBC-NOS) whose activation depends on the PI3-kinase/Akt kinase pathway. RBC-NOS-produced NO exhibits important biological functions like maintaining RBC deformability. Until now, the cellular target structure for NO, to exert its influence on RBC deformability, remains unknown. In the present study we analyzed the modification of RBC-NOS activity by pharmacological treatments, the resulting influence on RBC deformability and provide first evidence for possible target proteins of RBC-NOS-produced NO in the RBC cytoskeletal scaffold. Methods/Findings Blood from fifteen male subjects was incubated with the NOS substrate L-arginine to directly stimulate enzyme activity. Direct inhibition of enzyme activity was induced by L-N5-(1-Iminoethyl)-ornithin (L-NIO). Indirect stimulation and inhibition of RBC-NOS were achieved by applying insulin and wortmannin, respectively, substances known to affect PI3-kinase/Akt kinase pathway. The NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were additionally applied as NO positive and negative controls, respectively. Immunohistochemical staining was used to determine phosphorylation and thus activation of RBC-NOS. As a marker for NO synthesis nitrite was measured in plasma and RBCs using chemiluminescence detection. S-nitrosylation of erythrocyte proteins was determined by biotin switch assay and modified proteins were identified using LC-MS. RBC deformability was determined by ektacytometry. The data reveal that activated RBC-NOS leads to increased NO production, S-nitrosylation of RBC proteins and RBC deformability, whereas RBC-NOS inhibition resulted in contrary effects. Conclusion/Significance This study first-time provides strong evidence that RBC-NOS-produced NO modifies RBC deformability through direct S-nitrosylation of cytoskeleton proteins, most likely α- and β-spectrins. Our data, therefore, gain novel insights into biological functions of RBC-NOS by connecting impaired RBC deformability abilities to specific posttranslational modifications of RBC proteins. By identifying likely NO-target proteins in RBC, our results will stimulate new therapeutic approaches for patients with microvascular disorders.
Collapse
Affiliation(s)
- Marijke Grau
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
It is known that oxidative stress plays an important role in the chronic complications of diabetes. Lipid peroxidation is one of the consequences of oxidative stress. Erythrocyte deformability abilities are reduced as a result of lipid peroxidation. Conversely, a decrease nitric oxide (NO) production seems to be responsible in endothelial dysfunction which occurs in diabetic vascular complications. Carnosine is a molecule with anti-oxidant properties. The aim of this study was to investigate erythrocyte deformability indices and the effects of carnosine on erythrocyte deformability in diabetes and to determine a possible relationship between carnosine and nitric oxide. Male Wistar albino rats were used in the study. Injections were administered to seven groups consisting of eight rats each. The groups were: Control, Carnosine, L-NAME (NG-nitro-L-arginine methyl ester), Diabetic, STZ (Streptozotocin) +Carnosine, STZ+L-NAME and STZ+Carnosine+L-NAME. In addition, glucose, insulin, MDA (Malondialdehyde) and NO levels were measured and erythrocyte deformability indices were calculated in all groups. Erythrocyte deformability indices and NO levels were decreased and MDA levels were found to be increased in diabetic group. It was also found that carnosine can significantly reverse erythrocyte deformability, reduce lipid peroxidation and increase NO levels in diabetes. It can be concluded that carnosine can recover from microvascular circulation problems by increasing erythrocyte deformability, can protect cells and tissues against lipid peroxidation and can be used as a multi-functional anti-oxidant in the treatment of diabetes mellitus to prevent the complications of diabetes.
Collapse
Affiliation(s)
- Hande Yapislar
- Istanbul Bilim University Medical Faculty Physiology Department, 34394, Istanbul, Turkey.
| | | |
Collapse
|