101
|
Epigallocatechin-3-gallate inhibits doxorubicin-induced inflammation on human ovarian tissue. Biosci Rep 2019; 39:BSR20181424. [PMID: 30996116 PMCID: PMC6522724 DOI: 10.1042/bsr20181424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy protocol can destroy the reproductive potential of young cancer patients. Doxorubicin (DOX) is a potent anthracycline commonly used in the treatment of numerous malignancies. The purpose of the study was to evaluate the ovarian toxicity of DOX via inflammation and the possible protective effect of the green tea polyphenol epigallocatechin-3-gallate (EGCG). Ovarian tissue of three patients was cultured with 1 µg/ml DOX and/or 10 µg/ml EGCG for 24 and 48 h. Levels of inflammatory factors were determined by quantitative Real-Time PCR, western blot, zimography, and multiplex bead-based immunoassay. Morphological evaluation, damaged follicle count and TUNEL assay were also performed. DOX influenced inflammatory responses by inducing a significant increase in the expression of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and cyclooxigenase-2 (COX-2), of inflammatory interleukins (IL), such as interleukin-6 (IL-6) and interleukin-8 (IL-8), and the inflammatory proteins mediators metalloproteinase-2 and metalloproteinase-9 (MMP2 and MMP9). IL-8 secretion in the culture supernatants and MMP9 activity also significantly raised after DOX treatment. Moreover, a histological evaluation of the ovarian tissue showed morphological damage to follicles and stroma after DOX exposure. EGCG significantly reduced DOX-induced inflammatory responses and improved the preservation of follicles. DOX-induced inflammation could be responsible for the ovarian function impairment of chemotherapy. EGCG could have a protective role in reducing DOX-mediated inflammatory responses in human ovarian tissue.
Collapse
|
102
|
Fang J, Tang Y, Cheng X, Wang L, Cai C, Zhang X, Liu S, Li P. Exenatide alleviates adriamycin-induced heart dysfunction in mice: Modulation of oxidative stress, apoptosis and inflammation. Chem Biol Interact 2019; 304:186-193. [DOI: 10.1016/j.cbi.2019.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
|
103
|
Rocca C, Scavello F, Colombo B, Gasparri AM, Dallatomasina A, Granieri MC, Amelio D, Pasqua T, Cerra MC, Tota B, Corti A, Angelone T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity. FASEB J 2019; 33:7734-7747. [PMID: 30973759 DOI: 10.1096/fj.201802707r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical use of doxorubicin (Doxo), a widely used anticancer chemotherapeutic drug, is limited by dose-dependent cardiotoxicity. We have investigated whether chromogranin A (CgA), a cardioregulatory protein released in the blood by the neuroendocrine system and by the heart itself, may contribute to regulation of the cardiotoxic and antitumor activities of Doxo. The effects of a physiologic dose of full-length recombinant CgA on Doxo-induced cardiotoxicity and antitumor activity were investigated in rats using in vivo and ex vivo models and in murine models of melanoma, fibrosarcoma, lymphoma, and lung cancer, respectively. The effect of Doxo on circulating levels of CgA was also investigated. In vivo and ex vivo mechanistic studies showed that CgA can prevent Doxo-induced heart inflammation, oxidative stress, apoptosis, fibrosis, and ischemic injury. On the other hand, CgA did not impair the anticancer activity of Doxo in all the murine models investigated. Furthermore, we observed that Doxo can reduce the intracardiac expression and release of CgA in the blood (i.e., an important cardioprotective agent). These findings suggest that administration of low-dose CgA to patients with low levels of endogenous CgA might represent a novel approach to prevent Doxo-induced adverse events without impairing antitumor effects.-Rocca, C., Scavello, F., Colombo, B., Gasparri, A. M., Dallatomasina, A., Granieri, M. C., Amelio, D., Pasqua, T., Cerra, M. C., Tota, B., Corti, A., Angelone, T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Francesco Scavello
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Barbara Colombo
- Division of Experimental Oncology, Vita-Salute San Raffaele University-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Gasparri
- Division of Experimental Oncology, Vita-Salute San Raffaele University-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Alice Dallatomasina
- Division of Experimental Oncology, Vita-Salute San Raffaele University-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Daniela Amelio
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy
| | - Maria Carmela Cerra
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Bruno Tota
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Angelo Corti
- Division of Experimental Oncology, Vita-Salute San Raffaele University-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiac Pathophysiology, Department of Biology, Ecology, and Earth Science, University of Calabria, Rende (Cosenza), Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| |
Collapse
|
104
|
Mahmoud HM, Osman M, Elshabrawy O, Abdallah HMI, Khairallah A. AM-1241 CB2 Receptor Agonist Attenuates Inflammation, Apoptosis and Stimulate Progenitor Cells in Bile Duct Ligated Rats. Open Access Maced J Med Sci 2019; 7:925-936. [PMID: 30976335 PMCID: PMC6454175 DOI: 10.3889/oamjms.2019.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND: The cannabinoid receptor 2 (CB2) plays a pleiotropic role in the innate immunity and is considered a crucial mediator of liver disease. Cannabinoid CB2 receptor activation has been reported to attenuate liver fibrosis in CCl4 exposed mice and also plays a potential role in liver regeneration in a mouse model of I/R and protection against alcohol-induced liver injury. AIM: In this study, we investigated the impact of CB2 receptors on the antifibrotic and regenerative process associated with cholestatic liver injury. METHODS: Twenty-six rats had bile duct ligation co-treated with silymarin and AM1241 for 3 consecutive weeks. Serum hepatotoxicity markers were determined, and histopathological evaluation was performed. RESULTS: Following bile duct ligation (BDL) for 3 weeks, there was increased aminotransferase levels, marked inflammatory infiltration and hepatocyte apoptosis with induced oxidative stress, as reflected by increased lipid peroxidation. Conversely, following treatment with the CB2 agonist, AM-1241, BDL rats displayed a reduction in liver injury and attenuation of fibrosis as reflected by expression of hydroxyproline and α-smooth muscle actin. AM1241 treatment also significantly attenuated lipid peroxidation end-products, p53-dependent apoptosis and also attenuated inflammatory process by stimulating IL-10 production. Moreover, AM1241 treated rats were associated with significant expression of hepatic progenitor/oval cell markers. CONCLUSION: In conclusion, this study points out that CB2 receptors reduce liver injury and promote liver regeneration via distinct mechanisms including IL-10 dependent inhibition of inflammation, reduction of p53-reliant apoptosis and through stimulation of oval/progenitor cells. These results suggest that CB2 agonists display potent hepatoregenrative properties, in addition to their antifibrogenic effects.
Collapse
Affiliation(s)
- Hesham M Mahmoud
- Cairo University Kasr Alainy, Faculty of Medicine, Pharmacology, Cairo, Egypt
| | - Mona Osman
- Cairo University Kasr Alainy, Faculty of Medicine, Pharmacology, Cairo, Egypt
| | | | | | - Ahmed Khairallah
- Pharmacology Department, National Research Centre, Dokki, Cairo 11211, Egypt
| |
Collapse
|
105
|
El-Said NT, Mohamed EA, Taha RA. Irbesartan suppresses cardiac toxicity induced by doxorubicin via regulating the p38-MAPK/NF-κB and TGF-β1 pathways. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:647-658. [DOI: 10.1007/s00210-019-01624-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
|
106
|
Li VWY, Liu APY, Ho KKH, Yau JPW, Cheuk DKL, Cheung YF. Resting and exercise arterial dysfunction in anthracycline-treated adult survivors of childhood cancers. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2018; 4:9. [PMID: 32154007 PMCID: PMC7048035 DOI: 10.1186/s40959-018-0035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Emerging evidence suggests potential arterial damage with the use of anthracycline-based chemotherapeutic regimens. We determined arterial function at rest and during exercise in anthracycline-treated adult survivors of childhood cancers. METHODS Ninety-six adult survivors (54 males) aged 25.0 ± 5.9 years and 60 (30 males) healthy controls were studied. Central systolic blood pressure (cSBP) and radial augmentation index (rAI) was determined by applanation tonometry. Carotid arterial stiffness and intima-media thickness (IMT) were assessed using high-resolution ultrasound. RESULTS At rest, survivors had significantly greater carotid IMT (p < 0.001) and stiffness index (p < 0.001), and higher cSBP (p = 0.037), rAI (p = 0.004) and rAI adjusted for a heart rate of 75/min (p = 0.009) than controls. At submaximal supine exercise testing, survivors had significantly greater percentage increase in carotid stiffness than controls (p < 0.001). Among survivors, 32 and 53% had respectively carotid IMT and exercise stiffness index exceeding normal (> + 2SD of controls). The slopes of increase in carotid IMT (p < 0.001) and exercise-induced changes in carotid stiffness (p < 0.001) with age were significantly greater in survivors than controls. Multivariate analysis revealed carotid IMT (β = 0.32, p < 0.001) to be an significant correlate of dynamic percentage increase in stiffness index during exercise. CONCLUSIONS Arterial dysfunction is evident at rest and worsens during exercise in anthracycline-treated adult survivors of childhood cancers.
Collapse
Affiliation(s)
- Vivian Wing-Yi Li
- 1Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, 102, Pokfulam Road, Hong Kong, China
| | - Anthony Pak-Yin Liu
- 1Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, 102, Pokfulam Road, Hong Kong, China
| | - Karin Kar-Huen Ho
- 2Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | | | - Daniel Ka-Leung Cheuk
- 1Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, 102, Pokfulam Road, Hong Kong, China
| | - Yiu-Fai Cheung
- 1Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, 102, Pokfulam Road, Hong Kong, China
| |
Collapse
|
107
|
El-Agamy DS, El-Harbi KM, Khoshhal S, Ahmed N, Elkablawy MA, Shaaban AA, Abo-Haded HM. Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Manag Res 2018; 11:47-61. [PMID: 30588110 PMCID: PMC6304079 DOI: 10.2147/cmar.s186696] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background/purpose Pristimerin (Pris) is triterpenoid compound with many biological effects. Until now, nothing is known about its effect on doxorubicin (DOX)-induced cardiotoxicity. Hence, this study investigated the impact of Pris on DOX-induced cardiotoxic effects. Materials and methods Rats were treated with Pris 1 week before and 2 weeks contaminant with repeated DOX injection. Afterwards, electrocardiography (ECG), biochemical, histopathological, PCR, and Western blot assessments were performed. Results Pris effectively alleviated DOX-induced deleterious cardiac damage. It inhibited DOX-induced ECG abnormities as well as DOX-induced elevation of serum indices of cardiotoxicity. The histopathological cardiac lesions and fibrosis were remarkably improved in Pris-treated animals. Pris reduced hydroxyproline content and attenuated the mRNA and protein expression of the pro-fibrogenic genes. The antioxidant activity of Pris was prominent through the amelioration of oxidative stress parameters and enhancement of antioxidants. Furthermore, Pris enhanced the activation of nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway as it increased the mRNA and protein expression of Nrf2 and Nrf2-dependent antioxidant genes (GCL, NQO1, HO-1). Additionally, the anti-inflammatory effect of Pris was obvious through the inhibition of mitogen activated protein kinase (MAPK)/nuclear factor kappa-B (NF-kB) signaling and subsequent inhibition of inflammatory mediators. Conclusion This study provides evidence of the cardioprotective activity of Pris which is related to the modulation of Nrf2 and MAPK/NF-kB signaling pathways.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Khaled M El-Harbi
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia,
| | - Saad Khoshhal
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia,
| | - Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia
| | - Mohamed A Elkablawy
- Department of Pathology, Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmacology, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Hany M Abo-Haded
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia, .,Pediatric Cardiology Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt,
| |
Collapse
|
108
|
Nebigil CG, Désaubry L. Updates in Anthracycline-Mediated Cardiotoxicity. Front Pharmacol 2018; 9:1262. [PMID: 30483123 PMCID: PMC6240592 DOI: 10.3389/fphar.2018.01262] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiotoxicity is one of the main adverse effects of chemotheraphy, affecting the completion of cancer therapies and the short- and long-term quality of life. Anthracyclines are currently used to treat many cancers, including the various forms of leukemia, lymphoma, melanoma, uterine, breast, and gastric cancers. World Health Organization registered anthracyclines in the list of essential medicines. However, anthracyclines display a major cardiotoxicity that can ultimately culminate in congestive heart failure. Taking into account the growing rate of cancer survivorship, the clinical significance of anthracycline cardiotoxicity is an emerging medical issue. In this review, we focus on the key progenitor cells and cardiac cells (cardiomyocytes, fibroblasts, and vascular cells), focusing on the signaling pathways involved in cellular damage, and the clinical biomarkers in anthracycline-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Canan G. Nebigil
- CNRS, Laboratory of Biomolecules, UMR 7203, Sorbonne University, Paris, France
| | | |
Collapse
|
109
|
Chan BYH, Roczkowsky A, Moser N, Poirier M, Hughes BG, Ilarraza R, Schulz R. Doxorubicin induces de novo expression of N-terminal-truncated matrix metalloproteinase-2 in cardiac myocytes. Can J Physiol Pharmacol 2018; 96:1238-1245. [PMID: 30308129 DOI: 10.1139/cjpp-2018-0275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Anthracyclines, such as doxorubicin, are commonly prescribed antineoplastic agents that cause irreversible cardiac injury. Doxorubicin cardiotoxicity is initiated by increased oxidative stress in cardiomyocytes. Oxidative stress enhances intracellular matrix metalloproteinase-2 (MMP-2) by direct activation of its full-length isoform and (or) de novo expression of an N-terminal-truncated isoform (NTT-MMP-2). As MMP-2 is localized to the sarcomere, we tested whether doxorubicin activates intracellular MMP-2 in neonatal rat ventricular myocytes (NRVM) and whether it thereby proteolyzes two of its identified sarcomeric targets, α-actinin and troponin I. Doxorubicin increased oxidative stress within 12 h as indicated by reduced aconitase activity. This was associated with a twofold increase in MMP-2 protein levels and threefold higher gelatinolytic activity. MMP inhibitors ARP-100 or ONO-4817 (1 μM) prevented doxorubicin-induced MMP-2 activation. Doxorubicin also increased the levels and activity of MMP-2 secreted into the conditioned media. Doxorubicin upregulated the mRNA expression of both full-length MMP-2 and NTT-MMP-2. α-Actinin levels remained unchanged, whereas doxorubicin downregulated troponin I in an MMP-independent manner. Doxorubicin induces oxidative stress and stimulates a robust increase in MMP-2 expression and activity in NRVM, including NTT-MMP-2. The sarcomeric proteins α-actinin and troponin I are, however, not targeted by MMP-2 under these conditions.
Collapse
Affiliation(s)
- Brandon Y H Chan
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Andrej Roczkowsky
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Nils Moser
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Mathieu Poirier
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Bryan G Hughes
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Ramses Ilarraza
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
110
|
Mohamed EA, Kassem HH. Protective effect of nebivolol on doxorubicin-induced cardiotoxicity in rats. Arch Med Sci 2018; 14:1450-1458. [PMID: 30393501 PMCID: PMC6209710 DOI: 10.5114/aoms.2018.79008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/24/2016] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The cardiotoxicity of doxorubicin is incompletely understood. We investigated the prophylactic effect of nebivolol on doxorubicin-induced cardiac toxicity. MATERIAL AND METHODS Thirty rats were divided into a control group, doxorubicin-treated group and nebivolol + doxorubicin-treated group. The specimens were examined using H + E and Masson's trichrome, caspase 3, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and tumor necrosis factor factor-α (TNF-α). The mean area percentage of collagen fiber content, caspase-3, eNOS, iNOS and TNF-α immunoactivities was measured. RESULTS The doxorubicin-treated group showed marked myocyte distortion and fragmentation, congestion and cytoplasmic lysis in most fibers. These changes were less intense in the nebivolol-treated group. The mean area percentage of collagen fiber in the nebivolol-treated group was non-significantly smaller (p = 0.07) than that in the doxorubicin-treated group. The expression of caspase-3 (p = 0.03), eNOS (p ≤ 0.001), iNOS (p < 0.001) and TNF-α (p = 0.003) immunoreactivity was improved in the nebivolol-treated group. CONCLUSIONS Nebivolol exerted a significant protective effect from doxorubicin toxicity. The protective effect appears to be mediated mainly through caspase-3, eNOS, iNOS and TNF-α modulation.
Collapse
Affiliation(s)
- Enas Ahmed Mohamed
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hussien H. Kassem
- Department of Cardiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
111
|
Subbarao RB, Ok SH, Lee SH, Kang D, Kim EJ, Kim JY, Sohn JT. Lipid Emulsion Inhibits the Late Apoptosis/Cardiotoxicity Induced by Doxorubicin in Rat Cardiomyoblasts. Cells 2018; 7:cells7100144. [PMID: 30241326 PMCID: PMC6209885 DOI: 10.3390/cells7100144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 11/23/2022] Open
Abstract
This study aimed to examine the effect of lipid emulsion on the cardiotoxicity induced by doxorubicin in H9c2 rat cardiomyoblasts and elucidates the associated cellular mechanism. The effects of lipid emulsion on cell viability, Bax, cleaved caspase-8, cleaved capase-3, Bcl-XL, apoptosis, reactive oxygen species (ROS), malondialdehyde, superoxide dismutase (SOD), catalase and mitochondrial membrane potential induced by doxorubicin were examined. Treatment with doxorubicin decreased cell viability, whereas pretreatment with lipid emulsion reduced the effect of doxorubicin by increasing cell viability. Lipid emulsion also suppressed the increased expression of cleaved caspase-3, cleaved caspase-8, and Bax induced by doxorubicin. Moreover, pretreatment with lipid emulsion decreased the increased Bax/Bcl-XL ratio induced by doxorubicin. Doxorubicin-induced late apoptosis was reduced by treatment with lipid emulsion. In addition, pretreatment with lipid emulsion prior to doxorubicin enhanced glycogen synthase kinase-3β phosphorylation. The increased malondialdehyde and ROS levels by doxorubicin were reduced by lipid emulsion pretreatment. Furthermore, lipid emulsion attenuated the reduced SOD and catalase activity and the decreased mitochondrial membrane potential induced by doxorubicin. Taken together, these results suggest that lipid emulsion attenuates doxorubicin-induced late apoptosis, which appears to be associated with the inhibition of oxidative stress induced by doxorubicin.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si 52727, Korea.
- Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
| | - Seong-Ho Ok
- Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Korea.
| | - Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si 52727, Korea.
| | - Dawon Kang
- Department of Physiology, Gyeongsang National University School of Medicine, Jinju-si 52727, Korea.
| | - Eun-Jin Kim
- Department of Physiology, Gyeongsang National University School of Medicine, Jinju-si 52727, Korea.
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si 52727, Korea.
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si 52727, Korea.
- Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
| |
Collapse
|
112
|
Song L, Qiao G, Xu Y, Ma L, Jiang W. Role of non-coding RNAs in cardiotoxicity of chemotherapy. Surg Oncol 2018; 27:526-538. [PMID: 30217315 DOI: 10.1016/j.suronc.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023]
Abstract
The long-time paradoxical situation of non-coding RNAs (ncRNAs) has been terminated for they emerge as executive at full spectrum of gene expression and translation. More recently, it has been demonstrated that some ncRNAs apparently are associated with chemotherapy, causing cardiotoxicity, which taint long-term recovery of patients in growing body of evidence. The current review focused on up-to-date knowledge on regulation change and molecular signaling of ncRNAs, at mean time evaluate their potentials as diagnostic biomarkers or therapeutic targets to monitor and protect cardio function.
Collapse
Affiliation(s)
- Lina Song
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanglei Qiao
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingjie Xu
- Department of Cardiology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lijun Ma
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weihua Jiang
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
113
|
Damiani RM, Moura DJ, Viau CM, Brito V, Morás AM, Henriques JAP, Saffi J. Influence of PARP-1 inhibition in the cardiotoxicity of the topoisomerase 2 inhibitors doxorubicin and mitoxantrone. Toxicol In Vitro 2018; 52:203-213. [PMID: 29913208 DOI: 10.1016/j.tiv.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) and Mitoxantrone (MTX) are very effective drugs for a range of tumors despite being highly cardiotoxic. DNA topoisomerase 2 beta (Top2ß) was revealed as key mediator of DOX-induced cardiotoxicity, although ROS generation is also an important mechanism. Oxidative stress is also an important issue in MTX-induced cardiotoxicity that is manifested by mitochondrial dysfunction. Studies have demonstrated the relationship between PARP-1 overactivation and cell viability in DOX-treated cardiomyocytes. In reference of MTX, data regarding PARP-1 overactivation as the mechanism responsible for cardiotoxicity is difficult to find. The aim of this study was to evaluate the influence of PARP-1 inhibitor DPQ on DOX- and MTX-mediated cardiotoxicity. Cells were exposed for 24 h to DOX or MTX in the presence or absence of DPQ. Viability, apoptosis, and genotoxicity assays were carried out. Immunofluorescence of phosphorylated histone H2AX was analyzed in H9c2 cells and cardiomyocytes from neonatal rats. Results demonstrated that DPQ co-treatment increases DOX-induced apoptosis in H9c2 cells. DPQ also prevents DOX and MTX-ROS generation in part by increasing SOD and CAT activities. Furthermore, DPQ co-treatment increased the generation of DNA strand breaks by DOX and MTX whilst also inducing phosphorylation of H2AX, MRE11, and ATM in H9c2 cells. Our results demonstrated that as well as increasing DNA damage and inducing apoptotic cell death, DPQ enhances DOX- and MTX-mediated cytotoxicity in H9c2.
Collapse
Affiliation(s)
- Roberto Marques Damiani
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil; Centro Universitário Ritter dos Reis (UniRitter), Orfanotrófio st, 555, Porto Alegre, RS, Brazil.
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Cassiana Macagnan Viau
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Verônica Brito
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Ana Moira Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil; Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
114
|
Boutagy NE, Wu J, Cai Z, Zhang W, Booth CJ, Kyriakides TC, Pfau D, Mulnix T, Liu Z, Miller EJ, Young LH, Carson RE, Huang Y, Liu C, Sinusas AJ. In Vivo Reactive Oxygen Species Detection With a Novel Positron Emission Tomography Tracer, 18F-DHMT, Allows for Early Detection of Anthracycline-Induced Cardiotoxicity in Rodents. JACC Basic Transl Sci 2018; 3:378-390. [PMID: 30062224 PMCID: PMC6058999 DOI: 10.1016/j.jacbts.2018.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 02/05/2023]
Abstract
LVEF is used to detect doxorubicin-induced cardiotoxicity in patients, but this index is variable and has limited ability to detect early cardiotoxicity. Doxorubicin induces cardiotoxicity largely through the excessive production of ROS. We hypothesized that 18F-DHMT, a PET tracer that detects superoxide production, would provide an early index of cardiotoxicity in rodents. 18F-DHMT PET imaging was able to detect an elevation in cardiac superoxide production before a fall in LVEF. The early elevation in myocardial superoxide production was associated with only mild myocardial toxicity and occurred before cellular apoptosis or significant activation of MMPs; enzymes associated with myocardial remodeling. A drop in LVEF was associated with a significant increase in MMP activation, cellular apoptosis, and significant myocardial toxicity.
Reactive oxygen species (ROS) are involved in doxorubicin-induced cardiotoxicity. The authors investigated the efficacy of 18F-DHMT, a marker of ROS, for early detection of doxorubicin-induced cardiotoxicity in rats. Echocardiography was performed at baseline and 4, 6, and 8 weeks post-doxorubicin initiation, whereas in vivo superoxide production was measured at 4 and 6 weeks with 18F-DHMT positron emission tomography. Left ventricular ejection fraction (LVEF) was not significantly decreased until 6 weeks post-doxorubicin treatment, whereas myocardial superoxide production was significantly elevated at 4 weeks. 18F-DHMT imaging detected an elevation in cardiac superoxide production before a fall in LVEF in rodents and may allow for early cardiotoxicity detection in cancer patients.
Collapse
Key Words
- 2D, 2-dimensional
- CT, computed tomography
- DOX, doxorubicin HCl
- H&E, hematoxylin and eosin
- LV, left ventricle/ventricular
- LVEF, left ventricular ejection fraction
- MMP, matrix metalloproteinase
- MT, Masson’s trichrome
- PET, positron emission tomography
- ROS, reactive oxygen species
- SUV, standardized uptake value
- TUNEL, terminal deoxynucleotidyl transferase-mediated nick-end labeling
- VOI, volume of interest
- cardiotoxicity
- doxorubicin
- positron emission tomography
- reactive oxygen species
Collapse
Affiliation(s)
- Nabil E. Boutagy
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Jing Wu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Zhengxi Cai
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Wenjie Zhang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Carmen J. Booth
- Section of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Tassos C. Kyriakides
- Yale School of Public Health (Biostatistics), Yale School of Medicine, New Haven, Connecticut
| | - Daniel Pfau
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Zhao Liu
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Edward J. Miller
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Lawrence H. Young
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, Connecticut
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
- Address for correspondence: Dr. Albert J. Sinusas, Section of Cardiovascular Medicine, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, Connecticut 06520-8017.
| |
Collapse
|
115
|
Abstract
PURPOSE OF REVIEW In this article, we review current and emerging approaches to biomarker discovery to facilitate early diagnosis of cancer therapy-associated cardiovascular toxicity. RECENT FINDINGS Although small studies have demonstrated an association between established biomarkers of cardiac injury (troponins and brain natriuretic peptide) and acute or subacute cardiotoxicity, there is insufficient evidence to support their use in routine clinical care. Preclinical studies to define the molecular mechanisms of cardiotoxicity, as well as the use of unbiased "omics" techniques in small patient cohorts, have yielded promising candidate biomarkers that have the potential to enrich current risk stratification algorithms. New biomarkers of cardiotoxicity have the potential to improve patient outcomes in cardio-oncology. Further studies are needed to assess the clinical relevance of molecular mechanisms described in animal models. Similarly, findings from "omics" platforms require validation in large patient cohorts before they can be incorporated into everyday practice.
Collapse
|
116
|
Hsu WT, Huang CY, Yen CY, Cheng AL, Hsieh PC. The HER2 inhibitor lapatinib potentiates doxorubicin-induced cardiotoxicity through iNOS signaling. Am J Cancer Res 2018; 8:3176-3188. [PMID: 29930721 PMCID: PMC6010982 DOI: 10.7150/thno.23207] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/20/2018] [Indexed: 01/04/2023] Open
Abstract
Rationale: Lapatinib (LAP) is a crucial alternative to trastuzumab upon the onset of drug resistance during treatment of metastatic human epidermal growth factor receptor 2-positive breast cancer. Like trastuzumab, LAP is commonly used alongside anthracyclines as a combination therapy, due to enhanced anti-cancer efficacy. However, this is notably associated with cardiotoxicity so it is imperative to understand the mechanisms driving this cardiotoxicity and develop cardioprotective strategies. To this end, here we utilize human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), which exhibit several characteristics representative of in vivo cardiomyocytes that make them breakthrough models to study drug toxicity. Methods: We investigated LAP- and doxorubicin (DOX)-induced toxicity in hPSC-CMs and evaluated the involvement of inducible nitric oxide (NO) synthase (iNOS). The significance of iNOS-mediated cardiotoxicity was furthermore evaluated in animal studies. Results: LAP synergistically increased DOX toxicity in hPSC-CMs in a dose- and time-dependent manner. At concentrations that were otherwise non-apoptotic when administered separately, LAP significantly potentiated DOX-induced hPSC-CM apoptosis. This was accompanied by increased iNOS expression and pronounced production of NO. iNOS inhibition significantly reduced hPSC-CM sensitivity to LAP and DOX co-treatment (LAP-plus-DOX), leading to reduced apoptosis. Consistent with our observations in vitro, delivery of an iNOS inhibitor in mice treated with LAP-plus-DOX attenuated myocardial apoptosis and systolic dysfunction. Moreover, inhibition of iNOS did not compromise the anti-cancer potency of LAP-plus-DOX in a murine breast cancer xenograft model. Conclusions: Our findings suggest that iNOS inhibition is a promising cardioprotective strategy to accompany HER2-inhibitor/anthracycline combination therapies. Furthermore, these results support the promise of hPSC-CMs as a platform for investigating cardiotoxicity and developing cardioprotectants as a whole.
Collapse
|
117
|
Wyss JC, Kumar R, Mikulic J, Schneider M, Aebi JD, Juillerat-Jeanneret L, Golshayan D. Targeted γ-secretase inhibition of Notch signaling activation in acute renal injury. Am J Physiol Renal Physiol 2018; 314:F736-F746. [DOI: 10.1152/ajprenal.00414.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Notch pathway has been reported to control tissue damage in acute kidney diseases. To investigate potential beneficial nephroprotective effects of targeting Notch, we developed chemically functionalized γ-secretase inhibitors (GSIs) targeting γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT), two enzymes overexpressed in the injured kidney, and evaluated them in in vivo murine models of acute tubular and glomerular damage. Exposure of the animals to disease-inducing drugs together with the functionalized GSIs improved proteinuria and, to some extent, kidney dysfunction. The expression of genes involved in the Notch pathway, acute inflammatory stress responses, and the renin-angiotensin system was enhanced in injured kidneys, which could be downregulated upon administration of functionalized GSIs. Immunohistochemistry staining and Western blots demonstrated enhanced activation of Notch1 as detected by its cleaved active intracellular domain during acute kidney injury, and this was downregulated by concomitant treatment with the functionalized GSIs. Thus targeted γ-secretase-based prodrugs developed as substrates for γ-GT/γ-GCT have the potential to selectively control Notch activation in kidney diseases with subsequent regulation of the inflammatory stress response and the renin-angiotensin pathways.
Collapse
Affiliation(s)
- Jean-Christophe Wyss
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Rajesh Kumar
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Josip Mikulic
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Manfred Schneider
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche, Basel, Switzerland
| | - Johannes D. Aebi
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche, Basel, Switzerland
| | - Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- University Institute of Pathology, CHUV and UNIL, Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
118
|
Surikow SY, Nguyen TH, Stafford I, Chapman M, Chacko S, Singh K, Licari G, Raman B, Kelly DJ, Zhang Y, Waddingham MT, Ngo DT, Bate AP, Chua SJ, Frenneaux MP, Horowitz JD. Nitrosative Stress as a Modulator of Inflammatory Change in a Model of Takotsubo Syndrome. JACC Basic Transl Sci 2018; 3:213-226. [PMID: 30062207 PMCID: PMC6058954 DOI: 10.1016/j.jacbts.2017.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 10/27/2022]
Abstract
Previous studies have shown that patients with Takotsubo syndrome (TS) have supranormal nitric oxide signaling, and post-mortem studies of TS heart samples revealed nitrosative stress. Therefore, we first showed in a female rat model that isoproterenol induces TS-like echocardiographic changes, evidence of nitrosative stress, and consequent activation of the energy-depleting enzyme poly(ADP-ribose) polymerase-1. We subsequently showed that pre-treatment with an inhibitor of poly(ADP-ribose) polymerase-1 ameliorated contractile abnormalities. These findings thus add to previous reports of aberrant β-adrenoceptor signaling (coupled with nitric oxide synthase activation) to elucidate mechanisms of impaired cardiac function in TS and point to potential methods of treatment.
Collapse
Key Words
- 3AB, 3-aminobenzamide
- ANOVA, analysis of variance
- ISO, isoproterenol
- LV, left ventricular
- NFκB, nuclear factor kappa B
- NO, nitric oxide
- NOS, nitric oxide synthase
- NT, nitrotyrosine
- O2–, superoxide
- ONOO–, peroxynitrite
- PAR, poly(ADP-ribose)
- PARP, poly(ADP-ribose) polymerase
- TS, Takotsubo syndrome
- TXNIP, thioredoxin-interacting protein
- Takotsubo cardiomyopathy
- myocardial inflammation
- oxidative stress
- poly(ADP-ribose) polymerase-1
Collapse
Affiliation(s)
- Sven Y Surikow
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia.,Basil Hetzel Institute, Adelaide, South Australia, Australia
| | - Thanh H Nguyen
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia.,Basil Hetzel Institute, Adelaide, South Australia, Australia
| | - Irene Stafford
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia
| | - Matthew Chapman
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia
| | - Sujith Chacko
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia
| | - Kuljit Singh
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia.,Basil Hetzel Institute, Adelaide, South Australia, Australia
| | - Giovanni Licari
- Basil Hetzel Institute, Adelaide, South Australia, Australia
| | - Betty Raman
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia.,Basil Hetzel Institute, Adelaide, South Australia, Australia
| | - Darren J Kelly
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Yuan Zhang
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Mark T Waddingham
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Doan T Ngo
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia
| | - Alexander P Bate
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia
| | - Su Jen Chua
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia
| | | | - John D Horowitz
- The Queen Elizabeth Hospital, Department of Cardiology, University of Adelaide, South Australia, Australia.,Basil Hetzel Institute, Adelaide, South Australia, Australia
| |
Collapse
|
119
|
Koleini N, Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget 2018; 8:46663-46680. [PMID: 28445146 PMCID: PMC5542301 DOI: 10.18632/oncotarget.16944] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Doxorubicin (Dox) is a cytotoxic drug widely incorporated in various chemotherapy protocols. Severe side effects such as cardiotoxicity, however, limit Dox application. Mechanisms by which Dox promotes cardiac damage and cardiomyocyte cell death have been investigated extensively, but a definitive picture has yet to emerge. Autophagy, regarded generally as a protective mechanism that maintains cell viability by recycling unwanted and damaged cellular constituents, is nevertheless subject to dysregulation having detrimental effects for the cell. Autophagic cell death has been described, and has been proposed to contribute to Dox-cardiotoxicity. Additionally, mitophagy, autophagic removal of damaged mitochondria, is affected by Dox in a manner contributing to toxicity. Here we will review Dox-induced cardiotoxicity and cell death in the broad context of the autophagy and mitophagy processes.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
120
|
pH-sensitive fluorescent hyaluronic acid nanogels for tumor-targeting and controlled delivery of doxorubicin and nitric oxide. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
121
|
Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8949450. [PMID: 29765507 PMCID: PMC5889877 DOI: 10.1155/2018/8949450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/23/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023]
Abstract
Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7 μM, correspondingly. Myocardial oxygen consumption was not modified at their respective IC50, although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability.
Collapse
|
122
|
Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed Pharmacother 2018; 101:228-243. [PMID: 29494960 DOI: 10.1016/j.biopha.2018.02.088] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/22/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline group of antibiotic available for the treatment of broad spectrum of human cancers. However, patient receiving DOX-therapy, myelosuppression and genotoxicity which may lead to secondary malignancy and dose dependent cardiotoxicity is an imperative adverse effect. Mechanisms behind the DOX-induced toxicities are increased level of oxidative damage, inflammation and apoptosis. Therefore, in search of a potential chemoprotectant, naturally occurring glucosinolate breakdown product Indole-3-Carbinol (I3C) was evaluated against DOX-induced toxicities in Swiss albino mice. DOX was administered (5 mg/kg b.w., i.p.) and I3C was administered (20 mg/kg b.w., p.o.) in concomitant and 15 days pretreatment schedule. Results of the present study showed that I3C appreciably mitigated DOX-induced chromosomal aberrations, micronuclei formation, DNA damage and apoptosis in bone marrow niche. Histopathological observations revealed that DOX-intoxication resulted in massive structural and functional impairment of heart and bone marrow niche. However, oral administration of I3C significantly attenuated DOX-induced oxidative stress in the cardiac tissues as evident from decreased levels of ROS/RNS and lipid peroxidation, and by increased level of glutathione (reduced) and the activity of phase-II antioxidant enzymes. Additionally, administration of I3C significantly (P < 0.05) stimulated Nrf2-mediated activation of antioxidant response element (ARE) pathway and promoted expression of cytoprotective proteins heme oxygenase 1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO1) and GSTπ in bone marrow and cardiac tissues. In connection with that, I3C significantly attenuated DOX-induced inflammation by downregulation of pro-inflammatory mediators, viz., NF-kβ(p50), iNOS, COX-2 and IL-6 expression. Moreover, I3C attenuate DOX-induced apoptosis by up-regulation of Bcl2 and down-regulation of Bax and caspase-3 expression in bone marrow cells. Thus, this study suggests that I3C has promising chemoprotective efficacy against DOX-induced toxicities and indicates its future use as an adjuvant in chemotherapy.
Collapse
|
123
|
Sonowal H, Pal P, Shukla K, Saxena A, Srivastava SK, Ramana KV. Aldose reductase inhibitor, fidarestat prevents doxorubicin-induced endothelial cell death and dysfunction. Biochem Pharmacol 2018; 150:181-190. [PMID: 29458045 DOI: 10.1016/j.bcp.2018.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Despite doxorubicin (Dox) being one of the most widely used chemotherapy agents for breast, blood and lung cancers, its use in colon cancer is limited due to increased drug resistance and severe cardiotoxic side effects that increase mortality associated with its use at high doses. Therefore, better adjuvant therapies are warranted to improve the chemotherapeutic efficacy and to decrease cardiotoxicity. We have recently shown that aldose reductase inhibitor, fidarestat, increases the Dox-induced colon cancer cell death and reduces cardiomyopathy. However, the efficacy of fidarestat in the prevention of Dox-induced endothelial dysfunction, a pathological event critical to cardiovascular complications, is not known. Here, we have examined the effect of fidarestat on Dox-induced endothelial cell toxicity and dysfunction in vitro and in vivo. Incubation of human umbilical vein endothelial cells (HUVECs) with Dox significantly increased the endothelial cell death, and pre-treatment of fidarestat prevented it. Further, fidarestat prevented the Dox-induced oxidative stress, formation of reactive oxygen species (ROS) and activation of Caspase-3 in HUVECs. Fidarestat also prevented Dox-induced monocyte adhesion to HUVECs and expression of ICAM-1 and VCAM-1. Fidarestat pre-treatment to HUVECs restored the Dox-induced decrease in the Nitric Oxide (NO)-levels and eNOS expression. Treatment of HUVECs with Dox caused a significant increase in the activation of NF-κB and expression of various inflammatory cytokines and chemokines which were prevented by fidarestat pre-treatment. Most importantly, fidarestat prevented the Dox-induced mouse cardiac cell hypertrophy and expression of eNOS, iNOS, and 3-Nitrotyrosine in the aorta tissues. Further, fidarestat blunted the Dox-induced expression of various inflammatory cytokines and chemokines in vivo. Thus, our results suggest that by preventing Dox-induced endothelial cytotoxicity and dysfunction, AR inhibitors could avert cardiotoxicity associated with anthracycline chemotherapy.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pabitra Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
124
|
Protective Effect of Boswellic Acids against Doxorubicin-Induced Hepatotoxicity: Impact on Nrf2/HO-1 Defense Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018. [PMID: 29541348 PMCID: PMC5818967 DOI: 10.1155/2018/8296451] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current study aimed to investigate the potential protective role of boswellic acids (BAs) against doxorubicin- (DOX-) induced hepatotoxicity. Also, the possible mechanisms underlying this protection; antioxidant, as well as the modulatory effect on the Nrf2 transcription factor/hem oxygenase-1 (Nrf2/HO-1) pathway in liver tissues, was investigated. Animals were allocated to five groups: group 1: the saline control, group 2: the DOX group, animals received DOX (6 mg/kg, i.p.) weekly for a period of three weeks, and groups 3–5: animals received DOX (6 mg/kg, i.p.) weekly and received protective doses of BAs (125, 250, and 500 mg/kg/day). Treatment with BAs significantly improved the altered liver enzyme activities and oxidative stress markers. This was coupled with significant improvement in liver histopathological features. BAs increased the Nrf2 and HO-1 expression, which provided protection against DOX-induced oxidative insult. The present results demonstrated that BAs appear to scavenge ROS and inhibit lipid peroxidation and DNA damage of DOX-induced hepatotoxicity. The antioxidant efficacy of BAs might arise from its modulation of the Nrf2/HO-1 pathway and thereby protected liver from DOX-induced oxidative injury.
Collapse
|
125
|
Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit Rev Oncol Hematol 2018; 122:30-51. [PMID: 29458788 DOI: 10.1016/j.critrevonc.2017.12.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/28/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Doxorubicin (DOX)-induced toxicity and resistance are major obstacles in chemotherapeutic approaches. Despite effective in the treatment of numerous malignancies, some clinicians have voiced concern that DOX has the potential to cause debilitating consequences in organ tissues, especially the heart. The mechanisms of toxicity and resistance are respectively related to induction of reactive oxygen species (ROS) and up-regulation of ATP-binding cassette (ABC) transporter. Curcumin (CUR) with several biological and pharmacological properties is expected to restore DOX-mediated impairments to tissues. This review is intended to address the current knowledge on DOX adverse effects and CUR protective actions in the heart, kidneys, liver, brain, and reproductive organs. Coadministration of CUR and DOX is capable of ameliorating DOX toxicity pertained to antioxidant, apoptosis, autophagy, and mitochondrial permeability.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
126
|
Alsuwyeh AA, Alanazi F, Shakeel F, Salem-Bekhit MM, Haq N. Estimation of Anti-neoplastic Drug Doxorubicin in Bacterial Ghost Matrix by New “Environmentally Benign” RP-HPLC Method: A Step Towards Sustainable Development of Pharmaceutical Industry. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018; 43:181-190. [DOI: 10.1007/s13369-017-2664-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
127
|
Bishop S, Liu SJ. Cardioprotective action of the aqueous extract of Terminalia arjuna bark against toxicity induced by doxorubicin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:210-216. [PMID: 29157817 DOI: 10.1016/j.phymed.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/03/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The aqueous extract of Terminalia arjuna (TA) bark (TAAqE) has been shown to have a direct inotropic effect on ventricular myocytes. Active constituents of TAAqE contain various flavonoids and proanthocyanidins, some of which are known to have antioxidant activities. Whether TAAqE affords a cardioprotective action against oxidative stress (OS) remains unclear. PURPOSE Increased OS is one of the major mechanisms underlying cardiotoxicity induced by doxorubicin (DOX), a commonly-used anticancer agent. The aim of the present study was to investigate potential cardioprotective effect of TAAqE against DOX-induced OS and cardiac dysfunction. METHODS OS and cytotoxicity were induced by 1 µM DOX for 24 h in H9c2 cells, a cardiac tissue-derived cell line, and left ventricular (LV) dysfunction was induced by intrapleural injection of DOX (accumulative 20 mg/kg body weight) to mice. Cellular oxidative levels and morphology were assessed using microscopy and oxidative-sensitive fluorescent dyes with and without co-treatment with TAAqE. LV function was monitored weekly with echocardiography. RESULTS TAAqE reduced OS and preserved mitochondria and cell growth of H9c2 cells against DOX treatment. TAAqE (in drinking water) attenuated the decreased LV function and altered myocardial structure caused by DOX treatment. CONCLUSION TAAqE exerts a protective action against cardiotoxicity caused by DOX in part via suppression of OS. Thus, TAAqE is a promising cardiotonic in adjuvant cancer chemotherapy.
Collapse
Affiliation(s)
- Sarah Bishop
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shi J Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
128
|
Contribution of reactive oxygen species to the anticancer activity of aminoalkanol derivatives of xanthone. Invest New Drugs 2017; 36:355-369. [PMID: 29116476 PMCID: PMC5948269 DOI: 10.1007/s10637-017-0537-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species (ROS) are critically involved in the action of anticancer agents. In this study, we investigated the role of ROS in the anticancer mechanism of new aminoalkanol derivatives of xanthone. Most xanthones used in the study displayed significant pro-oxidant effects similar to those of gambogic acid, one of the most active anticancer xanthones. The pro-oxidant activity of our xanthones was shown both directly (by determination of ROS induction, effects on the levels of intracellular antioxidants, and expression of antioxidant enzymes) and indirectly by demonstrating that the overexpression of manganese superoxide dismutase decreases ROS-mediated cell senescence. We also observed that mitochondrial dysfunction and cellular apoptosis enhancement correlated with xanthone-induced oxidative stress. Finally, we showed that the use of the antioxidant N-acetyl-L-cysteine partly reversed these effects of aminoalkanol xanthones. Our results demonstrated that novel aminoalkanol xanthones mediated their anticancer activity primarily through ROS elevation and enhanced oxidative stress, which led to mitochondrial cell death stimulation; this mechanism was similar to the activity of gambogic acid.
Collapse
|
129
|
Nemeth BT, Varga ZV, Wu WJ, Pacher P. Trastuzumab cardiotoxicity: from clinical trials to experimental studies. Br J Pharmacol 2017; 174:3727-3748. [PMID: 27714776 PMCID: PMC5647179 DOI: 10.1111/bph.13643] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Epidermal growth factor receptor-2 (HER-2) is overexpressed in 20 to 25% of human breast cancers, which is associated with aggressive tumour growth and poor prognosis. Trastuzumab (Herceptin®) is a humanized monoclonal antibody directed against HER-2, the first highly selective form of therapy targeting HER-2 overexpressing tumours. Although initial trials indicated high efficacy and a favourable safety profile of the drug, the first large, randomized trial prompted a retrospective analysis of cardiac dysfunction in earlier trials utilizing trastuzumab. There has been ongoing debate on the cardiac safety of trastuzumab ever since, initiating numerous clinical and preclinical investigations to better understand the background of trastuzumab cardiotoxicity and evaluate its effects on patient morbidity. Here, we have given a comprehensive overview of our current knowledge on the cardiotoxicity of trastuzumab, primarily focusing on data from clinical trials and highlighting the main molecular mechanisms proposed. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Balazs T Nemeth
- Laboratory of Cardiovascular Physiology and Tissue InjuryNational Institute on Alcohol Abuse and AlcoholismRockvilleMDUSA
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue InjuryNational Institute on Alcohol Abuse and AlcoholismRockvilleMDUSA
| | - Wen Jin Wu
- Division of Biotechnology Research and Review 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationBethesdaMDUSA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue InjuryNational Institute on Alcohol Abuse and AlcoholismRockvilleMDUSA
| |
Collapse
|
130
|
McLaughlin D, Zhao Y, O'Neill KM, Edgar KS, Dunne PD, Kearney AM, Grieve DJ, McDermott BJ. Signalling mechanisms underlying doxorubicin and Nox2 NADPH oxidase-induced cardiomyopathy: involvement of mitofusin-2. Br J Pharmacol 2017; 174:3677-3695. [PMID: 28261787 PMCID: PMC5647180 DOI: 10.1111/bph.13773] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The anthracycline doxorubicin (DOX), although successful as a first-line cancer treatment, induces cardiotoxicity linked with increased production of myocardial ROS, with Nox2 NADPH oxidase-derived superoxide reported to play a key role. The aim of this study was to identify novel mechanisms underlying development of cardiac remodelling/dysfunction further to DOX-stimulated Nox2 activation. EXPERIMENTAL APPROACH Nox2-/- and wild-type (WT) littermate mice were administered DOX (12 mg·kg-1 over 3 weeks) prior to study at 4 weeks. Detailed mechanisms were investigated in murine HL-1 cardiomyocytes, employing a robust model of oxidative stress, gene silencing and pharmacological tools. KEY RESULTS DOX-induced cardiac dysfunction, cardiomyocyte remodelling, superoxide production and apoptosis in WT mice were attenuated in Nox2-/- mice. Transcriptional analysis of left ventricular tissue identified 152 differentially regulated genes (using adjusted P < 0.1) in DOX-treated Nox2-/- versus WT mice, and network analysis highlighted 'Cell death and survival' as the biological function most significant to the dataset. The mitochondrial membrane protein, mitofusin-2 (Mfn2), appeared as a strong candidate, with increased expression (1.5-fold), confirmed by qPCR (1.3-fold), matching clear published evidence of promotion of cardiomyocyte cell death. In HL-1 cardiomyocytes, targeted siRNA knockdown of Nox2 decreased Mfn2 protein expression, but not vice versa. While inhibition of Nox2 activity along with DOX treatment attenuated its apoptotic and cytotoxic effects, reduced apoptosis after Mfn2 silencing reflected a sustained cytotoxic response and reduced cell viability. CONCLUSIONS AND IMPLICATIONS DOX-induced and Nox2-mediated up-regulation of Mfn2, rather than contributing to cardiomyocyte dysfunction through apoptotic pathways, appears to promote a protective mechanism. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Declan McLaughlin
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Youyou Zhao
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Karla M O'Neill
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Kevin S Edgar
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Philip D Dunne
- Centre for Cancer Research and Cell BiologyQueen's University BelfastBelfastUK
| | - Anna M Kearney
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - David J Grieve
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Barbara J McDermott
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| |
Collapse
|
131
|
Xu F, Li X, Xiao X, Liu LF, Zhang L, Lin PP, Zhang SL, Li QS. Effects of Ganoderma lucidum polysaccharides against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2017; 95:504-512. [DOI: 10.1016/j.biopha.2017.08.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
|
132
|
Casieri V, Matteucci M, Cavallini C, Torti M, Torelli M, Lionetti V. Long-term Intake of Pasta Containing Barley (1-3)Beta-D-Glucan Increases Neovascularization-mediated Cardioprotection through Endothelial Upregulation of Vascular Endothelial Growth Factor and Parkin. Sci Rep 2017; 7:13424. [PMID: 29044182 PMCID: PMC5647408 DOI: 10.1038/s41598-017-13949-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 01/17/2023] Open
Abstract
Barley (1-3)β-D-Glucan (BBG) enhances angiogenesis. Since pasta is very effective in providing a BBG-enriched diet, we hypothesized that the intake of pasta containing 3% BBG (P-BBG) induces neovascularization-mediated cardioprotection. Healthy adult male C57BL/6 mice fed P-BBG (n = 15) or wheat pasta (Control, n = 15) for five-weeks showed normal glucose tolerance and cardiac function. With a food intake similar to the Control, P-BBG mice showed a 109% survival rate (P < 0.01 vs. Control) after cardiac ischemia (30 min)/reperfusion (60 min) injury. Left ventricular (LV) anion superoxide production and infarct size in P-BBG mice were reduced by 62 and 35% (P < 0.0001 vs. Control), respectively. The capillary and arteriolar density of P-BBG hearts were respectively increased by 12 and 18% (P < 0.05 vs. Control). Compared to the Control group, the VEGF expression in P-BBG hearts was increased by 87.7% (P < 0.05); while, the p53 and Parkin expression was significantly increased by 125% and cleaved caspase-3 levels were reduced by 33% in P-BBG mice. In vitro, BBG was required to induce VEGF, p53 and Parkin expression in human umbelical vascular endothelial cells. Moreover, the BBG-induced Parkin expression was not affected by pifithrin-α (10 uM/7days), a p53 inhibitor. In conclusion, long-term dietary supplementation with P-BBG confers post-ischemic cardioprotection through endothelial upregulation of VEGF and Parkin.
Collapse
Affiliation(s)
| | - Marco Matteucci
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudia Cavallini
- ATTRE (Advanced Therapies and Tissue Regeneration) Laboratory, Innovation Accelerator CNR, Bologna, Italy
| | - Milena Torti
- Research and Development Unit, Pastificio Attilio Matromauro Granoro s.r.l, Corato, Italy
| | - Michele Torelli
- Research and Development Unit, Pastificio Attilio Matromauro Granoro s.r.l, Corato, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy. .,UOS Anesthesia and Intensive Care, Fondazione Toscana "G. Monasterio", Pisa, Italy.
| |
Collapse
|
133
|
Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F, Rossi F, Berrino L, Naviglio S, Urbanek K. Oxidative Stress and Cellular Response to Doxorubicin: A Common Factor in the Complex Milieu of Anthracycline Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1521020. [PMID: 29181122 PMCID: PMC5664340 DOI: 10.1155/2017/1521020] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
The production of reactive species is a core of the redox cycling profile of anthracyclines. However, these molecular characteristics can be viewed as a double-edged sword acting not only on neoplastic cells but also on multiple cellular targets throughout the body. This phenomenon translates into anthracycline cardiotoxicity that is a serious problem in the growing population of paediatric and adult cancer survivors. Therefore, better understanding of cellular processes that operate within but also go beyond cardiomyocytes is a necessary step to develop more effective tools for the prevention and treatment of progressive and often severe cardiomyopathy experienced by otherwise successfully treated oncologic patients. In this review, we focus on oxidative stress-triggered cellular events such as DNA damage, senescence, and cell death implicated in anthracycline cardiovascular toxicity. The involvement of progenitor cells of cardiac and extracardiac origin as well as different cardiac cell types is discussed, pointing to molecular signals that impact on cell longevity and functional competence.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Prezioso
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
134
|
Kim J, Yung BC, Kim WJ, Chen X. Combination of nitric oxide and drug delivery systems: tools for overcoming drug resistance in chemotherapy. J Control Release 2017; 263:223-230. [PMID: 28034787 PMCID: PMC5484762 DOI: 10.1016/j.jconrel.2016.12.026] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic drugs have made significant contributions to anticancer therapy, along with other therapeutic methods including surgery and radiotherapy over the past century. However, multidrug resistance (MDR) of cancer cells has remained as a significant obstacle in the achievement of efficient chemotherapy. Recently, there has been increasing evidence for the potential function of nitric oxide (NO) to overcome MDR. NO is an endogenous and biocompatible molecule, contrasting with other potentially toxic chemosensitizing agents that reverse MDR effects, which has raised expectations in the development of efficient therapeutics with low side effects. In particular, nanoparticle-based drug delivery systems not only facilitate the delivery of multiple therapeutic agents, but also help bypass MDR pathways, which are conducive for the efficient delivery of NO and anticancer drugs, simultaneously. Therefore, this review will discuss the mechanism of NO in overcoming MDR and recent progress of combined NO and drug delivery systems.
Collapse
Affiliation(s)
- Jihoon Kim
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea.; Center for Self-assembly and Complexity, Institute for Basic Science, 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
135
|
Migrino RQ, Davies HA, Truran S, Karamanova N, Franco DA, Beach TG, Serrano GE, Truong D, Nikkhah M, Madine J. Amyloidogenic medin induces endothelial dysfunction and vascular inflammation through the receptor for advanced glycation endproducts. Cardiovasc Res 2017; 113:1389-1402. [PMID: 28859297 PMCID: PMC6676393 DOI: 10.1093/cvr/cvx135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/17/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Abstract
AIMS Medin is a common amyloidogenic protein in humans that accumulates in arteries with advanced age and has been implicated in vascular degeneration. Medin's effect on endothelial function remains unknown. The aims are to assess medin's effects on human arteriole endothelial function and identify potential mechanisms underlying medin-induced vascular injury. METHODS AND RESULTS Ex vivo human adipose and leptomeningeal arterioles were exposed (1 h) to medin (0.1, 1, or 5 µM) without or with FPS-ZM1 [100 µM, receptor for advanced glycation endproducts (RAGE)-specific inhibitor] and endothelium-dependent function (acetylcholine dilator response) and endothelium-independent function (dilator response to nitric oxide donor diethylenetriamine NONOate) were compared with baseline control. Human umbilical vein endothelial cells were exposed to medin without or with FPS-ZM1 and oxidative and nitrative stress, cell viability, and pro-inflammatory signaling measures were obtained. Medin caused impaired endothelial function (vs. baseline response: -45.2 ± 5.1 and -35.8 ± 7.9% in adipose and leptomeningeal arterioles, respectively, each P < 0.05). Dilator response to NONOate was not significantly changed. Medin decreased arteriole and endothelial cell nitric oxide production, increased superoxide production, reduced endothelial cell viability, proliferation, and migration. Medin increased gene and protein expression of interleukin-6 and interleukin-8 via activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). Medin-induced endothelial dysfunction and oxidative stress were reversed by antioxidant polyethylene glycol superoxide dismutase and by RAGE inhibitor FPS-ZM1. CONCLUSIONS Medin causes human microvascular endothelial dysfunction through oxidative and nitrative stress and promotes pro-inflammatory signaling in endothelial cells. These effects appear to be mediated via RAGE. The findings represent a potential novel mechanism of vascular injury.
Collapse
Affiliation(s)
- Raymond Q. Migrino
- Office of Research, Phoenix Veterans Affairs Health Care System, 650 E. Indian School Road, Phoenix, AZ 85022, USA
- Department of Medicine, University of Arizona College of Medicine-Phoenix, AZ, USA
| | - Hannah A. Davies
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Seth Truran
- Office of Research, Phoenix Veterans Affairs Health Care System, 650 E. Indian School Road, Phoenix, AZ 85022, USA
| | - Nina Karamanova
- Office of Research, Phoenix Veterans Affairs Health Care System, 650 E. Indian School Road, Phoenix, AZ 85022, USA
| | - Daniel A. Franco
- Office of Research, Phoenix Veterans Affairs Health Care System, 650 E. Indian School Road, Phoenix, AZ 85022, USA
| | - Thomas G. Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Geidy E. Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Danh Truong
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
136
|
Akolkar G, da Silva Dias D, Ayyappan P, Bagchi AK, Jassal DS, Salemi VMC, Irigoyen MC, De Angelis K, Singal PK. Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 2017; 313:H795-H809. [PMID: 28710069 DOI: 10.1152/ajpheart.00253.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
Increase in oxidative/nitrosative stress is one of the mechanisms associated with the development of cardiotoxicity due to doxorubicin (Dox), a potent chemotherapy drug. Previously, we reported mitigation of Dox-induced oxidative/nitrosative stress and apoptosis by vitamin C (Vit C) in isolated cardiomyocytes. In the present in vivo study in rats, we investigated the effect of prophylactic treatment with Vit C on Dox-induced apoptosis, inflammation, oxidative/nitrosative stress, cardiac dysfunction, and Vit C transporter proteins. Dox (cumulative dose: 15 mg/kg) in rats reduced systolic and diastolic cardiac function and caused structural damage. These changes were associated with a myocardial increase in reactive oxygen species, reduction in antioxidant enzyme activities, increased expression of apoptotic proteins, and inflammation. Dox also caused an increase in the expression of proapoptotic proteins Bax, Bnip-3, Bak, and caspase-3. An increase in oxidative/nitrosative stress attributable to Dox was indicated by an increase in superoxide, protein carbonyl formation, lipid peroxidation, nitric oxide (NO), NO synthase (NOS) activity, protein nitrosylation, and inducible NOS protein expression. Dox increased the levels of cardiac proinflammatory cytokines TNF-α, IL-1β, and IL-6, whereas the expression of Vit C transporter proteins (sodium-ascorbate cotransporter 2 and glucose transporter 4) was reduced. Prophylactic and concurrent treatment with Vit C prevented all these changes and improved survival in the Vit C + Dox group. Vit C also improved Dox-mediated systolic and diastolic dysfunctions and structural damage. These results suggest a cardioprotective role of Vit C in Dox-induced cardiomyopathy by reducing oxidative/nitrosative stress, inflammation, and apoptosis, as well as improving Vit C transporter proteins.NEW & NOTEWORTHY This in vivo study provides novel data that vitamin C improves cardiac structure and function in doxorubicin-induced cardiomyopathy by reducing oxidative/nitrosative stress, apoptosis, and inflammation along with upregulation of cardiac vitamin C transporter proteins. The latter may have a crucial role in improving antioxidant status in this cardiomyopathy.
Collapse
Affiliation(s)
- Gauri Akolkar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Danielle da Silva Dias
- Laboratory of Translational Physiology, Universidade Nove de Julho, São Paulo, Brazil; and
| | - Prathapan Ayyappan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Katia De Angelis
- Laboratory of Translational Physiology, Universidade Nove de Julho, São Paulo, Brazil; and
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada;
| |
Collapse
|
137
|
Finkelman BS, Putt M, Wang T, Wang L, Narayan H, Domchek S, DeMichele A, Fox K, Matro J, Shah P, Clark A, Bradbury A, Narayan V, Carver JR, Tang WHW, Ky B. Arginine-Nitric Oxide Metabolites and Cardiac Dysfunction in Patients With Breast Cancer. J Am Coll Cardiol 2017; 70:152-162. [PMID: 28683962 PMCID: PMC5665653 DOI: 10.1016/j.jacc.2017.05.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oxidative/nitrosative stress and endothelial dysfunction are hypothesized to be central to cancer therapeutics-related cardiac dysfunction (CTRCD). However, the relationship between circulating arginine-nitric oxide (NO) metabolites and CTRCD remains unstudied. OBJECTIVES This study sought to examine the relationship between arginine-NO metabolites and CTRCD in a prospective cohort of 170 breast cancer patients treated with doxorubicin with or without trastuzumab. METHODS Plasma levels of arginine, citrulline, ornithine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and N-monomethylarginine (MMA) were quantified at baseline, 1 month, and 2 months after doxorubicin initiation. Determinants of baseline biomarker levels were identified using multivariable linear regression, and Cox regression defined the association between baseline levels and 1- or 2-month biomarker changes and CTRCD rate in 139 participants with quantitated echocardiograms at all time points. RESULTS Age, hypertension, body mass index, and African-American race were independently associated with ≥1 of baseline citrulline, ADMA, SDMA, and MMA levels. Decreases in arginine and citrulline and increases in ADMA were observed at 1 and 2 months (all p < 0.05). Overall, 32 participants experienced CTRCD over a maximum follow-up of 5.4 years. Hazard ratios for ADMA and MMA at 2 months were 3.33 (95% confidence interval [CI]: 1.12 to 9.96) and 2.70 (95% CI: 1.35 to 5.41), respectively, and 0.78 (95% CI: 0.64 to 0.97) for arginine at 1 month. CONCLUSIONS In breast cancer patients undergoing doxorubicin therapy, early alterations in arginine-NO metabolite levels occurred, and early biomarker changes were associated with a greater CTRCD rate. Our findings highlight the potential mechanistic and translational relevance of this pathway to CTRCD.
Collapse
Affiliation(s)
- Brian S Finkelman
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary Putt
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Teresa Wang
- Department of Medicine, Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Le Wang
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hari Narayan
- Department of Pediatrics, Division of Cardiology, Rady Children's Hospital, University of California San Diego, San Diego, California
| | - Susan Domchek
- Department of Medicine, Division of Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela DeMichele
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Fox
- Department of Medicine, Division of Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer Matro
- Department of Medicine, Division of Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Payal Shah
- Department of Medicine, Division of Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy Clark
- Department of Medicine, Division of Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela Bradbury
- Department of Medicine, Division of Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivek Narayan
- Department of Medicine, Division of Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph R Carver
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - W H Wilson Tang
- Division of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Bonnie Ky
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
138
|
Badreddin A, Fady Y, Attia H, Hafez M, Khairallah A, Johar D, Bernstein L. What role does the stress response have in congestive heart failure? J Cell Physiol 2017; 233:2863-2870. [PMID: 28493471 DOI: 10.1002/jcp.26003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/10/2017] [Indexed: 01/10/2023]
Abstract
This review is concerned with cardiac malfunction as a result of an imbalance in protein proteostasis, the homeostatic balance between protein removal and regeneration in a long remodeling process involving the endoplasmic reticulum (ER) and the unfolded protein response (UPR). The importance of this is of special significance with regard to cardiac function as a high energy requiring muscular organ that has a high oxygen requirement and is highly dependent on mitochondria. The importance of mitochondria is not only concerned with high energy dependence on mitochondrial electron transport, but it also has a role in the signaling between the mitochondria and the ER under stress. Proteins made in the ER are folded as a result of sulfhydryl groups (-SH) and attractive and repulsive reactions in the tertiary structure. We discuss how this matters with respect to an imbalance between muscle breakdown and repair in a stressful environment, especially as a result of oxidative and nitrosative byproducts of mitochondrial activity. The normal repair is a remodeling, but under this circumstance, the cell undergoes or even lysosomal "self eating" autophagy, or even necrosis instead of apoptosis. We shall discuss the relationship of the UPR pathway to chronic congestive heart failure (CHF).
Collapse
Affiliation(s)
- Ahmed Badreddin
- Department of Cardiothoracic Surgery, Beni-Suef University Faculty of Medicine, Beni-Suef, Egypt
| | - Youssef Fady
- Department of Cardiac Surgery, Cardiac Surgery Center Sultan Qaboos Hospital, Salalah, Dhofar, Sultanate of Oman, Salalah, Oman
| | - Hamdy Attia
- Kasr Al'Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hafez
- Kasr Al'Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Khairallah
- Medical Research Division, Department of Pharmacology, National Research Centre, Dokki, Cairo, Egypt
| | - Dina Johar
- Faculty of Women for Arts, Sciences, and Education, Department of Biochemistry and Nutrition, Ain Shams University, Heliopolis, Cairo, Egypt.,Max Rady Faculty of Health Sciences, Department of Physiology and Pathophysiology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
139
|
Shabalala S, Muller C, Louw J, Johnson R. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci 2017; 180:160-170. [DOI: 10.1016/j.lfs.2017.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023]
|
140
|
Marano F, Frairia R, Rinella L, Argenziano M, Bussolati B, Grange C, Mastrocola R, Castellano I, Berta L, Cavalli R, Catalano MG. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocr Relat Cancer 2017; 24:275-286. [PMID: 28487350 DOI: 10.1530/erc-17-0045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 01/04/2023]
Abstract
Anaplastic thyroid cancer is one of the most lethal diseases, and a curative therapy does not exist. Doxorubicin, the only drug approved for anaplastic thyroid cancer treatment, has a very low response rate and causes numerous side effects among which cardiotoxicity is the most prominent. Thus, doxorubicin delivery to the tumor site could be an import goal aimed to improve the drug efficacy and to reduce its systemic side effects. We recently reported that, in human anaplastic thyroid cancer cell lines, combining doxorubicin-loaded nanobubbles with extracorporeal shock waves, acoustic waves used in lithotripsy and orthopedics without side effects, increased the intracellular drug content and in vitro cytotoxicity. In the present study, we tested the efficacy of this treatment on a human anaplastic thyroid cancer xenograft mouse model. After 21 days, the combined treatment determined the greatest drug accumulation in tumors with consequent reduction of tumor volume and weight, and an extension of the tumor doubling time. Mechanistically, the treatment induced tumor apoptosis and decreased cell proliferation. Finally, although doxorubicin caused the increase of fibrosis markers and oxidative stress in animal hearts, loading doxorubicin into nanobubbles avoided these effects preventing heart damage. The improvement of doxorubicin anti-tumor effects together with the prevention of heart damage suggests that the combination of doxorubicin-loaded nanobubbles with extracorporeal shock waves might be a promising drug delivery system for anaplastic thyroid cancer treatment.
Collapse
Affiliation(s)
| | - Roberto Frairia
- Department of Medical SciencesUniversity of Turin, Turin, Italy
| | - Letizia Rinella
- Department of Medical SciencesUniversity of Turin, Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and TechnologyUniversity of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of Turin, Turin, Italy
| | - Cristina Grange
- Department of Medical SciencesUniversity of Turin, Turin, Italy
| | | | | | | | - Roberta Cavalli
- Department of Drug Science and TechnologyUniversity of Turin, Turin, Italy
| | | |
Collapse
|
141
|
Uehara O, Takimoto K, Morikawa T, Harada F, Takai R, Adhikari BR, Itatsu R, Nakamura T, Yoshida K, Matsuoka H, Nagayasu H, Saito I, Muthumala M, Chiba I, Abiko Y. Upregulated expression of MMP-9 in gingival epithelial cells induced by prolonged stimulation with arecoline. Oncol Lett 2017; 14:1186-1192. [PMID: 28693294 DOI: 10.3892/ol.2017.6194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/23/2017] [Indexed: 01/03/2023] Open
Abstract
Betel quid chewing is implicated in the high prevalence of oral cancer in Southeast Asian countries. One of the major components of betel quid is arecoline. In the present study, in order to characterize the association between chronic arecoline stimulation and carcinogenesis the expression level of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 mRNA in human gingival epithelial progenitor cells (HGEPs) stimulated with arecoline was assessed. The HGEPs were alternated between 3 days of incubation with arecoline (50 µg/ml), and 3 days without arecoline, for up to 30 days. The expression levels of the MMPs and TIMPs in the cells stimulated with arecoline were evaluated by reverse transcription-quantitative polymerase chain reaction at 18 and 30 days. The expression of MMP-9 mRNA in the experimental group was significantly increased compared with in the control group (P<0.01). No significant differences in the expression of MMP-2, TIMP-1 or TIMP-2 mRNA were observed between the experimental and control groups. Using an MMP-9 activity assay, the levels of MMP-9 activity in the experimental group were demonstrated to be significantly higher than in the control group (P<0.05). To investigate associated cellular signaling pathways, PDTC [a nuclear factor (NF)-κB/inhibitor of NF-κB (IκB) inhibitor], PD98059 [a mitogen-activated protein kinase kinase (MAPKK)1 and MAPKK2 inhibitor], SB203580 (a p38 MAPK inhibitor) and 5,15-DPP [a signal transduction and activator of transcription (STAT) 3 inhibitor] were used. All inhibitors decreased the extent of MMP-9 upregulation induced by stimulation with arecoline. Based on the data, it is hypothesized that MMP-9 activity may be involved in the pathological alterations of oral epithelium induced by betel quid chewing, and that the NF-κB/IκB, MAPK, p38 MAPK and STAT3 signaling pathways may be involved in the production of MMP-9 induced by betel quid chewing.
Collapse
Affiliation(s)
- Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Kousuke Takimoto
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Fumiya Harada
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Rie Takai
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Bhoj Raj Adhikari
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Ryoko Itatsu
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Tomohisa Nakamura
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Hirofumi Matsuoka
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Hiroki Nagayasu
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa 230-8501, Japan
| | - Malsantha Muthumala
- Department of Oral and Maxillofacial Surgery, Army Hospital, Colombo, Sri Lanka
| | - Itsuo Chiba
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
142
|
Huang CY, Chen JY, Kuo CH, Pai PY, Ho TJ, Chen TS, Tsai FJ, Padma VV, Kuo WW, Huang CY. Mitochondrial ROS-induced ERK1/2 activation and HSF2-mediated AT 1 R upregulation are required for doxorubicin-induced cardiotoxicity. J Cell Physiol 2017; 233:463-475. [PMID: 28295305 DOI: 10.1002/jcp.25905] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/10/2017] [Indexed: 01/17/2023]
Abstract
Doxorubicin (DOX), one useful chemotherapeutic agent, is limited in clinical use because of its serious cardiotoxicity. Growing evidence suggests that angiotensin receptor blockers (ARBs) have cardioprotective effects in DOX-induced cardiomyopathy. However, the detailed mechanisms underlying the action of ARBs on the prevention of DOX-induced cardiomyocyte cell death have yet to be investigated. Our results showed that angiotensin II receptor type I (AT1 R) plays a critical role in DOX-induced cardiomyocyte apoptosis. We found that MAPK signaling pathways, especially ERK1/2, participated in modulating AT1 R gene expression through DOX-induced mitochondrial ROS release. These results showed that several potential heat shock binding elements (HSE), which can be recognized by heat shock factors (HSFs), located at the AT1 R promoter region. HSF2 markedly translocated from the cytoplasm to the nucleus when cardiomyocytes were damaged by DOX. Furthermore, the DNA binding activity of HSF2 was enhanced by DOX via deSUMOylation. Overexpression of HSF2 enhanced DOX-induced cardiomyocyte cell death as well. Taken together, we found that DOX induced mitochondrial ROS release to activate ERK-mediated HSF2 nuclear translocation and AT1 R upregulation causing DOX-damaged heart failure in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, Taichung, Taiwan
| | - Jia-Yi Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Department, China Medical University Beigang Hospital, Taiwan
| | - Tung-Sheng Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung.,Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Fu-Jen Tsai
- Chinese Medicine Department, China Medical University Beigang Hospital, Taiwan
| | - Vijaya V Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung.,Division of Cardiology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung
| |
Collapse
|
143
|
Cui L, Guo J, Zhang Q, Yin J, Li J, Zhou W, Zhang T, Yuan H, Zhao J, Zhang L, Carmichael PL, Peng S. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicol Lett 2017; 275:28-38. [PMID: 28456571 DOI: 10.1016/j.toxlet.2017.04.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 01/02/2023]
Abstract
The hormone erythropoietin (EPO) has been demonstrated to protect against chemotherapy drug doxorubicin (DOX)-induced cardiotoxicity, but the underlying mechanism remains obscure. We hypothesized that silent mating type information regulation 2 homolog 1 (SIRT1), an NAD+-dependent protein deacetylase that activates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), plays a crucial role in regulating mitochondrial function and mediating the beneficial effect of EPO. Our study in human cardiomyocyte AC16 cells showed that DOX-induced cytotoxicity and mitochondrial dysfunction, as manifested by decreased mitochondrial DNA (mtDNA) copy number, mitochondrial membrane potential, and increased mitochondrial superoxide accumulation, can be mitigated by EPO pretreatment. EPO was found to upregulate SIRT1 activity and protein expression to reverse DOX-induced acetylation of PGC-1α and suppression of a suite of PGC-1α-activated genes involved in mitochondrial function and biogenesis, such as nuclear respiratory factor-1 (NRF1), mitochondrial transcription factor A (TFAM), citrate synthase (CS), superoxide dismutase 2 (SOD2), cytochrome c oxidase IV (COXIV), and voltage-dependent anion channel (VDAC). Silencing of SIRT1 via small RNA interference sensitized AC16 cells to DOX-induced cytotoxicity and reduction in mtDNA copy number. Although with SIRT1 silenced, EPO could reverse to some extent DOX-induced mitochondrial superoxide accumulation, loss of mitochondrial membrane potential and ATP depletion, it failed to normalize protein expression of PGC-1α and its downstream genes. Taken together, our results indicated that EPO may activate SIRT1 to enhance mitochondrial function and protect against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lan Cui
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jiabin Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jian Yin
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jin Li
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Wei Zhou
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Tingfen Zhang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haitao Yuan
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jun Zhao
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Li Zhang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| |
Collapse
|
144
|
Akolkar G, Bagchi AK, Ayyappan P, Jassal DS, Singal PK. Doxorubicin-induced nitrosative stress is mitigated by vitamin C via the modulation of nitric oxide synthases. Am J Physiol Cell Physiol 2017; 312:C418-C427. [PMID: 28100487 DOI: 10.1152/ajpcell.00356.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
An increase in oxidative stress is suggested to be the main cause in Doxorubicin (Dox)–induced cardiotoxicity. However, there is now evidence that activation of inducible nitric oxide synthase (iNOS) and nitrosative stress are also involved. The role of vitamin C (Vit C) in the regulation of nitric oxide synthase (NOS) and reduction of nitrosative stress in Dox-induced cardiotoxicity is unknown. The present study investigated the effects of Vit C in the mitigation of Dox-induced changes in the levels of nitric oxide (NO), NOS activity, protein expression of NOS isoforms, and nitrosative stress as well as cytokines TNF-α and IL-10 in isolated cardiomyocytes. Cardiomyocytes isolated from adult Sprague-Dawley rats were segregated into four groups: 1) control, 2) Vit C (25 µM), 3) Dox (10 µM), and 4) Vit C + Dox. Dox caused a significant increase in the generation of superoxide radical (O2·−), peroxynitrite, and NO, and these effects of Dox were blunted by Vit C. Dox increased the expression of iNOS and altered protein expression as well as activation of endothelial NOS (eNOS). These changes were prevented by Vit C. Dox induced an increase in the ratio of monomeric/dimeric eNOS, promoting the production of O2·−, which was prevented by Vit C by increasing the stability of the dimeric form of eNOS. Vit C protected against the Dox-induced increase in TNFα as well as a reduction in IL-10. These results suggest that Vit C provides cardioprotection by reducing oxidative/nitrosative stress and inflammation via a modulation of Dox-induced increase in the NO levels and NOS activity.
Collapse
Affiliation(s)
- Gauri Akolkar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ashim K. Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Prathapan Ayyappan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
145
|
Sun S, Hu F, Wu J, Zhang S. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons. Redox Biol 2017; 11:577-585. [PMID: 28110213 PMCID: PMC5247568 DOI: 10.1016/j.redox.2016.12.029] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 01/31/2023] Open
Abstract
Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury. In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen-glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line. CBD supplementation during reperfusion rescued OGD/R-induced cell death, attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers. Using the Seahorse XFe24 Extracellular Flux Analyzer, we found that CBD significantly improved basal respiration, ATP-linked oxygen consumption rate, and the spare respiratory capacity, and augmented glucose consumption in OGD/R-injured neurons. The activation of glucose 6-phosphate dehydrogenase and the preservation of the NADPH/NADP+ ratio implies that the pentose-phosphate pathway is stimulated by CBD, thus protecting hippocampal neurons from OGD/R injury. This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance.
Collapse
Affiliation(s)
- Shanshan Sun
- Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fangyuan Hu
- Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jihong Wu
- Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China.
| | - Shenghai Zhang
- Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China.
| |
Collapse
|
146
|
Ibrahim DM, Radwan RR, Abdel Fattah SM. Antioxidant and antiapoptotic effects of sea cucumber and valsartan against doxorubicin-induced cardiotoxicity in rats: The role of low dose gamma irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:70-78. [PMID: 28395211 DOI: 10.1016/j.jphotobiol.2017.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Doxorubicin (DOX) is a highly effective antineoplastic drug; however, the clinical use of DOX is limited by its dose dependent cardiotoxicity. This study was conducted to evaluate the cardioprotective effect of sea cucumber and valsartan against DOX-induced cardiotoxicity in rats. Also, the role of exposure to low dose γ radiation (LDR) on each of them was investigated, since LDR could suppress various reactive oxygen species-related diseases. Rats received DOX (2.5mg/kg, ip) in six equal injections over a period of 2weeks, sea cucumber (14.4mg/kg, p.o) and valsartan (30mg/kg, p.o) for 8 successive weeks. Exposure to LDR (0.5Gy) was performed one day prior to DOX. Results revealed that DOX administration elevated serum levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK-MB) and troponin-I as well as increased cardiac lipid peroxide content and myeloperoxidase (MPO) activity. Additionally, it increased cardiac expressions of iNOS and caspase-3, accompanied by reduction in cardiac total protein and glutathione (GSH) contents. Treatment with sea cucumber or valsartan improved the cardiotoxicity of DOX. Their adjuvant therapy with LDR offers an additional benefit to the cardioprotection of the therapeutic drugs. These results confirmed by histopathological examination. In conclusion, sea cucumber and valsartan alone or combined with LDR attenuated DOX-induced cardiotoxicity via their antioxidant and anti-apoptotic activities and thus might be useful in the treatment of human patients under doxorubicin chemotherapy.
Collapse
Affiliation(s)
- Doaa M Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Egypt
| | - Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| | - Salma M Abdel Fattah
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
147
|
In Vitro Screening for Cytotoxic Activity of Herbal Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2675631. [PMID: 28386288 PMCID: PMC5366791 DOI: 10.1155/2017/2675631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/16/2017] [Accepted: 03/06/2017] [Indexed: 12/15/2022]
Abstract
Experimental studies have shown that a variety of chemopreventive plant components affect tumor initiation, promotion, and progression and the main difference, between botanical medicines and synthetic drugs, resides in the presence of complex metabolite mixtures shown by botanical medicine which in turn exert their action on different levels and via different mechanisms. In the present study, we performed an in vitro screening of ethanol extracts from commercial plants in order to investigate potential antitumor activity against human tumor cell lines. Experimental results obtained through a variety of methods and techniques indicated that extracts of I. verum, G. glabra, R. Frangula, and L. usitatissimum present significant reduction in in vitro tumor cell proliferation, suggesting these extracts as possible chemotherapeutical adjuvants for different cancer treatments.
Collapse
|
148
|
Nemmar A, Al-Salam S, Yuvaraju P, Beegam S, Yasin J, Ali BH. Chronic exposure to water-pipe smoke induces cardiovascular dysfunction in mice. Am J Physiol Heart Circ Physiol 2017; 312:H329-H339. [PMID: 27940964 DOI: 10.1152/ajpheart.00450.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/29/2016] [Accepted: 12/04/2016] [Indexed: 12/21/2022]
Abstract
Water-pipe tobacco smoking is becoming prevalent in all over the world including Western countries. There are limited data on the cardiovascular effects of water-pipe smoke (WPS), in particular following chronic exposure. Here, we assessed the chronic cardiovascular effects of nose-only WPS exposure in C57BL/6 mice. The duration of the session was 30 minutes/day, 5 days/week for 6 consecutive months. Control mice were exposed to air. WPS significantly increased systolic blood pressure. The relative heart weight and plasma concentrations of troponin-I and B-type natriuretic peptide were increased in mice exposed to WPS. Arterial blood gas analysis showed that WPS caused a significant decrease in [Formula: see text] and an increase in [Formula: see text] WPS significantly shortened the thrombotic occlusion time in pial arterioles and venules and increased the number of circulating platelet. Cardiac lipid peroxidation, measured as thiobarbituric acid-reactive substances, was significantly increased, while superoxide dismutase activity, total nitric oxide activity, and glutathione concentration were reduced by WPS exposure. Likewise, immunohistochemical analysis of the heart revealed an increase in the expression of inducible nitric oxide synthase and cytochrome c by cardiomyocytes of WPS-exposed mice. Moreover, hearts of WPS-exposed mice showed the presence of focal interstitial fibrosis. WPS exposure significantly increased heart DNA damage assessed by Comet assay. We conclude that chronic nose-only exposure to WPS impairs cardiovascular homeostasis. Our findings provide evidence that long-term exposure to WPS is harmful to the cardiovascular system and supports interventions to control the spread of WPS, particularly amid youths.NEW & NOTEWORTHY No data are available on the chronic cardiovascular effects of water-pipe smoke (WPS). Our findings provide experimental evidence that chronic exposure to WPS increased blood pressure, relative heart weight, troponin I, and B-type natriuretic peptide in plasma and induced hypoxemia, hypercapnia, and thrombosis. Moreover, WPS caused cardiac oxidative stress, DNA damage, and fibrosis.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates;
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; and
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| |
Collapse
|
149
|
Ma Y, Yang L, Ma J, Lu L, Wang X, Ren J, Yang J. Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1904-1911. [PMID: 28069395 DOI: 10.1016/j.bbadis.2016.12.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/01/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Doxorubicin as anticancer agent can cause dose-dependent cardiotoxicity and heart failure in the long term. Rutin as a polyphenolic flavonoid has been illustrated to protect hearts from diverse cardiovascular diseases. Its function is known to be related to its antioxidant and antiinflammatory activity which may regulate multiple cellular signal pathways. However, the role of rutin on doxorubicin-induced cardiotoxicity has yet to be discovered. In this study, we explored the protective role of rutin on doxorubicin-induced heart failure and elucidated the potential mechanisms of protective effects of rutin against cardiomyocyte death. We analyzed cardiac tissues at the time point of 8weeks after doxorubicin treatment. The results by echocardiography, TUNEL staining, Masson's trichrome staining as well as Western blot analysis revealed that doxorubicin induced remarkable cardiac dysfunction and cardiotoxicity in mice hearts and cardiomyocytes, which were alleviated by rutin treatment. Western blot analysis indicated that the underlying mechanisms included inhibition excessive autophagy and apoptosis mediated by Akt activation. Collectively, our findings suggest that suppression of autophagy and apoptosis by administration of rutin could attenuate doxorubicin-induced cardiotoxicity, which enhances our knowledge to explore new drugs and strategies for combating this devastating side effect induced by doxorubicin. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lifang Yang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jun Ren
- College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA.
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
150
|
Seke M, Petrovic D, Djordjevic A, Jovic D, Borovic ML, Kanacki Z, Jankovic M. Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue. NANOTECHNOLOGY 2016; 27:485101. [PMID: 27811390 DOI: 10.1088/0957-4484/27/48/485101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fullerenol (C60(OH)24) is present in aqueous solutions in the form of polyanion nanoparticles with particles' size distribution within the range from 15 to 42 nm. In this research it is assumed that these features could enable fullerenol nanoparticles (FNPs) to bind positively charged molecules like doxorubicin (DOX) and serve as drug carriers. Considering this, fullerenol/doxorubicin nanocomposite (FNP/DOX) is formed and characterized by ultra-performance liquid chromatography tandem mass spectrometry, dynamic light scattering, atomic force microscopy and transmission electron microscopy. Measurements have shown that DOX did not significantly affect particle size (23 nm). It is also assumed that FNP/DOX could reduce the acute cardiotoxic effects of DOX in vivo (Wistar rats treated i.p.). In this study, quantitative real time polymerase chain reaction results have shown that treatment with DOX alone caused significant increase in mRNA levels of catalase (p < 0.05) enzyme indicating the presence of oxidative stress. This effect is significantly reduced by the treatment with FNP/DOX (p < 0.05). Furthermore, mRNA levels of antiapoptotic enzyme (Bcl-2) are significantly increased (p < 0.05) in all treated groups, particularly where FNP/DOX was applied, suggesting cell resistance to apoptosis. Moreover, ultrastructural analysis has shown the absence of myelin figures within the mitochondria in the heart tissue with FNP/DOX treatment, indicating reduction of oxidative stress. Hence, our results have implied that FNP/DOX is generally less harmful to the heart compared to DOX.
Collapse
Affiliation(s)
- Mariana Seke
- Institute of Nuclear Sciences 'Vinca', University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|