101
|
Chang CC, Chen CY, Chang GD, Chen TH, Chen WL, Wen HC, Huang CY, Chang CH. Hyperglycemia and advanced glycation end products (AGEs) suppress the differentiation of 3T3-L1 preadipocytes. Oncotarget 2017; 8:55039-55050. [PMID: 28903400 PMCID: PMC5589639 DOI: 10.18632/oncotarget.18993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
Aging is characterized by mild hyperglycemia and accumulation of advanced glycation end products (AGEs). Effects of chronic exposure to hyperglycemia or AGEs on the adipogenic differentiation of 3T3-L1 preadipocytes remain unclear. We examined the chronic effect of AGEs and high glucose on the differentiation of 3T3-L1 cells by culturing 3T3-L1 cells in the presence of AGEs or 25 mM glucose for 1 month. Chronic incubation of 3T3-L1 cells with AGEs or high glucose blocked their differentiation into mature adipocytes as evidenced by reduced levels of adipocyte markers such as accumulated oil droplets, GPDH, aP2, adiponectin and of adipogenesis regulators PPARγ and C/EBPα. Levels or activities of Src, PDK1, Akt, and NF-κB were higher in AGEs- and high glucose-treated cells than those in 3T3-L1 cells. Levels of Bcl-2 were elevated in AGEs- and high glucose-treated cells, and were attenuated by inhibitors of PI3-kinase, Akt and NF-κB. Moreover, adipogenesis was attenuated in 3T3-L1 cells stably expressing Bcl-2 or YAP. These results suggest that chronic AGEs and high glucose treatments up-regulate Bcl-2 and YAP via the Akt-NF-κB pathway and impair adipogenesis.
Collapse
Affiliation(s)
- Chia-Chu Chang
- Graduate Institute of Basic Medical Science, Ph.D. Program for Aging, China Medical University, Taichung, Taiwan 40402, Republic of China.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan 40201, Republic of China.,Environmental and Precision Medicine Laboratory, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan 50006, Republic of China
| | - Chen-Yu Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan 35053, Republic of China
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, School of Life Science, National Taiwan University, Taipei, Taiwan 10617, Republic of China
| | - Ting-Huan Chen
- Environmental and Precision Medicine Laboratory, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan 50006, Republic of China.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan 35053, Republic of China.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Woan-Ling Chen
- Environmental and Precision Medicine Laboratory, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan 50006, Republic of China.,Department of Food Science, Tunghai University, Taichung, Taiwan 40704, Republic of China
| | - Hui-Chin Wen
- Graduate Institute of Basic Medical Science, Ph.D. Program for Aging, China Medical University, Taichung, Taiwan 40402, Republic of China
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, Ph.D. Program for Aging, China Medical University, Taichung, Taiwan 40402, Republic of China
| | - Chung-Ho Chang
- Graduate Institute of Basic Medical Science, Ph.D. Program for Aging, China Medical University, Taichung, Taiwan 40402, Republic of China.,Environmental and Precision Medicine Laboratory, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan 50006, Republic of China.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan 35053, Republic of China
| |
Collapse
|
102
|
Fiorentino TV, Marini MA, Succurro E, Sciacqua A, Andreozzi F, Perticone F, Sesti G. Elevated hemoglobin glycation index identify non-diabetic individuals at increased risk of kidney dysfunction. Oncotarget 2017; 8:79576-79586. [PMID: 29108337 PMCID: PMC5668070 DOI: 10.18632/oncotarget.18572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/11/2017] [Indexed: 01/29/2023] Open
Abstract
Hemoglobin glycation index (HGI), calculated as the difference between the observed value of HbA1 and the predicted HbA1c based on plasma glucose concentration, is a measure of the individual tendency toward non-enzymatic hemoglobin glycation which has been found to be positively associated with nephropathy in subjects with diabetes. In this cross-sectional study we aimed to evaluate whether higher HGI levels are associated with impaired kidney function also among nondiabetic individuals. The study group comprised 1505 White nondiabetic individuals stratified in quartiles according to HGI levels. Estimated glomerular filtration rate (eGFR) was calculated by using the MDRD equation. Individuals in the intermediate and high HGI groups exhibited a worse metabolic phenotype with increased levels of visceral obesity, total cholesterol, triglycerides, inflammatory biomarkers such as hsCRP and white blood cells count and lower values of HDL and insulin sensitivity assessed by Matsuda index in comparison to the lowest quartile of HGI. Subjects in the intermediate and high HGI groups displayed a graded decrease of eGFR levels in comparison with the lowest quartile of HGI. In a logistic regression analysis individuals in the highest quartile of HGI exhibited a significantly 3.6-fold increased risk of having chronic kidney disease (95% CI: 1.13–11.24, P = 0.03) and a significantly 1.6-fold increased risk of having a mildly reduced kidney function (95% CI: 1.19–2.28, P = 0.003) in comparison to individuals in the lowest HGI group. In conclusion HGI may be a useful tool to identify nondiabetic individuals with an increased risk of having kidney dysfunction.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Elena Succurro
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, Viale Europa, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
103
|
DJC Suppresses Advanced Glycation End Products-Induced JAK-STAT Signaling and ROS in Mesangial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28630633 PMCID: PMC5467335 DOI: 10.1155/2017/2942830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antidiabetic properties and anti-inflammatory effects of Danzhi Jiangtang Capsules (DJC) have been demonstrated in clinical and laboratory experiments. In this study, we explored whether DJC can ameliorate advanced glycation end products- (AGEs-) mediated cell injury and the precise mechanisms of DJC in treating diabetic nephropathy (DN). Western blot analysis was employed to assess the expressions of iNOS, COX2, and SOCS and the phosphorylation of JAK2, STAT1, and STAT3 in glomerular mesangial cells (GMCs) after treatment with DJC. TNF-α, IL-6, and MCP-1 were determined using double-antibody sandwich ELISA. ROS and NADPH oxidase activity were measured by DCFH-DA assay and lucigenin-enhanced chemiluminescence, respectively. DJC significantly reversed the AGEs-induced expression of COX2 and iNOS. Moreover, DJC inhibited the AGEs-induced JAK2-STAT1/STAT3 activation, resulting in the inhibition of inflammatory cytokines such as IL-6, MCP-1, and TNF-α in a concentration-dependent manner. The ability of DJC to suppress STAT activation was also verified by the observation that DJC significantly increased the SOCS3 protein level. DJC reversed the AGEs-induced accumulation of ROS and NADPH oxidase activity, thus confirming that DJC possesses antioxidant activity. The results suggest that the anti-inflammatory effects of DJC in GMCs may be due to its ability to suppress the JAK2-STAT1/STAT3 cascades and reduce ROS production.
Collapse
|
104
|
Campion CG, Sanchez-Ferras O, Batchu SN. Potential Role of Serum and Urinary Biomarkers in Diagnosis and Prognosis of Diabetic Nephropathy. Can J Kidney Health Dis 2017; 4:2054358117705371. [PMID: 28616250 PMCID: PMC5461910 DOI: 10.1177/2054358117705371] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
PURPOSE OF REVIEW Diabetic nephropathy (DN) is a progressive kidney disease caused by alterations in kidney architecture and function, and constitutes one of the leading causes of end-stage renal disease (ESRD). The purpose of this review is to summarize the state of the art of the DN-biomarker field with a focus on the new strategies that enhance the sensitivity of biomarkers to predict patients who will develop DN or are at risk of progressing to ESRD. OBJECTIVE In this review, we provide a description of the pathophysiology of DN and propose a panel of novel putative biomarkers associated with DN pathophysiology that have been increasingly investigated for diagnosis, to predict disease progression or to provide efficient personal treatment. METHODS We performed a review of the literature with PubMed and Google Scholar to collect baseline data about the pathophysiology of DN and biomarkers associated. We focused our research on new and emerging biomarkers of DN. KEY FINDINGS In this review, we summarized the critical signaling pathways and biological processes involved in DN and highlighted the pathogenic mediators of this disease. We next proposed a large review of the major advances that have been made in identifying new biomarkers which are more sensitive and reliable compared with currently used biomarkers. This includes information about emergent biomarkers such as functional noncoding RNAs, microRNAs, long noncoding RNAs, exosomes, and microparticles. LIMITATIONS Despite intensive strategies and constant investigation, no current single treatment has been able to reverse or at least mitigate the progression of DN, or reduce the morbidity and mortality associated with this disease. Major difficulties probably come from the renal disease being heterogeneous among the patients. IMPLICATIONS Expanding the proteomics screening, including oxidative stress and inflammatory markers, along with metabolomics approaches may further improve the prognostic value and help in identifying the patients with diabetes who are at high risk of developing kidney diseases.
Collapse
Affiliation(s)
- Carole G. Campion
- Centre de recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM), Québec, Canada
| | - Oraly Sanchez-Ferras
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Québec, Canada
| | - Sri N. Batchu
- St. Michael’s Hospital, University of Toronto, Ontario, Canada
| |
Collapse
|
105
|
Takahashi A, Takabatake Y, Kimura T, Maejima I, Namba T, Yamamoto T, Matsuda J, Minami S, Kaimori JY, Matsui I, Matsusaka T, Niimura F, Yoshimori T, Isaka Y. Autophagy Inhibits the Accumulation of Advanced Glycation End Products by Promoting Lysosomal Biogenesis and Function in the Kidney Proximal Tubules. Diabetes 2017; 66:1359-1372. [PMID: 28246295 DOI: 10.2337/db16-0397] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022]
Abstract
Advanced glycation end products (AGEs) are involved in the progression of diabetic nephropathy. AGEs filtered by glomeruli or delivered from the circulation are endocytosed and degraded in the lysosomes of kidney proximal tubular epithelial cells (PTECs). Autophagy is a highly conserved degradation system that regulates intracellular homeostasis by engulfing cytoplasmic components. We have recently demonstrated that autophagic degradation of damaged lysosomes is indispensable for cellular homeostasis in some settings. In this study, we tested the hypothesis that autophagy could contribute to the degradation of AGEs in the diabetic kidney by modulating lysosomal biogenesis. Both a high-glucose and exogenous AGE overload gradually blunted autophagic flux in the cultured PTECs. AGE overload upregulated lysosomal biogenesis and function in vitro, which was inhibited in autophagy-deficient PTECs because of the impaired nuclear translocation of transcription factor EB. Consistently, streptozotocin-treated, PTEC-specific, autophagy-deficient mice failed to upregulate lysosomal biogenesis and exhibited the accumulation of AGEs in the glomeruli and renal vasculature as well as in the PTECs, along with worsened inflammation and fibrosis. These results indicate that autophagy contributes to the degradation of AGEs by the upregulation of lysosomal biogenesis and function in diabetic nephropathy. Strategies aimed at promoting lysosomal function hold promise for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomonori Kimura
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Tomoko Namba
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun-Ya Kaimori
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taiji Matsusaka
- Institute of Medical Science and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
106
|
Cha RH, Kang SW, Park CW, Cha DR, Na KY, Kim SG, Yoon SA, Kim S, Han SY, Park JH, Chang JH, Lim CS, Kim YS. Sustained uremic toxin control improves renal and cardiovascular outcomes in patients with advanced renal dysfunction: post-hoc analysis of the Kremezin Study against renal disease progression in Korea. Kidney Res Clin Pract 2017; 36:68-78. [PMID: 28392999 PMCID: PMC5331977 DOI: 10.23876/j.krcp.2017.36.1.68] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/18/2022] Open
Abstract
Background We investigated the long-term effect of AST-120, which has been proposed as a therapeutic option against renal disease progression, in patients with advanced chronic kidney disease (CKD). Methods We performed post-hoc analysis with a per-protocol group of the K-STAR study (Kremezin study against renal disease progression in Korea) that randomized participants into an AST-120 and a control arm. Patients in the AST-120 arm were given 6 g of AST-120 in three divided doses, and those in both arms received standard conventional treatment. Results The two arms did not differ significantly in the occurrence of composite primary outcomes (log-rank P = 0.41). For AST-120 patients with higher compliance, there were fewer composite primary outcomes: intermediate tertile hazard ratio (HR) 0.62, 95% confidence interval (CI) 0.38 to 1.01, P = 0.05; highest tertile HR 0.436, 95% CI 0.25 to 0.76, P = 0.003. The estimated glomerular filtration rate level was more stable in the AST-120 arm, especially in diabetic patients. At one year, the AST-120-induced decrease in the serum indoxyl sulfate concentration inversely correlated with the occurrence of composite primary outcomes: second tertile HR 1.59, 95% CI 0.82 to 3.07, P = 0.17; third tertile HR 2.11, 95% CI 1.07 to 4.17, P = 0.031. Furthermore, AST-120 showed a protective effect against the major cardiovascular adverse events (HR 0.51, 95% CI 0.26 to 0.99, P = 0.046). Conclusion Long-term use of AST-120 has potential for renal protection, especially in diabetic patients, as well as cardiovascular benefits. Reduction of the serum indoxyl sulfate level may be used to identify patients who would benefit from AST-120 administration.
Collapse
Affiliation(s)
- Ran-Hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Shin Wook Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Whee Park
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan-Hospital, Korea University College of Medicine, Seoul, Korea
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University Bundang Hopsital, Seongnam, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sun Ae Yoon
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hopsital, Seongnam, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Youb Han
- Department of Internal Medicine, Inje University Ilsan-Paik Hospital, Goyang, Korea
| | - Jung Hwan Park
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Jae Hyun Chang
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University of Medicine and Science, Incheon, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Kidney Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
107
|
Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice. Br J Nutr 2017; 117:21-29. [PMID: 28093090 DOI: 10.1017/s0007114516004591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diets enriched with advanced glycation end products (AGE) have recently been related to muscle dysfunction processes. However, it remains unclear whether long-term exposure to an AGE-enriched diet impacts physiological characteristics of skeletal muscles. Therefore, we explored the differences in skeletal muscle mass, contractile function and molecular responses between mice receiving a diet high in AGE (H-AGE) and low in AGE (L-AGE) for 16 weeks. There were no significant differences between L-AGE and H-AGE mice with regard to body weight, food intake or epididymal fat pad weight. However, extensor digitorum longus (EDL) and plantaris (PLA) muscle weights in H-AGE mice were lower compared with L-AGE mice. Higher levels of N ε -(carboxymethyl)-l-lysine, a marker for AGE, in EDL muscles of H-AGE mice were observed compared with L-AGE mice. H-AGE mice showed lower muscle strength and endurance in vivo and lower muscle force production of PLA muscle in vitro. mRNA expression levels of myogenic factors including myogenic factor 5 and myogenic differentiation in EDL muscle were lower in H-AGE mice compared with L-AGE mice. The phosphorylation status of 70-kDa ribosomal protein S6 kinase Thr389, an indicator of protein synthesis signalling, was lower in EDL muscle of H-AGE mice than that of L-AGE mice. These findings suggest that long-term exposure to an AGE-enriched diet impairs skeletal muscle growth and muscle contractile function, and that these muscle dysfunctions may be attributed to the inhibition of myogenic potential and protein synthesis.
Collapse
|
108
|
Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal 2017; 25:84-92. [PMID: 28911546 PMCID: PMC9333423 DOI: 10.1016/j.jfda.2016.10.017] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 10/28/2022] Open
|
109
|
Liu CY, Huang QF, Cheng YB, Guo QH, Chen Q, Li Y, Wang JG. A Comparative Study on Skin and Plasma Advanced Glycation End Products and Their Associations with Arterial Stiffness. Pulse (Basel) 2016; 4:208-218. [PMID: 28229055 DOI: 10.1159/000453581] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/17/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We compared skin and plasma measurements of advanced glycation end products (AGEs), with particular focus on their levels in the presence of hypertension or diabetes and prediabetes and their associations with arterial stiffness in outpatients with suspected or diagnosed hypertension. METHODS Skin AGE accumulation was measured as autofluorescence on the left forearm using the skin autofluorescence Reader and expressed in arbitrary units in the range from 0 to 25. Plasma AGE concentration was measured by the enzyme-linked immunosorbent assay method and logarithmically transformed for statistical analysis. Arterial stiffness was assessed by carotid-femoral pulse wave velocity (cfPWV) using the SphygmoCor system (Sydney, Australia). RESULTS The 218 participants (96 [44.0%] men, mean age 51.9 years) had a mean skin autofluorescence of 1.89 arbitrary units, plasma AGE concentration of 4.47 μg/ml, and cfPWV of 8.0 m/s. Skin autofluorescence was significantly correlated with plasma AGEs in diabetic or prediabetic patients (n = 31, r = 0.37, p = 0.04) but not in subjects with normoglycemia (n = 187, r = -0.05, p = 0.48). Nonetheless, both measurements were significantly (p ≤ 0.001) higher in men (2.00 arbitrary units and 6.73 μg/ml, respectively) than women (1.81 arbitrary units and 3.60 μg/ml, respectively) and in diabetic or prediabetic (2.03 arbitrary units and 6.61 μg/ml, respectively) than normoglycemia subjects (1.87 arbitrary units and 4.17 μg/ml, respectively), but similar in hypertensive (n = 105) and normotensive subjects (n = 113, p ≥ 0.35). In adjusted multiple regression analyses, plasma AGE concentration, but not skin autofluorescence (p ≥ 0.37), was significantly associated with cfPWV in all subjects (β 0.44 m/s for each 10-fold increase; p = 0.04) and in subgroups of men and diabetes and prediabetes (β 0.12-0.55 m/s for each 10-fold increase; p ≤ 0.02). CONCLUSIONS Although skin and plasma AGEs were similarly associated with gender and diabetes or prediabetes, they might measure something different and have different clinical relevance, such as for arterial stiffness.
Collapse
Affiliation(s)
- Chang-Yuan Liu
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi-Fang Huang
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Bang Cheng
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian-Hui Guo
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Chen
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Li
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
110
|
Van Putte L, De Schrijver S, Moortgat P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: a systematic review. Scars Burn Heal 2016; 2:2059513116676828. [PMID: 29799552 PMCID: PMC5965313 DOI: 10.1177/2059513116676828] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: With ageing, the skin gradually loses its youthful appearance and functions
like wound healing and scar formation. The pathophysiological theory of
Advanced Glycation End products (AGEs) has gained traction during the last
decade. This review aims to document the influence of AGEs on the mechanical
and physiologic properties of the skin, how they affect dermal wound healing
and scar formation in high-AGE populations like elderly patients and
diabetics, and potential therapeutic strategies. Methods: This systematic literature study involved a structured search in Pubmed and
Web of Science with qualitative analysis of 14 articles after a three-staged
selection process with the use of in- and exclusion criteria. Results: Overall, AGEs cause shortened, thinned, and disorganized collagen fibrils,
consequently reducing elasticity and skin/scar thickness with increased
contraction and delayed wound closure. Documented therapeutic strategies
include dietary AGE restriction, sRAGE decoy receptors, aminoguanidine,
RAGE-blocking antibodies, targeted therapy, thymosin β4, anti-oxidant agents
and gold nanoparticles, ethyl pyruvate, Gal-3 manipulation and
metformin. Discussion: With lack of evidence concerning scars, no definitive conclusions can yet be
made about the role of AGEs on possible appearance or function of scar
tissue. However, all results suggest that scars tend to be more rigid and
contractile with persistent redness and reduced tendency towards hypertrophy
as AGEs accumulate. Conclusion: Abundant evidence supports the pathologic role of AGEs in ageing and dermal
wound healing and the effectiveness of possible therapeutic agents. More
research is required to conclude its role in scar formation and scar
therapy. Our skin is the body’s first line of defense. It is the barrier that protects us
from chemical and biological threats such as viruses, bacteria or corrosive
liquids. It is the sensor that allows us to detect physical threats like extreme
temperatures, pressure and pain. And when these preventative measures fail, the
skin has yet another property: the ability to heal. Skin changes visibly with age, most notably with the appearance of wrinkles.
However, there is more to ageing than meets the eye; invisible alterations cause
the decline of various functions of the skin, such as wound healing and scar
formation. An array of non-conclusive research has been done in this field. One
theory that has gained traction during the last decade is the Advanced Glycation
End products (AGEs) theory. The theory states that AGEs play an important role
in skin aging, wound healing and the effectiveness of different therapeutic
options. Their presence supposedly indicates a diminished ability for wound
healing and scar formation. AGEs are proteins to which sugar molecule is bound. The sugar molecule inhibits
the original protein from functioning properly. As skin contains many proteins
like collagen, the formation of these AGEs could be a viable explanation for the
diminished functioning with ageing. In this review, we investigated whether the
accumulation of AGEs affects wound healing and scar formation. Normal scar formation results in a thin scar. However, it may happen that
scarring results in thick, large, painful and itchy scars. We investigated
whether people with a high AGE content in their skin, like diabetics and
elderly, have difficulties forming aesthetically pleasing scars. Secondly, we
investigated which therapies reduce the AGE content and, if so, whether these
therapies can improve wound healing and scarring. This literature study involved
research in scientific databases with qualitative analysis of 14 articles after
a three-staged selection process with the use of set criteria. We found the different ways in which AGEs affect skin properties and wound
healing. Collagen, one of the most important proteins in the skin, is affected
by these AGEs. Once a sugar binds to it, the collagen strings becomes thinner
and shorter, and the different collagen proteins cross-link with each other in
an unstructured way. The result of these alterations is a reduced elasticity,
i.e. the skin becomes stiffer. The scar will be thinner and the time for wounds
to close is longer. We also found strategies to diminish the AGE content,
including dietary AGE restriction and Metformin, a drug used in diabetes. We can conclude that there is proof of AGEs playing an important role in skin
ageing, wound healing and the effectiveness of different therapeutic options.
However, more research is required to conclude the exact role of AGEs in scar
formation and scar therapy.
Collapse
Affiliation(s)
- Lennert Van Putte
- Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Sofie De Schrijver
- Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Peter Moortgat
- Oscare, Organisation for Burns, Scar After-care and Research, Antwerp, Belgium
| |
Collapse
|
111
|
Garud MS, Kulkarni YA. Eugenol ameliorates renal damage in streptozotocin-induced diabetic rats. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
112
|
Grzebyk E, Piwowar A. Inhibitory actions of selected natural substances on formation of advanced glycation endproducts and advanced oxidation protein products. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:381. [PMID: 27687139 PMCID: PMC5041538 DOI: 10.1186/s12906-016-1353-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/15/2016] [Indexed: 01/04/2023]
Abstract
Background Advanced glycation endproducts (AGE) and advanced oxidation protein products (AOPP) arise as a result of excessive glycation and oxidation processes of proteins in hyperglycemia and oxidative stress conditions respectively, both in vivo and in vitro. In vivo these processes are especially intensified in patients with diabetes, and the adverse effects of AGE and AOPP are particularly unfavorable for the pathogenesis and aggravate the biochemical disturbances and clinical complications of diabetes. Total AGE and AOPP (T-AGE and T-AOPP) are heterogeneous groups of compounds, and they can be divided into two main fractions: high- and low-molecular-weight, i.e. HMW-AGE and HMW-AOPP as well as LMW-AGE and LMW-AOPP. Therefore it is important to find natural substances that will prevent formation of total AGE and AOPP and their high- and low-molecular-weight fractions and thereby reduce their adverse effects on tissues and organs. Method Selected natural substances and dietary supplements such as vitamin C, aminoguanidine, quercetin and green tea as well as the multicompound formulations Padma Circosan and Padma 28 were tested in an in vitro model using bovine serum albumin (BSA). Fluorescence of T-, HMW- and LMW-AGE and concentration of T-, HMW- and LMW-AOPP were measured after incubation with these substances. Results In the examined concentrations quercetin showed the greatest degree of inhibition for T-AGE (60.5 %) as well as for HMW-AGE (79.5 %), while in the case of LMW-AGE the greatest degree of glycation inhibition was shown by Padma Circosan (74.9 %). T-AOPP and HMW-AOPP were best inhibited by vitamin C (87.3 and 89.1 % respectively). The results obtained for LMW-AOPP are atypical, but the lowest concentration was observed in a sample with Padma 28. Conclusion The results show that all tested natural compounds have inhibitory activity towards the formation of total and low- and high-molecular-weight forms of AGE and AOPP in vitro. That suggest a possible role in the prevention of diabetic complications, especially the multiherbal compound Padma preparations, which are especially effective in lowering the most dangerous, i.e. LMW fractions.
Collapse
|
113
|
Erol YO, Atilla P, Acaroglu G, Muftuoglu S, Karakaya J. A histopathological investigation of Tenon's capsule in diabetic eyes. Int Ophthalmol 2016; 37:627-633. [PMID: 27515167 DOI: 10.1007/s10792-016-0316-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
The aim of this study is to investigate the histopathological features of Tenon's capsule in eyes with diabetic macular oedema and to compare them between diabetic eyes and healthy subjects. The study included 26 eyes with diabetic oedema and 17 healthy eyes as healthy controls. Tenon's capsule biopsy specimens were processed with the routine electron microscopic analysis technique. Type I and III collagen fibres were labelled immunohistochemically to determine the amounts of predominating collagen fibres. Leica Q-Win program was used to calculate the amounts of collagen fibres type I and type III and independent-t test was utilized to compare the obtained results between the groups. Statistical significance was set at p < 0.05. Demographic characteristics of both groups were similar (p > 0.05). Collagen type I and type III immunoreactivity was observed both in the control and the diabetic groups. The Amounts of collagen fibres type I and type III were significantly higher in the diabetic group than in the control group (mean collagen type I area: 13.410 ± 0.99 and mean collagen type III area: 23.692 ± 0.17 in the control group; mean collagen type I area: 25.270 ± 6.48 and mean collagen type III area: 28.192 ± 0.82 in the diabetic group. p = 0.0037 for type I and p = 0.0000 for type III). In light of the findings of this study, it can be assumed that diabetes mellitus may engender increased amounts of collagen in Tenon's capsule. This alteration affecting the success of filtration surgery should be kept in mind especially in diabetic eyes with glaucoma.
Collapse
Affiliation(s)
- Yasemin Ozdamar Erol
- Ankara Ulucanlar Eye Research Hospital, Ulucanlar cad. No: 59 Altındağ, 06100, Ankara, Turkey.
| | - Pergin Atilla
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Golge Acaroglu
- Ankara Ulucanlar Eye Research Hospital, Ulucanlar cad. No: 59 Altındağ, 06100, Ankara, Turkey
| | - Sevda Muftuoglu
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Jale Karakaya
- Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
114
|
Abuelezz SA, Hendawy N, Osman WM. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:897-909. [PMID: 27154762 DOI: 10.1007/s00210-016-1253-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis is a progressive lung disorder with high mortality rate and limited successful treatment. This study was designed to assess the potential anti-oxidant and anti-fibrotic effects of aliskiren (Alsk) during bleomycin (BLM)-induced pulmonary fibrosis. Male Wistar rats were used as control untreated or treated with the following: a single dose of 2.5 mg/kg of BLM endotracheally and BLM and Alsk (either low dose 30 mg/kg/day or high dose 60 mg/kg/day), and another group was given Alsk 60 mg/kg/day alone. Alsk was given by gavage. Alsk anti-oxidant and anti-fibrotic effects were assessed. BLM significantly increased relative lung weight and the levels of lactate dehydrogenase and total and differential leucocytic count in bronchoalveolar lavage that was significantly ameliorated by high-dose Alsk treatment. As markers of oxidative stress, BLM caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease of superoxide dismutase and glutathione transferase enzymes. High-dose Alsk treatment restored these markers toward normal values. Alsk counteracted the overexpression of advanced glycation end products, matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 in lung tissue induced by BLM. Fibrosis assessed by measuring hydroxyproline content, which markedly increased in the BLM group, was also significantly reduced by Alsk. These were confirmed by histopathological and immunohistochemical examination which revealed that Alsk attenuates signs of pulmonary fibrosis and decreased the overexpressed MMP-9 and transforming growth factor β1. Collectively, these findings indicate that Alsk has a potential anti-fibrotic effect beside its anti-oxidant activity.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt.
| | - Nevien Hendawy
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Wesam M Osman
- Pathology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
115
|
Wagner MC, Myslinski J, Pratap S, Flores B, Rhodes G, Campos-Bilderback SB, Sandoval RM, Kumar S, Patel M, Ashish, Molitoris BA. Mechanism of increased clearance of glycated albumin by proximal tubule cells. Am J Physiol Renal Physiol 2016; 310:F1089-102. [PMID: 26887834 PMCID: PMC4889321 DOI: 10.1152/ajprenal.00605.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/10/2016] [Indexed: 11/22/2022] Open
Abstract
Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins.
Collapse
Affiliation(s)
- Mark C Wagner
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Jered Myslinski
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Shiv Pratap
- The Council of Scientific and Industrial Research Institute of Microbial Technology, Chandigarh, India
| | - Brittany Flores
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - George Rhodes
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Silvia B Campos-Bilderback
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Ruben M Sandoval
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Sudhanshu Kumar
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Monika Patel
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Ashish
- The Council of Scientific and Industrial Research Institute of Microbial Technology, Chandigarh, India
| | - Bruce A Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; and
| |
Collapse
|
116
|
Chen Y, Zhang Y, Ji H, Ji Y, Yang J, Huang J, Sun D. Involvement of hypoxia-inducible factor-1α in the oxidative stress induced by advanced glycation end products in murine Leydig cells. Toxicol In Vitro 2016; 32:146-53. [DOI: 10.1016/j.tiv.2015.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 10/28/2022]
|
117
|
Waseda K, Miyahara N, Taniguchi A, Kurimoto E, Ikeda G, Koga H, Fujii U, Yamamoto Y, Gelfand EW, Yamamoto H, Tanimoto M, Kanehiro A. Emphysema requires the receptor for advanced glycation end-products triggering on structural cells. Am J Respir Cell Mol Biol 2016; 52:482-91. [PMID: 25188021 DOI: 10.1165/rcmb.2014-0027oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The receptor for advanced glycation end-products (RAGE) is a multiligand cell surface receptor reported to be involved in the process of acute alveolar epithelial cell injury. However, studies that address the role of RAGE in pulmonary emphysema are inconclusive. We investigated the role of RAGE in the development of elastase-induced pulmonary inflammation and emphysema in mice. RAGE-sufficient (RAGE(+/+)) mice and RAGE-deficient (RAGE(-/-)) mice were treated with intratracheal elastase on Day 0. Airway inflammation, static lung compliance, lung histology, and the levels of neutrophil-related chemokine and proinflammatory cytokines in bronchoalveolar lavage fluid were determined on Days 4 and 21. Neutrophilia in bronchoalveolar lavage fluid, seen in elastase-treated RAGE(+/+) mice, was reduced in elastase-treated RAGE(-/-) mice on Day 4, and was associated with decreased levels of keratinocyte chemoattractant, macrophage inflammatory protein-2, and IL-1β. Static lung compliance values and emphysematous changes in the lung tissue were decreased in RAGE(-/-) mice compared with RAGE(+/+) mice on Day 21 after elastase treatment. Experiments using irradiated, bone marrow-chimeric mice showed that the mice expressing RAGE on radioresistant structural cells, but not hematopoietic cells, developed elastase-induced neutrophilia and emphysematous change in the lung. In contrast, mice expressing RAGE on hematopoietic cells, but not radioresistant structural cells, showed reduced neutrophilia and emphysematous change in the lung. These data identify the importance of RAGE expressed on lung structural cells in the development of elastase-induced pulmonary inflammation and emphysema. Thus, RAGE represents a novel therapeutic target for preventing pulmonary emphysema.
Collapse
Affiliation(s)
- Koichi Waseda
- 1 Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem Cells Int 2016; 2016:3543678. [PMID: 26941801 PMCID: PMC4752998 DOI: 10.1155/2016/3543678] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/10/2016] [Indexed: 12/26/2022] Open
Abstract
Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
|
119
|
Huang JS, Lee YH, Chuang LY, Guh JY, Hwang JY. Cinnamaldehyde and nitric oxide attenuate advanced glycation end products-induced the Jak/STAT signaling in human renal tubular cells. J Cell Biochem 2016; 116:1028-38. [PMID: 25561392 DOI: 10.1002/jcb.25058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023]
Abstract
Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. It possesses anti-diabetic properties in vitro and in vivo and has anti-inflammatory and anti-cancer effects. To explore whether cinnamaldehyde was linked to altered advanced glycation end products (AGE)-mediated diabetic nephropathy, the molecular mechanisms of cinnamaldehyde responsible for inhibition of AGE-reduced nitric oxide (NO) bioactivity in human renal proximal tubular cells were examined. We found that raising the ambient AGE concentration causes a dose-dependent decrease in NO generation. Cinnamaldehyde significantly reverses AGE-inhibited NO generation and induces high levels of cGMP synthesis and PKG activation. Treatments with cinnamaldehyde, the NO donor S-nitroso-N-acetylpenicillamine, and the JAK2 inhibitor AG490 markedly attenuated AGE-inhibited NOS protein levels and NO generation. Moreover, AGE-induced the JAK2-STAT1/STAT3 activation, RAGE/p27(Kip1) /collagen IV protein levels, and cellular hypertrophy were reversed by cinnamaldehyde. The ability of cinnamaldehyde to suppress STAT activation was also verified by the observation that it significantly increased SCOS-3 protein level. These findings indicate for the first time that in the presence of cinnamaldehyde, the suppression of AGE-induced biological responses is probably mediated by inactivating the JAK2-STAT1/STAT3 cascade or activating the NO pathway.
Collapse
Affiliation(s)
- Jau-Shyang Huang
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
120
|
RAGE-mediated inflammation in patients with septic shock. J Surg Res 2016; 202:315-27. [PMID: 27229106 DOI: 10.1016/j.jss.2016.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The receptor for advanced glycation end-products (RAGE)-pathway is described to be a crucial component of the innate immune response in sepsis. The aims of the present study were, therefore, to delineate the kinetics of membrane-bound RAGE expression, to quantify its soluble isoforms, and to determine the extent of metabolic (e.g., AGE-CML) as well as immunologic (e.g., S100A8/A9) ligands in different inflammatory settings in humans. MATERIALS AND METHODS The presented data result from secondary analyses of an observational clinical pilot study, including patients with septic shock (n = 60), postoperative controls (n = 30), and healthy volunteers (n = 30). Surface-bound expression of RAGE by peripheral blood leukocytes was determined by flow cytometry. In addition, plasma levels of sRAGE, esRAGE, AGE-CML, S100A8/A9, S100A8/A9-CML, RBP, RBP-CML, HSA-CML, HMBG-1, and ß-Amyloid were measured using ELISA. RESULTS In patients with septic shock, RAGE expression was significantly increased in comparison to both control groups, which was paralleled by a significant increase in sRAGE plasma levels. Formation of AGE-CML was shown to be dependent on the availability of the unmodified protein. However, the total amount of AGE-CML did not differ significantly between septic patients and healthy volunteers at early stages or was even lower in patients with sepsis at later stages. In contrast, immunologic ligands (e.g., S100A8/A9) were shown to be significantly elevated in septic patients within the entire study period. CONCLUSIONS Activation of the RAGE-pathway was shown to be of relevance in patients with septic shock, mainly driven by an increase in immunologic (e.g., S100A8/A9) rather than metabolic ligands (e.g., CML-derived AGE-formation).
Collapse
|
121
|
Miranda-Díaz AG, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Andrade-Sierra J. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. J Diabetes Res 2016; 2016:7047238. [PMID: 27525285 PMCID: PMC4971321 DOI: 10.1155/2016/7047238] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
The increase in the prevalence of diabetes mellitus (DM) and the secondary kidney damage produces diabetic nephropathy (DN). Early nephropathy is defined as the presence of microalbuminuria (30-300 mg/day), including normal glomerular filtration rate (GFR) or a mildly decreased GFR (60-89 mL/min/1.73 m(2)), with or without overt nephropathy. The earliest change caused by DN is hyperfiltration with proteinuria. The acceptable excretion rate of albumin in urine is <30 mg/day. Albuminuria represents the excretion of >300 mg/day. Chronic kidney disease (CKD) is characterized by abnormalities in renal function that persist for >3 months with health implications. Alterations in the redox state in DN are caused by the persistent state of hyperglycemia and the increase in advanced glycation end products (AGEs) with ability to affect the renin-angiotensin system and the transforming growth factor-beta (TGF-β), producing chronic inflammation and glomerular and tubular hypertrophy and favoring the appearance of oxidative stress. In DN imbalance between prooxidant/antioxidant processes exists with an increase in reactive oxygen species (ROS). The overproduction of ROS diminishes expression of the antioxidant enzymes (manganese superoxide dismutase, glutathione peroxidase, and catalase). The early detection of CKD secondary to DN and the timely identification of patients would permit decreasing its impact on health.
Collapse
Affiliation(s)
- Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Health Sciences Centre (Centro Universitario de Ciencias de la Salud), University of Guadalajara, 44150 Guadalajara, JAL, Mexico
- *Alejandra Guillermina Miranda-Díaz:
| | | | | | - Jorge Andrade-Sierra
- Nephrology Service, Civil Hospital of Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| |
Collapse
|
122
|
Alexander KL, Mejia CA, Jordan C, Nelson MB, Howell BM, Jones CM, Reynolds PR, Arroyo JA. Differential Receptor for Advanced Glycation End Products Expression in Preeclamptic, Intrauterine Growth Restricted, and Gestational Diabetic Placentas. Am J Reprod Immunol 2015; 75:172-80. [DOI: 10.1111/aji.12462] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/18/2015] [Indexed: 01/09/2023] Open
Affiliation(s)
- Kristen L. Alexander
- Lung and Placenta Research Laboratory; Physiology and Developmental Biology; Brigham Young University; Provo UT USA
| | - Camilo A. Mejia
- Lung and Placenta Research Laboratory; Physiology and Developmental Biology; Brigham Young University; Provo UT USA
| | - Clinton Jordan
- Lung and Placenta Research Laboratory; Physiology and Developmental Biology; Brigham Young University; Provo UT USA
| | - Michael B. Nelson
- Lung and Placenta Research Laboratory; Physiology and Developmental Biology; Brigham Young University; Provo UT USA
| | - Brian M. Howell
- Lung and Placenta Research Laboratory; Physiology and Developmental Biology; Brigham Young University; Provo UT USA
| | - Cameron M. Jones
- Lung and Placenta Research Laboratory; Physiology and Developmental Biology; Brigham Young University; Provo UT USA
| | - Paul R. Reynolds
- Lung and Placenta Research Laboratory; Physiology and Developmental Biology; Brigham Young University; Provo UT USA
| | - Juan A. Arroyo
- Lung and Placenta Research Laboratory; Physiology and Developmental Biology; Brigham Young University; Provo UT USA
| |
Collapse
|
123
|
Jensen TM, Vistisen D, Fleming T, Nawroth PP, Jørgensen ME, Lauritzen T, Sandbæk A, Witte DR. Impact of intensive treatment on serum methylglyoxal levels among individuals with screen-detected type 2 diabetes: the ADDITION-Denmark study. Acta Diabetol 2015; 52:929-36. [PMID: 25808642 DOI: 10.1007/s00592-015-0739-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/11/2015] [Indexed: 11/25/2022]
Abstract
AIMS Methylglyoxal (MG) has been implicated in the development of micro- and macrovascular diabetic complications, but it remains unclear how current treatments of type 2 diabetes affect its circulating levels. METHODS In the Danish arm of the ADDITION trial, we (a) described serum MG levels at baseline and at 6-year follow-up among individuals with screen-detected type 2 diabetes, (b) examined the effect of intensive multifactorial treatment compared with routine care on MG, (c) examined the associations between MG and risk factors at baseline and at follow-up and (d) examined the associations between changes in MG and changes in risk factors. RESULTS Patients in both treatment arms experienced a significant decline in MG from baseline to follow-up, with no effect of allocation to intensive treatment. In cohort analyses, MG was associated with smoking and fasting glucose at baseline and smoking and LDL cholesterol at follow-up. Compared with patients receiving no lipid-lowering treatment, patients receiving lipid-lowering treatment had higher MG at follow-up, and those initiating lipid-lowering treatment experienced a less pronounced decline in MG. CONCLUSIONS Further studies are required to explore any possible effects of the observed decrease in MG in type 2 diabetes patients as well as the potential interplay between MG, lipids, lipid-lowering treatment and smoking.
Collapse
Affiliation(s)
- Troels M Jensen
- Steno Diabetes Center, NSK 2.11, Niels Steensens Vej 1, 2820, Gentofte, Denmark.
| | - Dorte Vistisen
- Steno Diabetes Center, NSK 2.11, Niels Steensens Vej 1, 2820, Gentofte, Denmark
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Marit E Jørgensen
- Steno Diabetes Center, NSK 2.11, Niels Steensens Vej 1, 2820, Gentofte, Denmark
| | - Torsten Lauritzen
- Department of Public Health, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Annelli Sandbæk
- Department of Public Health, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| |
Collapse
|
124
|
Redox Signaling in Diabetic Nephropathy: Hypertrophy versus Death Choices in Mesangial Cells and Podocytes. Mediators Inflamm 2015; 2015:604208. [PMID: 26491232 PMCID: PMC4600552 DOI: 10.1155/2015/604208] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/18/2015] [Indexed: 02/06/2023] Open
Abstract
This review emphasizes the role of oxidative stress in diabetic nephropathy, acting as trigger, modulator, and linker within the complex network of pathologic events. It highlights key molecular pathways and new hypothesis in diabetic nephropathy, related to the interferences of metabolic, oxidative, and inflammatory stresses. Main topics this review is addressing are biomarkers of oxidative stress in diabetic nephropathy, the sources of reactive oxygen species (mitochondria, NADPH-oxidases, hyperglycemia, and inflammation), and the redox-sensitive signaling networks (protein kinases, transcription factors, and epigenetic regulators). Molecular switches deciding on the renal cells fate in diabetic nephropathy are presented, such as hypertrophy versus death choices in mesangial cells and podocytes. Finally, the antioxidant response of renal cells in diabetic nephropathy is tackled, with emphasis on targeted therapy. An integrative approach is needed for identifying key molecular networks which control cellular responses triggered by the array of stressors in diabetic nephropathy. This will foster the discovery of reliable biomarkers for early diagnosis and prognosis, and will guide the discovery of new therapeutic approaches for personalized medicine in diabetic nephropathy.
Collapse
|
125
|
Tabrez S, Al-Shali KZ, Ahmad S. Lycopene powers the inhibition of glycation-induced diabetic nephropathy: a novel approach to halt the AGE-RAGE axis menace. Biofactors 2015; 41:372-81. [PMID: 26453295 DOI: 10.1002/biof.1238] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/08/2015] [Indexed: 11/10/2022]
Abstract
There are accumulating evidences suggesting that interaction between advanced glycation end products (AGEs) and their receptors (RAGEs) induces oxidative stress and subsequently encourages inflammatory reactions, thereby resulting in progressive alteration in renal architecture and function. Interventions that reduce the tissue burden of AGEs have yielded significant positive results in inhibiting the progression of diabetic complications such as diabetic nephropathy. Lycopene, a carotenoid, plays an important role in protection against oxidative stress and hence might prove an efficient antiglycating agent. Current study investigates the effect of lycopene in downregulating the menace caused by ribose-induced glycation both in vitro and in vivo. We observed that treatment with lycopene decelerated the ribose induced AGE formation in HK-2 cells and in rat kidneys thereby downregulating the expression RAGE. HK-2 cells with decreased levels of RAGE showed a decline in nuclear factor κB (NFκB) and matrix metalloproteinase 2 (MMP 2) expressions. Administration of ribose not only induced hyperglycemia in Wistar rats but also developed diabetic nephropathy (DN). However, lycopene was found effective in relieving the biochemical symptoms of DN. Thus lycopene provides protection against development of diabetic nephropathy and ameliorates renal function by halting AGE-RAGE axis.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Zaki Al-Shali
- Department of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, U.P., India
| |
Collapse
|
126
|
Mosińska P, Storr M, Fichna J. The role of AST-120 and protein-bound uremic toxins in irritable bowel syndrome: a therapeutic perspective. Therap Adv Gastroenterol 2015; 8:278-84. [PMID: 26327918 PMCID: PMC4530433 DOI: 10.1177/1756283x15587866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AST-120 (kremezin) exhibits its favourable effects in reducing the levels of renal toxins by selective adsorption of low molecular weight substances from the intestinal lumen. So far, a vast majority of studies were focused on the role of AST-120 in the treatment of chronic kidney diseases and cardiovascular disorders, and positive therapeutic effects of the agent have already been confirmed in clinical conditions. Up to the present, there are only a few studies regarding the role of AST-120 in irritable bowel syndrome (IBS). Compelling data suggest the ability of the compound to adsorb protein-bound uremic toxins and mast cell derived mediators and to modulate the farnesoid X receptor, which is a bile acid sensor indispensable for maintaining homeostasis in the intestine. In this review we focus on the actions of AST-120 on intestinal permeability, reduction of visceral sensitivity and alteration of gut motility. We also discuss whether AST-120 can mitigate common IBS symptoms, such as abdominal pain, bloating and malfunction of the colonic transit and thus improve the quality of life of patients with IBS.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Martin Storr
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Walter Brendel Center of Experimental Medicine, Ludwig Maximilians University of Munich, Munich, Germany,Center of Endoscopy, Starnberg, Germany
| |
Collapse
|
127
|
Suh MJ, Tovchigrechko A, Thovarai V, Rolfe MA, Torralba MG, Wang J, Adkins JN, Webb-Robertson BJM, Osborne W, Cogen FR, Kaplowitz PB, Metz TO, Nelson KE, Madupu R, Pieper R. Quantitative Differences in the Urinary Proteome of Siblings Discordant for Type 1 Diabetes Include Lysosomal Enzymes. J Proteome Res 2015; 14:3123-35. [PMID: 26143644 DOI: 10.1021/acs.jproteome.5b00052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Individuals with type 1 diabetes (T1D) often have higher than normal blood glucose levels, causing advanced glycation end product formation and inflammation and increasing the risk of vascular complications years or decades later. To examine the urinary proteome in juveniles with T1D for signatures indicative of inflammatory consequences of hyperglycemia, we profiled the proteome of 40 T1D patients with an average of 6.3 years after disease onset and normal or elevated HbA1C levels, in comparison with a cohort of 41 healthy siblings. Using shotgun proteomics, 1036 proteins were identified, on average, per experiment, and 50 proteins showed significant abundance differences using a Wilcoxon signed-rank test (FDR q-value ≤ 0.05). Thirteen lysosomal proteins were increased in abundance in the T1D versus control cohort. Fifteen proteins with functional roles in vascular permeability and adhesion were quantitatively changed, including CD166 antigen and angiotensin-converting enzyme 2. α-N-Acetyl-galactosaminidase and α-fucosidase 2, two differentially abundant lysosomal enzymes, were detected in western blots with often elevated quantities in the T1D versus control cohort. Increased release of proteins derived from lysosomes and vascular epithelium into urine may result from hyperglycemia-associated inflammation in the kidney vasculature.
Collapse
Affiliation(s)
- Moo-Jin Suh
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Andrey Tovchigrechko
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Vishal Thovarai
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Melanie A Rolfe
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Manolito G Torralba
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Junmin Wang
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Joshua N Adkins
- ‡Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Bobbie-Jo M Webb-Robertson
- ‡Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Whitney Osborne
- §Children's National Medical Center, 111 Michigan Avenue North West, Washington, DC 20010, United States
| | - Fran R Cogen
- §Children's National Medical Center, 111 Michigan Avenue North West, Washington, DC 20010, United States
| | - Paul B Kaplowitz
- §Children's National Medical Center, 111 Michigan Avenue North West, Washington, DC 20010, United States
| | - Thomas O Metz
- ‡Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Karen E Nelson
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ramana Madupu
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Rembert Pieper
- †J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
128
|
Mashitah MW, Azizah N, Samsu N, Indra MR, Bilal M, Yunisa MV, Arisanti AD. Immunization of AGE-modified albumin inhibits diabetic nephropathy progression in diabetic mice. Diabetes Metab Syndr Obes 2015; 8:347-55. [PMID: 26346342 PMCID: PMC4531026 DOI: 10.2147/dmso.s86332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious vascular complication of diabetes and an important cause of end-stage renal disease. One mechanism by which hyperglycemia causes nephropathy is through the formation of advanced glycation end products (AGE). Development of vaccination would be a promising therapy for the future, while to date, anti-AGE therapy is based on medicines that are needed to be consumed lifelong. This study aimed to find out the effect of immunization of AGE-modified albumin against DN pathogenesis in streptozotocin-induced diabetic in mice. METHODS We used 24 BALB/c male mice as experimental animals, which were divided into six groups, two nondiabetic groups (negative control and AGE-modified bovine serum albumin [BSA] preimmunized groups) and four streptozotocin-induced diabetic groups (diabetic control group and diabetic preimmunized groups for AGE-BSA, Keyhole limpet hemocyanin (KLH), and AGE-BSA-KLH, respectively). RESULTS Diabetic preimmunized groups for AGE-BSA, KLH, and AGE-BSA-KLH showed amelioration in renal function and histopathology compared with the diabetic control group. Preimmunization also maintained nephrin intensity and decreased serum AGE level, kidney AGE deposition, and kidney cells apoptosis. CONCLUSION AGE-BSA and AGE-BSA-KLH immunizations inhibit the progression of DN. Our results strengthen the evidence that the anti-AGE antibodies have a protective role against diabetic vascular complication, especially DN. This study provides a basis for the development of DN-based immunotherapy with AGE immunization as a potential candidate.
Collapse
Affiliation(s)
| | - Nurona Azizah
- Department of Biomedicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Nur Samsu
- Department of Internal Medicine, Division of Nephrology and Hypertension, Saiful Anwar General Hospital, Malang, Indonesia
| | - Muhammad Rasjad Indra
- Department of Biomedicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Muhammad Bilal
- Department of Medicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Meti Verdian Yunisa
- Department of Nursing, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Amildya Dwi Arisanti
- Department of Nursing, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| |
Collapse
|
129
|
Central and peripheral blood pressures in relation to plasma advanced glycation end products in a Chinese population. J Hum Hypertens 2015; 30:430-5. [PMID: 26084655 DOI: 10.1038/jhh.2015.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/10/2015] [Accepted: 05/13/2015] [Indexed: 11/08/2022]
Abstract
We investigated the association of plasma AGE (advanced glycation end product) concentration with central and peripheral blood pressures and central-to-brachial blood pressure amplification in a Chinese population. The study subjects were from a newly established residential area in the suburb of Shanghai. Using the SphygmoCor system, we recorded radial arterial waveforms and derived aortic waveforms by a generalized transfer function and central systolic and pulse pressure by calibration for brachial blood pressure measured with an oscillometric device. The central-to-brachial pressure amplification was expressed as the central-to-brachial systolic blood pressure difference and pulse pressure difference and ratio. Plasma AGE concentration was measured by the enzyme-linked immunosorbent assay method and logarithmically transformed for statistical analysis. The 1051 participants (age, 55.1±13.1 years) included 663 women. After adjustment for sex, age and other confounding factors, plasma AGE concentration was associated with central but not peripheral blood pressures and with some of the pressure amplification indexes. Indeed, each 10-fold increase in plasma AGE concentration was associated with 2.94 mm Hg (P=0.04) higher central systolic blood pressure and 2.39% lower central-to-brachial pulse pressure ratio (P=0.03). In further subgroup analyses, the association was more prominent in the presence of hypercholesterolemia (+8.11 mm Hg, P=0.008) for central systolic blood pressure and in the presence of overweight and obesity (-4.89%, P=0.009), diabetes and prediabetes (-6.26%, P=0.10) or current smoking (-6.68%, P=0.045) for central-to-brachial pulse pressure ratio. In conclusion, plasma AGE concentration is independently associated with central systolic blood pressure and pulse pressure amplification, especially in the presence of several modifiable cardiovascular risk factors.
Collapse
|
130
|
Bondeva T, Wolf G. Role of Neuropilin-1 in Diabetic Nephropathy. J Clin Med 2015; 4:1293-311. [PMID: 26239560 PMCID: PMC4485001 DOI: 10.3390/jcm4061293] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) often develops in patients suffering from type 1 or type 2 diabetes mellitus. DN is characterized by renal injury resulting in proteinuria. Neuropilin-1 (NRP-1) is a single-pass transmembrane receptor protein devoid of enzymatic activity. Its large extracellular tail is structured in several domains, thereby allowing the molecule to interact with multiple ligands linking NRP-1 to different pathways through its signaling co-receptors. NRP-1’s role in nervous system development, immunity, and more recently in cancer, has been extensively investigated. Although its relation to regulation of apoptosis and cytoskeleton organization of glomerular vascular endothelial cells was reported, its function in diabetes mellitus and the development of DN is less clear. Several lines of evidence demonstrate a reduced NRP-1 expression in glycated-BSA cultured differentiated podocytes as well as in glomeruli from db/db mice (a model of type 2 Diabetes) and in diabetic patients diagnosed with DN. In vitro studies of podocytes implicated NRP-1 in the regulation of podocytes’ adhesion to extracellular matrix proteins, cytoskeleton reorganization, and apoptosis via not completely understood mechanisms. However, the exact role of NRP-1 during the onset of DN is not yet understood. This review intends to shed more light on NRP-1 and to present a link between NRP-1 and its signaling complexes in the development of DN.
Collapse
Affiliation(s)
- Tzvetanka Bondeva
- Department of Internal Medicine III, University Hospital Jena, Jena, 07747, Germany.
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, 07747, Germany.
| |
Collapse
|
131
|
Mallipattu SK, Uribarri J. Advanced glycation end product accumulation: a new enemy to target in chronic kidney disease? Curr Opin Nephrol Hypertens 2015; 23:547-54. [PMID: 25160075 DOI: 10.1097/mnh.0000000000000062] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The critical role of advanced glycation end products (AGEs) in the progression of chronic diseases and their complications has recently become more apparent. This review summarizes the recent contributions to the field of AGEs in chronic kidney disease (CKD). RECENT FINDINGS Over the past 3 decades, AGEs have been implicated in the progression of CKD, and specifically diabetic nephropathy. Although numerous in-vitro and in-vivo studies highlight the detrimental role of AGEs accumulation in tissue injury, few prospective human studies or clinical trials show that inhibiting this process ameliorates disease. Nonetheless, recent studies have focused on the novel mechanisms that contribute to end-organ injury as a result of AGEs accumulation, as well as novel targets of therapy in kidney disease. SUMMARY As the prevalence and the incidence of CKD rises in the United States, it is essential to identify therapeutic strategies that either delay the progression of CKD or improve mortality in this population. The focus of this review is on highlighting the recent studies that advance our current understanding of the mechanisms mediating AGEs-induced CKD progression, as well as novel treatment strategies that have the potential to abrogate this disease process. VIDEO ABSTRACT http://links.lww.com/CONH/A12.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- aDivision of Nephrology, Department of Medicine, Stony Brook University bDivision of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
132
|
Lee EJ, Park EY, Mun H, Chang E, Ko JY, Kim DY, Park JH. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J 2015; 29:3506-14. [PMID: 25934702 DOI: 10.1096/fj.15-272302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022]
Abstract
Autosomal polycystic kidney disease (ADPKD) is a highly prevalent genetic renal disorder in which epithelial-lining fluid-filled cysts appear in kidneys. It is accompanied by hyperactivation of cell proliferation, interstitial inflammation, and fibrosis around the cyst lining cells, finally reaching end-stage renal disease. Previously, we found high expression of ligands stimulating the receptor for advanced glycation end products (RAGE) in ADPKD mice. Furthermore, gene silencing of RAGE was revealed to cause reduction of cystogenesis via down-regulation of cell proliferation in vitro, and intravenous administration of anti-RAGE adenovirus in vivo also displayed alleviation of the disease. Here, we attempted to identify the role of soluble RAGE (sRAGE) in inhibiting the progression of ADPKD using 2 different ADPKD mouse models. sRAGE is an endogenously expressed form of RAGE that has no membrane-anchoring domain, thereby giving it the ability to neutralize the ligands that stimulate RAGE signals. Both overexpression of sRAGE and sRAGE treatment blocked RAGE-mediated cell proliferation in vitro. In addition, sRAGE-injected ADPKD mice showed reduced cysts accompanied by enhanced renal function, inhibition of cell proliferation, inflammation, and fibrosis. These positive therapeutic effects of sRAGE displayed little liver toxicity, suggesting it as a new potential therapeutic target of ADPKD with low side effects.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Eun Young Park
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - HyoWon Mun
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - EunSun Chang
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
133
|
Brings S, Zhang S, Choong YS, Hogl S, Middleditch M, Kamalov M, Brimble MA, Gong D, Cooper GJS. Diabetes-induced alterations in tissue collagen and carboxymethyllysine in rat kidneys: Association with increased collagen-degrading proteinases and amelioration by Cu(II)-selective chelation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1610-8. [PMID: 25900786 DOI: 10.1016/j.bbadis.2015.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 02/02/2023]
Abstract
Advanced glycation end-products (AGEs) comprise a group of non-enzymatic post-translational modifications of proteins and are elevated in diabetic tissues. AGE-modification impairs the digestibility of collagen in vitro but little is known about its relation to collagen-degrading proteinases in vivo. N(ε)-carboxymethyllysine (CML) is a stable AGE that forms on lysyl side-chains in the presence of glucose, probably via a transition metal-catalysed mechanism. Here, rats with streptozotocin-induced diabetes and non-diabetic controls were treated for 8weeks with placebo or the Cu(II)-selective chelator, triethylenetetramine (TETA), commencing 8weeks after disease induction. Actions of diabetes and drug treatment were measured on collagen and collagen-degrading proteinases in kidney tissue. The digestibility and CML content of collagen, and corresponding levels of mRNAs and collagen, were related to changes in collagen-degrading-proteinases. Collagen-degrading proteinases, cathepsin L (CTSL) and matrix metalloproteinase-2 (MMP-2) were increased in diabetic rats. CTSL-levels correlated strongly and positively with increased collagen-CML levels and inversely with decreased collagen digestibility in diabetes. The collagen-rich mesangium displayed a strong increase of CTSL in diabetes. TETA treatment normalised kidney collagen content and partially normalised levels of CML and CTSL. These data provide evidence for an adaptive proteinase response in diabetic kidneys, affected by excessive collagen-CML formation and decreased collagen digestibility. The normalisation of collagen and partial normalisation of CML- and CTSL-levels by TETA treatment supports the involvement of Cu(II) in CML formation and altered collagen metabolism in diabetic kidneys. Cu(II)-chelation by TETA may represent a treatment option to rectify collagen metabolism in diabetes independent of alterations in blood glucose levels.
Collapse
Affiliation(s)
- Sebastian Brings
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Shaoping Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Yee S Choong
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Sebastian Hogl
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Meder Kamalov
- The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand; The School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand; The School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Deming Gong
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, School of Biomedicine, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Pharmacology, Division of Medical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
134
|
Elmhiri G, Mahmood DFD, Niquet-Leridon C, Jacolot P, Firmin S, Guigand L, Tessier FJ, Larcher T, Abdennebi-Najar L. Formula-derived advanced glycation end products are involved in the development of long-term inflammation and oxidative stress in kidney of IUGR piglets. Mol Nutr Food Res 2015; 59:939-47. [DOI: 10.1002/mnfr.201400722] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/31/2014] [Accepted: 01/27/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Ghada Elmhiri
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais; Beauvais France
| | - Dler F. D. Mahmood
- UMR 8256 UPMC Université Paris 6, CNRS INSERM; Department of Adaptation and Ageing Biology 8256/ERL 1164; Paris France
- Biology Department; School of Science/University of Sulaimani; Sulaimani-KRG Iraq
| | | | - Philippe Jacolot
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais; Beauvais France
| | - Stephane Firmin
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais; Beauvais France
| | - Lydie Guigand
- INRA; UMR 703 APEX; Ecole Nationale Vétérinaire Agroalimentaire et de l'Alimentation Nantes-Atlantique (Oniris); Nantes France
| | - Frederic J. Tessier
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais; Beauvais France
| | - Thibaut Larcher
- INRA; UMR 703 APEX; Ecole Nationale Vétérinaire Agroalimentaire et de l'Alimentation Nantes-Atlantique (Oniris); Nantes France
| | | |
Collapse
|
135
|
Abstract
There are several mechanisms by which diabetes could affect bone mass and strength. These mechanisms include insulin deficiency; hyperglycemia; the accumulation of advanced glycation end products that may influence collagen characteristics; marrow adiposity and bone inflammation. Furthermore, associated diabetic complications and treatment with thaizolidinediones may also increase risk of fracturing. The following article provides its readers with an update on the latest information pertaining to diabetes related bone skeletal fragility. In the authors' opinion, future studies are needed in order to clarify the impact of different aspects of diabetes metabolism, glycemic control, and specific treatments for diabetes on bone. Given that dual energy x-ray absorptiometry is a poor predictor of bone morbidity in this group of patients, there is a need to explore novel approaches for assessing bone quality. It is important that we develop a better understanding of how diabetes affects bone in order to improve our ability to protect bone health and prevent fractures in the growing population of adults with diabetes.
Collapse
Affiliation(s)
- Naiemh Abdalrahman
- a Developmental Endocrinology Research Group, Royal Hospital for Sick Children, School of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, UK
| | - Suet Ching Chen
- a Developmental Endocrinology Research Group, Royal Hospital for Sick Children, School of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, UK
| | - Jessie Ruijun Wang
- a Developmental Endocrinology Research Group, Royal Hospital for Sick Children, School of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, UK
| | | |
Collapse
|
136
|
Luo Y, Yang SK, Zhou X, Wang M, Tang D, Liu FY, Sun L, Xiao L. Use of Ophiocordyceps sinensis (syn. Cordyceps sinensis) combined with angiotensin-converting enzyme inhibitors (ACEI)/angiotensin receptor blockers (ARB) versus ACEI/ARB alone in the treatment of diabetic kidney disease: a meta-analysis. Ren Fail 2015; 37:614-34. [PMID: 25682973 DOI: 10.3109/0886022x.2015.1009820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ophiocordyceps sinensis (O. sinensis; syn. Cordyceps sinensis) has been used in clinical therapy for diabetic kidney disease (DKD) for more than 15 years. O. sinensis is a household name in china and it is available even in supermarket. However, the precise role of O. sinensis has not been fully elucidated with meta-analysis. The aim of this study was to review existing evidence on the effectiveness of O. sinensis for the treatment of DKD. We identified 60 trials involving 4288 participants. Overall, O. sinensis combined with ACEI/ARB had a better effect when compared to ACEI/ARB alone on 24 h UP (MD = -0.23 g/d, 95% CI: - 0.28 to -0.19, p < 0.00001), UAER (MD = -19.71 μg/min, 95% CI: -22.76 to -16.66, p < 0.00001), MAU (MD = -45.09 mg/d, 95% CI: -55.68 to -34.50, p < 0.00001), BUN (MD = -0.70 mmol/L, 95% CI: -1.02 to -0.39, p < 0.0001), SCr (MD = -8.37 μmol/L, 95% CI: -12.41 to -4.32, p < 0.0001), CRP (MD = -1.32 mg/L; 95% CI: -1.78 to -0.86; p < 0.00001), TG (MD = -0.51 mmol/L; 95% CI: -0.69 to -0.34, p < 0.00001), TC (MD = -0.64 mmol/L; 95% CI: -0.91 to -0.37, p < 0.00001), and SBP (MD = -2.01 mmHg; 95% CI: -3.45 to -0.58, p = 0.006). However, no effects were found for DBP, FBG, and HbA1C. This meta-analysis suggested that use of O. sinensis combined with ACEI/ARB may have a more beneficial effect on the proteinuria, inflammatory, dyslipidemia status as compared to ACEI/ARB alone in DKD III-IV stage patients, while there is no evidence that O. sinensis could improve the hyperglycemia status. However, with regard to low-quality and significant heterogeneity of included trials, to further verify the current results from this meta-analysis, long-term and well-designed RCTs with high-quality study are warranted to ascertain the long-term efficacy of O. sinensis.
Collapse
Affiliation(s)
- Ying Luo
- Department of Nephrology, the Second Xiangya Hospital, Central South University , Changsha, Hunan Province , China and
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Serum advanced glycation end products are associated with insulin resistance in male nondiabetic patients with obstructive sleep apnea. Sleep Breath 2015; 19:827-33. [PMID: 25566941 DOI: 10.1007/s11325-014-1100-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 01/12/2023]
Abstract
PURPOSE Advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic vascular complications. Recently, growing evidence has shown that AGEs could be involved in the pathogenesis of insulin resistance. It has also been suggested that circulating AGE are associated with insulin resistance in nondiabetic patients. This study investigated whether serum AGEs levels are associated with insulin resistance in nondiabetic patients with obstructive sleep apnea (OSA). METHODS A total of 139 male nondiabetic patients with OSA were recruited for participation in the study. Serum AGE levels were examined using an enzyme-linked immunosorbent assay. Insulin resistance was determined using the homeostasis model assessment index (HOMA-IR). RESULTS There was a significant correlation between serum AGEs and the apnea-hypopnea index (AHI) (r = 0.281, p = 0.014), duration of SaO₂ < 90% (r = 0.267, p = 0.018), minimum SaO₂ (r = -0.188, p = 0.046), high-sensitivity C-reactive protein (hsCRP) (r = 0.274, p = 0.012), and HOMA-IR (r = 0.303, p < 0.001). Multiple regression analysis showed that serum AGEs (p = 0.011), AHI (p = 0.024), waist circumference (p = 0.040), and hsCRP (p = 0.046) were independently associated with HOMA-IR (R(2) = 0.392). In addition, the strength of the correlation between serum AGEs and HOMA-IR was related to the severity of OSA. CONCLUSIONS The present study indicated that serum AGE levels were associated with insulin resistance in male nondiabetic patients with OSA. These findings suggest that AGEs may play a role in insulin resistance in OSA and may also be a biomarker for patients with OSA with high risk of developing type 2 diabetes.
Collapse
|
138
|
Takeda Y, Shimada M, Ushida Y, Saito H, Iwamoto H, Okawa T. Effects of Sterilization Process on the Physicochemical and Nutritional Properties of Liquid Enteral Formula. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yasuhiro Takeda
- Nutritional Science Institute, Morinaga Milk Industry Co., Ltd
| | - Masayuki Shimada
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd
| | - Yoshihiko Ushida
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd
| | - Hitoshi Saito
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd
| | - Hiroshi Iwamoto
- Nutritional Science Institute, Morinaga Milk Industry Co., Ltd
| | - Teiichiro Okawa
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd
| |
Collapse
|
139
|
Dwyer JP, Greco BA, Umanath K, Packham D, Fox JW, Peterson R, Broome BR, Greene LE, Sika M, Lewis JB. Pyridoxamine dihydrochloride in diabetic nephropathy (PIONEER-CSG-17): lessons learned from a pilot study. Nephron Clin Pract 2014; 129:22-8. [PMID: 25532068 DOI: 10.1159/000369310] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Pyridoxamine dihydrochloride (Pyridorin™) blocks pathogenic oxidative pathways in the progression of diabetic nephropathy. The pyridoxamine pilot study was designed to test entry criteria and outcomes. Subjects had SCr 1.3-3.5 mg/dl, protein-to-creatinine ≥1,200 mg/g and used a surrogate outcome of ΔSCr over 52 weeks. Subjects had to be on a maximally tolerated dose of ACE/ARB for 3 months; stable other antihypertensive doses for 2 months; stable diuretic dose for 2 weeks, and BP ≤160/90 mm Hg; or enter a Pharmaco-Stabilization Phase (PSP). This pilot failed to detect an effect on ΔSCr in intent-to-treat analysis. METHODS We queried the locked clinical trial database for subgroups in which there was a treatment effect. RESULTS Subjects not requiring PSP and those with entry SCr <2.0 mg/dl had a treatment effect. Subjects entering PSP required more changes in antihypertensive medications and experienced larger ΔSCr over 52 weeks. PSP subjects with BP >140/90 mm Hg had no treatment effect, but those ≤140/90 mm Hg did. CONCLUSION Time required for acute effects of ACE/ARB to stabilize is unknown, but these data suggest >3 months. Thus, subjects in the pivotal trial must be on ACE/ARB for 6 months. Frequent antihypertensive adjustment could engender SCr changes unrelated to CKD progression. Thus, we will require subjects to have BP ≤150/90 mm Hg and on stable antihypertensives for 26 weeks, or ≤140/90 mm Hg and on stable antihypertensives for 13 weeks. Since ΔSCr over 52 weeks is limited as a surrogate outcome, the pivotal trial uses a time-to-event analysis of baseline SCr to at least a 50% increase in SCr or ESRD as the primary outcome. This substantial ΔSCr is protected from noise and is clinically relevant. The pyridoxamine pilot provided critical information to inform the design of PIONEER-CSG-17, which we conducted under the SPA agreement with FDA.
Collapse
|
140
|
Zhu D, Wang L, Zhou Q, Yan S, Li Z, Sheng J, Zhang W. (+)-Catechin ameliorates diabetic nephropathy by trapping methylglyoxal in type 2 diabetic mice. Mol Nutr Food Res 2014; 58:2249-60. [PMID: 25243815 DOI: 10.1002/mnfr.201400533] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 11/08/2022]
Abstract
SCOPE Accumulation of glycolytic metabolite methylglyoxal (MG) in diabetic kidney is thought to contribute to the pathogenesis of nephropathy, either as a direct toxin or as a precursor for advanced glycation end products (AGEs). Using (+)-catechin (CE), a novel MG trapper, we investigated whether MG trapping is sufficient to prevent the progression of diabetic nephropathy in type 2 diabetic mice. METHODS AND RESULTS CE markedly trapped exogenous MG in a time- and dose-dependent manner and formed mono-MG-CE and di-MG-CE adducts, which were characterized by HPLC-ESI-Q-TOFMS. In vivo, CE administration for 16 wk significantly ameliorated renal dysfunction in type 2 diabetic db/db mice, partially due to MG trapping, which in turn inhibited AGEs formation and lowered proinflammatory cytokines, including tumor necrosis factor α and IL-1β. Similarly, the MG trapping and cellular signaling inhibition effects of CE were observed in human endothelium-derived cells under high glucose conditions. CONCLUSION CE might ameliorate renal dysfunction in diabetic mice as consequences of inhibiting AGEs formation and cutting off inflammatory pathway via MG trapping. Thus, CE may be a potential natural product as an MG scavenger against diabetes-related complications.
Collapse
Affiliation(s)
- Dina Zhu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, P. R. China; Beijing Area Major Laboratory of Protection and Utilization of Chinese Medicine Resources, Beijing Normal University, Beijing, P. R. China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, P. R. China
| | | | | | | | | | | | | |
Collapse
|
141
|
Vidyashankar S, Babu UV, Patki PS. Gymnemasylvestre derived compounds inhibit GSH depletion and increase cGMP and nitric oxide to attenuate advanced glycation end products induced hypertrophic growth in renal tubular epithelial cells. Toxicol Rep 2014; 1:834-842. [PMID: 28962295 PMCID: PMC5598397 DOI: 10.1016/j.toxrep.2014.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/24/2023] Open
Abstract
The accumulation of advanced glycation end products (AGE) plays significant role in developing tubular hypertrophy during diabetic nephropathy (DN). Reactive oxygen species and nitric oxide (NO) are directly involved in the progression of DN. We have studied the effect of standardized Gymnemasylvestre organic extract (GE) on AGE induced cellular hypertrophy using rat renal tubular epithelial cells (NRK 52E). AGE (400 μg/ml) induced cytotoxicity to NRK 52E cells as determined by MTT assay at 0–72 h. We report cellular hypertrophy mediated cytotoxicity by AGE which was the result of significant reduction in the cellular nitric oxide and cGMP levels associated with increased lipid peroxidation and antioxidant depletion (P < 0.05). Upon treatment with GE the cell viability was increased with reduced cellular hypertrophy by 1.7 folds when compared to AGE treated group. GE could significantly increase NO by 1.9 folds and cGMP by 2.8 folds and inhibited GSH depletion by 50% during AGE induced toxicity. The antioxidant enzyme activity of catalase was increased by 50% while, glutathione peroxidase and superoxide dismutase enzyme activities were significantly increased by 42% and 67% with decreased lipid peroxidation (49%) upon GE treatment. Thus, GE attenuates AGE induced hypertrophic growth by inhibiting GSH depletion and partly through increased NO/cGMP signaling.
Collapse
Key Words
- AGE, advanced glycation end products
- Advanced glycation end products (AGE)
- Antioxidant enzymes
- CAT, catalase
- Cyclic GMP
- DN, diabetic nephropathy
- GE, Gymnemasylvestre organic extract
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- Glutathione
- Gymnemasylvestre
- LPO, lipid peroxidation
- MDA, malondialdehyde
- NO, nitric oxide
- Nitric oxide
- SOD, superoxide dismutase
- cGMP, cyclic guanosine monophosphate
Collapse
Affiliation(s)
- Satyakumar Vidyashankar
- Cell Biology, Research and Development, The Himalaya Drug Company, Makali, Bangalore 562162, India
| | - Uddagiri Venkanna Babu
- Phytochemistry, Research and Development, The Himalaya Drug Company, Makali, Bangalore 562162, India
| | - Pralhad Sadashiv Patki
- Medical Services Clinical Trials, Research and Development, The Himalaya Drug Company, Makali, Bangalore 562162, India
| |
Collapse
|
142
|
Shan J, Chi Q, Wang H, Huang Q, Yang L, Yu G, Zou X. Mechanosensing of cells in 3D gel matrices based on natural and synthetic materials. Cell Biol Int 2014; 38:1233-43. [DOI: 10.1002/cbin.10325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/17/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Jieling Shan
- College of Chemistry and Chemical Engineering; Chongqing University; Chongqing China
| | - Qingjia Chi
- Key Laboratory of Biorheological Science and Technology (Chongqing University); Ministry of Education; Bioengineering College; Chongqing University; Chongqing 400044 P. R. China
| | - Hongbing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University); Ministry of Education; Bioengineering College; Chongqing University; Chongqing 400044 P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University); Ministry of Education; Bioengineering College; Chongqing University; Chongqing 400044 P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University); Ministry of Education; Bioengineering College; Chongqing University; Chongqing 400044 P. R. China
| | - Guanglei Yu
- College of Mathematics and Statistics; Chongqing University; Chongqing China
| | - Xiaobing Zou
- College of Chemistry and Chemical Engineering; Chongqing University; Chongqing China
| |
Collapse
|
143
|
Figueira MF, Monnerat-Cahli G, Medei E, Carvalho AB, Morales MM, Lamas ME, da Fonseca RN, Souza-Menezes J. MicroRNAs: potential therapeutic targets in diabetic complications of the cardiovascular and renal systems. Acta Physiol (Oxf) 2014; 211:491-500. [PMID: 24837225 DOI: 10.1111/apha.12316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/27/2014] [Accepted: 05/12/2014] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus is a serious health problem that can lead to several pathological complications in numerous organs and tissues. The most important and most prevalent organs affected by this disease are the heart and the kidneys, and these complications are the major causes of death in patients with diabetes. MicroRNAs (miRNAs), short non-coding RNAs, have been found to be functionally important in the regulation of several pathological processes, and they are emerging as an important therapeutic tool to avoid the complications of diabetes mellitus. This review summarizes the knowledge on the effects of miRNAs in diabetes. The use of miRNAs in diabetes from a clinical perspective is also discussed, focusing on their potential role to repair cardiovascular and renal complications.
Collapse
Affiliation(s)
- M. F. Figueira
- Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé; Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Macaé Brazil
| | - G. Monnerat-Cahli
- Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - E. Medei
- Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - A. B. Carvalho
- Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - M. M. Morales
- Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - M. E. Lamas
- Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - R. N. da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé; Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Macaé Brazil
| | - J. Souza-Menezes
- Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé; Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Macaé Brazil
| |
Collapse
|
144
|
Liu R, Zhong Y, Li X, Chen H, Jim B, Zhou MM, Chuang PY, He JC. Role of transcription factor acetylation in diabetic kidney disease. Diabetes 2014; 63:2440-53. [PMID: 24608443 PMCID: PMC4066331 DOI: 10.2337/db13-1810] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear factor (NF)-κB and signal transducer and activator of transcription 3 (STAT3) play a critical role in diabetic nephropathy (DN). Sirtuin-1 (SIRT1) regulates transcriptional activation of target genes through protein deacetylation. Here, we determined the roles of Sirt1 and the effect of NF-κB (p65) and STAT3 acetylation in DN. We found that acetylation of p65 and STAT3 was increased in both mouse and human diabetic kidneys. In human podocytes, advanced glycation end products (AGEs) induced p65 and STAT3 acetylation and overexpression of acetylation-incompetent mutants of p65 and STAT3 abrogated AGE-induced expression of NF-κB and STAT3 target genes. Inhibition of AGE formation in db/db mice by pyridoxamine treatment attenuated proteinuria and podocyte injury, restored SIRT1 expression, and reduced p65 and STAT3 acetylation. Diabetic db/db mice with conditional deletion of SIRT1 in podocytes developed more proteinuria, kidney injury, and acetylation of p65 and STAT3 compared with db/db mice without SIRT1 deletion. Treatment of db/db mice with a bromodomain and extraterminal (BET)-specific bromodomain inhibitor (MS417) which blocks acetylation-mediated association of p65 and STAT3 with BET proteins, attenuated proteinuria, and kidney injury. Our findings strongly support a critical role for p65 and STAT3 acetylation in DN. Targeting protein acetylation could be a potential new therapy for DN.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Medicine/Nephrology, Mount Sinai School of Medicine, New York, NY
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuezhu Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Belinda Jim
- Division of Nephrology, Jacobi Medical Center, Bronx, NY
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY
| | - Peter Y Chuang
- Department of Medicine/Nephrology, Mount Sinai School of Medicine, New York, NY
| | - John Cijiang He
- Department of Medicine/Nephrology, Mount Sinai School of Medicine, New York, NYRenal Section, James J. Peters VA Medical Center, Bronx, NY
| |
Collapse
|
145
|
Fukasawa H, Ishigaki S, Kinoshita-Katahashi N, Yasuda H, Kumagai H, Furuya R. Plasma levels of the pro-inflammatory protein S100A12 (EN-RAGE) are associated with muscle and fat mass in hemodialysis patients: a cross-sectional study. Nutr J 2014; 13:48. [PMID: 24884769 PMCID: PMC4048598 DOI: 10.1186/1475-2891-13-48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malnutrition is highly prevalent and contributes to mortality in hemodialysis (HD) patients. Although the receptor for advanced glycation end products (RAGE) system also contributes to the morbidity and mortality of these patients, the role that the RAGE system plays in determining nutritional status is currently unknown. METHODS A cross-sectional study examining 79 HD patients was performed. The plasma concentrations of the soluble RAGE (sRAGE) and S100A12 (also known as EN-RAGE) were studied to evaluate their association with nutritional status, which was assessed by measuring the mid-thigh muscle mass and subcutaneous fat mass with computed tomography. RESULTS Plasma S100A12 concentrations were shown to be significantly and negatively correlated with muscle mass and with fat mass (r = -0.237, P < 0.05 and r = -0.261, P < 0.05, respectively). In contrast, sRAGE was not shown to significantly correlate with either of these factors. Multiple regression analyses demonstrated that S100A12 is a significant independent predictor of both muscle mass and fat mass (P < 0.01 and P < 0.05, respectively). CONCLUSIONS Our findings suggest that plasma S100A12 levels could play an important role in determining muscle mass and fat mass in HD patients. TRIAL REGISTRATION Study number; UMIN000012341.
Collapse
Affiliation(s)
- Hirotaka Fukasawa
- Renal Division, Department of Internal Medicine, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
146
|
Kaur A, Singh B, Vyas B, Silakari O. Synthesis and biological activity of 4-aryl-3-benzoyl-5-phenylspiro[pyrrolidine-2.3′-indolin]-2′-one derivatives as novel potent inhibitors of advanced glycation end product. Eur J Med Chem 2014; 79:282-9. [DOI: 10.1016/j.ejmech.2014.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/11/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
|
147
|
Cheng H, Chen C, Wang S, Ding G, Shi M. The effects of urokinase-type plasminogen activator (uPA) on cell proliferation and phenotypic transformation of rat mesangial cells induced by high glucose. Diabetes Res Clin Pract 2014; 103:489-95. [PMID: 24447806 DOI: 10.1016/j.diabres.2013.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/22/2013] [Accepted: 11/12/2013] [Indexed: 11/24/2022]
Abstract
AIMS To investigate the effects of urokinase-type plasminogen activator (uPA) on proliferation and phenotypic transformation of rat mesangial cells (MCs) under high glucose conditions and its possible signal transduction pathway. METHODS Rat MC were divided into 4 groups: the control group, the high glucose group, the high glucose and wortmannin group, and the high glucose and uPA group. MC proliferation in all groups was detected by the 3-(4,5-dimethylthiazol-)-2,5-diphenyltetrazolium bromide (MTT) method. MC cell cycle was analyzed by flow cytometry. Expression of cyclin dependent kinase 2 (CDK2), and activity of the signaling protein Akt in MC were detected by Western blot. Expression pattern and quantity of α-smooth muscle actin (α-SMA) in MC were examined using laser confocal microscopy. The expression of plasminogen activator inhibitor-1 (PAI-1), and collagen IV in renal tissues in rats was tested with immunohistochemistry and Western blotting methods. RESULTS Activation of Akt induced by high glucose can be reduced significantly by wortmannin and uPA. There was no obvious change in CDK2 protein expression in different groups (P>0.05). Expression of α-SMA in MC cytoplasm increased dramatically (P<0.01). Expression of α-SMA decreased significantly in the high glucose and wortmannin group and the high glucose and uPA group compared with that of the high glucose group (P<0.01). In diabetic rats, uPA down-regulated PAI-1 and collagen IV expression in mesangial matrix (P<0.05). CONCLUSION uPA antagonizes cell proliferation and phenotypic transformation of MCs induced by high glucose through inhibiting Akt signaling pathway.
Collapse
Affiliation(s)
- Hui Cheng
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C..
| | - Cheng Chen
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C
| | - Siyuan Wang
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C
| | - Guohua Ding
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C
| | - Ming Shi
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C
| |
Collapse
|
148
|
Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:1-14. [PMID: 24634591 PMCID: PMC3951818 DOI: 10.4196/kjpp.2014.18.1.1] [Citation(s) in RCA: 933] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/11/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
Abstract
During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.
Collapse
Affiliation(s)
- Varun Parkash Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| |
Collapse
|
149
|
Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014. [PMID: 24634591 DOI: 10.4196/kjpp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.
Collapse
Affiliation(s)
- Varun Parkash Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| |
Collapse
|
150
|
Park EY, Kim BH, Lee EJ, Chang E, Kim DW, Choi SY, Park JH. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem 2014; 289:9254-62. [PMID: 24515114 DOI: 10.1074/jbc.m113.514166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disorder. Although a myriad of research groups have attempted to identify a new therapeutic target for ADPKD, no drug has worked well in clinical trials. Our research group has focused on the receptor for advanced glycation end products (RAGE) gene as a novel target for ADPKD. This gene is involved in inflammation and cell proliferation. We have already confirmed that blocking RAGE function attenuates cyst growth in vitro. Based on this previous investigation, our group examined the effect of RAGE on cyst enlargement in vivo. PC2R mice, a severe ADPKD mouse model that we generated, were utilized. An adenovirus containing anti-RAGE shRNA was injected intravenously into this model. We observed that RAGE gene knockdown resulted in loss of kidney weight and volume. Additionally, the cystic area that originated from different nephron segments decreased in size because of down-regulation of the RAGE gene. Blood urea nitrogen and creatinine values tended to be lower after inhibiting RAGE. Based on these results, we confirmed that the RAGE gene could be an effective target for ADPKD treatment.
Collapse
Affiliation(s)
- Eun Young Park
- From the Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea and
| | | | | | | | | | | | | |
Collapse
|