101
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
102
|
Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010068] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human Space exploration has created new challenges and new opportunities for science. Reaching beyond the Earth’s surface has raised the issue of the importance of gravity for the development and the physiology of biological systems, while giving scientists the tools to study the mechanisms of response and adaptation to the microgravity environment. As life has evolved under the constant influence of gravity, gravity affects biological systems at a very fundamental level. Owing to limited access to spaceflight platforms, scientists rely heavily on on-ground facilities that reproduce, to a different extent, microgravity or its effects. However, the technical constraints of counterbalancing the gravitational force on Earth add complexity to data interpretation. In-flight experiments are also not without their challenges, including additional stressors, such as cosmic radiation and lack of convection. It is thus extremely important in Space biology to design experiments in a way that maximizes the scientific return and takes into consideration all the variables of the chosen setup, both on-ground or on orbit. This review provides a critical analysis of current ground-based and spaceflight facilities. In particular, the focus was given to experimental design to offer the reader the tools to select the appropriate setup and to appropriately interpret the results.
Collapse
|
103
|
Prasad B, Grimm D, Strauch SM, Erzinger GS, Corydon TJ, Lebert M, Magnusson NE, Infanger M, Richter P, Krüger M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int J Mol Sci 2020; 21:E9373. [PMID: 33317046 PMCID: PMC7764784 DOI: 10.3390/ijms21249373] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
All life forms have evolved under the constant force of gravity on Earth and developed ways to counterbalance acceleration load. In space, shear forces, buoyance-driven convection, and hydrostatic pressure are nullified or strongly reduced. When subjected to microgravity in space, the equilibrium between cell architecture and the external force is disturbed, resulting in changes at the cellular and sub-cellular levels (e.g., cytoskeleton, signal transduction, membrane permeability, etc.). Cosmic radiation also poses great health risks to astronauts because it has high linear energy transfer values that evoke complex DNA and other cellular damage. Space environmental conditions have been shown to influence apoptosis in various cell types. Apoptosis has important functions in morphogenesis, organ development, and wound healing. This review provides an overview of microgravity research platforms and apoptosis. The sections summarize the current knowledge of the impact of microgravity and cosmic radiation on cells with respect to apoptosis. Apoptosis-related microgravity experiments conducted with different mammalian model systems are presented. Recent findings in cells of the immune system, cardiovascular system, brain, eyes, cartilage, bone, gastrointestinal tract, liver, and pancreas, as well as cancer cells investigated under real and simulated microgravity conditions, are discussed. This comprehensive review indicates the potential of the space environment in biomedical research.
Collapse
Affiliation(s)
- Binod Prasad
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Gilmar Sidnei Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
- Space Biology Unlimited SAS, 24 Cours de l’Intendance, 33000 Bordeaux, France
| | - Nils E. Magnusson
- Diabetes and Hormone Diseases, Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
104
|
Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020; 183:1162-1184. [PMID: 33242416 PMCID: PMC8441988 DOI: 10.1016/j.cell.2020.10.050] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
Collapse
Affiliation(s)
- Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eloise Pariset
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sara R Zwart
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mayra Nelman-Gonzalez
- KBR, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Brian E Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sergey A Ponomarev
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Oleg I Orlov
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki 305-8505, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Stephanie E Richards
- Bionetics, NASA Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Parag A Vaishampayan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Myrrhe
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Eric Istasse
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Jessica A Keune
- Space Medicine Operations Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Hami E Ray
- ASRC Federal Space and Defense, Inc., Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mathias Basner
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jack Miller
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Deanne M Taylor
- Department of Biomedical Informatics, The Children's Hospital of Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Rubins
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Susan M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Peter Grabham
- Center for Radiological Research, Department of Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
105
|
Paul AM, Mhatre SD, Cekanaviciute E, Schreurs AS, Tahimic CGT, Globus RK, Anand S, Crucian BE, Bhattacharya S. Neutrophil-to-Lymphocyte Ratio: A Biomarker to Monitor the Immune Status of Astronauts. Front Immunol 2020; 11:564950. [PMID: 33224136 PMCID: PMC7667275 DOI: 10.3389/fimmu.2020.564950] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
A comprehensive understanding of spaceflight factors involved in immune dysfunction and the evaluation of biomarkers to assess in-flight astronaut health are essential goals for NASA. An elevated neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker candidate, as leukocyte differentials are altered during spaceflight. In the reduced gravity environment of space, rodents and astronauts displayed elevated NLR and granulocyte-to-lymphocyte ratios (GLR), respectively. To simulate microgravity using two well-established ground-based models, we cultured human whole blood-leukocytes in high-aspect rotating wall vessels (HARV-RWV) and used hindlimb unloaded (HU) mice. Both HARV-RWV simulation of leukocytes and HU-exposed mice showed elevated NLR profiles comparable to spaceflight exposed samples. To assess mechanisms involved, we found the simulated microgravity HARV-RWV model resulted in an imbalance of redox processes and activation of myeloperoxidase-producing inflammatory neutrophils, while antioxidant treatment reversed these effects. In the simulated microgravity HU model, mitochondrial catalase-transgenic mice that have reduced oxidative stress responses showed reduced neutrophil counts, NLR, and a dampened release of selective inflammatory cytokines compared to wildtype HU mice, suggesting simulated microgravity induced oxidative stress responses that triggered inflammation. In brief, both spaceflight and simulated microgravity models caused elevated NLR, indicating this as a potential biomarker for future in-flight immune health monitoring.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,KBR, Houston, TX, United States
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States
| | - Brian E Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Science Center, Houston, TX, United States
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
106
|
Yang JQ, Jiang N, Li ZP, Guo S, Chen ZY, Li BB, Chai SB, Lu SY, Yan HF, Sun PM, Zhang T, Sun HW, Yang JW, Zhou JL, Yang HM, Cui Y. The effects of microgravity on the digestive system and the new insights it brings to the life sciences. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:74-82. [PMID: 34756233 DOI: 10.1016/j.lssr.2020.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/04/2020] [Accepted: 07/28/2020] [Indexed: 06/13/2023]
Abstract
BACKGROUND Weightlessness is a component of the complex space environment. It exerts adverse effects on the human body, and may pose unknown challenges to the implementation of space missions. The regular function of the digestive system is an important checkpoint for astronauts to conduct missions. Simulated microgravity can recreate the changes experienced by the human body in a weightless environment in space to a certain extent, providing technical support for the exploration of its mechanism and a practical method for other scientific research. METHODS AND MATERIALS In the present study, we reviewed and discussed the latest research on the effects of weightlessness or simulated microgravity on the digestive system, as well as the current challenges and future expectations for progress in medical science and further space exploration. RESULTS A series of studies have investigated the effects of weightlessness on the human digestive system. On one hand, weightlessness and the changing space environment may exert certain adverse effects on the human body. Studies based on cells or animals have demonstrated the complex effects on the human digestive system in response to weightlessness. On the other hand, a microgravity environment also facilitates the ideation of novel concepts for research in the domain of life science. CONCLUSION The effects of weightlessness on the digestive system are considerably complicated. The emergence of methods that help simulate a weightless environment provides a more convenient alternative for assessing the impact and the mechanism underlying the effect of weightlessness on the human body. In addition, the simulated microgravity environment facilitates the ideation of novel concepts for application in regenerative medicine and other fields of life science.
Collapse
Affiliation(s)
- Jia-Qi Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Nan Jiang
- The Center for Hepatopancreatobiliary Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Zheng-Peng Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Zheng-Yang Chen
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Bin-Bin Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Sheng-Yu Lu
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, the Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| | - He-Ming Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| |
Collapse
|
107
|
Wang H, Liu J, Lu Z, Dai Y, Xie J, Xu S, Song Y, Xiao G, Gao F, Qu L, Cai X. Implanted multichannel microelectrode array for simultaneous electrophysiological signal detection of hippocampal CA1 and DG neurons of simulated microgravity rats. Biochem Biophys Res Commun 2020; 531:357-363. [PMID: 32800539 DOI: 10.1016/j.bbrc.2020.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022]
Abstract
Microgravity can cause body fluids to accumulate in the brain, resulting in brain damage. There are few studies that focus on the detection of electrophysiological signals in simulated microgravity rats, and the precise mechanisms are unknown. In this study, a new device was established to investigate the influence of microgravity on hippocampal neurons. A 16-channel microelectrode array was fabricated for in vivo multichannel electrophysiological recordings. In these experiments, microelectrode array was inserted into normal, 28-day tail suspension model, and 3-day recovered after modulation rats to record electrophysiological signals in the CA1 and DG regions of the hippocampus. Through analysis of electrophysiological signals, we obtained the following results: (1) spike signals of model rats sporadically showed brief periods of suspension involving most of the recorded neurons, which corresponded to slow and smooth peaks in local field potentials. For model rats, the firing rate was reduced, and the power in the frequency spectrum was concentrated in the slow frequency band (0-1 Hz); (2) after the detected hippocampal cells divided into pyramidal cells and interneurons, the spike duration of pyramidal cells showed remarkable latency, and their average firing rates showed a more significant decrease compared to interneurons. These results demonstrate that the hippocampal neurons were impaired after modulation in the cellular dimension, and pyramidal cells were more susceptible than interneurons.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Zeying Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Fei Gao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, PR China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 10090, PR China.
| |
Collapse
|
108
|
Buchheim JI, Ghislin S, Ouzren N, Albuisson E, Vanet A, Matzel S, Ponomarev S, Rykova M, Choukér A, Frippiat JP. Plasticity of the human IgM repertoire in response to long-term spaceflight. FASEB J 2020; 34:16144-16162. [PMID: 33047384 DOI: 10.1096/fj.202001403rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Immune dysregulation is among the main adverse outcomes of spaceflight. Despite the crucial role of the antibody repertoire in host protection, the effects of spaceflight on the human antibody repertoire are unknown. Consequently, using high-throughput sequencing, we examined the IgM repertoire of five cosmonauts 25 days before launch, after 64 ± 11 and 129 ± 20 days spent on the International Space Station (ISS), and at 1, 7, and 30 days after landing. This is the first study of this kind in humans. Our data revealed that the IgM repertoire of the cosmonauts was different from that of control subjects (n = 4) prior to launch and that two out the five analyzed cosmonauts presented significant changes in their IgM repertoire during the mission. These modifications persisted up to 30 days after landing, likely affected the specificities of IgM binding sites, correlated with changes in the V(D)J recombination process responsible for creating antibody genes, and coincided with a higher stress response. These data confirm that the immune system of approximately half of the astronauts who spent 6 months on the ISS is sensitive to spaceflight conditions, and reveal individual responses indicating that personalized approaches should be implemented during future deep-space exploration missions that will be of unprecedented durations.
Collapse
Affiliation(s)
- Judith-Irina Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, EA 7300 Faculty of Medicine, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Nassima Ouzren
- Stress Immunity Pathogens Laboratory, EA 7300 Faculty of Medicine, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Eliane Albuisson
- DRCI, MPI Department, Methodology Unit, Data Management and Statistics UMDS, Nancy University Hospital, Vandoeuvre-lès-Nancy, France
| | - Anne Vanet
- University of Paris, Paris, France.,Genoinformatics Center, Jacques Monod Institute, UMR7592, CNRS, Paris, France
| | - Sandra Matzel
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Sergey Ponomarev
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Marina Rykova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA 7300 Faculty of Medicine, Lorraine University, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
109
|
Approaching Gravity as a Continuum Using the Rat Partial Weight-Bearing Model. Life (Basel) 2020; 10:life10100235. [PMID: 33049988 PMCID: PMC7599661 DOI: 10.3390/life10100235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
For decades, scientists have relied on animals to understand the risks and consequences of space travel. Animals remain key to study the physiological alterations during spaceflight and provide crucial information about microgravity-induced changes. While spaceflights may appear common, they remain costly and, coupled with limited cargo areas, do not allow for large sample sizes onboard. In 1979, a model of hindlimb unloading (HU) was successfully created to mimic microgravity and has been used extensively since its creation. Four decades later, the first model of mouse partial weight-bearing (PWB) was developed, aiming at mimicking partial gravity environments. Return to the Lunar surface for astronauts is now imminent and prompted the need for an animal model closer to human physiology; hence in 2018, our laboratory created a new model of PWB for adult rats. In this review, we will focus on the rat model of PWB, from its conception to the current state of knowledge. Additionally, we will address how this new model, used in conjunction with HU, will help implement new paradigms allowing scientists to anticipate the physiological alterations and needs of astronauts. Finally, we will discuss the outstanding questions and future perspectives in space research and propose potential solutions using the rat PWB model.
Collapse
|
110
|
Portier H, Benaitreau D, Pallu S. Does Physical Exercise Always Improve Bone Quality in Rats? Life (Basel) 2020; 10:life10100217. [PMID: 32977460 PMCID: PMC7598192 DOI: 10.3390/life10100217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
For decades, the osteogenic effect from different physical activities on bone in rodents remained uncertain. This literature review presents for the first time the effects on five exercise models (treadmill running, wheel running, swimming, resistance training and vibration modes) in three different experimental rat groups (males, females, osteopenic) on bone quality. The bone parameters presented are bone mineral density, micro-architectural and mechanical properties, and osteoblast/osteocyte and osteoclast parameters. This review shows that physical activities have a positive effect (65% of the results) on bone status, but we clearly observed a difference amongst the different protocols. Even if treadmill running is the most used protocol, the resistance training constitutes the first exercise model in term of osteogenic effects (87% of the whole results obtained on this model). The less osteogenic model is the vibration mode procedure (31%). It clearly appears that the gender plays a role on the bone response to swimming and wheel running exercises. Besides, we did not observe negative results in the osteopenic population with impact training, wheel running and vibration activities. Moreover, about osteoblast/osteocyte parameters, we conclude that high impact and resistance exercise (such jumps and tower climbing) seems to increase bone formation more than running or aerobic exercise. Among the different protocols, literature has shown that the treadmill running procedure mainly induces osteogenic effects on the viability of the osteocyte lineage in both males and females or ovariectomized rats; running in voluntary wheels contributes to a negative effect on bone metabolism in older male models; whole-body vertical vibration is not an osteogenic exercise in female and ovariectomized rats; whereas swimming provides controversial results in female models. For osteoclast parameters only, running in a voluntary wheel for old males, the treadmill running program at high intensity in ovariectomized rats, and the swimming program in a specific ovariectomy condition have detrimental consequences.
Collapse
Affiliation(s)
- Hugues Portier
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
- Correspondence: ; Tel.: +33-782-309-433
| | - Delphine Benaitreau
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| | - Stéphane Pallu
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| |
Collapse
|
111
|
Semple C, Riveros D, Sung DM, Nagy JA, Rutkove SB, Mortreux M. Using Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity Analogs. Front Physiol 2020; 11:557796. [PMID: 33041858 PMCID: PMC7522465 DOI: 10.3389/fphys.2020.557796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
As astronauts prepare to undertake new extra-terrestrial missions, innovative diagnostic tools are needed to better assess muscle deconditioning during periods of weightlessness and partial gravity. Electrical impedance myography (EIM) has been used to detect muscle deconditioning in rodents exposed to microgravity during spaceflight or using the standard ground-based model of hindlimb unloading via tail suspension (HU). Here, we used EIM to assess muscle changes in animals exposed to two new models: hindlimb suspension using a pelvic harness (HLS) and a partial weight-bearing (PWB) model that mimics partial gravity (including Lunar and Martian gravities). We also used a simple needle array electrode in lieu of surface or ex vivo EIM approaches previously employed. Our HLS results confirmed earlier findings obtained after spaceflight and tail suspension. Indeed, one EIM measure (i.e., phase-slope) that was previously reported as highly sensitive, was significantly decreased after HLS (day 0: 14.60 ± 0.97, day 7: 11.03 ± 0.81, and day 14: 10.13 ± 0.55 | Deg/MHz|, p < 0.0001), and was associated with a significant decrease in muscle grip force. Although EIM parameters such as 50 kHz phase, reactance, and resistance remained variable over 14 days in PWB animals, we identified major PWB-dependent effects at 7 days. Moreover, the data at both 7 and 14 days correlated to previously observed changes in rear paw grip force using the same PWB model. In conclusion, our data suggest that EIM has the potential to serve as biomarker of muscle deconditioning during exposure to both micro- and partial- gravity during future human space exploration.
Collapse
Affiliation(s)
- Carson Semple
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Daniela Riveros
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Dong-Min Sung
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Janice A Nagy
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Seward B Rutkove
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marie Mortreux
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
112
|
Wang J, Han C, Lu Z, Ge P, Cui Y, Zhao D, Yang X, Wu B, Qiang L, Zhang Y, Chai Q, Lei Z, Li L, Hua Liu C, Zhang L. Simulated microgravity suppresses MAPK pathway-mediated innate immune response to bacterial infection and induces gut microbiota dysbiosis. FASEB J 2020; 34:14631-14644. [PMID: 32918764 DOI: 10.1096/fj.202001428r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
During spaceflight, astronauts are subjected to various physical stressors including microgravity, which could cause immune dysfunction and thus potentially predispose astronauts to infections and illness. However, the mechanisms by which microgravity affects innate immunity remain largely unclear. In this study, we conducted RNA-sequencing analysis to show that simulated microgravity (SMG) suppresses the production of inflammatory cytokines including tumor necrosis factor (TNF) and interleukin-6 (IL-6) as well as the activation of the innate immune signaling pathways including the p38 mitogen-activated protein kinase (MAPK) and the Erk1/2 MAPK pathways in the Enteropathogenic escherichia coli (EPEC)-infected macrophage cells. We then adopted hindlimb-unloading (HU) mice, a model mimicking the microgravity of a spaceflight environment, to demonstrate that microgravity suppresses proinflammatory cytokine-mediated intestinal immunity to Citrobacter rodentium infection and induces the disturbance of gut microbiota, both of which phenotypes could be largely corrected by the introduction of VSL#3, a high-concentration probiotic preparation of eight live freeze-dried bacterial species. Taken together, our study provides new insights into microgravity-mediated innate immune suppression and intestinal microbiota disturbance, and suggests that probiotic VSL#3 has great potential as a dietary supplement in protecting individuals from spaceflight mission-associated infections and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Conghui Han
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Cui
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Bo Wu
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Li
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
113
|
Takemura A, Pajevic PD, Egawa T, Teshigawara R, Hayashi T, Ishihara A. Effects of mild hyperbaric oxygen on osteoporosis induced by hindlimb unloading in rats. J Bone Miner Metab 2020; 38:631-638. [PMID: 32350615 DOI: 10.1007/s00774-020-01100-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Disuse-induced bone loss is caused by a suppression of osteoblastic bone formation and an increase in osteoclastic bone resorption. There are few data available for the effects of environmental conditions, i.e., atmospheric pressure and/or oxygen concentration, on osteoporosis. This study examined the effects of mild hyperbaric oxygen at 1317 hPa with 40% oxygen on unloading-induced osteoporosis. MATERIALS AND METHODS Eighteen 8-week old male Wistar rats were randomly divided into three groups: the control for 21 days without unloading and mild hyperbaric oxygen (NOR, n = 6), the unloading for 21 days and recovery for 10 days without mild hyperbaric oxygen (HU + NOR, n = 6), and the unloading for 21 days and recovery for 10 days with mild hyperbaric oxygen (HU + MHO, n = 6). RESULTS The cortical thickness and trabecular bone surface area were decreased in the HU + NOR group compared to the NOR group. There were no differences between the NOR and HU + MHO groups. Osteoclast surface area and Sclerostin (Sost) mRNA expression levels were decreased in the HU + MHO group compared to the HU + NOR group. These results suggested that the loss of the cortical and trabecular bone is inhibited by mild hyperbaric oxygen, because of an inhibition of osteoclasts and enhancement of bone formation with decreased Sost expression. CONCLUSIONS We conclude that exposure to mild hyperbaric oxygen partially protects from the osteoporosis induced by hindlimb unloading.
Collapse
Affiliation(s)
- Ai Takemura
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.
- Department of Sports Research, Japan Institute of Sport Sciences, Tokyo, 115-0056, Japan.
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University Goldman School of Dental Medicine, Boston, MA, 02118, USA
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Rika Teshigawara
- Laboratory of Developmental Epigenome, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
114
|
Schreurs AS, Torres S, Truong T, Moyer EL, Kumar A, Tahimic CGT, Alwood JS, Globus RK. Skeletal tissue regulation by catalase overexpression in mitochondria. Am J Physiol Cell Physiol 2020; 319:C734-C745. [PMID: 32783660 DOI: 10.1152/ajpcell.00068.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulation of oxidative damage from excess reactive oxygen species (ROS) may contribute to skeletal aging and mediate adverse responses to physiological challenges. Wild-type (WT) mice and transgenic mice (male, 16 wk of age) with human catalase targeted to the mitochondria (mCAT) were analyzed for skeletal responses to the remodeling stimuli of combined hind-limb unloading and exposure to ionizing radiation (137Cs, 2 Gy). Treatment for 2 wk caused lipid peroxidation in the bones WT but not mCAT mice, showing that transgene expression mitigated oxidative stress. Ex vivo osteoblast colony growth rate was 95% greater in mCAT than WT mice and correlated with catalase activity levels (P < 0.005, r = 0.67), although terminal osteoblast and osteoclast differentiation were unaffected. mCAT mice had lower cancellous bone volume and cortical size than WT mice. Ambulatory control mCAT animals also displayed reduced cancellous and cortical structural properties compared with control WT mice. In mCAT but not WT mice, treatment caused an unexpectedly rapid radial expansion (+8% cortical area, +22% moment of inertia), reminiscent of compensatory bone growth during advancing age. In contrast, treatment caused similar structural deficits in cancellous tissue of mCAT and WT mice. In sum, mitochondrial ROS signaling via H2O2 was important for the acquisition of adult bone structure and catalase overexpression failed to protect cancellous tissue from treatment. In contrast, catabolic stimuli caused radial expansion in mCAT not WT mice, suggesting that mitochondrial ROS in skeletal cells act to suppress tissue turnover in response to remodeling challenges.
Collapse
Affiliation(s)
- Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Universities Space Research Association, Moffett Field, California
| | - Samantha Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Blue Marble Space Institute of Science, Seattle, Washington
| | - Tiffany Truong
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Blue Marble Space Institute of Science, Seattle, Washington
| | - Eric L Moyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Blue Marble Space Institute of Science, Seattle, Washington
| | - Akhhilesh Kumar
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,Universities Space Research Association, Moffett Field, California
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California.,KBR, Moffett Field, California
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California
| |
Collapse
|
115
|
Dai S, Kong F, Liu C, Xiao F, Dong X, Zhang Y, Wang H. Effect of simulated microgravity conditions of hindlimb unloading on mice hematopoietic and mesenchymal stromal cells. Cell Biol Int 2020; 44:2243-2252. [PMID: 32716109 PMCID: PMC7589432 DOI: 10.1002/cbin.11432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/15/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022]
Abstract
Conditions in space, such as microgravity, may affect the hematopoietic and bone marrow‐derived mesenchymal stromal cells (BM‐MSCs) of astronauts. However, to date, few detailed phenotype change data about the different type of hematopoietic cells have reported. In this study, C57BL/6 mice were randomly divided into two groups: a control group (control) and a hindlimb suspension group (treated). After four weeks of hindlimb suspension, we found that this simulated microgravity (sµg) condition could increase the percentage of monocytes and macrophages and decrease the percentage of B lymphocytes and mature red cells in bone marrow. The percentage of B lymphocytes in the spleen and the red blood cell count in peripheral blood also decreased, consistent with the response of bone marrow. The cytoskeleton in the BM‐MSCs was disrupted. The expression levels of hematopoietic‐related genes, such as fms‐like tyrosine kinase‐3 ligand, granulocyte‐macrophage colony stimulating factor, interleukin‐3, and adipogenic differentiation associated genes, leptin and proliferator‐activated receptor γ type 2, were upregulated under sµg conditions. These results indicated that simulating microgravity can affect the phenotype of certain types of hematopoietic cells and the morphology and gene expression pattern of BM‐MSCs.
Collapse
Affiliation(s)
- Shiyun Dai
- Graduate School, Anhui Medical University, Hefei, Anhui, China.,Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fanxuan Kong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chao Liu
- Binzhou Medical University, Yantai, Shandong, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiwen Dong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yikun Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Hua Wang
- Graduate School, Anhui Medical University, Hefei, Anhui, China.,Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
116
|
Wojcik P, Batliwala S, Rowsey T, Galdamez LA, Lee AG. Spaceflight-Associated Neuro-ocular Syndrome (SANS): a review of proposed mechanisms and analogs. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1787155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Peter Wojcik
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Shehzad Batliwala
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Tyler Rowsey
- College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Laura A. Galdamez
- Department of Emergency Medicine, Memorial Hermann The Woodlands, Shenandoah, TX, USA
| | - Andrew G. Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A and M College of Medicine, Bryan, TX, USA
| |
Collapse
|
117
|
Unloading during skeletal muscle regeneration retards iNOS-expressing macrophage recruitment and perturbs satellite cell accumulation. Histochem Cell Biol 2020; 154:355-367. [DOI: 10.1007/s00418-020-01897-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
|
118
|
Tarasova OS, Kalenchuk VU, Borovik AS, Golubinskaya VO, Delp MD, Vinogradova OL. Simulated Microgravity Induces Regionally Distinct Neurovascular and Structural Remodeling of Skeletal Muscle and Cutaneous Arteries in the Rat. Front Physiol 2020; 11:675. [PMID: 32695017 PMCID: PMC7339929 DOI: 10.3389/fphys.2020.00675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction: Mechanical forces and sympathetic influences are key determinants of vascular structure and function. This study tested the hypothesis that hindlimb unloading (HU) exerts diverse effects on forelimb and hindlimb small arteries of rats in functionally different regions of the skeletal muscle and skin. Methods: Male Wistar rats were subjected to HU for 2 weeks, then skeletal muscle arteries (deep brachial and sural) and skin arteries (median and saphenous) were examined in vitro using wire myography or isobaric perfusion and glyoxylic acid staining. Results: HU increased lumen diameter of both forelimb arteries but decreased diameter of the sural artery; the saphenous artery diameter was not affected. Following HU, maximal contractile responses to noradrenaline and serotonin increased in the forelimb but decreased in the hindlimb skeletal muscle feed arteries with no change in skin arteries; all region-specific alterations persisted after endothelium removal. HU increased the sensitivity to vasoconstrictors in the saphenous artery but not in the sural artery. In the saphenous artery, initially high sympathetic innervation density was reduced by HU, sparse innervation in the sural artery was not affected. Electrical stimulation of periarterial sympathetic nerves in isobarically perfused segments of the saphenous artery demonstrated a two-fold decrease of the contractile responses in HU rats compared to that of controls. Conclusion: HU induces contrasting structural and functional adaptations in forelimb and hindlimb skeletal muscle arteries. Additionally, HU had diverse effects in two hindlimb vascular regions. Hyper-sensitivity of the saphenous artery to vasoconstrictors appears to result from the shortage of trophic sympathetic influence. Importantly, HU impaired sympathetically induced arterial vasoconstriction, consistent with the decreased sympathetic constrictor response in humans following space flight.
Collapse
Affiliation(s)
- Olga S Tarasova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Anatoly S Borovik
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Olga L Vinogradova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
119
|
Functional Block of Interleukin-6 Reduces a Bone Pain Marker but Not Bone Loss in Hindlimb-Unloaded Mice. Int J Mol Sci 2020; 21:ijms21103521. [PMID: 32429268 PMCID: PMC7278999 DOI: 10.3390/ijms21103521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Interleukin-6 (IL-6) is widely accepted to stimulate osteoclasts. Our aim in this study was to examine whether the inhibitory effect of IL-6 on bone loss and skeletal pain associated with osteoporosis in hindlimb-unloaded (HU) mice in comparison with bisphosphonate. Eight-week-old male ddY mice were tail suspended for 2 weeks. Starting immediately after reload, vehicle (HU group), alendronate (HU-ALN group), or anti-IL-6 receptor antibody (HU-IL-6i group) was injected subcutaneously. After a 2-week treatment, pain-related behavior was examined using von Frey filaments. The bilateral distal femoral and proximal tibial metaphyses were analyzed three-dimensionally with micro-computed tomography. Calcitonin gene-related peptide (CGRP) expressions in dorsal root ganglion (DRG) neurons innervating the hindlimbs were examined using immunohistochemistry. HU mice with tail suspension developed bone loss. The HU mice showed mechanical hyperalgesia in the hindlimbs and increased CGRP immunoreactive neurons in the L3-5 DRG. Treatment with IL-6i and ALN prevented HU-induced mechanical hyperalgesia and upregulation of CGRP expressions in DRG neurons. Furthermore, ALN but not IL-6i prevented HU-induced bone loss. In summary, treatment with IL-6i prevented mechanical hyperalgesia in hindlimbs and suppressed CGRP expressions in DRG neurons of osteoporotic models. The novelty of this research suggests that IL-6 is one of the causes of immobility-induced osteoporotic pain regardless improvement of bone loss.
Collapse
|
120
|
Abstract
The impact of spaceflight on the immune system has been investigated extensively during spaceflight missions and in model experiments conducted on Earth. Data suggest that the spaceflight environment may affect the development of acquired immunity, and immune responses. Herein we summarize and discuss the influence of the spaceflight environment on acquired immunity. Bone marrow and the thymus, two major primary lymphoid organs, are evidently affected by gravitational change during spaceflight. Changes in the microenvironments of these organs impair lymphopoiesis, and thereby may indirectly impinge on acquired immunity. Acquired immune responses may also be disturbed by gravitational fluctuation, stressors, and space radiation both directly and in a stress hormone-dependent manner. These changes may affect acquired immune responses to pathogens, allergens, and tumors.
Collapse
|
121
|
Steczina S, Tahimic CGT, Pendleton M, M'Saad O, Lowe M, Alwood JS, Halloran BP, Globus RK, Schreurs AS. Dietary countermeasure mitigates simulated spaceflight-induced osteopenia in mice. Sci Rep 2020; 10:6484. [PMID: 32300161 PMCID: PMC7162976 DOI: 10.1038/s41598-020-63404-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Spaceflight is a unique environment that includes at least two factors which can negatively impact skeletal health: microgravity and ionizing radiation. We have previously shown that a diet supplemented with dried plum powder (DP) prevented radiation-induced bone loss in mice. In this study, we investigated the capacity of the DP diet to prevent bone loss in mice following exposure to simulated spaceflight, combining microgravity (by hindlimb unloading) and radiation exposure. The DP diet was effective at preventing most decrements in bone micro-architectural and mechanical properties due to hindlimb unloading alone and simulated spaceflight. Furthermore, we show that the DP diet can protect osteoprogenitors from impairments resulting from simulated microgravity. Based on our findings, a dietary supplementation with DP could be an effective countermeasure against the skeletal deficits observed in astronauts during spaceflight.
Collapse
Affiliation(s)
- Sonette Steczina
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,KBR, Moffett Field, California, USA
| | - Megan Pendleton
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ons M'Saad
- Space Life Sciences Training Program, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Moniece Lowe
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Bernard P Halloran
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA. .,Universities Space Research Association, Moffett Field, CA, USA.
| |
Collapse
|
122
|
Zhai B, Fu J, Xiang S, Shang Y, Yan Y, Yin T, Zhang T. Repetitive transcranial magnetic stimulation ameliorates recognition memory impairment induced by hindlimb unloading in mice associated with BDNF/TrkB signaling. Neurosci Res 2020; 153:40-47. [DOI: 10.1016/j.neures.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/18/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
|
123
|
Qaisar R, Karim A, Elmoselhi AB. Muscle unloading: A comparison between spaceflight and ground-based models. Acta Physiol (Oxf) 2020; 228:e13431. [PMID: 31840423 DOI: 10.1111/apha.13431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Prolonged unloading of skeletal muscle, a common outcome of events such as spaceflight, bed rest and hindlimb unloading, can result in extensive metabolic, structural and functional changes in muscle fibres. With advancement in investigations of cellular and molecular mechanisms, understanding of disuse muscle atrophy has significantly increased. However, substantial gaps exist in our understanding of the processes dictating muscle plasticity during unloading, which prevent us from developing effective interventions to combat muscle loss. This review aims to update the status of knowledge and underlying mechanisms leading to cellular and molecular changes in skeletal muscle during unloading. We have also discussed advances in the understanding of contractile dysfunction during spaceflights and in ground-based models of muscle unloading. Additionally, we have elaborated on potential therapeutic interventions that show promising results in boosting muscle mass and strength during mechanical unloading. Finally, we have identified key gaps in our knowledge as well as possible research direction for the future.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Asima Karim
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Adel B. Elmoselhi
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
- Department of Physiology Michigan State University East Lansing MI USA
| |
Collapse
|
124
|
DeLong A, Friedman MA, Tucker SM, Krause AR, Kunselman A, Donahue HJ, Lewis GS. Protective Effects of Controlled Mechanical Loading of Bone in C57BL6/J Mice Subject to Disuse. JBMR Plus 2019; 4:e10322. [PMID: 32161839 PMCID: PMC7059829 DOI: 10.1002/jbm4.10322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 11/24/2022] Open
Abstract
Prolonged reduction in weightbearing causes bone loss. Disuse of bone is associated with recovery from common musculoskeletal injury and trauma, bed rest resulting from various medical conditions, and spaceflight. The hindlimb‐suspension rodent model is popular for simulating unloading and disuse. We hypothesized that controlled mechanical loading of the tibia would protect against bone loss occurring from concurrent disuse. Additionally, we hypothesized that areas of high mechanical peak strains (midshaft) would provide more protection than areas of lower strain (distal shaft). Adult C57BL6/J mice were suspended for 3 weeks, with one limb subjected to tibial compression four times per week. μCT imaging was completed at days 0, 11, and 21, in addition to serum analysis. Significant bone loss caused by hindlimb suspension was detected in trabecular bone by day 11 and worsened by day 21 (p < 0.05). Bone loss was also detected in cortical thickness and area fraction by day 21. However, four short bouts per week of compressive loading protected the loaded limb from much of this bone loss. At day 21, we observed a 50% loss in trabecular bone volume/total volume and a 6% loss in midshaft cortical thickness in unloaded limbs, but only 15% and 2% corresponding losses in contralateral loaded limbs (p = 0.001 and p = 0.02). Many bone geometry parameters of the loaded limbs of suspended animals did not significantly differ from non‐suspended control limbs. Conversely, this protective effect of loading was not detected in cortical bone at the lower‐strained distal shaft. Analysis of bone metabolism markers suggested that the benefits of loading occurred through increased formation instead of decreased resorption. This study uniquely isolates the role of externally applied mechanical loading of the mouse tibia, in the absence of muscle stimulation, in protecting bone from concurrent disuse‐related loss, and demonstrates that limited bouts of loading may be highly effective during prolonged disuse. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alex DeLong
- Department of Comparative Medicine Pennsylvania State University, College of Medicine Hershey PA USA
| | - Michael A Friedman
- Department of Biomedical Engineering Virginia Commonwealth University Richmond VA USA
| | - Scott M Tucker
- Department of Orthopaedics & Rehabilitation, & Center for Orthopaedic Research and Translational Science Pennsylvania State University, College of Medicine Hershey PA USA
| | - Andrew R Krause
- Department of Orthopaedics & Rehabilitation, & Center for Orthopaedic Research and Translational Science Pennsylvania State University, College of Medicine Hershey PA USA
| | - Allen Kunselman
- Department of Public Health Sciences Pennsylvania State University, College of Medicine Hershey PA USA
| | - Henry J Donahue
- Department of Biomedical Engineering Virginia Commonwealth University Richmond VA USA
| | - Gregory S Lewis
- Department of Orthopaedics & Rehabilitation, & Center for Orthopaedic Research and Translational Science Pennsylvania State University, College of Medicine Hershey PA USA
| |
Collapse
|
125
|
Horie K, Kato T, Kudo T, Sasanuma H, Miyauchi M, Akiyama N, Miyao T, Seki T, Ishikawa T, Takakura Y, Shirakawa M, Shiba D, Hamada M, Jeon H, Yoshida N, Inoue JI, Muratani M, Takahashi S, Ohno H, Akiyama T. Impact of spaceflight on the murine thymus and mitigation by exposure to artificial gravity during spaceflight. Sci Rep 2019; 9:19866. [PMID: 31882694 PMCID: PMC6934594 DOI: 10.1038/s41598-019-56432-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
The environment experienced during spaceflight may impact the immune system and the thymus appears to undergo atrophy during spaceflight. However, molecular aspects of this thymic atrophy remain to be elucidated. In this study, we analysed the thymi of mice on board the international space station (ISS) for approximately 1 month. Thymic size was significantly reduced after spaceflight. Notably, exposure of mice to 1 × g using centrifugation cages in the ISS significantly mitigated the reduction in thymic size. Although spaceflight caused thymic atrophy, the global thymic structure was not largely changed. However, RNA sequencing analysis of the thymus showed significantly reduced expression of cell cycle-regulating genes in two independent spaceflight samples. These reductions were partially countered by 1 × g exposure during the space flights. Thus, our data suggest that spaceflight leads to reduced proliferation of thymic cells, thereby reducing the size of the thymus, and exposure to 1 × g might alleviate the impairment of thymus homeostasis induced by spaceflight.
Collapse
Affiliation(s)
- Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Hiroki Sasanuma
- Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nobuko Akiyama
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takao Seki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yuki Takakura
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Hyojung Jeon
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Nobuaki Yoshida
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.,Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.,Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
| |
Collapse
|
126
|
Trevino MB, Zhang X, Standley RA, Wang M, Han X, Reis FCG, Periasamy M, Yu G, Kelly DP, Goodpaster BH, Vega RB, Coen PM. Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy. Am J Physiol Endocrinol Metab 2019; 317:E899-E910. [PMID: 31479303 PMCID: PMC6879870 DOI: 10.1152/ajpendo.00161.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Skeletal muscle atrophy is a clinically important outcome of disuse because of injury, immobilization, or bed rest. Disuse atrophy is accompanied by mitochondrial dysfunction, which likely contributes to activation of the muscle atrophy program. However, the linkage of muscle mass and mitochondrial energetics during disuse atrophy and its recovery is incompletely understood. Transcriptomic analysis of muscle biopsies from healthy older adults subject to complete bed rest revealed marked inhibition of mitochondrial energy metabolic pathways. To determine the temporal sequence of muscle atrophy and changes in intramyocellular lipid and mitochondrial energetics, we conducted a time course of hind limb unloading-induced atrophy in adult mice. Mitochondrial respiration and calcium retention capacity were diminished, whereas H2O2 emission was increased within 3 days of unloading before significant muscle atrophy. These changes were associated with a decrease in total cardiolipin and profound changes in remodeled cardiolipin species. Hind limb unloading performed in muscle-specific peroxisome proliferator-activated receptor-γ coactivator-1α/β knockout mice, a model of mitochondrial dysfunction, did not affect muscle atrophy but impacted muscle function. These data suggest early mitochondrial remodeling affects muscle function but not mass during disuse atrophy. Early alterations in mitochondrial energetics and lipid remodeling may represent novel targets to prevent muscle functional impairment caused by disuse and to enhance recovery from periods of muscle atrophy.
Collapse
Affiliation(s)
- Michelle B Trevino
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Xiaolei Zhang
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Robert A Standley
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Miao Wang
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Xianlin Han
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Felipe C G Reis
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Muthu Periasamy
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Gongxin Yu
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Daniel P Kelly
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Cardiovascular Research Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bret H Goodpaster
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Rick B Vega
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Paul M Coen
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| |
Collapse
|
127
|
Jin M, Wang J, Zhang H, Zhou H, Zhao K. Simulated Weightlessness Perturbs the Intestinal Metabolomic Profile of Rats. Front Physiol 2019; 10:1279. [PMID: 31680997 PMCID: PMC6803529 DOI: 10.3389/fphys.2019.01279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/24/2019] [Indexed: 02/04/2023] Open
Abstract
Recently, disorders of intestinal homeostasis in the space environment have been extensively demonstrated. Accumulating evidence have suggested microgravity and simulated weightlessness could induce dysbiosis of intestinal microbiota, which may contribute to the bowel symptoms during spaceflight. However, the specific responses of intestinal metabolome under simulated weightlessness and its relationship with the intestinal microbiome and immune characteristics remain largely unknown. In the current study, 20 adult Sprague-Dawley (SD) rats were randomly divided into the control group and the simulated weightlessness group using a hindlimb unloading model. The metabolomic profiling of cecal contents from eight rats of each group was investigated by gas chromatography-time of flight/mass spectrometry. The significantly different metabolites, biomarkers, and related pathways were identified. Multivariate analysis, such as principal component analysis and orthogonal projections to latent structures-discriminant analysis, demonstrated an obvious separation between the control group and the simulated weightlessness group. Significantly different metabolites, such as xylose, sinapinic acid, indolelactate, and digalacturonic acid, were identified, which participate in mainly pyrimidine metabolism, pentose and glucuronate interconversions, and valine, leucine and isoleucine metabolism. Cytidine-5'-monophosphate, 4-hydroxypyridine, and phloretic acid were determined as pivotal biomarkers under simulated weightlessness. Moreover, the significantly different metabolites were remarkably correlated with dysbiosis of the intestinal microbiota and disturbance of immunological characteristics induced by simulated weightlessness. These metabolic features provide crucial candidates for therapeutic targets for metabolic disorders under weightlessness.
Collapse
Affiliation(s)
- Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jiaojiao Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Hongbin Zhou
- Dalian Chengsan Animal Husbandry Co., Ltd., Dalian, China
| | - Ke Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
128
|
Tyganov SA, Mochalova EP, Belova SP, Sharlo KA, Rozhkov SV, Vilchinskaya NA, Paramonova II, Mirzoev TM, Shenkman BS. Effects of Plantar Mechanical Stimulation on Anabolic and Catabolic Signaling in Rat Postural Muscle Under Short-Term Simulated Gravitational Unloading. Front Physiol 2019; 10:1252. [PMID: 31611819 PMCID: PMC6776874 DOI: 10.3389/fphys.2019.01252] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
It is known that plantar mechanical stimulation (PMS) is able to attenuate unloading-induced skeletal muscle atrophy and impaired muscle function. However, molecular mechanisms underlying the effect of PMS on skeletal muscle during unloading remain undefined. The aim of the study was to evaluate the effects of PMS on anabolic and catabolic signaling pathways in rat soleus at the early stages of mechanical unloading. Wistar rats were randomly assigned to ambulatory control, hindlimb suspension (HS) for 1 or 3 days, and HS for 1 or 3 days with PMS. The key anabolic and catabolic markers were assessed by western blotting and RT-PCR. Protein synthesis (PS) rate was estimated using SUnSET technique. PMS attenuated a 1-day HS-induced decrease in 4E-BP1, GSK-3β, and AMPK phosphorylation. PMS also partially prevented a decrease in PS, phosphorylation of GSK-3β, nNOS, and an increase in eEF2 phosphorylation after 3-day HS. PMS during 1- and 3-day HS prevented MuRF-1, but not MAFbx, upregulation but did not affect markers of ribosome biogenesis (18S + 28S rRNA, c-myc) as well as AKT phosphorylation. Thus, PMS during 3-day HS partially prevented a decrease in the global rate of PS in rat soleus muscle, which was accompanied by attenuation of MuRF-1 mRNA expression as well as changes in GSK-3β, nNOS, and eEF2 phosphorylation.
Collapse
Affiliation(s)
- Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina P Mochalova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Kristina A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Rozhkov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia A Vilchinskaya
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inna I Paramonova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
129
|
Tahimic CGT, Paul AM, Schreurs AS, Torres SM, Rubinstein L, Steczina S, Lowe M, Bhattacharya S, Alwood JS, Ronca AE, Globus RK. Influence of Social Isolation During Prolonged Simulated Weightlessness by Hindlimb Unloading. Front Physiol 2019; 10:1147. [PMID: 31572207 PMCID: PMC6753329 DOI: 10.3389/fphys.2019.01147] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
The hindlimb unloading (HU) model has been used extensively to simulate the cephalad fluid shift and musculoskeletal disuse observed in spaceflight with its application expanding to study immune, cardiovascular and central nervous system responses, among others. Most HU studies are performed with singly housed animals, although social isolation also can substantially impact behavior and physiology, and therefore may confound HU experimental results. Other HU variants that allow for paired housing have been developed although no systematic assessment has been made to understand the effects of social isolation on HU outcomes. Hence, we aimed to determine the contribution of social isolation to tissue responses to HU. To accomplish this, we developed a refinement to the traditional NASA Ames single housing HU system to accommodate social housing in pairs, retaining desirable features of the original design. We conducted a 30-day HU experiment with adult, female mice that were either singly or socially housed. HU animals in both single and social housing displayed expected musculoskeletal deficits versus housing matched, normally loaded (NL) controls. However, select immune and hypothalamic-pituitary-adrenal (HPA) axis responses were differentially impacted by the HU social environment relative to matched NL controls. HU led to a reduction in % CD4+ T cells in singly housed, but not in socially housed mice. Unexpectedly, HU increased adrenal gland mass in socially housed but not singly housed mice, while social isolation increased adrenal gland mass in NL controls. HU also led to elevated plasma corticosterone levels at day 30 in both singly and socially housed mice. Thus, musculoskeletal responses to simulated weightlessness are similar regardless of social environment with a few differences in adrenal and immune responses. Our findings show that combined stressors can mask, not only exacerbate, select responses to HU. These findings further expand the utility of the HU model for studying possible combined effects of spaceflight stressors.
Collapse
Affiliation(s)
- Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,KBR, Houston, TX, United States
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,KBR, Houston, TX, United States
| | - Samantha M Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Sonette Steczina
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
130
|
High-Molecular-Weight Polyphenol-Rich Fraction of Black Tea Does Not Prevent Atrophy by Unloading, But Promotes Soleus Muscle Mass Recovery from Atrophy in Mice. Nutrients 2019; 11:nu11092131. [PMID: 31500089 PMCID: PMC6770236 DOI: 10.3390/nu11092131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022] Open
Abstract
Previously, we reported that polyphenol-rich fraction (named E80) promotes skeletal muscle hypertrophy induced by functional overload in mice. This study indicates that E80 has potential for affecting skeletal muscle mass. Then, we evaluate the effect of E80 on atrophic and recovery conditions of skeletal muscle in mice. Hindlimb suspension (unloading) and relanding (reloading) are used extensively to observe disuse muscle atrophy and subsequent muscle mass recovery from atrophy. Eight-week old C57BL/6 mice were fed either a normal diet or a diet containing 0.5% E80 for two weeks under conditions of hindlimb suspension and a subsequent 5 or 10 days of reloading. We found that E80 administration did not prevent atrophy during hindlimb suspension, but promoted recovery of slow-twitch (soleus) muscle mass from atrophy induced by hindlimb suspension. After five days of reloading, we discovered that phosphorylation of the Akt/mammalian target of rapamycin (mTOR) pathway proteins, such as Akt and P70 ribosomal protein S6 kinase (S6K), was activated in the muscle. Therefore, E80 administration accelerated mTOR signal and increased protein synthesis in the reloaded soleus muscle.
Collapse
|
131
|
Ulanova AD, Gritsyna YV, Zhalimov VK, Bobyleva LG, Belova SP, Nemirovskaya TL, Shenkman BS, Vikhlyantsev IM. A 3-Day Functional Unloading is Accompanied by an Increase in the TTN Gene Expression in the Rat Soleus Muscle without Changes in Alternative Splicing from Exon 50 to Exon 111. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
132
|
Abstract
The systemic regulation of immune reactions by the nervous system is well studied and depends on the release of hormones. Some regional regulations of immune reactions, on the other hand, depend on specific neural pathways. Better understanding of these regulations will expand therapeutic applications for neuroimmune and organ-to-organ functional interactions. Here, we discuss one regional neuroimmune interaction, the gateway reflex, which converts specific neural inputs into local inflammatory outputs in the CNS. Neurotransmitters released by the inputs stimulate specific blood vessels to express chemokines, which serve as a gateway for immune cells to extravasate into the target organ such as the brain or spinal cord. Several types of gateway reflexes have been reported, and each controls distinct CNS blood vessels to form gateways that elicit local inflammation, particularly in the presence of autoreactive immune cells. For example, neural stimulation by gravity creates the initial entry point to the CNS by CNS-reactive pathogenic CD4+ T cells at the dorsal vessels of fifth lumbar spinal cord, while pain opens the gateway at the ventral side of blood vessels in the spinal cord. In addition, it was recently found that local inflammation by the gateway reflex in the brain triggers the activation of otherwise resting neural circuits to dysregulate organ functions in the periphery including the upper gastrointestinal tract and heart. Therefore, the gateway reflex represents a novel bidirectional neuroimmune interaction that regulates organ functions and could be a promising target for bioelectric medicine.
Collapse
Affiliation(s)
- D Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - M Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
133
|
Rettig TA, Nishiyama NC, Pecaut MJ, Chapes SK. Effects of skeletal unloading on the bone marrow antibody repertoire of tetanus toxoid and/or CpG treated C57BL/6J mice. LIFE SCIENCES IN SPACE RESEARCH 2019; 22:16-28. [PMID: 31421845 PMCID: PMC6703179 DOI: 10.1016/j.lssr.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Spaceflight is known to impact the immune system in multiple ways. However, its effect on the antibody repertoire, especially in response to challenge, has not been well characterized. The development of the repertoire has multiple steps that could be affected by spaceflight, including V-(D-)J-gene segment rearrangement and the selection of complementarity determining regions (CDRs); specifically, CDR3, responsible for much of the diversity in the repertoire. We used skeletal unloading with the antiorthostatic suspension (AOS) model to simulate some of the physiological effects associated with spaceflight. Animals ± AOS were challenged with tetanus toxoid (TT) and/or CpG, an adjuvant. Two weeks after challenge, bone marrow was collected and sequenced using the Illumina MiSeq 2 × 300 platform. The resulting antibody repertoire was characterized, including V-, D- (heavy only), and J-gene segment usage, constant region usage, CDR3 length, and V(D)J combinations. We detected changes in gene-segment usage in response to AOS, TT, and CpG treatment in both the heavy and light chains. Additionally, changes were seen in the class-switched VH-gene repertoire. Alterations were also detected in V/J pairing for both the heavy and light chains, and changes in CDR3 length. We also detected lower levels of CDR3 AA overlap than detected in the splenic repertoire. These results demonstrate that AOS, TT, and CpG alter the bone marrow antibody repertoire however, it is still unclear from the data whether there is a loss of host antigen-specific responsiveness because of the change in gene use.
Collapse
Affiliation(s)
- Trisha A Rettig
- Division of Biology, Kansas State University, 1711 Claflin Rd, Manhattan, KS, USA; Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, 11175 Campus St, Chan Shun Pavilion, Loma Linda, CA, USA
| | - Nina C Nishiyama
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, 11175 Campus St, Chan Shun Pavilion, Loma Linda, CA, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, 11175 Campus St, Chan Shun Pavilion, Loma Linda, CA, USA
| | - Stephen K Chapes
- Division of Biology, Kansas State University, 1711 Claflin Rd, Manhattan, KS, USA.
| |
Collapse
|
134
|
Chatziravdeli V, Katsaras GN, Lambrou GI. Gene Expression in Osteoblasts and Osteoclasts Under Microgravity Conditions: A Systematic Review. Curr Genomics 2019; 20:184-198. [PMID: 31929726 PMCID: PMC6935951 DOI: 10.2174/1389202920666190422142053] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Microgravity (μG) negatively influences bone metabolism by affecting normal osteoblast and osteoclast function. μG effects on bone metabolism has been an extensive field of study in recent years, due to the challenges presented by space flight. Methods We systematically reviewed research data from genomic studies performed in real or simulat-ed μG, on osteoblast and osteoclast cells. Our search yielded 50 studies, of which 39 concerned cells of the osteoblast family and 11 osteoclast precursors. Results Osteoblastic cells under μG show a decreased differentiation phenotype, proved by diminished expression levels of Alkaline Phosphatase (ALP) and Osteocalcin (OCN) but no apoptosis. Receptor Activator of NF-κB Ligand (RANKL)/ Osteoprotegerine (OPG) ratio is elevated in favor of RANKL in a time-dependent manner, and further RANKL production is caused by upregulation of Interleukin-6 (IL-6) and the inflammation pathway. Extracellular signals and changes in the gravitational environment are perceived by mechanosensitive proteins of the cytoskeleton and converted to intracellular signals through the Mitogen Activated Protein Kinase pathway (MAPK). This is followed by changes in the ex-pression of nuclear transcription factors of the Activator Protein-1 (AP-1) family and in turn of the NF-κB, thus affecting osteoblast differentiation, cell cycle, proliferation and maturation. Pre-osteoclastic cells show increased expression of the marker proteins such as Tryptophan Regulated Attenuation Protein (TRAP), cathepsin K, Matrix Metalloproteinase-9 (MMP-9) under μG conditions and become sensitized to RANKL. Conclusion Suppressing the expression of fusion genes such as syncytine-A which acts independently of RANKL, could be possible future therapeutic targets for microgravity side effects.
Collapse
Affiliation(s)
- Vasiliki Chatziravdeli
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George N Katsaras
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George I Lambrou
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| |
Collapse
|
135
|
Wang Y, Zhao W, Shi J, Wang J, Hao J, Pang X, Huang X, Chen X, Li Y, Jin R, Ge Q. Intestinal microbiota contributes to altered glucose metabolism in simulated microgravity mouse model. FASEB J 2019; 33:10140-10151. [DOI: 10.1096/fj.201900238rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yifan Wang
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyPeking University Beijing China
| | - Weijia Zhao
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyPeking University Beijing China
| | - Junxiu Shi
- Department of Developmental Cell BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical University Shenyang China
| | - Jiachi Wang
- Department of Developmental Cell BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical University Shenyang China
| | - Jie Hao
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyPeking University Beijing China
| | - Xuewen Pang
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyPeking University Beijing China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalInstitute of Hematology Beijing China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and ApplicationChinese Astronaut Research and Training Center Beijing China
| | - Yongzhi Li
- State Key Laboratory of Space Medicine Fundamentals and ApplicationChinese Astronaut Research and Training Center Beijing China
| | - Rong Jin
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyPeking University Beijing China
| | - Qing Ge
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyPeking University Beijing China
- Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking University Beijing China
| |
Collapse
|
136
|
Qu H, Yi J, Gao X, Zhao H, Wang Z. Anti-Disuse Osteoporosis Activity of a Complex of Calcium-Binding Peptide from Auricularia auricula Protein Hydrolysates. J Food Sci 2019; 84:1909-1919. [PMID: 31237973 DOI: 10.1111/1750-3841.14697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022]
Abstract
Osteoporosis is a common metabolic bone disease that is often seen in bedridden patients and astronauts. Long-term bed rest and nonweight bearing tend to induce disuse osteoporosis. Calcium supplements are commonly used to help treat disuse osteoporosis along with medications, most of which are calcium carbonate based, but they have poor absorption effects. In this study, we prepared a novel Auricularia auricula peptide-calcium complex (AP-Ca) and evaluated its protective effects on disuse osteoporosis. In vitro assays showed that AP-Ca significantly increased the contents of calcium (P < 0.05) and the activity of alkaline phosphatase (AKP; P < 0.05) of osteoblasts cultured in a two-dimensional-rotating wall vessel. Meanwhile, supplementation with AP-Ca also inhibited the production of pro-inflammatory factors induced by the loss of stress, especially TNF-α (P < 0.05). In vivo, a mouse tail suspension (TS) model was established, and the results showed that AP-Ca helped to improve bone mineral density, bone mineral content, and bone organic content in TS mice and effectively alleviated the alteration of enzymes related to bone metabolism, including AKP (P < 0.05) and serum tartrate-resistant acid phosphatase (P < 0.05), to avoid more serious bone loss induced by TS. Furthermore, we found that AP-Ca downregulated the bone resorption-associated pro-inflammatory genes interleukin-1 (IL-1), tumor necrosis factor-α, and IL-6 by 59.53 ± 3.55%, 48.01 ± 5.68%, and 40.00 ± 5.89%, respectively (P < 0.05). In conclusion, AP-Ca showed potential to suppress bone loss induced by disuse and might be considered a new alternative to reduce the risk of disuse osteoporosis. PRACTICAL APPLICATION: This peptide-calcium complex supplement exhibited protective effects on the bone loss induced by disuse, which provided a new alternative for patients and astronauts to reduce the risk of disuse osteoporosis.
Collapse
Affiliation(s)
- Hang Qu
- Dept. of Food Science and Engineering, School of Chemical Engineering and Chemistry, Harbin Inst. of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150000, China
| | - Juanjuan Yi
- School of life sciences, Zhengzhou Univ., 100 Science Road, Zhengzhou, 450001, China
| | - Xin Gao
- Dept. of Food Science and Engineering, School of Chemical Engineering and Chemistry, Harbin Inst. of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150000, China
| | - Haitian Zhao
- Dept. of Food Science and Engineering, School of Chemical Engineering and Chemistry, Harbin Inst. of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150000, China
| | - Zhenyu Wang
- Dept. of Food Science and Engineering, School of Chemical Engineering and Chemistry, Harbin Inst. of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150000, China
| |
Collapse
|
137
|
Bokhari RS, Metzger CE, Black JM, Franklin KA, Boudreaux RD, Allen MR, Macias BR, Hogan HA, Braby LA, Bloomfield SA. Positive impact of low-dose, high-energy radiation on bone in partial- and/or full-weightbearing mice. NPJ Microgravity 2019; 5:13. [PMID: 31231675 PMCID: PMC6547738 DOI: 10.1038/s41526-019-0074-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Astronauts traveling beyond low Earth orbit will be exposed to galactic cosmic radiation (GCR); understanding how high energy ionizing radiation modifies the bone response to mechanical unloading is important to assuring crew health. To investigate this, we exposed 4-mo-old female Balb/cBYJ mice to an acute space-relevant dose of 0.5 Gy 56Fe or sham (n = ~8/group); 4 days later, half of the mice were also subjected to a ground-based analog for 1/6 g (partial weightbearing) (G/6) for 21 days. Microcomputed tomography (µ-CT) of the distal femur reveals that 56Fe exposure resulted in 65–78% greater volume and improved microarchitecture of cancellous bone after 21 d compared to sham controls. Radiation also leads to significant increases in three measures of energy absorption at the mid-shaft femur and an increase in stiffness of the L4 vertebra. No significant effects of radiation on bone formation indices are detected; however, G/6 leads to reduced % mineralizing surface on the inner mid-tibial bone surface. In separate groups allowed 21 days of weightbearing recovery from G/6 and/or 56Fe exposure, radiation-exposed mice still exhibit greater bone mass and improved microarchitecture vs. sham control. However, femoral bone energy absorption values are no longer higher in the 56Fe-exposed WB mice vs. sham controls. We provide evidence for persistent positive impacts of high-LET radiation exposure preceding a period of full or partial weightbearing on bone mass and microarchitecture in the distal femur and, for full weightbearing mice only and more transiently, cortical bone energy absorption values.
Collapse
Affiliation(s)
- Rihana S Bokhari
- 1Health and Kinesiology, Texas A&M University, College Station, TX USA
| | - Corinne E Metzger
- 1Health and Kinesiology, Texas A&M University, College Station, TX USA
| | - Jeremy M Black
- 2Mechanical Engineering, Texas A&M University, College Station, TX USA
| | | | - Ramon D Boudreaux
- 3Biomedical Engineering, Texas A&M University, College Station, TX USA
| | - Matthew R Allen
- 4Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Brandon R Macias
- 1Health and Kinesiology, Texas A&M University, College Station, TX USA.,5KBRwyle, Cardiovascular and Vision Laboratory, NASA Johnson Space Center, Houston, TX USA
| | - Harry A Hogan
- 2Mechanical Engineering, Texas A&M University, College Station, TX USA.,3Biomedical Engineering, Texas A&M University, College Station, TX USA
| | - Leslie A Braby
- 6Nuclear Engineering, Texas A&M University, College Station, TX USA
| | | |
Collapse
|
138
|
DNA Methylation of Mouse Testes, Cardiac and Lung Tissue During Long-Term Microgravity Simulation. Sci Rep 2019; 9:7974. [PMID: 31138883 PMCID: PMC6538624 DOI: 10.1038/s41598-019-44468-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
Abstract
Under microgravity, the gene expression levels vary in different types of cells; however, the reasons for this have not been sufficiently studied. The aim of this work was to evaluate the methylation of CpG islands in the promoter regions of the genes encoding some cytoskeletal proteins, the total methylation and 5 hmC levels, and the levels of enzymes that regulate these processes in the testes, heart, and lungs in mice after a 30-day microgravity modeling by antiorthostatic suspension and after a subsequent 12-hour recovery as well as in the corresponding control group and identical groups treated with essential phospholipids. The obtained results indicate that under modeling microgravity in the examined tissues a decrease of cytoskeletal gene expression (mainly in the heart and lungs tissues) correlated with an increase in the CpG islands methylation and an increase of the expression (mainly in the testes tissue) - with a decrease of the CpG-methylation, despite of the fact that in the examined tissues took place a decrease of the content methylases and demethylases. But the deacetylase HDAC1 content increased in the heart and lungs tissues and decreased in the testes, letting us suggest its participation in the regulation of the methylation level under microgravity conditions.
Collapse
|
139
|
Li G, Zhang L, Wang D, AIQudsy L, Jiang JX, Xu H, Shang P. Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. J Cell Biochem 2019; 120:14262-14273. [PMID: 31106446 DOI: 10.1002/jcb.28946] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
The nature of muscle-bone crosstalk has been historically considered to be only mechanical, where the muscle is the load applier while bone provides the attachment sites. However, this dogma has been challenged with the emerging notion that bone and muscle act as secretory endocrine organs affect the function of each other. Biochemical crosstalk occurs through myokines such as myostatin, irisin, interleukin (IL)-6, IL-7, IL-15, insulin-like growth factor-1, fibroblast growth factor (FGF)-2, and β-aminoisobutyric acid and through bone-derived factors including FGF23, prostaglandin E2 , transforming growth factor β, osteocalcin, and sclerostin. Aside from the biochemical and mechanical interaction, additional factors including aging, circadian rhythm, nervous system network, nutrition intake, and exosomes also have effects on bone-muscle crosstalk. Here, we summarize the current research progress in the area, which may be conductive to identify potential novel therapies for the osteoporosis and sarcopenia, especially when they develop in parallel.
Collapse
Affiliation(s)
- GuoBin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Lan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - DongEn Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Luban AIQudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - HuiYun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Peng Shang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, Guangdong, China
| |
Collapse
|
140
|
Gatti V, Ghobryal B, Gelbs MJ, Gerber MB, Doty SB, Cardoso L, Fritton SP. Botox-induced muscle paralysis alters intracortical porosity and osteocyte lacunar density in skeletally mature rats. J Orthop Res 2019; 37:1153-1163. [PMID: 30839119 DOI: 10.1002/jor.24276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/12/2019] [Indexed: 02/04/2023]
Abstract
Reduced mechanical loading can lead to disuse osteoporosis, resulting in bone fragility. Disuse models report macroscopic bone loss due to muscle inactivity and immobilization, yet only recently has there been quantification of the effects of disuse on the vascular pores and osteocyte network, which are believed to play an important role in mechanotransduction via interstitial fluid flow. The goal of this study was to perform a high-resolution analysis of the effects of muscle inactivity on intracortical porosity and osteocyte lacunar density in skeletally mature rats. Muscle paralysis was induced in 20-week-old female Sprague Dawley rats by injection of botulinum neurotoxin. Rats were injected in the right hindlimb muscles with either Botox (BTX, n = 8) or saline solution (CTRL, n = 8), with a third group used as baseline controls (n = 8). Four weeks after injection, Botox caused a ∼60% reduction in hindlimb muscle mass. High-resolution micro-CT analysis showed that Botox-induced muscle paralysis increased vascular canal porosity and reduced osteocyte lacunar density within the tibial metaphysis cortex. Cortical thickness and other areal properties were diminished in the proximal tibial metaphysis, whereas no differences were found in the mid-diaphysis. Within the BTX group, the injected limbs showed a lower cancellous bone volume fraction relative to the contralateral limb. These results indicate that diminished muscle activity alters the vascular canal porosity and osteocyte lacunar density in cortical bone, which could alter interstitial fluid flow, affecting molecular transport and the transmission of mechanical signals to osteocytes. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Vittorio Gatti
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, New York, 10031
| | - Bishoy Ghobryal
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, New York, 10031
| | - Michelle J Gelbs
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, New York, 10031
| | - Michael B Gerber
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, New York, 10031
| | - Stephen B Doty
- Hospital for Special Surgery Research Institute, 515 East 71st Street, New York, New York
| | - Luis Cardoso
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, New York, 10031
| | - Susannah P Fritton
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, New York, 10031
| |
Collapse
|
141
|
Tominari T, Ichimaru R, Taniguchi K, Yumoto A, Shirakawa M, Matsumoto C, Watanabe K, Hirata M, Itoh Y, Shiba D, Miyaura C, Inada M. Hypergravity and microgravity exhibited reversal effects on the bone and muscle mass in mice. Sci Rep 2019; 9:6614. [PMID: 31036903 PMCID: PMC6488638 DOI: 10.1038/s41598-019-42829-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/08/2019] [Indexed: 11/15/2022] Open
Abstract
Spaceflight is known to induce severe systemic bone loss and muscle atrophy of astronauts due to the circumstances of microgravity. We examined the influence of artificially produced 2G hypergravity on mice for bone and muscle mass with newly developed centrifuge device. We also analyzed the effects of microgravity (mostly 0G) and artificial produced 1G in ISS (international space station) on mouse bone mass. Experiment on the ground, the bone mass of humerus, femur and tibia was measured using micro-computed tomography (μCT), and the all bone mass was significantly increased in 2G compared with 1G control. In tibial bone, the mRNA expression of bone formation related genes such as Osx and Bmp2 was elevated. The volume of triceps surae muscle was also increased in 2G compared with 1G control, and the mRNA expression of myogenic factors such as Myod and Myh1 was elevated by 2G. On the other hand, microgravity in ISS significantly induced the loss of bone mass on humerus and tibia, compared with artificial 1G induced by centrifugation. Here, we firstly report that bone and muscle mass are regulated by the gravity with loaded force in both of positive and negative on the ground and in the space.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Ryota Ichimaru
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Keita Taniguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Akane Yumoto
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Kenta Watanabe
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshifumi Itoh
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
142
|
Guéguinou N, Jeandel J, Kaminski S, Baatout S, Ghislin S, Frippiat JP. Modulation of Iberian Ribbed Newt Complement Component C3 by Stressors Similar to those Encountered during a Stay Onboard the International Space Station. Int J Mol Sci 2019; 20:ijms20071579. [PMID: 30934839 PMCID: PMC6479312 DOI: 10.3390/ijms20071579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
The complement system plays an important role in inflammation, innate and acquired immunity, as well as homeostasis. Despite these functions, the effects of spaceflight conditions on the complement system have not yet been intensively studied. Consequently, we investigated the effects of five types of chronic stressors, similar to those encountered during a stay onboard the International Space Station, on C3 expression in larvae of the urodele amphibian Pleurodeles waltl. We focused on C3 because it is a critical component of this system. These studies were completed by the analysis of adult mice exposed to two models of inflight stressors. Our data show that simulating space radiation, or combining a modification of the circadian rhythm with simulated microgravity, affects the amount of C3 proteins. These results suggest that C3 expression could be modified under real spaceflight conditions, potentially increasing the risk of inflammation and associated tissue damage.
Collapse
Affiliation(s)
- Nathan Guéguinou
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| | - Jérémy Jeandel
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| | - Sandra Kaminski
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| | - Sarah Baatout
- Radiobiology Unit, SCK·CEN, Boeretang 200, B-2400 Mol, Belgium.
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA 7300, Faculty of Medicine, Université de Lorraine, 9 avenue de la Foret de Haye, F-54500 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
143
|
rTMS pre-treatment effectively protects against cognitive and synaptic plasticity impairments induced by simulated microgravity in mice. Behav Brain Res 2019; 359:639-647. [DOI: 10.1016/j.bbr.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022]
|
144
|
Takahashi A, Wakihata S, Ma L, Adachi T, Hirose H, Yoshida Y, Ohira Y. Temporary Loading Prevents Cancer Progression and Immune Organ Atrophy Induced by Hind-Limb Unloading in Mice. Int J Mol Sci 2018; 19:ijms19123959. [PMID: 30544854 PMCID: PMC6321260 DOI: 10.3390/ijms19123959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Although the body's immune system is altered during spaceflight, the effects of microgravity (μG) on tumor growth and carcinogenesis are, as yet, unknown. To assess tumor proliferation and its effects on the immune system, we used a hind-limb unloading (HU) murine model to simulate μG during spaceflight. HU mice demonstrated significantly increased tumor growth, metastasis to the lung, and greater splenic and thymic atrophy compared with mice in constant orthostatic suspension and standard housing controls. In addition, mice undergoing temporary loading during HU (2 h per day) demonstrated no difference in cancer progression and immune organ atrophy compared with controls. Our findings suggest that temporary loading can prevent cancer progression and immune organ atrophy induced by HU. Further space experiment studies are warranted to elucidate the precise effects of μG on systemic immunity and cancer progression.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Shoto Wakihata
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Liqiu Ma
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Takuya Adachi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Hiroki Hirose
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Yoshinobu Ohira
- Faculty and Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
145
|
Oxidative Stress as Cause, Consequence, or Biomarker of Altered Female Reproduction and Development in the Space Environment. Int J Mol Sci 2018; 19:ijms19123729. [PMID: 30477143 PMCID: PMC6320872 DOI: 10.3390/ijms19123729] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress has been implicated in the pathophysiology of numerous terrestrial disease processes and associated with morbidity following spaceflight. Furthermore, oxidative stress has long been considered a causative agent in adverse reproductive outcomes. The purpose of this review is to summarize the pathogenesis of oxidative stress caused by cosmic radiation and microgravity, review the relationship between oxidative stress and reproductive outcomes in females, and explore what role spaceflight-induced oxidative damage may have on female reproductive and developmental outcomes.
Collapse
|
146
|
Markina EA, Andrianova IV, Shtemberg AS, Buravkova LB. Effect of 30-Day Hindlimb Unloading and Hypergravity on Bone Marrow Stromal Progenitors in C57Bl/6N Mice. Bull Exp Biol Med 2018; 166:130-134. [DOI: 10.1007/s10517-018-4301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 11/30/2022]
|
147
|
Canu MH, Fourneau J, Coq JO, Dannhoffer L, Cieniewski-Bernard C, Stevens L, Bastide B, Dupont E. Interplay between hypoactivity, muscle properties and motor command: How to escape the vicious deconditioning circle? Ann Phys Rehabil Med 2018; 62:122-127. [PMID: 30394346 DOI: 10.1016/j.rehab.2018.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
Abstract
Activity-dependent processes addressing the central nervous system (CNS) and musculoskeletal structures are critical for maintaining motor performance. Chronic reduction in activity, whether due to a sedentary lifestyle or extended bed rest, results in impaired performance in motor tasks and thus decreased quality of life. In the first part of this paper, we give a narrative review of the effects of hypoactivity on the neuromuscular system and behavioral outcomes. Motor impairments arise from a combination of factors including altered muscle properties, impaired afferent input, and plastic changes in neural structure and function throughout the nervous system. There is a reciprocal interplay between the CNS and muscle properties, and these sensorimotor loops are essential for controlling posture and movement. As a result, patients under hypoactivity experience a self-perpetuating cycle, in with sedentarity leading to decreased motor activity and thus a progressive worsening of a situation, and finally deconditioning. Various rehabilitation strategies have been studied to slow down or reverse muscle alteration and altered motor performance. In the second part of the paper, we review representative protocols directed toward the muscle, the sensory input and/or the cerebral cortex. Improving an understanding of the loss of motor function under conditions of disuse (such as extended bed rest) as well as identifying means to slow this decline may lead to therapeutic strategies to preserve quality of life for a range of individuals. The most efficient strategies seem multifactorial, using a combination of approaches targeting different levels of the neuromuscular system.
Collapse
Affiliation(s)
- Marie-Hélène Canu
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France.
| | - Julie Fourneau
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Jacques-Olivier Coq
- UMR 7289, CNRS, institut de neurosciences de la Timone, Aix-Marseille université, 13385 Marseille, France
| | - Luc Dannhoffer
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Caroline Cieniewski-Bernard
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Laurence Stevens
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Bruno Bastide
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Erwan Dupont
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| |
Collapse
|
148
|
Jin M, Zhang H, Zhao K, Xu C, Shao D, Huang Q, Shi J, Yang H. Responses of Intestinal Mucosal Barrier Functions of Rats to Simulated Weightlessness. Front Physiol 2018; 9:729. [PMID: 29962963 PMCID: PMC6011188 DOI: 10.3389/fphys.2018.00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Exposure to microgravity or weightlessness leads to various adaptive and pathophysiological alterations in digestive structures and physiology. The current study was carried out to investigate responses of intestinal mucosal barrier functions to simulated weightlessness, by using the hindlimb unloading rats model. Compared with normal controls, simulated weightlessness damaged the intestinal villi and structural integrity of tight junctions, up-regulated the expression of pro-apoptotic protein Bax while down-regulated the expression of anti-apoptotic protein Bcl-2, thus improved the intestinal permeability. It could also influence intestinal microbiota composition with the expansion of Bacteroidetes and decrease of Firmicutes. The predicted metagenomic analysis emphasized significant dysbiosis associated differences in genes involved in membrane transport, cofactors and vitamins metabolism, energy metabolism, and genetic information processing. Moreover, simulated weightlessness could modify the intestinal immune status characterized by the increase of proinflammatory cytokines, decrease of secretory immunoglobulin A, and activation of TLR4/MyD88/NF-κB signaling pathway in ileum. These results indicate the simulated weightlessness disrupts intestinal mucosal barrier functions in animal model. The data also emphasize the necessity of monitoring and regulating astronauts’ intestinal health during real space flights to prevent breakdowns in intestinal homeostasis of crewmembers.
Collapse
Affiliation(s)
- Mingliang Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Chunlan Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
149
|
Gaignier F, Legrand-Frossi C, Stragier E, Mathiot J, Merlin JL, Cohen-Salmon C, Lanfumey L, Frippiat JP. A Model of Chronic Exposure to Unpredictable Mild Socio-Environmental Stressors Replicates Some Spaceflight-Induced Immunological Changes. Front Physiol 2018; 9:514. [PMID: 29867558 PMCID: PMC5954118 DOI: 10.3389/fphys.2018.00514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/20/2018] [Indexed: 02/02/2023] Open
Abstract
During spaceflight, astronauts face radiations, mechanical, and socio-environmental stressors. To determine the impact of chronic socio-environmental stressors on immunity, we exposed adult male mice to chronic unpredictable mild psychosocial and environmental stressors (CUMS model) for 3 weeks. This duration was chosen to simulate a long flight at the human scale. Our data show that this combination of stressors induces an increase of serum IgA, a reduction of normalized splenic mass and tends to reduce the production of pro-inflammatory cytokines, as previously reported during or after space missions. However, CUMS did not modify major splenic lymphocyte sub-populations and the proliferative responses of splenocytes suggesting that these changes could be due to other factors such as gravity changes. Thus, CUMS, which is an easy to implement model, could contribute to deepen our understanding of some spaceflight-associated immune alterations and could be useful to test countermeasures.
Collapse
Affiliation(s)
- Fanny Gaignier
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christine Legrand-Frossi
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Emilien Stragier
- INSERM UMR894, Centre de Psychiatrie et Neuroscience, Paris, France
| | - Julianne Mathiot
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie and CNRS UMR 7039 CRAN, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Charles Cohen-Salmon
- INSERM U1141, PROTECT, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | | | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
150
|
Speacht TL, Krause AR, Steiner JL, Lang CH, Donahue HJ. Combination of hindlimb suspension and immobilization by casting exaggerates sarcopenia by stimulating autophagy but does not worsen osteopenia. Bone 2018; 110:29-37. [PMID: 29414598 DOI: 10.1016/j.bone.2018.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/14/2018] [Accepted: 01/20/2018] [Indexed: 12/20/2022]
Abstract
Astronauts in space experience a unique environment that causes the concomitant loss of bone and muscle. However, the interaction between these tissues and how osteopenia and sarcopenia affect each other is unclear. We explored this relationship by exaggerating unloading-induced muscle loss using a unilateral casting model in conjunction with hindlimb suspension (HLS). Five-month-old, male C57Bl/6J mice subjected to HLS for 2 weeks displayed a significant decrease in gastrocnemius and quadriceps weight (-9-10%), with a two-fold greater decrease in muscle mass observed in the HLS + casted limb. However, muscle from casted limbs had a higher rate of protein synthesis (+16%), compared to HLS alone, with coordinated increases in S6K1 (+50%) and 4E-BP1 (+110%) phosphorylation. Increased protein content for surrogate markers of autophagy, including LC3-II (+75%), Atg7 (+10%), and Atg5-12 complex (+20%) was only detected in muscle from the casted limb. In proximal tibias, HLS resulted in significant decreases in bone volume fraction (-24% vs -8%), trabecular number (-6% vs +0.3%), trabecular thickness (-10% vs -2%), and trabecular spacing (+8.4% vs +2%) compared to ground controls. There was no further bone loss in casted limbs compared to HLS alone. In tibia midshafts, HLS resulted in decreased total area (-2% vs +1%) and increased bone mineral density (+1% vs -0.3%) compared to ground controls. Cortical bone from casted limbs showed an increase in cortical thickness (+9% vs +2%) and cortical area/total area (+1% vs -0.6%) compared to HLS alone. Our results suggest that casting exacerbates unloading-induced muscle loss via activation of autophagy. Casting did not exacerbate bone loss suggesting that the unloading-induced loss of muscle and bone can be temporally dissociated and the effect of reduced muscle activity plays a relatively minor role compared to reduced load bearing on trabecular bone structure.
Collapse
Affiliation(s)
- Toni L Speacht
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Andrew R Krause
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Henry J Donahue
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|