101
|
Del Re M, Crucitta S, Lorenzini G, De Angelis C, Diodati L, Cavallero D, Bargagna I, Cinacchi P, Fratini B, Salvadori B, Ghilli M, Roncella M, Fontana A, Danesi R, Cucchiara F. PI3K mutations detected in liquid biopsy are associated to reduced sensitivity to CDK4/6 inhibitors in metastatic breast cancer patients. Pharmacol Res 2020; 163:105241. [PMID: 33049397 DOI: 10.1016/j.phrs.2020.105241] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND PI3K pathway hyperactivation due to PIK3CA mutations contributes to endocrine resistance, and PIK3CA is one of the most frequently mutated genes in breast cancer (BC), occurring approximately 40 % of HR+, HER2- advanced BC (ABC). Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) have changed the treatment landscape of HR+, HER2- ABC. Putative mechanisms of resistance to CDK4/6i have been identified, but limited data are available on PI3K deregulation. The present study evaluates the impact of PIK3CA mutations on CDK4/6i plus hormone therapy and evaluates potential characteristics that may suggest for a PI3K screening in patients with ABC. METHODS ABC patients were enrolled, and 12 mL of blood were collected in EDTA tubes at baseline prior to CDK4/6i plus hormone therapy. Plasma was separated and circulating free DNA (cfDNA) was extracted. PIK3CA mutation analysis was performed on a ddPCR. Selected and analyzed mutations included: p.C420R, p.E542 K, p.E545A, p.E545D, p.E545G, p.E545K, p.Q546E, p.Q546R, p.H1047L, p.H1047R, p.H1047Y. Statistical analysis were performed to investigate the predictive power of such mutations and any association with clinical factors. RESULTS Thirty patients were enrolled. PIK3CA mutation status at baseline was independently associated with shorter median PFS (7.44 vs 12.9 months, p = 0.01) in subject receiving CDK4/6i plus hormone therapy. PIK3CA mutations were found to be associated to Ki67 expression in primary lesions (p = 0.006). Moreover, the probability to find a PI3K mutation improved considering also the therapeutic management in previous lines of treatment (McFadden's R2 = 0.415, p = 0.004; AUC of the ROC curve = 0.914). CONCLUSION The findings of this pilot study suggest that the presence of a PI3K mutation in liquid biopsy correlates with a worse PFS in patients with ABC receiving CDK4/6i, and that liquid biopsy is a useful tool to suggests a better tailored pharmacological intervention.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giulia Lorenzini
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Italy
| | - Claudia De Angelis
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Italy
| | - Lucrezia Diodati
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Italy
| | - Diletta Cavallero
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Italy
| | - Irene Bargagna
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Italy
| | - Paola Cinacchi
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Italy
| | - Beatrice Fratini
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Italy
| | - Barbara Salvadori
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Italy
| | - Matteo Ghilli
- Unit of Breast Surgery, Breast Cancer Center, University Hospital of Pisa, Italy
| | - Manuela Roncella
- Unit of Breast Surgery, Breast Cancer Center, University Hospital of Pisa, Italy
| | - Andrea Fontana
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
102
|
PI3K p110α Blockade Enhances Anti-Tumor Efficacy of Abemaciclib in Human Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12092500. [PMID: 32899250 PMCID: PMC7564416 DOI: 10.3390/cancers12092500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cancer and the second highest cause of cancer related mortality worldwide. Especially, the survival of advanced CRC patients who were failed to achieve durable remission after the anti-angiogenic and anti-epithelial growth factor receptor agents are still poor. The aim of our study was to investigate the anti-tumor activity of the CDK4/6 inhibitor, abemaciclib, as a single agent and to identify an optimal combination agent with abemaciclib in CRC cell lines. We confirmed that abemaciclib monotherapy showed anti-tumor activity and combination therapy with abemaciclib and BYL719 demonstrated synergistic effects in CRC cell lines. Moreover, our study suggested that PIK3CA mutation could be a predictive marker for efficacy of abemaciclib and BYL719 combination therapy. These findings provide novel insight into a possible therapeutic strategy for patients with relapsed and refractory CRC. Abstract Targeting cell cycle regulation in colorectal cancer has not been fully evaluated. We investigated the efficacy of the CDK4/6 inhibitor, abemaciclib, and confirmed a synergistic interaction for PI3K p110α and CDK dual inhibition in colorectal cancer cell lines. Caco-2 and SNU-C4 cell lines were selected to explore the mechanism of action for and resistance to abemaciclib. In vitro and in vivo models were used to validate the anti-tumor activity of abemaciclib monotherapy and BYL719 combination therapy. Abemaciclib monotherapy inhibited cell cycle progression and proliferation in Caco-2 and SNU-C4 cells. CDK2-mediated Rb phosphorylation and AKT phosphorylation appeared to be potential resistance mechanisms to abemaciclib monotherapy. Abemaciclib/BYL719 combination therapy demonstrated synergistic effects regardless of PIK3CA mutation status but showed greater efficacy in the PIK3CA mutated SNU-C4 cell line. Growth inhibition, cell cycle arrest, and migration inhibition were confirmed as mechanisms of action for this combination. In an SNU-C4 mouse xenograft model, abemaciclib/BYL719 combination resulted in tumor growth inhibition and apoptosis with tolerable toxicity. Dual blockade of PI3K p110α and CDK4/6 showed synergistic anti-tumor effects in vivo and in vitro in human colorectal cancer cell lines. This combination could be a promising candidate for the treatment of patients with advanced colorectal cancer.
Collapse
|
103
|
O'Brien NA, McDermott MSJ, Conklin D, Luo T, Ayala R, Salgar S, Chau K, DiTomaso E, Babbar N, Su F, Gaither A, Hurvitz SA, Linnartz R, Rose K, Hirawat S, Slamon DJ. Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer. Breast Cancer Res 2020; 22:89. [PMID: 32795346 PMCID: PMC7427086 DOI: 10.1186/s13058-020-01320-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/23/2020] [Indexed: 01/05/2023] Open
Abstract
Background Combined targeting of CDK4/6 and ER is now the standard of care for patients with advanced ER+/HER2− breast cancer. However, acquired resistance to these therapies frequently leads to disease progression. As such, it is critical to identify the mechanisms by which resistance to CDK4/6-based therapies is acquired and also identify therapeutic strategies to overcome resistance. Methods In this study, we developed and characterized multiple in vitro and in vivo models of acquired resistance to CDK4/6-based therapies. Resistant models were screened by reverse phase protein array (RPPA) for cell signaling changes that are activated in resistance. Results We show that either a direct loss of Rb or loss of dependence on Rb signaling confers cross-resistance to inhibitors of CDK4/6, while PI3K/mTOR signaling remains activated. Treatment with the p110α-selective PI3K inhibitor, alpelisib (BYL719), completely blocked the progression of acquired CDK4/6 inhibitor-resistant xenografts in the absence of continued CDK4/6 inhibitor treatment in models of both PIK3CA mutant and wild-type ER+/HER2− breast cancer. Triple combination therapy against PI3K:CDK4/6:ER prevented and/or delayed the onset of resistance in treatment-naive ER+/HER2− breast cancer models. Conclusions These data support the clinical investigation of p110α-selective inhibitors of PI3K, such as alpelisib, in patients with ER+/HER2− breast cancer who have progressed on CDK4/6:ER-based therapies. Our data also support the investigation of PI3K:CDK4/6:ER triple combination therapy to prevent the onset of resistance to the combination of endocrine therapy plus CDK4/6 inhibition.
Collapse
Affiliation(s)
- Neil A O'Brien
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Martina S J McDermott
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dylan Conklin
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tong Luo
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Raul Ayala
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Suruchi Salgar
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kevin Chau
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emmanuelle DiTomaso
- Novartis Pharmaceuticals, Cambridge, MA, USA.,Currently Bayer Pharmaceuticals, Boston, MA, USA
| | | | - Faye Su
- Novartis Pharmaceuticals, Cambridge, MA, USA
| | - Alex Gaither
- Novartis Pharmaceuticals, Cambridge, MA, USA.,Currently LG Life Sciences, Cambridge, MA, USA
| | - Sara A Hurvitz
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | - Samit Hirawat
- Novartis Pharmaceuticals, Cambridge, MA, USA.,Currently Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Dennis J Slamon
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA. .,UCLA Translational Oncology, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, 90404, USA.
| |
Collapse
|
104
|
Wander SA, Cohen O, Gong X, Johnson GN, Buendia-Buendia JE, Lloyd MR, Kim D, Luo F, Mao P, Helvie K, Kowalski KJ, Nayar U, Waks AG, Parsons SH, Martinez R, Litchfield LM, Ye XS, Yu C, Jansen VM, Stille JR, Smith PS, Oakley GJ, Chu QS, Batist G, Hughes ME, Kremer JD, Garraway LA, Winer EP, Tolaney SM, Lin NU, Buchanan SG, Wagle N. The Genomic Landscape of Intrinsic and Acquired Resistance to Cyclin-Dependent Kinase 4/6 Inhibitors in Patients with Hormone Receptor-Positive Metastatic Breast Cancer. Cancer Discov 2020; 10:1174-1193. [PMID: 32404308 PMCID: PMC8815415 DOI: 10.1158/2159-8290.cd-19-1390] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/29/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022]
Abstract
Mechanisms driving resistance to cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) in hormone receptor-positive (HR+) breast cancer have not been clearly defined. Whole-exome sequencing of 59 tumors with CDK4/6i exposure revealed multiple candidate resistance mechanisms including RB1 loss, activating alterations in AKT1, RAS, AURKA, CCNE2, ERBB2, and FGFR2, and loss of estrogen receptor expression. In vitro experiments confirmed that these alterations conferred CDK4/6i resistance. Cancer cells cultured to resistance with CDK4/6i also acquired RB1, KRAS, AURKA, or CCNE2 alterations, which conferred sensitivity to AURKA, ERK, or CHEK1 inhibition. Three of these activating alterations-in AKT1, RAS, and AURKA-have not, to our knowledge, been previously demonstrated as mechanisms of resistance to CDK4/6i in breast cancer preclinically or in patient samples. Together, these eight mechanisms were present in 66% of resistant tumors profiled and may define therapeutic opportunities in patients. SIGNIFICANCE: We identified eight distinct mechanisms of resistance to CDK4/6i present in 66% of resistant tumors profiled. Most of these have a therapeutic strategy to overcome or prevent resistance in these tumors. Taken together, these findings have critical implications related to the potential utility of precision-based approaches to overcome resistance in many patients with HR+ metastatic breast cancer.This article is highlighted in the In This Issue feature, p. 1079.
Collapse
Affiliation(s)
- Seth A. Wander
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Harvard Medical School, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ofir Cohen
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Gabriela N. Johnson
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jorge E. Buendia-Buendia
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Maxwell R. Lloyd
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Dewey Kim
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Flora Luo
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Harvard Medical School, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Pingping Mao
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Harvard Medical School, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Karla Helvie
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Kailey J. Kowalski
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Utthara Nayar
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Harvard Medical School, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Adrienne G. Waks
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Harvard Medical School, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | | | | | | | | | | | | | | | | | - Gerald Batist
- Segal Cancer Centre, Jewish General Hospital, McGill University, Montreal, Canada
| | - Melissa E. Hughes
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Levi A. Garraway
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Harvard Medical School, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA,Eli Lilly and Co., Indianapolis, IN
| | - Eric P. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Harvard Medical School, Boston, MA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Harvard Medical School, Boston, MA
| | - Nancy U. Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Harvard Medical School, Boston, MA
| | | | - Nikhil Wagle
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
105
|
Chen Z, Chen C, Zhou T, Duan C, Wang Q, Zhou X, Zhang X, Wu F, Hua Y, Lin F. A high-throughput drug combination screen identifies an anti-glioma synergism between TH588 and PI3K inhibitors. Cancer Cell Int 2020; 20:337. [PMID: 32714096 PMCID: PMC7376673 DOI: 10.1186/s12935-020-01427-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor. More than half of GBMs contain mutation(s) of PTEN/PI3K/AKT, making inhibitors targeting the PI3K pathway very attractive for clinical investigation. However, so far, PI3K/AKT/mTOR inhibitors have not achieved satisfactory therapeutic effects in clinical trials of GBM. In this study, we aimed to develop a high-throughput screening method for high-throughput identification of potential targeted agents that synergize with PI3K inhibitors in GBM. Methods A Sensitivity Index (SI)-based drug combination screening method was established to evaluate the interactions between BKM120, a pan-PI3K inhibitor, and compounds from a library of 606 target-selective inhibitors. Proliferation, colony and 3D spheroid formation assays, western blotting, comet assay, γ-H2AX staining were used to evaluate the anti-glioma effects of the top-ranked candidates. The drug combination effects were analyzed by the Chou-Talalay method. Results Six compounds were successfully identified from the drug screen, including three previously reported compounds that cause synergistic antitumor effects with PI3K/mTOR inhibitors. TH588, an putative MTH1 inhibitor exhibited significant synergy with BKM120 in suppressing the proliferation, colony formation and 3D spheroid formation of GBM cells. Further investigation revealed that both DNA damage and apoptosis were markedly enhanced upon combination treatment with TH588 and BKM120. Finally, activation of PI3K or overexpression of AKT compromised the anti-glioma efficacy of TH588. Conclusions The screening method developed in this study demonstrated its usefulness in the rapid identification of synergistic drug combinations of PI3K inhibitors and targeted agents.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Chao Chen
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Tingting Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Chao Duan
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohui Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Xia Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Fangrong Wu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Yunfen Hua
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China.,Institute for Brain Tumors, Key Laboratory of Rare Metabolic Diseases, The Affiliated Cancer Hospital of Nanjing Medical University; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, China
| |
Collapse
|
106
|
Ethier SP, Guest ST, Garrett-Mayer E, Armeson K, Wilson RC, Duchinski K, Couch D, Gray JW, Kappler C. Development and implementation of the SUM breast cancer cell line functional genomics knowledge base. NPJ Breast Cancer 2020; 6:30. [PMID: 32715085 PMCID: PMC7374090 DOI: 10.1038/s41523-020-0173-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Several years ago, the SUM panel of human breast cancer cell lines was developed, and these cell lines have been distributed to hundreds of labs worldwide. Our lab and others have developed extensive omics data sets from these cells. More recently, we performed genome-scale shRNA essentiality screens on the entire SUM line panel, as well as on MCF10A cells, MCF-7 cells, and MCF-7LTED cells. These gene essentiality data sets allowed us to perform orthogonal analyses that functionalize the otherwise descriptive genomic data obtained from traditional genomics platforms. To make these omics data sets available to users of the SUM lines, and to allow users to mine these data sets, we developed the SUM Breast Cancer Cell Line Knowledge Base. This knowledge base provides information on the derivation of each cell line, provides protocols for the proper maintenance of the cells, and provides a series of data mining tools that allow rapid identification of the oncogene signatures for each line, the enrichment of KEGG pathways with screen hit and gene expression data, an analysis of protein and phospho-protein expression for the cell lines, as well as a gene search tool and a functional-druggable signature tool. Recently, we expanded our database to include genomic data for an additional 27 commonly used breast cancer cell lines. Thus, the SLKBase provides users with deep insights into the biology of human breast cancer cell lines that can be used to develop strategies for the reverse engineering of individual breast cancer cell lines.
Collapse
Affiliation(s)
- Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
| | - Stephen T Guest
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
- Present Address: Department of Biomedical Informatics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Elizabeth Garrett-Mayer
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
- Present Address: American Society for Clinical Oncology, Charleston, SC USA
| | - Kent Armeson
- Biostatistics Core, Hollings Cancer Center, Charleston, SC USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
| | - Kathryn Duchinski
- Department of Computer Science, The College of Charleston, Charleston, SC USA
- Present Address: Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA USA
| | - Daniel Couch
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health and Sciences University, Portland, OR USA
| | - Christiana Kappler
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
| |
Collapse
|
107
|
A Novel Methoxybenzyl 5-Nitroacridone Derivative Effectively Triggers G1 Cell Cycle Arrest in Chronic Myelogenous Leukemia K562 Cells by Inhibiting CDK4/6-Mediated Phosphorylation of Rb. Int J Mol Sci 2020; 21:ijms21145077. [PMID: 32708403 PMCID: PMC7403985 DOI: 10.3390/ijms21145077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/12/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a malignant tumor caused by the abnormal proliferation of hematopoietic stem cells. Among a new series of acridone derivatives previously synthesized, it was found that the methoxybenzyl 5-nitroacridone derivative 8q has nanomolar cytotoxicity in vitro against human chronic myelogenous leukemia K562 cells. In order to further explore the possible anti-leukemia mechanism of action of 8q on K562 cells, a metabolomics and molecular biology study was introduced. It was thus found that most of the metabolic pathways of the G1 phase of K562 cells were affected after 8q treatment. In addition, a concentration-dependent accumulation of cells in the G1 phase was observed by cell cycle analysis. Western blot analysis showed that 8q significantly down-regulated the phosphorylation level of retinoblastoma-associated protein (Rb) in a concentration-dependent manner, upon 48 h treatment. In addition, 8q induced K562 cells apoptosis, through both mitochondria-mediated and exogenous apoptotic pathways. Taken together, these results indicate that 8q effectively triggers G1 cell cycle arrest and induces cell apoptosis in K562 cells, by inhibiting the CDK4/6-mediated phosphorylation of Rb. Furthermore, the possible binding interactions between 8q and CDK4/6 protein were clarified by homology modeling and molecular docking. In order to verify the inhibitory activity of 8q against other chronic myeloid leukemia cells, KCL-22 cells and K562 adriamycin-resistant cells (K562/ADR) were selected for the MTT assay. It is worth noting that 8q showed significant anti-proliferative activity against these cell lines after 48 h/72 h treatment. Therefore, this study provides new mechanistic information and guidance for the development of new acridones for application in the treatment of CML.
Collapse
|
108
|
Oshi M, Takahashi H, Tokumaru Y, Yan L, Rashid OM, Nagahashi M, Matsuyama R, Endo I, Takabe K. The E2F Pathway Score as a Predictive Biomarker of Response to Neoadjuvant Therapy in ER+/HER2- Breast Cancer. Cells 2020; 9:E1643. [PMID: 32650578 PMCID: PMC7407968 DOI: 10.3390/cells9071643] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
E2F transcription factors play critical roles in the cell cycle. Therefore, their activity is expected to reflect tumor aggressiveness and responsiveness to therapy. We scored 3905 tumors of nine breast cancer cohorts for this activity based on their gene expression for the Hallmark E2F targets gene set. As expected, tumors with a high score had an increased expression of cell proliferation-related genes. A high score was significantly associated with shorter patient survival, greater MKI67 expression, histological grade, stage, and genomic aberrations. Furthermore, metastatic tumors had higher E2F scores than the primary tumors from which they arose. Although tumors with a high score had greater infiltration by both pro- and anti-cancerous immune cells, they had an increased expression of immune checkpoint genes. Estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative cancer with a high E2F score achieved a significantly higher pathological complete response (pCR) rate to neoadjuvant chemotherapy. The E2F score was significantly associated with the expression of cyclin-dependent kinase (CDK)-related genes and strongly correlated with sensitivity to CDK inhibition in cell lines. In conclusion, the E2F score is a marker of breast cancer aggressiveness and predicts the responsiveness of ER-positive/HER2-negative patients to neoadjuvant chemotherapy and possibly to CDK and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
| | - Hideo Takahashi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Omar M. Rashid
- Department of Surgery, Holy Cross Hospital, Michael and Dianne Bienes Comprehensive Cancer Center, Fort Lauderdale, FL 33308, USA;
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 9518520, Japan;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (H.T.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama 2360004, Japan; (R.M.); (I.E.)
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 9601295, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 9518510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 1608402, Japan
| |
Collapse
|
109
|
MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep 2020; 26:2667-2680.e7. [PMID: 30840889 PMCID: PMC6449498 DOI: 10.1016/j.celrep.2019.02.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 11/07/2018] [Accepted: 02/06/2019] [Indexed: 01/24/2023] Open
Abstract
CDK4/6 inhibition is now part of the standard armamentarium for patients with estrogen receptorpositive (ER+) breast cancer, so that defining mechanisms of resistance is a pressing issue. Here, we identify increased CDK6 expression as a key determinant of acquired resistance after palbociclib treatment in ER+ breast cancer cells. CDK6 expression is critical for cellular survival during palbociclib exposure. The increased CDK6 expression observed in resistant cells is dependent on TGF-b pathway suppression via miR-432-5p expression. Exosomal miR-432-5p expression mediates the transfer of the resistance phenotype between neighboring cell populations. Levels of miR-432-5p are higher in primary breast cancers demonstrating CDK4/6 resistance compared to those that are sensitive. These data are Furthermore confirmed in pre-treatment and post-progression biopsies from a parotid cancer patient who had responded to ribociclib, demonstrating the clinical relevance of this mechanism. Finally, the CDK4/6 inhibitor resistance phenotype is reversible in vitro and in vivo by a prolonged drug holiday. Cornell et al. demonstrate a mechanism of acquired CDK4/6 inhibitor resistance that is independent of inherent genetic mutations, is conferred through extracellular signaling, and is reversible in vitro and in vivo. Resistance was mediated by exosomal miRNA, causing increased expression of CDK6 to overcome G1 arrest and promote cell survival.
Collapse
|
110
|
Makhlin I, DeMichele A. On the Rise of Cyclin-Dependent Kinase Inhibitors in Breast Cancer: Progress & Ongoing Challenges. BREAST CANCER MANAGEMENT 2020; 9. [PMID: 34475968 DOI: 10.2217/bmt-2020-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Igor Makhlin
- Department of Medicine, Division of Hematology/Oncology, Abramson Cancer Center, University of Pennsylvania
| | - Angela DeMichele
- Department of Medicine, Division of Hematology/Oncology, Abramson Cancer Center, University of Pennsylvania
| |
Collapse
|
111
|
Sharifi MN, Anandan A, Grogan P, O'Regan RM. Therapy after cyclin-dependent kinase inhibition in metastatic hormone receptor-positive breast cancer: Resistance mechanisms and novel treatment strategies. Cancer 2020; 126:3400-3416. [PMID: 32426848 DOI: 10.1002/cncr.32931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022]
Abstract
Endocrine therapy has been the standard of care for patients with metastatic hormone receptor (HR)-positive, HER2-negative breast cancer since the 1970s, improving survival while avoiding the toxicities associated with cytotoxic chemotherapy. However, all HR-positive tumors ultimately develop resistance to endocrine therapy. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have more recently become an important component of the management of this breast cancer subtype, significantly delaying time to the disease progression and improving survival when combined with endocrine therapy. However, as with endocrine therapy alone, treatment resistance remains a universal phenomenon. As more women receive CDK4/6 inhibitors as part of their treatment, the management of de novo and acquired resistance to combined CDK4/CDK6 inhibitor plus endocrine therapy regimens has emerged as an important clinical challenge. Several resistance mechanisms have been described, including alterations in the CDK4/6/cyclin D complex or its major effector retinoblastoma protein (pRb), bypass signaling through other cyclin/CDK complexes and activation of upstream signaling pathways, in particular the PI3K/mTOR pathway, but robust biomarkers to predict resistance remain elusive, and the role for continuing CDK4/6 inhibitors after progression remains under investigation. Novel strategies being evaluated in clinical trials include the continuation of CDK4/6 inhibitors through progression, as well as triplet therapy combinations with PI3K inhibitors or immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Marina N Sharifi
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Internal Medicine Pathway for Academic Career Training (IMPACT) Physician Scientist Program, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Apoorva Anandan
- Internal Medicine Residency Program, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Patrick Grogan
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Internal Medicine Pathway for Academic Career Training (IMPACT) Physician Scientist Program, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ruth M O'Regan
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
112
|
Sequencing Endocrine Therapy for Metastatic Breast Cancer: What Do We Do After Disease Progression on a CDK4/6 Inhibitor? Curr Oncol Rep 2020; 22:57. [PMID: 32415339 DOI: 10.1007/s11912-020-00917-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors have revolutionized the treatment landscape for patients with hormone receptor-positive (HR+) and HER2-negative (HER2-) metastatic breast cancer (MBC). However, optimal therapy after CDK4/6 inhibitors is unknown. This review provides an update on recent understanding of potential resistance mechanisms to CDK4/6 inhibitors and therapeutic strategies. RECENT FINDINGS CDK4/6 inhibitors are broadly effective for HR+/HER2- MBC. However, intrinsic and acquired resistance is inevitable. Although there are no established clinical predictors of response aside from ER positivity, several cell cycle-specific and non-specific mechanisms have emerged as potential resistance biomarkers and therapeutic targets in recent studies. Examples include loss of function mutations in RB1 or FAT1, overexpression or amplification of CDK6 and CCNE1, alterations of FGFR, and PI3K/mTOR-mediated CDK2 activation. Biomarker studies and clinical trials targeting CDK4/6 inhibitor resistance are critical to improve treatments for HR+/HER2- MBC.
Collapse
|
113
|
Jin X, Ge LP, Li DQ, Shao ZM, Di GH, Xu XE, Jiang YZ. LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer. Mol Cancer 2020; 19:87. [PMID: 32393270 PMCID: PMC7212688 DOI: 10.1186/s12943-020-01210-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Background Estrogen receptor-positive (ER+) breast cancers represent approximately two-thirds of all breast cancers and have a sustained risk of late disease recurrence. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have shown significant efficacy in ER+ breast cancer. However, their effects are still limited by drug resistance. In this study, we aim to explore the role of long noncoding RNA TROJAN in ER+ breast cancer. Methods The expression level of TROJAN in breast cancer tissue and cell lines was determined by quantitative real-time PCR. In vitro and in vivo assays as well as patient derived organoid were preformed to explore the phenotype of TROJAN in ER+ breast cancer. The TROJAN-NKRF-CDK2 axis were screened and validated by RNA pull-down, mass spectrometry, RNA immunoprecipitation, microarray, dual-luciferase reporter and chromatin immunoprecipitation assays. Results Herein, we showed that TROJAN was highly expressed in ER+ breast cancer. TROJAN promoted cell proliferation and resistance to a CDK4/6 inhibitor and was associated with poor survival in ER+ breast cancer. TROJAN can bind to NKRF and inhibit its interaction with RELA, upregulating the expression of CDK2. The inhibition of TROJAN abolished the activity of CDK2, reversing the resistance to CDK4/6 inhibitor. A TROJAN antisense oligonucleotide sensitized breast cancer cells and organoid to the CDK4/6 inhibitor palbociclib both in vitro and in vivo. Conclusions TROJAN promotes ER+ breast cancer proliferation and is a potential target for reversing CDK4/6 inhibitor resistance.
Collapse
Affiliation(s)
- Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Da-Qiang Li
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, China.
| | - Xiao-En Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, China.
| |
Collapse
|
114
|
Combined inhibition of PIM and CDK4/6 suppresses both mTOR signaling and Rb phosphorylation and potentiates PI3K inhibition in cancer cells. Oncotarget 2020; 11:1478-1492. [PMID: 32391118 PMCID: PMC7197449 DOI: 10.18632/oncotarget.27539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/14/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant activation of mitogenic signaling pathways in cancer promotes growth and proliferation of cells by activating mTOR and S6 phosphorylation, and D-cyclin kinases and Rb phosphorylation, respectively. Correspondingly, inhibition of phosphorylation of both Rb and S6 is required for robust anti-tumor efficacy of drugs that inhibit cell signaling. The best-established mechanism of mTOR activation in cancer is via PI3K/Akt signaling, but mTOR activity can also be stimulated by CDK4 and PIM kinases. In this study, we show that the CDK4/6 inhibitor abemaciclib inhibits PIM kinase and S6 phosphorylation in cancer cells and concurrent inhibition of PIM, CDK4, and CDK6 suppresses both S6 and Rb phosphorylation. TSC2 or PIK3CA mutations obviate the requirement for PIM kinase and circumvent the inhibition of S6 phosphorylation by abemaciclib. Combination with a PI3K inhibitor restored suppression of S6 phosphorylation and synergized to curtail cell growth. By combining abemaciclib with a PI3K inhibitor, three pathways (Akt, PIM, and CDK4) to mTOR activation are neutralized, suggesting a potential combination strategy for the treatment of PIK3CA-mutant ER+ breast cancer.
Collapse
|
115
|
Transcriptomic Profiling Identifies Differentially Expressed Genes in Palbociclib-Resistant ER+ MCF7 Breast Cancer Cells. Genes (Basel) 2020; 11:genes11040467. [PMID: 32344635 PMCID: PMC7230561 DOI: 10.3390/genes11040467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
Acquired resistance to cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition in estrogen receptor-positive (ER+) breast cancer remains a significant clinical challenge. Efforts to uncover the mechanisms underlying resistance are needed to establish clinically actionable targets effective against resistant tumors. In this study, we sought to identify differentially expressed genes (DEGs) associated with acquired resistance to palbociclib in ER+ breast cancer. We performed next-generation transcriptomic RNA sequencing (RNA-seq) and pathway analysis in ER+ MCF7 palbociclib-sensitive (MCF7/pS) and MCF7 palbociclib-resistant (MCF7/pR) cells. We identified 2183 up-regulated and 1548 down-regulated transcripts in MCF7/pR compared to MCF7/pS cells. Functional analysis of the DEGs using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database identified several pathways associated with breast cancer, including ‘cell cycle’, ‘DNA replication’, ‘DNA repair’ and ‘autophagy’. Additionally, Ingenuity Pathway Analysis (IPA) revealed that resistance to palbociclib is closely associated with deregulation of several key canonical and metabolic pathways. Further studies are needed to determine the utility of these DEGs and pathways as therapeutics targets against ER+ palbociclib-resistant breast cancer.
Collapse
|
116
|
Pancholi S, Ribas R, Simigdala N, Schuster E, Nikitorowicz-Buniak J, Ressa A, Gao Q, Leal MF, Bhamra A, Thornhill A, Morisset L, Montaudon E, Sourd L, Fitzpatrick M, Altelaar M, Johnston SR, Marangoni E, Dowsett M, Martin LA. Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities. Oncogene 2020; 39:4781-4797. [PMID: 32307447 PMCID: PMC7299844 DOI: 10.1038/s41388-020-1284-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023]
Abstract
Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)-positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene-copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome wide-binding pattern, leading to decreased expression of ‘classical’ oestrogen-regulated genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 (TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-knockdown confirmed dependency on ERBB-signalling and G2/M–checkpoint proteins such as WEE1, together with the cell cycle master regulator, CDK7. Noteworthy, sensitivity to CDK7 inhibition was associated with loss of ER and RB1 CN. Overall, we show that resistance to CDK4/6 inhibitors is dependent on kinase re-wiring and the redeployment of signalling cascades previously associated with endocrine resistance and highlights new therapeutic networks that can be exploited upon relapse after CDK4/6 inhibition.
Collapse
Affiliation(s)
- Sunil Pancholi
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Ricardo Ribas
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Nikiana Simigdala
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Eugene Schuster
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Anna Ressa
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Qiong Gao
- CRUK, Bioinformatic Cofacility, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Mariana Ferreira Leal
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Amandeep Bhamra
- Proteomic Unit, Institute of Cancer Research, London, SW7 3RP, UK
| | - Allan Thornhill
- Centre for Cancer Imaging, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | | | - Elodie Montaudon
- Department of Translational Research, Institut Curie, Paris, France
| | - Laura Sourd
- Department of Translational Research, Institut Curie, Paris, France
| | - Martin Fitzpatrick
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | | | - Mitch Dowsett
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK.,Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Lesley-Ann Martin
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
117
|
Occhipinti G, Romagnoli E, Santoni M, Cimadamore A, Sorgentoni G, Cecati M, Giulietti M, Battelli N, Maccioni A, Storti N, Cheng L, Principato G, Montironi R, Piva F. Sequential or Concomitant Inhibition of Cyclin-Dependent Kinase 4/6 Before mTOR Pathway in Hormone-Positive HER2 Negative Breast Cancer: Biological Insights and Clinical Implications. Front Genet 2020; 11:349. [PMID: 32351542 PMCID: PMC7174681 DOI: 10.3389/fgene.2020.00349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
About 75% of all breast cancers are hormone receptor-positive (HR+). However, the efficacy of endocrine therapy is limited due to the high rate of either pre-existing or acquired resistance. In this work we reconstructed the pathways around estrogen receptor (ER), mTOR, and cyclin D in order to compare the effects of CDK4/6 and PI3K/AKT/mTOR inhibitors. A positive feedback loop links mTOR and ER that support each other. We subsequently considered whether a combined or sequential inhibition of CDK4/6 and PI3K/AKT/mTOR could ensure better results. Studies indicate that inhibition of CDK4/6 activates mTOR as an escape mechanism to ensure cell proliferation. In literature, the little evidence dealing with this topic suggests that pre-treatment with mTOR pathway inhibitors could prevent or delay the onset of CDK4/6 inhibitor resistance. Additional studies are needed in order to find biomarkers that can identify patients who will develop this resistance and in whom the sensitivity to CDK4/6 inhibitors can be restored.
Collapse
Affiliation(s)
- Giulia Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | | | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | | - Nadia Storti
- Direzione Sanitaria Azienda Sanitaria Unica Regionale, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Giovanni Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
118
|
Álvarez-Fernández M, Malumbres M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020; 37:514-529. [PMID: 32289274 DOI: 10.1016/j.ccell.2020.03.010] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Inhibiting the cell-cycle kinases CDK4 and CDK6 results in significant therapeutic effect in patients with advanced hormone-positive breast cancer. The efficacy of this strategy is, however, limited by innate or acquired resistance mechanisms and its application to other tumor types is still uncertain. Here, through an integrative analysis of sensitivity and resistance mechanisms, we discuss the use of CDK4/6 inhibitors in combination with available targeted therapies, immunotherapy, or classical chemotherapy with the aim of improving future therapeutic uses of CDK4/6 inhibition in a variety of cancers.
Collapse
Affiliation(s)
- Mónica Álvarez-Fernández
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
119
|
Testa U, Castelli G, Pelosi E. Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Med Sci (Basel) 2020; 8:E18. [PMID: 32210163 PMCID: PMC7151639 DOI: 10.3390/medsci8010018] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women. There were over two-million new cases in world in 2018. It is the second leading cause of death from cancer in western countries. At the molecular level, breast cancer is a heterogeneous disease, which is characterized by high genomic instability evidenced by somatic gene mutations, copy number alterations, and chromosome structural rearrangements. The genomic instability is caused by defects in DNA damage repair, transcription, DNA replication, telomere maintenance and mitotic chromosome segregation. According to molecular features, breast cancers are subdivided in subtypes, according to activation of hormone receptors (estrogen receptor and progesterone receptor), of human epidermal growth factors receptor 2 (HER2), and or BRCA mutations. In-depth analyses of the molecular features of primary and metastatic breast cancer have shown the great heterogeneity of genetic alterations and their clonal evolution during disease development. These studies have contributed to identify a repertoire of numerous disease-causing genes that are altered through different mutational processes. While early-stage breast cancer is a curable disease in about 70% of patients, advanced breast cancer is largely incurable. However, molecular studies have contributed to develop new therapeutic approaches targeting HER2, CDK4/6, PI3K, or involving poly(ADP-ribose) polymerase inhibitors for BRCA mutation carriers and immunotherapy.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
120
|
Lorito N, Bacci M, Smiriglia A, Mannelli M, Parri M, Comito G, Ippolito L, Giannoni E, Bonechi M, Benelli M, Migliaccio I, Malorni L, Chiarugi P, Morandi A. Glucose Metabolic Reprogramming of ER Breast Cancer in Acquired Resistance to the CDK4/6 Inhibitor Palbociclib .. Cells 2020; 9:cells9030668. [PMID: 32164162 PMCID: PMC7140692 DOI: 10.3390/cells9030668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
The majority of breast cancers express the estrogen receptor (ER) and are dependent on estrogen for their growth and survival. Endocrine therapy (ET) is the standard of care for these tumors. However, a superior outcome is achieved in a subset of ER positive (ER+)/human epidermal growth factor receptor 2 negative (HER2−) metastatic breast cancer patients when ET is administrated in combination with a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor, such as palbociclib. Moreover, CDK4/6 inhibitors are currently being tested in ER+/HER2+ breast cancer and reported encouraging results. Despite the clinical advances of a combinatorial therapy using ET plus CDK4/6 inhibitors, potential limitations (i.e., resistance) could emerge and the metabolic adaptations underlying such resistance warrant further elucidation. Here we investigate the glucose-dependent catabolism in a series of isogenic ER+ breast cancer cell lines sensitive to palbociclib and in their derivatives with acquired resistance to the drug. Importantly, ER+/HER2− and ER+/HER2+ cell lines show a different degree of glucose dependency. While ER+/HER2− breast cancer cells are characterized by enhanced aerobic glycolysis at the time of palbociclib sensitivity, ER+/HER2+ cells enhance their glycolytic catabolism at resistance. This metabolic phenotype was shown to have prognostic value and was targeted with multiple approaches offering a series of potential scenarios that could be of clinical relevance.
Collapse
Affiliation(s)
- Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
| | - Michele Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
| | - Martina Bonechi
- Translational Research Unit, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, I-59100 Prato, Italy; (M.B.); (I.M.); (L.M.)
| | - Matteo Benelli
- Bioinformatics Unit, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, I-59100 Prato, Italy;
| | - Ilenia Migliaccio
- Translational Research Unit, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, I-59100 Prato, Italy; (M.B.); (I.M.); (L.M.)
| | - Luca Malorni
- Translational Research Unit, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, I-59100 Prato, Italy; (M.B.); (I.M.); (L.M.)
- “Sandro Pitigliani” Oncology Department, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, I-59100 Prato, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134 Florence, Italy; (N.L.); (M.B.); (A.S.); (M.M.); (M.P.); (G.C.); (L.I.); (E.G.); (P.C.)
- Correspondence:
| |
Collapse
|
121
|
Hurvitz SA, Martin M, Press MF, Chan D, Fernandez-Abad M, Petru E, Rostorfer R, Guarneri V, Huang CS, Barriga S, Wijayawardana S, Brahmachary M, Ebert PJ, Hossain A, Liu J, Abel A, Aggarwal A, Jansen VM, Slamon DJ. Potent Cell-Cycle Inhibition and Upregulation of Immune Response with Abemaciclib and Anastrozole in neoMONARCH, Phase II Neoadjuvant Study in HR +/HER2 - Breast Cancer. Clin Cancer Res 2020; 26:566-580. [PMID: 31615937 PMCID: PMC7498177 DOI: 10.1158/1078-0432.ccr-19-1425] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/28/2019] [Accepted: 10/11/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE neoMONARCH assessed the biological effects of abemaciclib in combination with anastrozole in the neoadjuvant setting. PATIENTS AND METHODS Postmenopausal women with stage I-IIIB HR+/HER2- breast cancer were randomized to a 2-week lead-in of abemaciclib, anastrozole, or abemaciclib plus anastrozole followed by 14 weeks of the combination. The primary objective evaluated change in Ki67 from baseline to 2 weeks of treatment. Additional objectives included clinical, radiologic, and pathologic responses, safety, as well as gene expression changes related to cell proliferation and immune response. RESULTS Abemaciclib, alone or in combination with anastrozole, achieved a significant decrease in Ki67 expression and led to potent cell-cycle arrest after 2 weeks of treatment compared with anastrozole alone. More patients in the abemaciclib-containing arms versus anastrozole alone achieved complete cell-cycle arrest (58%/68% vs. 14%, P < 0.001). At the end of treatment, following 2 weeks lead-in and 14 weeks of combination therapy, 46% of intent-to-treat patients achieved a radiologic response, with pathologic complete response observed in 4%. The most common all-grade adverse events were diarrhea (62%), constipation (44%), and nausea (42%). Abemaciclib, anastrozole, and the combination inhibited cell-cycle processes and estrogen signaling; however, combination therapy resulted in increased cytokine signaling and adaptive immune response indicative of enhanced antigen presentation and activated T-cell phenotypes. CONCLUSIONS Abemaciclib plus anastrozole demonstrated biological and clinical activity with generally manageable toxicities in patients with HR+/HER2- early breast cancer. Abemaciclib led to potent cell-cycle arrest, and in combination with anastrozole, enhanced immune activation.
Collapse
Affiliation(s)
- Sara A. Hurvitz
- University of California, Los Angeles, Los Angeles, California
| | - Miguel Martin
- Instituto de Investigacion Sanitaria Gregorio Marañon, Ciberonc, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | | | - David Chan
- Cancer Care Associates, Redondo Beach, California
| | | | | | | | | | | | | | | | | | | | | | | | - Adam Abel
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | |
Collapse
|
122
|
Gao JJ, Cheng J, Bloomquist E, Sanchez J, Wedam SB, Singh H, Amiri-Kordestani L, Ibrahim A, Sridhara R, Goldberg KB, Theoret MR, Kluetz PG, Blumenthal GM, Pazdur R, Beaver JA, Prowell TM. CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: a US Food and Drug Administration pooled analysis. Lancet Oncol 2020; 21:250-260. [DOI: 10.1016/s1470-2045(19)30804-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
|
123
|
Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin Cancer Biol 2020; 67:159-170. [PMID: 32006569 DOI: 10.1016/j.semcancer.2020.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
D cyclins include three isoforms: D1, D2, and D3. D cyclins heterodimerize with cyclin-dependent kinase 4/6 (CDK4/6) to form kinase complexes that can phosphorylate and inactivate Rb. Inactivation of Rb triggers the activation of E2F transcription factors, which in turn regulate the expression of genes whose products drive cell cycle progression. Because D-type cyclins function as mitogenic sensors that link growth factor signaling directly with G1 phase progression, it is not surprising that D cyclin accumulation is dysregulated in a variety of human tumors. Elevated expression of D cyclins results from gene amplification, increased gene transcription and protein translation, decreased microRNA levels, and inefficiency or loss of ubiquitylation-mediated protein degradation. This review focuses on the clinicopathological importance of D cyclins, how dysregulation of Ubiquitin-Proteasome System (UPS) contributes to the overexpression of D cyclins, and the therapeutic potential through targeting D cyclin-related machinery in human tumors.
Collapse
|
124
|
Qian Y, Wu X, Wang H, Hou G, Han X, Song W. PAK1 silencing is synthetic lethal with CDK4/6 inhibition in gastric cancer cells via regulating PDK1 expression. Hum Cell 2020; 33:377-385. [PMID: 31919718 DOI: 10.1007/s13577-019-00317-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. The prognosis of GC is unsatisfied owning to widespread metastasis. P21-activated kinase 1 (PAK1), a member of serine/threonine kinases, is associated with the progression of multiple types of human cancers. Here, we demonstrated that CDK4/6 inhibitor reduced GC cell viability and decreased PAK1 expression. Consistently, PAK1 ablation increased GC cell sensitivity exposed to CDK4/6 inhibitor and promoted DNA damage. We also revealed PAK1 depletion notably affected PDK1-AKT pathway, and PDK1 overexpression totally abrogated the effect of PAK1 deletion on DNA damage in GC cells. Additionally, PDK1 overexpression also rescued the increased GC cell sensitivity towards CDK4/6 inhibitor and the cell cycle arrest caused by PAK1 depletion. Our findings, therefore, suggested that PAK1 silencing increased sensitivity to CDK4/6 inhibition in gastric cancer cells via PDK1-AKT pathway. We, therefore, thought PAK1 as a promising therapeutic target for the treatment of CDK4/6 inhibitor-resistant gastric cancer.
Collapse
Affiliation(s)
- Yan Qian
- Department of Gastric, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Xu Wu
- Department of Gastric, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Haixiao Wang
- Department of Gastric, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Guowei Hou
- Department of Gastric, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Xiao Han
- Department of Gastric, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Wei Song
- Department of Gastroenterlogy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
125
|
Viswanadhapalli S, Ma S, Sareddy GR, Lee TK, Li M, Gilbreath C, Liu X, Luo Y, Pratap UP, Zhou M, Blatt EB, Kassees K, Arteaga C, Alluri P, Rao M, Weintraub ST, Tekmal RR, Ahn JM, Raj GV, Vadlamudi RK. Estrogen receptor coregulator binding modulator (ERX-11) enhances the activity of CDK4/6 inhibitors against estrogen receptor-positive breast cancers. Breast Cancer Res 2019; 21:150. [PMID: 31878959 PMCID: PMC6933697 DOI: 10.1186/s13058-019-1227-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CDK4/6 inhibitors in combination with endocrine therapy (AE/AI/SERDs) are approved for the treatment of ER+ advanced breast cancer (BCa). However, not all patients benefit from CDK4/6 inhibitors therapy. We previously reported a novel therapeutic agent, ERX-11, that binds to the estrogen receptor (ER) and modulates ER-coregulator interactions. Here, we tested if the combination of ERX-11 with agents approved for ER+ BCa would be more potent. METHODS We tested the effect of combination therapy using BCa cell line models, including those that have acquired resistance to tamoxifen, letrozole, or CDK4/6 inhibitors or have been engineered to express mutant forms of the ER. In vitro activity was tested using Cell Titer-Glo, MTT, and apoptosis assays. Mechanistic studies were conducted using western blot, reporter gene assays, RT-qPCR, and mass spectrometry approaches. Xenograft, patient-derived explants (PDEs), and xenograft-derived explants (XDE) were used for preclinical evaluation and toxicity. RESULTS ERX-11 inhibited the proliferation of therapy-resistant BCa cells in a dose-dependent manner, including ribociclib resistance. The combination of ERX-11 and CDK4/6 inhibitor was synergistic in decreasing the proliferation of both endocrine therapy-sensitive and endocrine therapy-resistant BCa cells, in vitro, in xenograft models in vivo, xenograft-derived explants ex vivo, and in primary patient-derived explants ex vivo. Importantly, the combination caused xenograft tumor regression in vivo. Unbiased global mass spectrometry studies demonstrated profound decreases in proliferation markers with combination therapy and indicated global proteomic changes in E2F1, ER, and ER coregulators. Mechanistically, the combination of ERX-11 and CDK4/6 inhibitor decreased the interaction between ER and its coregulators, as evidenced by immunoprecipitation followed by mass spectrometry studies. Biochemical studies confirmed that the combination therapy significantly altered the expression of proteins involved in E2F1 and ER signaling, and this is primarily driven by a transcriptional shift, as noted in gene expression studies. CONCLUSIONS Our results suggest that ERX-11 inhibited the proliferation of BCa cells resistant to both endocrine therapy and CDK4/6 inhibitors in a dose-dependent manner and that the combination of ERX-11 with a CDK4/6 inhibitor may represent a viable therapeutic approach.
Collapse
Affiliation(s)
| | - Shihong Ma
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
- CDP Program, University of Texas Health Cancer Center, San Antonio, TX, 78229, USA
| | - Tae-Kyung Lee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Collin Gilbreath
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Xihui Liu
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Eliot B Blatt
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Kara Kassees
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Carlos Arteaga
- Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Prasanna Alluri
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Manjeet Rao
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, TX, 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Rajeshwar Rao Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Ganesh V Raj
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
- Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA.
- CDP Program, University of Texas Health Cancer Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
126
|
Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res 2019; 21:146. [PMID: 31852484 PMCID: PMC6921513 DOI: 10.1186/s13058-019-1230-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Addition of CDK4/6 inhibitors (CDK4/6i) to endocrine therapy significantly increased progression-free survival, leading to their approval and incorporation into the metastatic breast cancer treatment paradigm. With these inhibitors being routinely used for patients with advanced estrogen receptor-positive (ER+) breast cancer, resistance to these agents and its impact on subsequent therapy needs to be understood. Considering the central role of ER in driving the growth of ER+ breast cancers, and thus endocrine agents being a mainstay in the treatment paradigm, the effects of prior CDK4/6i exposure on ER signaling and the relevance of ER-targeted therapy are important to investigate. The objective of this study was to evaluate the anti-tumor activity of elacestrant, a novel oral selective estrogen receptor degrader (SERD), in preclinical models of CDK4/6i resistance. Methods Elacestrant was evaluated as a single agent, and in combination with alpelisib or everolimus, in multiple in vitro models and patient-derived xenografts that represent acquired and “de novo” CDK4/6i resistance. Results Elacestrant demonstrated growth inhibition in cells resistant to all three approved CDK4/6i (palbociclib, abemaciclib, ribociclib) in both ESR1 wild-type and mutant backgrounds. Furthermore, we demonstrated that elacestrant, as a single agent and in combination, inhibited growth of patient-derived xenografts that have been derived from a patient previously treated with a CDK4/6i or exhibit de novo resistance to CDK4/6i. While the resistant lines demonstrate distinct alterations in cell cycle modulators, this did not affect elacestrant’s anti-tumor activity. In fact, we observe that elacestrant downregulates several key cell cycle players and halts cell cycle progression in vitro and in vivo. Conclusions We demonstrate that breast cancer tumor cells continue to rely on ER signaling to drive tumor growth despite exposure to CDK4/6i inhibitors. Importantly, elacestrant can inhibit this ER-dependent growth despite previously reported mechanisms of CDK4/6i resistance observed such as Rb loss, CDK6 overexpression, upregulated cyclinE1 and E2F1, among others. These data provide a scientific rationale for the evaluation of elacestrant in a post-CDK4/6i patient population. Additionally, elacestrant may also serve as an endocrine backbone for rational combinations to combat resistance.
Collapse
|
127
|
Kumarasamy V, Ruiz A, Nambiar R, Witkiewicz AK, Knudsen ES. Chemotherapy impacts on the cellular response to CDK4/6 inhibition: distinct mechanisms of interaction and efficacy in models of pancreatic cancer. Oncogene 2019; 39:1831-1845. [PMID: 31745297 PMCID: PMC7047578 DOI: 10.1038/s41388-019-1102-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease characterized by the aberrations in multiple genes that drive pathogenesis and limit therapeutic response. While CDK4/6 represents a downstream target of both KRAS mutation and loss of the CDKN2A tumor suppressor in PDAC, clinical and preclinical studies indicate that pharmacological CDK4/6 inhibitors are only modestly effective. Since chemotherapy represents the established backbone of PDAC treatment we evaluated the interaction of CDK4/6 inhibitors with gemcitabine and taxanes that are employed in the treatment of PDAC. Herein, we demonstrate that the difference in mechanisms of actions of chemotherapeutic agents elicit distinct effects on the cellular response to CDK4/6 inhibition. Gemcitabine largely ablates the function of CDK4/6 inhibition in S-phase arrested cells when administered contemporaneously; although, when cells recover from S-phase block they exhibit sensitivity to CDK4/6 inhibition. In contrast, pharmacological inhibition of CDK4/6 yields a cooperative cytostatic effect in combination with docetaxel and prevents adaptation and cell cycle re-entry, which is a common basis for resistance to such agents. Importantly, using organoid and PDX models we could confirm the cooperative effects between chemotherapy and CDK4/6 inhibition. These data indicate that the combination of cytotoxic and cytostatic agents could represent an important modality in those tumor types that are relatively resistant to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amanda Ruiz
- Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ram Nambiar
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
128
|
Sittithumcharee G, Suppramote O, Vaeteewoottacharn K, Sirisuksakun C, Jamnongsong S, Laphanuwat P, Suntiparpluacha M, Matha A, Chusorn P, Buraphat P, Kakanaporn C, Charngkaew K, Silsirivanit A, Korphaisarn K, Limsrichamrern S, Tripatara P, Pairojkul C, Wongkham S, Sampattavanich S, Okada S, Jirawatnotai S. Dependency of Cholangiocarcinoma on Cyclin D-Dependent Kinase Activity. Hepatology 2019; 70:1614-1630. [PMID: 31077409 DOI: 10.1002/hep.30704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is a bile duct cancer with a very poor prognosis. Currently, there is no effective pharmacological treatment available for it. We showed that CCA ubiquitously relies on cyclin-dependent kinases 4 and 6 (CDK4/6) activity to proliferate. Primary CCA tissues express high levels of cyclin D1 and the specific marker of CDK4/6 activity, phospho-RB Ser780. Treatment of a 15-CCA cell line collection by pharmacological CDK4/6 inhibitors leads to reduced numbers of cells in the S-phase and senescence in most of the CCA cell lines. We found that expression of retinoblastoma protein (pRB) is required for activity of the CDK4/6 inhibitor, and that loss of pRB conferred CDK4/6 inhibitor-drug resistance. We also identified that sensitivity of CCA to CDK4/6 inhibition is associated with the activated KRAS signature. Effectiveness of CDK4/6 inhibition for CCA was confirmed in the three-dimensional spheroid-, xenograft-, and patient-derived xenograft models. Last, we identified a list of genes whose expressions can be used to predict response to the CDK4/6 inhibitor. Conclusion: We investigated a ubiquitous dependency of CCA on CDK4/6 activity and the universal response to CDK4/6 inhibition. We propose that the CDK4/6-pRB pathway is a suitable therapeutic target for CCA treatment.
Collapse
Affiliation(s)
- Gunya Sittithumcharee
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Orawan Suppramote
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chumphon Sirisuksakun
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supawan Jamnongsong
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phatthamon Laphanuwat
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Monthira Suntiparpluacha
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arriya Matha
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Porncheera Chusorn
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pongsakorn Buraphat
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chumpot Kakanaporn
- Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Krittiya Korphaisarn
- Division of Oncology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Limsrichamrern
- Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinpat Tripatara
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
129
|
Costa C, Wang Y, Ly A, Hosono Y, Murchie E, Walmsley CS, Huynh T, Healy C, Peterson R, Yanase S, Jakubik CT, Henderson LE, Damon LJ, Timonina D, Sanidas I, Pinto CJ, Mino-Kenudson M, Stone JR, Dyson NJ, Ellisen LW, Bardia A, Ebi H, Benes CH, Engelman JA, Juric D. PTEN Loss Mediates Clinical Cross-Resistance to CDK4/6 and PI3Kα Inhibitors in Breast Cancer. Cancer Discov 2019; 10:72-85. [PMID: 31594766 DOI: 10.1158/2159-8290.cd-18-0830] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 07/12/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022]
Abstract
The combination of CDK4/6 inhibitors with antiestrogen therapies significantly improves clinical outcomes in ER-positive advanced breast cancer. To identify mechanisms of acquired resistance, we analyzed serial biopsies and rapid autopsies from patients treated with the combination of the CDK4/6 inhibitor ribociclib with letrozole. This study revealed that some resistant tumors acquired RB loss, whereas other tumors lost PTEN expression at the time of progression. In breast cancer cells, ablation of PTEN, through increased AKT activation, was sufficient to promote resistance to CDK4/6 inhibition in vitro and in vivo. Mechanistically, PTEN loss resulted in exclusion of p27 from the nucleus, leading to increased activation of both CDK4 and CDK2. Because PTEN loss also causes resistance to PI3Kα inhibitors, currently approved in the post-CDK4/6 setting, these findings provide critical insight into how this single genetic event may cause clinical cross-resistance to multiple targeted therapies in the same patient, with implications for optimal treatment-sequencing strategies. SIGNIFICANCE: Our analysis of serial biopsies uncovered RB and PTEN loss as mechanisms of acquired resistance to CDK4/6 inhibitors, utilized as first-line treatment for ER-positive advanced breast cancer. Importantly, these findings have near-term clinical relevance because PTEN loss also limits the efficacy of PI3Kα inhibitors currently approved in the post-CDK4/6 setting.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Carlotta Costa
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
| | - Ye Wang
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yasuyuki Hosono
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ellen Murchie
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Charlotte S Walmsley
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Tiffany Huynh
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher Healy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Rachel Peterson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Shogo Yanase
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Charles T Jakubik
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Laura E Henderson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Leah J Damon
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Daria Timonina
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Christopher J Pinto
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - James R Stone
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Precision Medicine Center, Aichi Cancer Center, Nagoya, Japan.,Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
130
|
Loretan L, Moskovszky LE, Kurrer M, Exner GU, Trojan A. Efficacy of a CDK4/6 Inhibitor in a Patient with Breast Cancer and Liposarcoma: A Case Report and Review of the Literature. Breast Care (Basel) 2019; 14:325-328. [PMID: 31798393 PMCID: PMC6883449 DOI: 10.1159/000493370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The cyclin D/cyclin-dependent kinase (CDK)4/6 inhibitor of the CDK4 (INK4)/retinoblastoma (Rb) pathway plays a crucial role in cell cycle progression. Selective CDK4/6 inhibitors specifically target a variety of tumors, with the main focus on hormone receptor(HR)-positive and human epidermal growth factor receptor 2(HER2)-negative breast cancer (BC). CASE REPORT We report on the efficacy of neoadjuvant palbociclib and letrozole application in a patient suffering from invasive estrogen receptor (ER)+/HER2- BC and concurrent well-differentiated and dedifferentiated liposarcoma (WD-DDLPS) of the thigh. Clinical and histological workup upon surgery revealed significant regressive changes in both the liposarcoma and the BC. The 24-month follow-up shows no signs of disease. CONCLUSION CDK4/6 inhibitors exhibit a high therapeutic potential, although reliable prognostic markers need to be identified.
Collapse
Affiliation(s)
| | | | - Michael Kurrer
- Gemeinschaftspraxis Pathologie Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
131
|
Pandey K, An H, Kim SK, Lee SA, Kim S, Lim SM, Kim GM, Sohn J, Moon YW. Molecular mechanisms of resistance to CDK4/6 inhibitors in breast cancer: A review. Int J Cancer 2019; 145:1179-1188. [PMID: 30478914 PMCID: PMC6767051 DOI: 10.1002/ijc.32020] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Deregulation of the cyclin D-CDK4/6-INK4-RB pathway leading to uncontrolled cell proliferation, is frequently observed in breast cancer. Currently, three selective CDK4/6 inhibitors have been FDA approved: palbociclib, ribociclib and abemaciclib. Despite promising clinical outcomes, intrinsic or acquired resistance to CDK4/6 inhibitors has limited the success of these treatments; therefore, the development of various strategies to overcome this resistance is of great importance. We highlight the various mechanisms that are directly or indirectly responsible for resistance to CDK4/6 inhibitors, categorizing them into two broad groups; cell cycle-specific mechanisms and cell cycle-nonspecific mechanisms. Elucidation of the diverse mechanisms through which resistance to CDK4/6 inhibitors occurs, may aid in the design of novel therapeutic strategies to improve patient outcomes. This review summarizes the currently available knowledge regarding mechanisms of resistance to CDK4/6 inhibitors, and possible therapeutic strategies that may overcome this resistance as well.
Collapse
Affiliation(s)
- Kamal Pandey
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
- Department of Biomedical Science, The Graduate SchoolCHA UniversitySeongnamSouth Korea
| | - Hee‐Jung An
- Department of Pathology, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Seung Ki Kim
- Department of Surgery, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Seung Ah Lee
- Department of Surgery, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Sewha Kim
- Department of Pathology, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Sun Min Lim
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Gun Min Kim
- Division of Medical Oncology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Yong Wha Moon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| |
Collapse
|
132
|
Niu Y, Xu J, Sun T. Cyclin-Dependent Kinases 4/6 Inhibitors in Breast Cancer: Current Status, Resistance, and Combination Strategies. J Cancer 2019; 10:5504-5517. [PMID: 31632494 PMCID: PMC6775706 DOI: 10.7150/jca.32628] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
Dysregulated activation of the cyclin-dependent kinases (CDKs) 4/6, leading to uncontrolled cell division, is hallmark of cancers. Further study of the cell cycle will advance the cancer treatment. As powerful and effective drugs, inhibitors of CDK 4/6 have been widely used in clinical practice for several malignancies, particularly against breast cancers driven by the estrogen receptor (ER). Three CDK4/6 inhibitors, including palbociclib (PD0332991), ribociclib (LEE011) and abemaciclib (LY2835219), have been approved by the US Food and Drug Administration (FDA) for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced or metastatic breast cancer. However, CDK4/6 inhibitors act downstream of many mitogenic signaling pathways, and this has implications for resistance. It is worth to note that the mechanisms of resistance are not very clear. Up to now, a small number of preclinical and clinical studies have explored potential mechanisms of CDK4/6 inhibitors resistance in breast cancer. On this basis, rational and effective combination therapy is under development. Here we review the current knowledge about the mechanisms and efficacy of CDK4/6 inhibitors, and summarize data on resistance mechanisms to make future combination therapies more accurate and reasonable.
Collapse
Affiliation(s)
- Ying Niu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Junnan Xu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110042, P.R. China.,Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning 110042, P.R. China
| | - Tao Sun
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
133
|
Kong T, Xue Y, Cencic R, Zhu X, Monast A, Fu Z, Pilon V, Sangwan V, Guiot MC, Foulkes WD, Porco JA, Park M, Pelletier J, Huang S. eIF4A Inhibitors Suppress Cell-Cycle Feedback Response and Acquired Resistance to CDK4/6 Inhibition in Cancer. Mol Cancer Ther 2019; 18:2158-2170. [PMID: 31395685 DOI: 10.1158/1535-7163.mct-19-0162] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022]
Abstract
CDK4/6 inhibitors are FDA-approved drugs for estrogen receptor-positive (ER+) breast cancer and are being evaluated to treat other tumor types, including KRAS-mutant non-small cell lung cancer (NSCLC). However, their clinical utility is often limited by drug resistance. Here, we sought to better understand the resistant mechanisms and help devise potential strategies to overcome this challenge. We show that treatment with CDK4/6 inhibitors in both ER+ breast cancer and KRAS-mutant NSCLC cells induces feedback upregulation of cyclin D1, CDK4, and cyclin E1, mediating drug resistance. We demonstrate that rocaglates, which preferentially target translation of key cell-cycle regulators, effectively suppress this feedback upregulation induced by CDK4/6 inhibition. Consequently, combination treatment of CDK4/6 inhibitor palbociclib with the eukaryotic initiation factor (eIF) 4A inhibitor, CR-1-31-B, is synergistic in suppressing the growth of these cancer cells in vitro and in vivo Furthermore, ER+ breast cancer and KRAS-mutant NSCLC cells that acquired resistance to palbociclib after chronic drug exposure are also highly sensitive to this combination treatment strategy. Our findings reveal a novel strategy using eIF4A inhibitors to suppress cell-cycle feedback response and to overcome resistance to CDK4/6 inhibition in cancer.
Collapse
Affiliation(s)
- Tim Kong
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yibo Xue
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Regina Cencic
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Xianbing Zhu
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Anie Monast
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Zheng Fu
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Virginie Pilon
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Veena Sangwan
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Hospital/Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics, and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts
| | - Morag Park
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
134
|
McCartney A, Migliaccio I, Bonechi M, Biagioni C, Romagnoli D, De Luca F, Galardi F, Risi E, De Santo I, Benelli M, Malorni L, Di Leo A. Mechanisms of Resistance to CDK4/6 Inhibitors: Potential Implications and Biomarkers for Clinical Practice. Front Oncol 2019; 9:666. [PMID: 31396487 PMCID: PMC6664013 DOI: 10.3389/fonc.2019.00666] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
The recent arrival of CDK4/6 inhibitor agents, with an approximate doubling of progression-free survival (PFS) associated with their use in hormone receptor-positive, HER2-negative advanced breast cancer (BC), has radically changed the approach to managing this disease. However, resistance to CDK4/6 inhibitors is considered a near-inevitability in most patients. Mechanisms of resistance to these agents are multifactorial, and research in this field is still evolving. Biomarkers with the ability to identify early resistance, or to predict the likelihood of successful treatment using CDK4/6 inhibitors are yet to be identified, and represent an area of unmet clinical need. Here we present selected mechanisms of resistance to CDK4/6 inhibitors, largely focussing on roles of Rb, cyclin E1, and the PIK3CA pathway, with discussion of associated biomarkers which have been investigated and applied in recent pre-clinical and clinical studies. These biological drivers may furthermore influence clinical treatment strategies adopted beyond CDK4/6 resistance.
Collapse
Affiliation(s)
- Amelia McCartney
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | - Ilenia Migliaccio
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Martina Bonechi
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | | | | | - Francesca De Luca
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Francesca Galardi
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Emanuela Risi
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | - Irene De Santo
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | | | - Luca Malorni
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Angelo Di Leo
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
| |
Collapse
|
135
|
Tong Z, Sathe A, Ebner B, Qi P, Veltkamp C, Gschwend JE, Holm PS, Nawroth R. Functional genomics identifies predictive markers and clinically actionable resistance mechanisms to CDK4/6 inhibition in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:322. [PMID: 31331377 PMCID: PMC6647307 DOI: 10.1186/s13046-019-1322-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND CDK4/6 inhibitors are a promising treatment strategy in tumor therapy but are hampered by resistance mechanisms. This study was performed to reveal predictive markers, mechanisms of resistance and to develop rational combination therapies for a personalized therapy approach in bladder cancer. METHODS A genome-scale CRISPR-dCas9 activation screen for resistance to the CDK4/6 inhibitor Palbociclib was performed in the bladder cancer derived cell line T24. sgRNA counts were analyzed using next generation sequencing and MAGeCK-VISPR. Significantly enriched sgRNAs were cloned and validated on a molecular and functional level for mediating resistance to Palbociclib treatment. Analysis was done in vitro and in vivo in the chorioallantois membrane model of the chicken embryo. Comparison of screen hits to signaling pathways and clinically relevant molecular alterations was performed using DAVID, Reactome, DGIdb and cBioPortal. RESULTS In the screen, 1024 sgRNAs encoding for 995 genes were significantly enriched indicative of mediators of resistance. 8 random sgRNAs were validated, revealing partial rescue to Palbociclib treatment. Within this gene panel, members of Receptor-Tyrosine Kinases, PI3K-Akt, Ras/MAPK, JAK/STAT or Wnt signaling pathways were identified. Combination of Palbociclib with inhibitors against these signaling pathways revealed beneficial effects in vitro and in in vivo xenografts. CONCLUSIONS Identification of potential predictive markers, resistance mechanisms and rational combination therapies could be achieved by applying a CRISPR-dCas9 screening approach in bladder cancer.
Collapse
Affiliation(s)
- Zhichao Tong
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Anuja Sathe
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Benedikt Ebner
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Pan Qi
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Christian Veltkamp
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Einsteinstrasse 25, 81675, Munich, Germany
| | - Juergen E Gschwend
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany.
| |
Collapse
|
136
|
Dustin D, Gu G, Fuqua SAW. ESR1 mutations in breast cancer. Cancer 2019; 125:3714-3728. [PMID: 31318440 DOI: 10.1002/cncr.32345] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
The acquisition of ligand-independent ESR1 mutations during aromatase inhibitor therapy in metastatic estrogen receptor (ER)-positive breast cancer is a common mechanism of hormonal therapy resistance. Preclinical and clinical studies have demonstrated that ESR1 mutations can preexist in primary tumors and can be enriched during metastasis. Furthermore, ESR1 mutations express a unique transcriptional profile that favors tumor progression, suggesting that selected ESR1 mutations may influence metastasis. Several groups have used sensitive detection methods using patient liquid biopsies to track ESR1 or truncal somatic mutations to predict treatment outcome and tumor progression, and some of these techniques may eventually be used to guide sequential treatment options in patients. Further development and standardization of mutation tracking in circulating tumor DNA is ongoing. Clinically, patients with ESR1 mutations derive clinical benefit when treated with fulvestrant and CDK4/6-targeted therapies, but the development of more potent selective ER degraders and/or new targeted biotherapies are needed to overcome the endocrine-resistant phenotype of ESR1 mutant-bearing tumors. In this review, we discuss the mechanisms of resistance and dissemination of ESR1 mutations as well as the detection methods for ESR1 mutation tracking, newly discovered potential therapeutic targets, and the clinical implications and treatment options for treating patients with ESR1 mutant-bearing tumors.
Collapse
Affiliation(s)
- Derek Dustin
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Guowei Gu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Suzanne A W Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
137
|
Di Sante G, Pagé J, Jiao X, Nawab O, Cristofanilli M, Skordalakes E, Pestell RG. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev Anticancer Ther 2019; 19:569-587. [PMID: 31219365 PMCID: PMC6834352 DOI: 10.1080/14737140.2019.1615889] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Jessica Pagé
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
138
|
Kettner NM, Vijayaraghavan S, Durak MG, Bui T, Kohansal M, Ha MJ, Liu B, Rao X, Wang J, Yi M, Carey JPW, Chen X, Eckols TK, Raghavendra AS, Ibrahim NK, Karuturi MS, Watowich SS, Sahin A, Tweardy DJ, Hunt KK, Tripathy D, Keyomarsi K. Combined Inhibition of STAT3 and DNA Repair in Palbociclib-Resistant ER-Positive Breast Cancer. Clin Cancer Res 2019; 25:3996-4013. [PMID: 30867218 PMCID: PMC6606366 DOI: 10.1158/1078-0432.ccr-18-3274] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are currently used in combination with endocrine therapy to treat advanced hormone receptor-positive, HER2-negative breast cancer. Although this treatment doubles time to progression compared with endocrine therapy alone, about 25%-35% of patients do not respond, and almost all patients eventually acquire resistance. Discerning the mechanisms of resistance to CDK4/6 inhibition is crucial in devising alternative treatment strategies. EXPERIMENTAL DESIGN Palbociclib-resistant cells (MCF-7 and T47D) were generated in a step-wise dose-escalading fashion. Whole-exome sequencing, genome-wide expression analysis, and proteomic analysis were performed in both resistant and parental (sensitive) cells. Pathway alteration was assessed mechanistically and pharmacologically. Biomarkers of altered pathways were examined in tumor samples from patients with palbociclib-treated breast cancer whose disease progressed while on treatment. RESULTS Palbociclib-resistant cells are cross-resistant to other CDK4/6 inhibitors and are also resistant to endocrine therapy (estrogen receptor downregulation). IL6/STAT3 pathway is induced, whereas DNA repair and estrogen receptor pathways are downregulated in the resistant cells. Combined inhibition of STAT3 and PARP significantly increased cell death in the resistant cells. Matched tumor samples from patients with breast cancer who progressed on palbociclib were examined for deregulation of estrogen receptor, DNA repair, and IL6/STAT3 signaling, and results revealed that these pathways are all altered as compared with the pretreatment tumor samples. CONCLUSIONS Palbociclib resistance induces endocrine resistance, estrogen receptor downregulation, and alteration of IL6/STAT3 and DNA damage response pathways in cell lines and patient samples. Targeting IL6/STAT3 activity and DNA repair deficiency using a specific STAT3 inhibitor combined with a PARP inhibitor could effectively treat acquired resistance to palbociclib.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Smruthi Vijayaraghavan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Merih Guray Durak
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehrnoosh Kohansal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Human Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Yi
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - T Kris Eckols
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshara S Raghavendra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meghan Sri Karuturi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
139
|
Abstract
OPINION STATEMENT Oral inhibitors of CDK4/6 have been shown to increase response rates and prolong disease control when combined with endocrine therapy in hormone-responsive (HR+) HER2-negative advanced breast cancer. Palbociclib, ribociclib and abemaciclib are all approved in combination with non-steroidal aromatase inhibitors in first-line therapy for post-menopausal women, with a 40-45% improvement in progression-free survival seen with the addition of any of these CDK4/6 inhibitors. Additional approved indications, including first- and second-line combination therapy for pre-menopausal women, combination with fulvestrant and use as monotherapy, vary with each agent and are reviewed fully in the subsequent texts. These agents also differ in their toxicity profiles and monitoring requirements, and prescribers should be aware of the individual requirements for each agent. Current clinical trials are investigating the expanded use of these agents in other breast cancer subtypes, such as HER2-positive and triple-negative breast cancer, as well as in the adjuvant and neoadjuvant treatments of early breast cancer. Resistance to CDK4/6 inhibition can occur through multiple mechanisms. Rational combinations with other therapies, such as PI3K inhibitors, HER2-directed therapies and immunotherapy, are being explored.
Collapse
Affiliation(s)
- Conleth G Murphy
- Department of Medical Oncology, Bon Secours Hospital, College Road, Cork, Ireland.
- University College Cork, Cork, Ireland.
| |
Collapse
|
140
|
Elmi A, Makvandi M, Weng CC, Hou C, Clark AS, Mach RH, Mankoff DA. Cell-Proliferation Imaging for Monitoring Response to CDK4/6 Inhibition Combined with Endocrine-Therapy in Breast Cancer: Comparison of [ 18F]FLT and [ 18F]ISO-1 PET/CT. Clin Cancer Res 2019; 25:3063-3073. [PMID: 30692100 PMCID: PMC9788667 DOI: 10.1158/1078-0432.ccr-18-2769] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/11/2018] [Accepted: 01/14/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors in combination with endocrine-therapy have emerged as an important regimen of care for estrogen receptor (ER)-positive metastatic breast cancer, although identifying predictive biomarkers remains a challenge. We assessed the ability of two PET-proliferation tracers, [18F]FLT and [18F]ISO-1, for evaluating response to CDK4/6-inhibitor (palbociclib) and ER-antagonist (fulvestrant). EXPERIMENTAL DESIGN To determine the effect of CDK4/6 inhibition combined with estrogen-blockade, we assessed cell proliferation in six breast cancer cell lines after 1, 3, and 6 days of treatment with palbociclib and/or fulvestrant. These data were correlated to in vitro radiotracer assays and results were verified by longitudinal [18F]FLT and [18F]ISO-1 micro-PET imaging performed in MCF7 tumor-bearing mice. RESULTS All palbociclib-sensitive cell lines showed decreased [18F]FLT accumulation and S-phase depletion after treatment, with both measures augmented by combination therapy. In contrast, these cells showed changes in [18F]ISO-1 analogue-binding and G0 arrest only after prolonged treatment. MicroPET imaging of MCF7 xenografts showed a significant decrease in [18F]FLT but no changes in [18F]ISO-1 uptake in all treated mice on day 3. On day 14, however, mice treated with combination therapy showed a significant decrease in [18F]ISO-1, corresponding to G0 arrest, while maintaining reduced [18F]FLT uptake, which corresponded to S-phase depletion. CONCLUSIONS Our data suggest complementary roles of [18F]FLT and [18F]ISO-1 PET in evaluating tumor-proliferation after combined CDK4/6 inhibitor and endocrine therapy in breast cancer. [18F]FLT is more sensitive to immediate changes in S-phase, whereas [18F]ISO-1 can assess more delayed changes related to cell-cycle arrest and transition to G0 quiescence from combination therapy. These data suggest a potential role for early prediction of long-term response using these imaging biomarkers.
Collapse
Affiliation(s)
- Azadeh Elmi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mehran Makvandi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chi-Chang Weng
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Catherine Hou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy S Clark
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
141
|
Wong K, Di Cristofano F, Ranieri M, De Martino D, Di Cristofano A. PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocr Relat Cancer 2019; 26:425-436. [PMID: 30699064 PMCID: PMC6602869 DOI: 10.1530/erc-19-0011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive form of thyroid cancer. Despite its low incidence, it accounts for a disproportionate number of thyroid cancer-related deaths, because of its resistance to current therapeutic approaches. Novel actionable targets are urgently needed to prolong patient survival and increase their quality of life. Loss and mutation of the RB1 tumor suppressor are rare events in ATC, which suggests that therapies directed at inhibiting the cyclin D/CDK4 complexes, responsible for RB phosphorylation and inactivation, might be effective in this tumor type. In fact, we found that the CDK4/6 inhibitor, palbociclib, strongly inhibits proliferation in all the RB1 wild type ATC cell lines tested. Efficacy was also observed in vivo, in a xenograft model. However, ATC cells rapidly developed resistance to palbociclib. Resistance was associated with increased levels of cyclin D1 and D3. To counter cyclin D overexpression, we tested the effect of combining palbociclib with the PI3K/mTOR dual inhibitor, omipalisib. Combined treatment synergistically reduced cell proliferation, even in cell lines that do not carry PI3K-activating mutations. More importantly, low-dose combination was dramatically effective in inhibiting tumor growth in a xenograft model. Thus, combined PI3K/mTOR and CDK4/6 inhibition is a highly promising novel approach for the treatment of aggressive, therapy-resistant thyroid cancer.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Di Cristofano
- A. Di Cristofano, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Room 302, Bronx, NY 10461., Tel: 718-678-1137,
| |
Collapse
|
142
|
Hanker AB, Kaklamani V, Arteaga CL. Challenges for the Clinical Development of PI3K Inhibitors: Strategies to Improve Their Impact in Solid Tumors. Cancer Discov 2019; 9:482-491. [PMID: 30867161 PMCID: PMC6445714 DOI: 10.1158/2159-8290.cd-18-1175] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
The PI3K pathway is mutated and aberrantly activated in many cancers and plays a central role in tumor cell proliferation and survival, making it a rational therapeutic target. Until recently, however, results from clinical trials with PI3K inhibitors in solid tumors have been largely disappointing. Here, we describe several factors that have limited the success of these agents, including the weak driver oncogenic activity of mutant PI3K, suboptimal patient selection in trials, drug-related toxicities, feedback upregulation of compensatory mechanisms when PI3K is blocked, increased insulin production upon PI3Kα inhibition, lack of mutant-specific inhibitors, and a relative scarcity of studies using combinations with PI3K antagonists. We also suggest strategies to improve the impact of these agents in solid tumors. Despite these challenges, we are optimistic that isoform-specific PI3K inhibitors, particularly in combination with other agents, may be valuable in treating appropriately selected patients with PI3K-dependent tumors. SIGNIFICANCE: Despite the modest clinical activity of PI3K inhibitors in solid tumors, there is an increasing understanding of the factors that may have limited their success. Strategies to ameliorate drug-related toxicities, use of rational combinations with PI3K antagonists, development of mutant-selective PI3K inhibitors, and better patient selection should improve the success of these targeted agents against solid tumors.
Collapse
Affiliation(s)
- Ariella B. Hanker
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, TX
| | | | - Carlos L. Arteaga
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
143
|
Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, Sudhan DR, Guerrero-Zotano AL, Croessmann S, Guo Y, Ericsson PG, Lee KM, Nixon MJ, Schwarz LJ, Sanders ME, Dugger TC, Cruz MR, Behdad A, Cristofanilli M, Bardia A, O'Shaughnessy J, Nagy RJ, Lanman RB, Solovieff N, He W, Miller M, Su F, Shyr Y, Mayer IA, Balko JM, Arteaga CL. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat Commun 2019; 10:1373. [PMID: 30914635 PMCID: PMC6435685 DOI: 10.1038/s41467-019-09068-2] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Using an ORF kinome screen in MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus fulvestrant, we identified FGFR1 as a mechanism of drug resistance. FGFR1-amplified/ER+ breast cancer cells and MCF-7 cells transduced with FGFR1 were resistant to fulvestrant ± ribociclib or palbociclib. This resistance was abrogated by treatment with the FGFR tyrosine kinase inhibitor (TKI) lucitanib. Addition of the FGFR TKI erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts. Next generation sequencing of circulating tumor DNA (ctDNA) in 34 patients after progression on CDK4/6 inhibitors identified FGFR1/2 amplification or activating mutations in 14/34 (41%) post-progression specimens. Finally, ctDNA from patients enrolled in MONALEESA-2, the registration trial of ribociclib, showed that patients with FGFR1 amplification exhibited a shorter progression-free survival compared to patients with wild type FGFR1. Thus, we propose breast cancers with FGFR pathway alterations should be considered for trials using combinations of ER, CDK4/6 and FGFR antagonists. Era+ breast cancer patients often develop resistance to endocrine therapy. Here, the authors show that FGFR1 amplification is a resistance mechanism to CDK4/6 inhibitor and endocrine therapy and that combined treatment with FGFR, CDK4/6, and anti-estrogens is a potential therapeutic strategy in Era+ breast cancer tumors.
Collapse
Affiliation(s)
- Luigi Formisano
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Yao Lu
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | | | - Ariella B Hanker
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.,UTSW Simmons Cancer Center, Dallas, TX, 75230, USA.,Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Valerie M Jansen
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Joshua A Bauer
- Departments of Biochemistry, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Dhivya R Sudhan
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.,UTSW Simmons Cancer Center, Dallas, TX, 75230, USA
| | - Angel L Guerrero-Zotano
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Sarah Croessmann
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Yan Guo
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, 37232-6307, TN, USA
| | - Paula Gonzalez Ericsson
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Kyung-Min Lee
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Mellissa J Nixon
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Luis J Schwarz
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Melinda E Sanders
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.,Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Teresa C Dugger
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | | | - Amir Behdad
- Robert H Lurie Comprehensive Cancer Center, Chicago, 60611, IL, USA
| | | | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, 02114, MA, USA
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, , US Oncology, Dallas, 75246, TX, USA
| | | | | | - Nadia Solovieff
- Novartis Institutes for Biomedical Research, Cambridge, 02139, MA, USA
| | - Wei He
- Novartis Institutes for Biomedical Research, Cambridge, 02139, MA, USA
| | - Michelle Miller
- Novartis Pharmaceuticals Corporation, East Hanover, 07936, NJ, USA
| | - Fei Su
- Novartis Pharmaceuticals Corporation, East Hanover, 07936, NJ, USA
| | - Yu Shyr
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, 37232-6307, TN, USA
| | - Ingrid A Mayer
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.,Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Justin M Balko
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA
| | - Carlos L Arteaga
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA. .,UTSW Simmons Cancer Center, Dallas, TX, 75230, USA. .,Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, 37232-6307, TN, USA.
| |
Collapse
|
144
|
Kaklamani VG, Richardson AL, Arteaga CL. Exploring Biomarkers of Phosphoinositide 3-Kinase Pathway Activation in the Treatment of Hormone Receptor Positive, Human Epidermal Growth Receptor 2 Negative Advanced Breast Cancer. Oncologist 2019; 24:305-312. [PMID: 30651399 PMCID: PMC6519770 DOI: 10.1634/theoncologist.2018-0314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022] Open
Abstract
Resistance to endocrine therapy (ET) is common in patients with hormone receptor positive (HR+) advanced breast cancer (ABC). Consequently, new targeted treatment options are needed in the post-ET setting, with validated biomarkers to inform treatment decisions. Hyperactivation of the phosphoinositide 3-kinase (PI3K) signaling pathway is common in ABC and is implicated in resistance to ET. The most frequent mechanism of PI3K pathway activation is activating mutations or amplification of PIK3CA, which encodes the α-isoform of the catalytic subunit of PI3K. Combining buparlisib, a pan-PI3K-targeted agent, with ET demonstrated modest clinical benefits in patients with aromatase inhibitor-resistant, HR+, human epidermal growth receptor 2 negative (HER2-) ABC in two phase III trials. Importantly, greater efficacy gains were observed in individuals with PIK3CA-mutated disease versus PIK3CA-wild-type tumors. Although the challenging safety profile did not support widespread use of this treatment combination, isoform-selective PI3K inhibitors may improve tolerability. In early clinical trials, promising disease control benefits were demonstrated with the PI3K isoform-selective inhibitors alpelisib and taselisib in patients with PIK3CA-mutated HR+, HER2- ABC. Ongoing biomarker-guided phase II/III studies may provide further opportunities to identify patients most likely to benefit from treatment with PI3K inhibitors and provide insight into optimizing the therapeutic index of PI3K inhibitors. Challenges facing the implementation of routine PIK3CA mutation testing must be addressed promptly so robust and reproducible genotyping can be obtained with liquid and tumor biopsies in a timely and cost-effective manner. IMPLICATIONS FOR PRACTICE: The development of phosphoinositide 3-kinase (PI3K) inhibitors, especially those that selectively target isoforms, may be an effective strategy for overcoming endocrine therapy resistance in hormone receptor positive, human epidermal growth receptor 2 negative advanced breast cancer. Early-phase studies have confirmed that patients with PIK3CA mutations respond best to PI3Kα-isoform inhibition. Ongoing phase III trials will provide further data regarding the efficacy and safety of PI3K inhibitors in patients with different biomarker profiles.
Collapse
Affiliation(s)
| | | | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
145
|
Jansen VM, Bhola NE, Bauer JA, Formisano L, Lee KM, Hutchinson KE, Witkiewicz AK, Moore PD, Estrada MV, Sánchez V, Ericsson PG, Sanders ME, Pohlmann PR, Pishvaian MJ, Riddle DA, Dugger TC, Wei W, Knudsen ES, Arteaga CL. Correction: Kinome-Wide RNA Interference Screen Reveals a Role for PDK1 in Acquired Resistance to CDK4/6 Inhibition in ER-Positive Breast Cancer. Cancer Res 2019; 79:874. [PMID: 30770369 DOI: 10.1158/0008-5472.can-18-4086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
146
|
Xi J, Oza A, Thomas S, Naughton M, Ademuyiwa F, Weilbaecher K, Suresh R, Bose R, Cherian M, Hernandez-Aya L, Frith A, Peterson L, Luo J, Krishnamurthy J, Ma CX. Retrospective Analysis of Treatment Patterns and Effectiveness of Palbociclib and Subsequent Regimens in Metastatic Breast Cancer. J Natl Compr Canc Netw 2019; 17:141-147. [PMID: 30787127 PMCID: PMC6752198 DOI: 10.6004/jnccn.2018.7094] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023]
Abstract
Background: Cyclin-dependent kinase (CDK) 4/6 inhibitors are now the standard of care for hormone receptor-positive (HR+), HER2-negative (HER-) metastatic breast cancer (MBC). However, guidelines are lacking regarding their optimal sequencing with other available agents. This study examines physician practice patterns and treatment outcomes of palbociclib and subsequent therapies in a real-world setting. Methods: A retrospective chart review was conducted for consecutive patients with MBC who received palbociclib between February 2015 and August 2017 at the Alvin J. Siteman Cancer Center. Kaplan-Meier method was used to generate time-to-event curves and estimate median progression-free survival (mPFS). Log-rank test was used to compare differences. Results: A total of 200 patients, with a median age of 59.4 years and a follow-up of 19.5 months, were included. Palbociclib was most frequently combined with letrozole (73.5%), followed by fulvestrant (25%), anastrozole (1%), and tamoxifen (0.5%). Most patients received palbociclib in the endocrine-resistant setting (n=42, n=50, and n=108 in the first-, second-, and subsequent-line settings, respectively), and the fraction of patients receiving palbociclib as first- or second-line therapy increased in recent months (P=.0428). mPFS was 20.7, 12.8, and 4.0 months with palbociclib administered in the first-, second-, and subsequent-line settings, respectively (P<.0001). Incidences of grade 3/4 neutropenia (41.5%) and dose reductions (29%) were comparable to reports in the literature. Among patients whose disease progressed on palbociclib (n=104), the most frequent next-line treatment was capecitabine (n=21), followed by eribulin (n=16), nab-paclitaxel (n=15), and exemestane + everolimus (n=12). mPFS with hormone therapy alone or in combination with targeted agents (n=32) after first-, second-, and subsequent-line palbociclib was 17.0, 9.3, and 4.2 months, respectively (P=.04). mPFS with chemotherapy (n=70) was not reached, 4.7, and 4.1 months after first-, second-, and subsequent-line palbociclib, respectively (P=.56). Conclusions: Palbociclib is effective for HR+/HER2- MBC in real-world practice. Hormone therapy alone or in combination with targeted agents remains an effective option after palbociclib progression.
Collapse
Affiliation(s)
- Jing Xi
- Washington University School of Medicine, St. Louis, MO 63110
- St. Luke’s Hospital, St. Louis, MO 63017
| | - Aabha Oza
- Washington University School of Medicine, St. Louis, MO 63110
| | - Shana Thomas
- Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | - Rama Suresh
- Washington University School of Medicine, St. Louis, MO 63110
| | - Ron Bose
- Washington University School of Medicine, St. Louis, MO 63110
| | - Mathew Cherian
- Washington University School of Medicine, St. Louis, MO 63110
| | | | - Ashley Frith
- Washington University School of Medicine, St. Louis, MO 63110
| | | | - Jingqin Luo
- Washington University School of Medicine, St. Louis, MO 63110
| | | | - Cynthia X. Ma
- Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
147
|
Synergistic anti-cancer activity of CDK4/6 inhibitor palbociclib and dual mTOR kinase inhibitor MLN0128 in pRb-expressing ER-negative breast cancer. Breast Cancer Res Treat 2019; 174:615-625. [PMID: 30607633 DOI: 10.1007/s10549-018-05104-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Palbociclib is an approved cyclin-dependent kinase (CDK) 4/6 inhibitor for treatment of patients with ER-positive and HER2-negative breast cancers. While Retinoblastoma protein (pRb), a major substrate of CDK4/6, is a potential target in triple negative breast cancer (TNBC), the usefulness of CDK4/6 inhibitors in this cancer has not been established. This preclinical study investigated the combination effects of palbociclib and the dual mammalian target of rapamycin (mTOR) kinase inhibitor MLN0128 in estrogen receptor (ER)-negative breast cancer in vitro and in vivo. METHODS The combined effects of two drugs on three TNBC cell lines (MB231, MB468, and CAL148) and an ER-negative and HER2-positive cell line (MB453) were investigated by MTT assay and colony formation analysis. Cell cycle measurements were examined as well as changes in expression of molecules related to G1/S transition and the mTOR pathway. Importantly, a pRb-expressing TNBC patient-derived xenograft (PDX) model was used to assess the effects of the combination in vivo. RESULTS A combination of palbociclib and MLN0128 synergistically inhibited the proliferation of pRb-expressing cell lines and induced G1 cell cycle arrest. Western blot analysis revealed that CDK4/6-pRb and mTOR pathways were inhibited by these treatments. In pRb-expressing TNBC PDX, the combination treatment drastically suppressed tumor growth compared to either the control or single drug treatments. In addition, the combination treatment significantly reduced the number of Ki67-positive cells. CONCLUSIONS We revealed that palbociclib and MLN0128 had synergistic anti-cancer activity in both pRb + ER-negative cell lines and a TNBC PDX model. Our results indicate that such combination therapy is worthy of further investigation in a clinical setting.
Collapse
|
148
|
Wang Y, Li X, Liu X, Chen Y, Yang C, Tan C, Wang B, Sun Y, Zhang X, Gao Y, Ding J, Meng L. Simultaneous inhibition of PI3Kα and CDK4/6 synergistically suppresses KRAS-mutated non-small cell lung cancer. Cancer Biol Med 2019; 16:66-83. [PMID: 31119047 PMCID: PMC6528459 DOI: 10.20892/j.issn.2095-3941.2018.0361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Activating KRAS mutations are the most common drivers in the development of non-small cell lung cancer (NSCLC). However, unsuccess of treatment by direct inhibition of KRAS has been proven. Deregulation of PI3K signaling plays an important role in tumorigenesis and drug resistance in NSCLC. The activity of PI3Kα-selective inhibition against KRAS-mutated NSCLC remains largely unknown.
Methods Cell proliferation was detected by sulforhodamine B assay. Cell cycle distribution and apoptosis were measured by flow cytometry. Cell signaling was assessed by Western blot and immunohistochemistry. RNA interference was used to down-regulate the expression of cyclin D1. Human NSCLC xenografts were employed to detect therapeutic efficacy in vivo.
Results CYH33 possessed variable activity against a panel of KRAS-mutated NSCLC cell lines. Although CYH33 blocked AKT phosphorylation in all tested cells, Rb phosphorylation decreased in CYH33-sensitive, but not in CYH33-resistant cells, which was consistent with G1 phase arrest in sensitive cells. Combined treatment with the CDK4/6 inhibitor, PD0332991, and CYH33 displayed synergistic activity against the proliferation of both CYH33-sensitive and CYH33-resistant cells, which was accompanied by enhanced G1-phase arrest. Moreover, down-regulation of cyclin D1 sensitized NSCLC cells to CYH33. Reciprocally, CYH33 abrogated the PD0332991-induced up-regulation of cyclin D1 and phosphorylation of AKT in A549 cells. Co-treatment with these two drugs demonstrated synergistic activity against A549 and H23 xenografts, with enhanced inhibition of Rb phosphorylation. Conclusions Simultaneous inhibition of PI3Kα and CDK4/6 displayed synergistic activity against KRAS-mutated NSCLC. These data provide a mechanistic rationale for the combination of a PI3Kα inhibitor and a CDK4/6 inhibitor for the treatment of KRAS-mutated NSCLC.
Collapse
Affiliation(s)
- Yuxiang Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Li
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xueling Liu
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunhao Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200120, China
| | - Cun Tan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200120, China
| | - Bobo Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiming Sun
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Zhang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinglei Gao
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
149
|
Ji W, Shi Y, Wang X, He W, Tang L, Tian S, Jiang H, Shu Y, Guan X. Combined Androgen receptor blockade overcomes the resistance of breast cancer cells to palbociclib. Int J Biol Sci 2019; 15:522-532. [PMID: 30745839 PMCID: PMC6367574 DOI: 10.7150/ijbs.30572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/28/2018] [Indexed: 02/03/2023] Open
Abstract
The dysregulation of cyclin D -Cyclin-dependent kinase 4/6 (CDK4/6)-Rb axis has been implicated in breast cancer progression and the selective CDK4/6 inhibitors have shown effective activity in advanced breast cancer, especially in tumors driven by the estrogen receptor (ER). However, resistance to these small molecular inhibitors has become an inevitable clinical issue after their initial use. Here, we investigated the potential mechanism of resistance by establishing a CDK4/6 inhibitor palbociclib-resistant breast cancer cell line (MCF-7pR). After prolonged exposure to palbociclib, we detected the loss of the ER signaling and an increase in androgen receptor (AR). Moreover, we demonstrated more localization of AR in the cell nucleus of MCF-7pR compared to the parental cell (MCF-7). We also reported that AR could promote the progression of the cell cycle. Blockade of AR signaling could reduce the level of the relative G1-S cyclins, abolish Rb phosphorylation and inhibit the activation of transcriptional programs in S phase. Furthermore, dual inhibition of AR and CDK4/6 could reverse the resistance of palbociclib both in vitro and in vivo. In sum, our studies provide evidence that AR activation promotes cell cycle progression and cell proliferation in CDK4/6 inhibitor resistance, and identify AR inhibition as a putative novel therapeutic strategy to treat CDK4/6 inhibitor resistance in cancer.
Collapse
Affiliation(s)
- Wenfei Ji
- Department of Medical Oncology, Jinling Clinical College of Nanjing Medical University, Nanjing 210002, China
| | - Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xin Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Weiwei He
- Department of Medical Oncology, Jinling Clinical College of Nanjing Medical University, Nanjing 210002, China
| | - Lin Tang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Shengwang Tian
- Department of Oncology, JinTan People's Hospital, Jintan 213200, China
| | - Hua Jiang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou 213003, Jiangsu, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Clinical College of Nanjing Medical University, Nanjing 210002, China.,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
150
|
Portman N, Alexandrou S, Carson E, Wang S, Lim E, Caldon CE. Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer. Endocr Relat Cancer 2019; 26:R15-R30. [PMID: 30389903 DOI: 10.1530/erc-18-0317] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
Three inhibitors of CDK4/6 kinases were recently FDA approved for use in combination with endocrine therapy, and they significantly increase the progression-free survival of patients with advanced estrogen receptor-positive (ER+) breast cancer in the first-line treatment setting. As the new standard of care in some countries, there is the clinical emergence of patients with breast cancer that is both CDK4/6 inhibitor and endocrine therapy resistant. The strategies to combat these cancers with resistance to multiple treatments are not yet defined and represent the next major clinical challenge in ER+ breast cancer. In this review, we discuss how the molecular landscape of endocrine therapy resistance may affect the response to CDK4/6 inhibitors, and how this intersects with biomarkers of intrinsic insensitivity. We identify the handful of pre-clinical models of acquired resistance to CDK4/6 inhibitors and discuss whether the molecular changes in these models are likely to be relevant or modified in the context of endocrine therapy resistance. Finally, we consider the crucial question of how some of these changes are potentially amenable to therapy.
Collapse
Affiliation(s)
- Neil Portman
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Sarah Alexandrou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Emma Carson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - C Elizabeth Caldon
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| |
Collapse
|