101
|
Apaolaza I, San José-Enériz E, Valcarcel LV, Agirre X, Prosper F, Planes FJ. A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism. PLoS Comput Biol 2022; 18:e1009395. [PMID: 35286311 PMCID: PMC8947600 DOI: 10.1371/journal.pcbi.1009395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/24/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
Synthetic Lethality (SL) is currently defined as a type of genetic interaction in which the loss of function of either of two genes individually has limited effect in cell viability but inactivation of both genes simultaneously leads to cell death. Given the profound genomic aberrations acquired by tumor cells, which can be systematically identified with -omics data, SL is a promising concept in cancer research. In particular, SL has received much attention in the area of cancer metabolism, due to the fact that relevant functional alterations concentrate on key metabolic pathways that promote cellular proliferation. With the extensive prior knowledge about human metabolic networks, a number of computational methods have been developed to predict SL in cancer metabolism, including the genetic Minimal Cut Sets (gMCSs) approach. A major challenge in the application of SL approaches to cancer metabolism is to systematically integrate tumor microenvironment, given that genetic interactions and nutritional availability are interconnected to support proliferation. Here, we propose a more general definition of SL for cancer metabolism that combines genetic and environmental interactions, namely loss of gene functions and absence of nutrients in the environment. We extend our gMCSs approach to determine this new family of metabolic synthetic lethal interactions. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase (DHFR) inhibition in different environments. Finally, our approach is applied to identify extracellular nutrient dependences of tumor cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different malignancies. Metabolic reprogramming is one of the hallmarks of tumor cells. Synthetic lethality (SL) is a promising approach to exploit these metabolic alterations and elucidate cancer-specific genetic dependences. However, current SL approaches do not systematically consider tumor microenvironment, which is particularly important in cancer metabolism in order to generalize identified genetic dependences. In this article, we directly address this issue and propose a more general approach to SL that integrates both genetic and environmental context of tumor cells. Our definition can help to contextualize genetic dependencies in different environmental scenarios, but it could also reveal nutrient dependencies according to the genetic context. We also provide a computational pipeline to identify this new family of synthetic lethals in genome-scale metabolic networks. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase (DHFR) inhibition in different environments. Finally, our approach is applied to identify extracellular nutrient dependences of cancer cell lines, elucidating cholesterol and myo-Inositol depletion as potential vulnerabilities in different malignancies.
Collapse
Affiliation(s)
- Iñigo Apaolaza
- Universidad de Navarra, Tecnun Escuela de Ingeniería, San Sebastián, Spain
- Universidad de Navarra, Centro de Ingeniería Biomédica, Pamplona, Spain
- Universidad de Navarra, DATAI Instituto de Ciencia de los Datos e Inteligencia Artificial, Pamplona, Spain
| | - Edurne San José-Enériz
- Universidad de Navarra, CIMA Centro de Investigación de Medicina Aplicada, Pamplona, Spain
- IdiSNA Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Luis V. Valcarcel
- Universidad de Navarra, Tecnun Escuela de Ingeniería, San Sebastián, Spain
- Universidad de Navarra, CIMA Centro de Investigación de Medicina Aplicada, Pamplona, Spain
- IdiSNA Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Xabier Agirre
- Universidad de Navarra, CIMA Centro de Investigación de Medicina Aplicada, Pamplona, Spain
- IdiSNA Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Felipe Prosper
- Universidad de Navarra, CIMA Centro de Investigación de Medicina Aplicada, Pamplona, Spain
- IdiSNA Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Francisco J. Planes
- Universidad de Navarra, Tecnun Escuela de Ingeniería, San Sebastián, Spain
- Universidad de Navarra, Centro de Ingeniería Biomédica, Pamplona, Spain
- Universidad de Navarra, DATAI Instituto de Ciencia de los Datos e Inteligencia Artificial, Pamplona, Spain
- * E-mail:
| |
Collapse
|
102
|
Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors 2022; 48:359-383. [PMID: 34724274 DOI: 10.1002/biof.1799] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Anticancer drugs are not purely effective because of their toxicity, side effects, high cost, inaccessibility, and associated resistance. On the other hand, cancer is a complex public health problem that could intelligently adopt different signaling pathways and alter the body's metabolism to escape from the immune system. One of the cancer strategies to metastasize is modifying pH in the tumor microenvironment, ranging between 6.5 and 6.9. As a powerful determiner, lactate is responsible for this acidosis. It is involved in immune stimulation, including innate and adaptive immunity, apoptotic-related factors (Bax/Bcl-2, caspase), and glycolysis pathways (e.g., GLUT-1, PKM2, PFK, HK2, MCT-1, and LDH). Lactate metabolism, in turn, is interconnected with several dysregulated signaling mediators, including PI3K/Akt/mTOR, AMPK, NF-κB, Nrf2, JAK/STAT, and HIF-1α. Because of lactate's emerging and critical role, targeting lactate production and its transporters is important for preventing and managing tumorigenesis. Hence, exploring and developing novel promising anticancer agents to minimize human cancers is urgent. Based on numerous studies, natural secondary metabolites as multi-target alternative compounds with health-promoting properties possess more high effectiveness and low side effects than conventional agents. Besides, the mechanism of multi-targeted natural sources is related to lactate production and cancer-associated cross-talked factors. This review focuses on targeting the lactate metabolism/transporters, and lactate-associated mediators, including glycolytic pathways. Besides, interconnected mediators to lactate metabolism are also targeted by natural products. Accordingly, plant-derived secondary metabolites are introduced as alternative therapies in combating cancer through modulating lactate metabolism and glycolytic pathways.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
103
|
Shi R, Pan P, Lv R, Ma C, Wu E, Guo R, Zhao Z, Song H, Zhou J, Liu Y, Xu G, Hou T, Kang Z, Liu J. High-throughput glycolytic inhibitor discovery targeting glioblastoma by graphite dots-assisted LDI mass spectrometry. SCIENCE ADVANCES 2022; 8:eabl4923. [PMID: 35171681 PMCID: PMC10921956 DOI: 10.1126/sciadv.abl4923] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Malignant tumors will become vulnerable if their uncontrolled biosynthesis and energy consumption engaged in metabolic reprogramming can be cut off. Here, we report finding a glycolytic inhibitor targeting glioblastoma with graphite dots-assisted laser desorption/ionization mass spectrometry as an integrated drug screening and pharmacokinetic platform (GLMSD). We have performed high-throughput virtual screening to narrow an initial library of 240,000 compounds down to the docking of 40 compounds and identified five previously unknown chemical scaffolds as promising hexokinase-2 inhibitors. The best inhibitor (Compd 27) can regulate the reprogrammed metabolic pathway in U87 glioma cells (median inhibitory concentration ~ 11.3 μM) for tumor suppression. Highly effective therapy against glioblastoma has been demonstrated in both subcutaneous and orthotopic brain tumors by synergizing Compd 27 and temozolomide. Our glycolytic inhibitor discovery can inspire personalized medicine targeting reprogrammed metabolisms of malignant tumors. GLMSD enables large, high-quality data for next-generation artificial intelligence-aided drug development.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peichen Pan
- College of Pharmaceutical Sciences and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chongqing Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Enhui Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruochen Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhihao Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hexing Song
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Joe Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
104
|
Liu J, Gao M, Yang Z, Zhao Y, Guo K, Sun B, Gao Z, Wang L. Macrophages and Metabolic Reprograming in the Tumor Microenvironment. Front Oncol 2022; 12:795159. [PMID: 35242705 PMCID: PMC8885627 DOI: 10.3389/fonc.2022.795159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Due to the emergence of traditional drug resistance in tumor treatment, the anti-cancer therapies are facing multiple challenges. Immunotherapy, as a new and universal treatment, has been gradually concerned. The macrophages, as an important part of the immune system, play an important role in it. Many studies have shown that immune state is essential in cancer progression and prognosis, rebuilding the architecture and functional orientation of the tumor region. Most tumors are complex ecosystems that change temporally and spatially under the pressure of proliferation, apoptosis, and extension of every cell in the microenvironment. Here, we review how macrophages states can be dynamically altered in different metabolic states and we also focus on the formation of immune exhaustion. Finally, we look forward to the explorations of clinical treatment for immune metabolism process.
Collapse
Affiliation(s)
- Jin Liu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhou Yang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
| | - Yidan Zhao
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
| | - Kun Guo
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
| | - Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
| | - Zhenming Gao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
105
|
Yang L, TeSlaa T, Ng S, Nofal M, Wang L, Lan T, Zeng X, Cowan A, McBride M, Lu W, Davidson S, Liang G, Oh TG, Downes M, Evans R, Von Hoff D, Guo JY, Han H, Rabinowitz JD. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. MED 2022; 3:119-136. [PMID: 35425930 PMCID: PMC9004683 DOI: 10.1016/j.medj.2021.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Ketogenic diet is a potential means of augmenting cancer therapy. Here, we explore ketone body metabolism and its interplay with chemotherapy in pancreatic cancer. Methods Metabolism and therapeutic responses of murine pancreatic cancer were studied using KPC primary tumors and tumor chunk allografts. Mice on standard high-carbohydrate diet or ketogenic diet were treated with cytotoxic chemotherapy (nab-paclitaxel, gemcitabine, cisplatin). Metabolic activity was monitored with metabolomics and isotope tracing, including 2H- and 13C-tracers, liquid chromatography-mass spectrometry, and imaging mass spectrometry. Findings Ketone bodies are unidirectionally oxidized to make NADH. This stands in contrast to the carbohydrate-derived carboxylic acids lactate and pyruvate, which rapidly interconvert, buffering NADH/NAD. In murine pancreatic tumors, ketogenic diet decreases glucose's concentration and tricarboxylic acid cycle contribution, enhances 3-hydroxybutyrate's concentration and tricarboxylic acid contribution, and modestly elevates NADH, but does not impact tumor growth. In contrast, the combination of ketogenic diet and cytotoxic chemotherapy substantially raises tumor NADH and synergistically suppresses tumor growth, tripling the survival benefits of chemotherapy alone. Chemotherapy and ketogenic diet also synergize in immune-deficient mice, although long-term growth suppression was only observed in mice with an intact immune system. Conclusions Ketogenic diet sensitizes murine pancreatic cancer tumors to cytotoxic chemotherapy. Based on these data, we have initiated a randomized clinical trial of chemotherapy with standard versus ketogenic diet for patients with metastatic pancreatic cancer (NCT04631445).
Collapse
Affiliation(s)
- Lifeng Yang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tara TeSlaa
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Serina Ng
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Michel Nofal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lin Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Taijin Lan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xianfeng Zeng
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alexis Cowan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Matthew McBride
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Shawn Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gaoyang Liang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Daniel Von Hoff
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
- Lead contact
| |
Collapse
|
106
|
Shan Y, Ni Q, Zhang Q, Zhang M, Wei B, Cheng L, Zhong C, Wang X, Wang Q, Liu J, Zhang J, Wu J, Wang G, Zhou F. Targeting tumor endothelial hyperglycolysis enhances immunotherapy through remodeling tumor microenvironment. Acta Pharm Sin B 2022; 12:1825-1839. [PMID: 35847509 PMCID: PMC9279856 DOI: 10.1016/j.apsb.2022.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Vascular abnormality is a hallmark of most solid tumors and facilitates immune evasion. Targeting the abnormal metabolism of tumor endothelial cells (TECs) may provide an opportunity to improve the outcome of immunotherapy. Here, in comparison to vascular endothelial cells from adjacent peritumoral tissues in patients with colorectal cancer (CRC), TECs presented enhanced glycolysis with higher glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. Then an unbiased screening identified that osimertinib could modify the GAPDH and thus inhibit its activity in TECs. Low-dose osimertinib treatment caused tumor regression with vascular normalization and increased infiltration of immune effector cells in tumor, which was due to the reduced secretion of lactate from TECs by osimertinib through the inhibition of GAPDH. Moreover, osimertinib and anti-PD-1 blockade synergistically retarded tumor growth. This study provides a potential strategy to enhance immunotherapy by targeting the abnormal metabolism of TECs.
Collapse
|
107
|
Zhao LP, Zheng RR, Kong RJ, Huang CY, Rao XN, Yang N, Chen AL, Yu XY, Cheng H, Li SY. Self-Delivery Ternary Bioregulators for Photodynamic Amplified Immunotherapy by Tumor Microenvironment Reprogramming. ACS NANO 2022; 16:1182-1197. [PMID: 35023720 DOI: 10.1021/acsnano.1c08978] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abnormal metabolism of cancer cells results in complex tumor microenvironments (TME), which play a dominant role in tumor metastasis. Herein, self-delivery ternary bioregulators (designated as TerBio) are constructed for photodynamic amplified immunotherapy against colorectal cancer by TME reprogramming. Specifically, carrier-free TerBio are prepared by the self-assembly of chlorine e6, SB505124 (SB), and lonidamine (Lon), which exhibit improved tumor accumulation, tumor penetration, and cellular uptake behaviors. Interestingly, TerBio-mediated photodynamic therapy (PDT) could not only inhibit the primary tumor growth but also induce immunogenic cell death of tumors to activate the cascade immune response. Furthermore, TerBio are capable of TME reprograming by SB-triggered transforming growth factor (TGF)-β blockage and Lon-induced lactic acid efflux inhibition. As a consequence, TerBio significantly suppresses distant and metastatic tumor growth by PDT-amplified immunotherapy. This study might advance the development of self-delivery nanomedicine against malignant tumor growth and metastasis.
Collapse
Affiliation(s)
- Lin-Ping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rong-Rong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ren-Jiang Kong
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Chu-Yu Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Xiao-Na Rao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ni Yang
- The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510080, P.R. China
| | - A-Li Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
- The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510080, P.R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Shi-Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
108
|
Qi W, Zhu F, Wang M, Teng Z, Xu R, Xi Y, Meng Q, Wu X, Zhao H, Ma M, Hou X, Wang B, Li X, Liu C, Zhang X, Xu F, Xia M. The Antitumoral Effect of Paris Saponin II on Head and Neck Squamous Cell Carcinomas Mediated via the Nitric Oxide Metabolic Pathway. Front Cell Dev Biol 2022; 9:803981. [PMID: 35047513 PMCID: PMC8762239 DOI: 10.3389/fcell.2021.803981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Paris saponin has shown great therapeutic value in cancer therapy. We used isolated Paris saponin II (PSII), an active component of Paris saponin, and demonstrated its antitumor effect on human head and neck squamous cell carcinoma cell lines. Additionally, we investigated its mechanisms of action in vivo by establishing a xenograft mouse model. The results showed that PSII had presented strong anticancer effects on both hypopharyngeal malignant tumor cell lines (FaDu) and laryngeal carcinoma cell lines (Tu212 and Tu686). In addition, we successfully isolated and cultured the head and neck squamous stem cells and the primary fibroblasts to perform metabonomics studies. The results showed that RPII remarkably decreased energy metabolism, and type III nitric oxide synthase 3 (NOS3) may be a target to block tumor growth. Furthermore, we found that PSII inhibited HNSCC proliferation and metastasis by inhibiting the nitric oxide metabolic pathway. Overall, these results demonstrated that PSII is a potent anticancer agent, and the metabonomics analysis is a valuable tool to investigate and establish the antitumor effects of traditional Chinese medicines.
Collapse
Affiliation(s)
- Wenwen Qi
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Min Wang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenxiao Teng
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Runtong Xu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yue Xi
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiu Meng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Zhao
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Min Ma
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaozhi Hou
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Baowei Wang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoming Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengcheng Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiang Zhang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenglei Xu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
109
|
Yao C, Weng J, Feng L, Zhang W, Xu Y, Zhang P, Tanaka Y, Su L. SIPA1 Enhances Aerobic Glycolysis Through HIF-2α Pathway to Promote Breast Cancer Metastasis. Front Cell Dev Biol 2022; 9:779169. [PMID: 35096814 PMCID: PMC8790513 DOI: 10.3389/fcell.2021.779169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Increased dependence on aerobic glycolysis is characteristic of most cancer cells, whereas the mechanism underlying the promotion of aerobic glycolysis in metastatic breast cancer cells under ambient oxygen has not been well understood. Here, we demonstrated that aberrant expression of signal-induced proliferation-associated 1 (SIPA1) enhanced aerobic glycolysis and altered the main source of ATP production from oxidative phosphorylation to glycolysis in breast cancer cells. We revealed that SIPA1 promoted the transcription of EPAS1, which is known as the gene encoding hypoxia-inducible factor-2α (HIF-2α) and up-regulated the expression of multiple glycolysis-related genes to increase aerobic glycolysis. We also found that blocking aerobic glycolysis by either knocking down SIPA1 expression or oxamate treatment led to the suppression of tumor metastasis of breast cancer cells both in vitro and in vivo. Taken together, aberrant expression of SIPA1 resulted in the alteration of glucose metabolism from oxidative phosphorylation to aerobic glycolysis even at ambient oxygen levels, which might aggravate the malignancy of breast cancer cells. The present findings indicate a potential target for the development of therapeutics against breast cancers with dysregulated SIPA1 expression.
Collapse
Affiliation(s)
- Chenguang Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjun Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Peijing Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
110
|
Potential Utility of Synthetic D-Lactate Polymers in Skin Cancer. JID INNOVATIONS 2021; 1:100043. [PMID: 34909738 PMCID: PMC8659406 DOI: 10.1016/j.xjidi.2021.100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/05/2021] [Accepted: 06/01/2021] [Indexed: 02/04/2023] Open
Abstract
Increased breakdown of glucose through glycolysis in both aerobic and anaerobic conditions is a hallmark feature of mammalian cancer and leads to increased production of L-lactate. The high-level lactate present within the tumor microenvironment is reused as a crucial biofuel to support rapid cancer cell proliferation, survival, and immune evasion. Inhibitors that target the glycolysis process are being developed for cancer therapy. In this study, we report an approach of using synthetic D-lactate dimers to inhibit melanoma and squamous cell carcinoma cell proliferation and survival. We also provide in vivo evidence that intratumoral injection of D-lactate dimers induced an innate immune response and inhibited subcutaneous melanoma xenograft growth in immunodeficient mice. Our findings support a potential utility of D-lactate dimers in skin cancer treatment and therefore warrant further mechanistic studies.
Collapse
|
111
|
Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021; 59:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third cause of cancer death in men worldwide, and its increasing incidence can be explained by the increasing occurrence of non-alcoholic steatohepatitis (NASH). HCC prognosis is poor, as its 5-year overall survival is approximately 18 % and most cases are diagnosed at an inoperable advanced stage. Moreover, tumor sensitivity to conventional chemotherapeutics (particularly to cisplatin-based regimen), trans-arterial chemoembolization (cTACE), tyrosine kinase inhibitors, anti-angiogenic molecules and immune checkpoint inhibitors is limited. Oncogenic signaling pathways, such as HIF-1α and RAS/PI3K/AKT, may provoke drug resistance by enhancing the aerobic glycolysis ("Warburg effect") in cancer cells. Indeed, this metabolism, which promotes cancer cell development and aggressiveness, also induces extracellular acidity. In turn, this acidity promotes the protonation of drugs, hence abrogating their internalization, since they are most often weakly basic molecules. Consequently, targeting the Warburg effect in these cancer cells (which in turn would reduce the extracellular acidification) could be an effective strategy to increase the delivery of drugs into the tumor. Phosphofructokinase-1 (PFK1) and its activator PFK2 are the main regulators of glycolysis, and they also couple the enhancement of glycolysis to the activation of key signaling cascades and cell cycle progression. Therefore, targeting this "Gordian Knot" in HCC cells would be of crucial importance. Here, we suggest that this could be achieved by citrate administration at high concentration, because citrate is a physiologic inhibitor of PFK1 and PFK2. As shown in various in vitro studies, including HCC cell lines, administration of high concentrations of citrate inhibits PFK1 and PFK2 (and consequently glycolysis), decreases ATP production, counteracts HIF-1α and PI3K/AKT signaling, induces apoptosis, and sensitizes cells to cisplatin treatment. Administration of high concentrations of citrate in animal models (including Ras-driven tumours) has been shown to effectively inhibit cancer growth, reverse cell dedifferentiation, and neutralize intratumor acidity, without apparent toxicity in animal studies. Citrate may also induce a rapid secretion of pro-inflammatory cytokines by macrophages, and it could favour the destruction of cancer stem cells (CSCs) sustaining tumor recurrence. Consequently, this "citrate strategy" could improve the tumor sensitivity to current treatments of HCC by reducing the extracellular acidity, thus enhancing the delivery of chemotherapeutic drugs into the tumor. Therefore, we propose that this strategy should be explored in clinical trials, in particular to enhance cTACE effectiveness.
Collapse
|
112
|
Liu Y, Duan C, Dai R, Zeng Y. Ferroptosis-mediated Crosstalk in the Tumor Microenvironment Implicated in Cancer Progression and Therapy. Front Cell Dev Biol 2021; 9:739392. [PMID: 34796174 PMCID: PMC8593168 DOI: 10.3389/fcell.2021.739392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is a recently recognized form of non-apoptotic regulated cell death and usually driven by iron-dependent lipid peroxidation and has arisen to play a significant role in cancer biology. Distinct from other types of cell death in morphology, genetics, and biochemistry, ferroptosis is characterized by the accumulation of lipid peroxides and lethal reactive oxygen species controlled by integrated oxidant and antioxidant systems. Increasing evidence indicates that a variety of biological processes, including amino acid, iron, lactate, and lipid metabolism, as well as glutathione, phospholipids, NADPH, and coenzyme Q10 biosynthesis, are closely related to ferroptosis sensitivity. Abnormal ferroptotic response may modulate cancer progression by reprogramming the tumor microenvironment (TME). The TME is widely associated with tumor occurrence because it is the carrier of tumor cells, which interacts with surrounding cells through the circulatory and the lymphatic system, thus influencing the development and progression of cancer. Furthermore, the metabolism processes play roles in maintaining the homeostasis and evolution of the TME. Here, this review focuses on the ferroptosis-mediated crosstalk in the TME, as well as discussing the novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Yini Liu
- Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, China
| | - Chunyan Duan
- Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, China
| | - Yi Zeng
- Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, China
| |
Collapse
|
113
|
Liu Y, Wang L, Fang L, Liu H, Tian H, Zheng Y, Fan T, Li C, He J. A Multi-Center Validated Subtyping Model of Esophageal Cancer Based on Three Metabolism-Related Genes. Front Oncol 2021; 11:772145. [PMID: 34760709 PMCID: PMC8573269 DOI: 10.3389/fonc.2021.772145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Metabolic reprogramming is a hallmark of malignancy. Understanding the characteristics of metabolic reprogramming in esophageal squamous cell carcinoma (ESCC) helps uncover novel targets for cancer progression. In this study, 880 metabolism-related genes were identified from microarray data and then filtered to divide patients into two subgroups using consensus clustering, which exhibits significantly different overall survival. After a differential analysis between two subtypes, 3 genes were screened out to construct a two subtypes decision model on the training cohort (GSE53624), defined as high-risk and low-risk subtypes. These risk models were then verified in two public databases (GSE53622 and TCGA-ESCC), an independent cohort of 49 ESCC patients by RT-qPCR and an external cohort of 95 ESCC patients by immunohistochemistry analysis (IHC). Furthermore, the immune cell infiltration of regulatory T cells (Tregs) and plasma cells showed a significant difference between the high and low-risk subtypes in the IHC experiment with 119 ESCC patients. In conclusion, our study indicated that three metabolism-related prognostic genes could stratify patients into subgroups and were associated with immune infiltration, clinical features and clinical outcomes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingling Fang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
114
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
115
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
116
|
Wang X, Liu H, Ni Y, Shen P, Han X. Lactate shuttle: from substance exchange to regulatory mechanism. Hum Cell 2021; 35:1-14. [PMID: 34606041 DOI: 10.1007/s13577-021-00622-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Lactate, as the product of glycolytic metabolism and the substrate of energy metabolism, is an intermediate link between cancer cell and tumor microenvironment metabolism. The exchange of lactate between the two cells via mono-carboxylate transporters (MCTs) is known as the lactate shuttle in cancer. Lactate shuttle is the core of cancer cell metabolic reprogramming between two cells such as aerobic cancer cells and hypoxic cancer cells, tumor cells and stromal cells, cancer cells and vascular endothelial cells. Cancer cells absorb lactate by mono-carboxylate transporter 1 (MCT1) and convert lactate to pyruvate via intracellular lactate dehydrogenase B (LDH-B) to maintain their growth and metabolism. Since lactate shuttle may play a critical role in energy metabolism of cancer cells, components related to lactate shuttle may be a crucial target for tumor antimetabolic therapy. In this review, we describe the lactate shuttle in terms of both substance exchange and regulatory mechanisms in cancer. Meanwhile, we summarize the difference of key proteins of lactate shuttle in common types of cancer.
Collapse
Affiliation(s)
- Xingchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - He Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yingqian Ni
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Peibo Shen
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
117
|
CAR T-Cells Depend on the Coupling of NADH Oxidation with ATP Production. Cells 2021; 10:cells10092334. [PMID: 34571983 PMCID: PMC8472053 DOI: 10.3390/cells10092334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
The metabolic milieu of solid tumors provides a barrier to chimeric antigen receptor (CAR) T-cell therapies. Excessive lactate or hypoxia suppresses T-cell growth, through mechanisms including NADH buildup and the depletion of oxidized metabolites. NADH is converted into NAD+ by the enzyme Lactobacillus brevis NADH Oxidase (LbNOX), which mimics the oxidative function of the electron transport chain without generating ATP. Here we determine if LbNOX promotes human CAR T-cell metabolic activity and antitumor efficacy. CAR T-cells expressing LbNOX have enhanced oxygen as well as lactate consumption and increased pyruvate production. LbNOX renders CAR T-cells resilient to lactate dehydrogenase inhibition. But in vivo in a model of mesothelioma, CAR T-cell's expressing LbNOX showed no increased antitumor efficacy over control CAR T-cells. We hypothesize that T cells in hostile environments face dual metabolic stressors of excessive NADH and insufficient ATP production. Accordingly, futile T-cell NADH oxidation by LbNOX is insufficient to promote tumor clearance.
Collapse
|
118
|
Tan ML, Ling L, Fischbach C. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Adv Drug Deliv Rev 2021; 176:113852. [PMID: 34197895 PMCID: PMC8440401 DOI: 10.1016/j.addr.2021.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Despite decades of research and advancements in diagnostic and treatment modalities, cancer remains a major global healthcare challenge. This is due in part to a lack of model systems that allow investigating the mechanisms underlying tumor development, progression, and therapy resistance under relevant conditions in vitro. Tumor cell interactions with their surroundings influence all stages of tumorigenesis and are shaped by both biological and biophysical cues including cell-cell and cell-extracellular matrix (ECM) interactions, tissue architecture and mechanics, and mass transport. Engineered tumor models provide promising platforms to elucidate the individual and combined contributions of these cues to tumor malignancy under controlled and physiologically relevant conditions. This review will summarize current knowledge of the biological and biophysical microenvironmental cues that influence tumor development and progression, present examples of in vitro model systems that are presently used to study these interactions and highlight advancements in tumor engineering approaches to further improve these technologies.
Collapse
Affiliation(s)
- Matthew L Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
119
|
Heishima K, Sugito N, Soga T, Nishikawa M, Ito Y, Honda R, Kuranaga Y, Sakai H, Ito R, Nakagawa T, Ueda H, Akao Y. Petasin potently inhibits mitochondrial complex I-based metabolism that supports tumor growth and metastasis. J Clin Invest 2021; 131:139933. [PMID: 34623325 PMCID: PMC8409585 DOI: 10.1172/jci139933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial electron transport chain complex I (ETCC1) is the essential core of cancer metabolism, yet potent ETCC1 inhibitors capable of safely suppressing tumor growth and metastasis in vivo are limited. From a plant extract screening, we identified petasin (PT) as a highly potent ETCC1 inhibitor with a chemical structure distinct from conventional inhibitors. PT had at least 1700 times higher activity than that of metformin or phenformin and induced cytotoxicity against a broad spectrum of tumor types. PT administration also induced prominent growth inhibition in multiple syngeneic and xenograft mouse models in vivo. Despite its higher potency, it showed no apparent toxicity toward nontumor cells and normal organs. Also, treatment with PT attenuated cellular motility and focal adhesion in vitro as well as lung metastasis in vivo. Metabolome and proteome analyses revealed that PT severely depleted the level of aspartate, disrupted tumor-associated metabolism of nucleotide synthesis and glycosylation, and downregulated major oncoproteins associated with proliferation and metastasis. These findings indicate the promising potential of PT as a potent ETCC1 inhibitor to target the metabolic vulnerability of tumor cells.
Collapse
Affiliation(s)
- Kazuki Heishima
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Nobuhiko Sugito
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masashi Nishikawa
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Ryo Honda
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Yuki Kuranaga
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Ryo Ito
- CCI Holdings Inc., Seki, Gifu, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroshi Ueda
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Yukihiro Akao
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| |
Collapse
|
120
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
121
|
García-Cañaveras JC, Lahoz A. Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers (Basel) 2021; 13:3230. [PMID: 34203535 PMCID: PMC8268968 DOI: 10.3390/cancers13133230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer that enables cancer cells to grow, proliferate and survive. This metabolic rewiring is intrinsically regulated by mutations in oncogenes and tumor suppressors, but also extrinsically by tumor microenvironment factors (nutrient and oxygen availability, cell-to-cell interactions, cytokines, hormones, etc.). Intriguingly, only a few cancers are driven by mutations in metabolic genes, which lead metabolites with oncogenic properties (i.e., oncometabolites) to accumulate. In the last decade, there has been rekindled interest in understanding how dysregulated metabolism and its crosstalk with various cell types in the tumor microenvironment not only sustains biosynthesis and energy production for cancer cells, but also contributes to immune escape. An assessment of dysregulated intratumor metabolism has long since been exploited for cancer diagnosis, monitoring and therapy, as exemplified by 18F-2-deoxyglucose positron emission tomography imaging. However, the efficient delivery of precision medicine demands less invasive, cheaper and faster technologies to precisely predict and monitor therapy response. The metabolomic analysis of tumor and/or microenvironment-derived metabolites in readily accessible biological samples is likely to play an important role in this sense. Here, we review altered cancer metabolism and its crosstalk with the tumor microenvironment to focus on energy and biomass sources, oncometabolites and the production of immunosuppressive metabolites. We provide an overview of current pharmacological approaches targeting such dysregulated metabolic landscapes and noninvasive approaches to characterize cancer metabolism for diagnosis, therapy and efficacy assessment.
Collapse
Affiliation(s)
- Juan C. García-Cañaveras
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
122
|
Tsai TH, Yang CC, Kou TC, Yang CE, Dai JZ, Chen CL, Lin CW. Overexpression of GLUT3 promotes metastasis of triple-negative breast cancer by modulating the inflammatory tumor microenvironment. J Cell Physiol 2021; 236:4669-4680. [PMID: 33421130 DOI: 10.1002/jcp.30189] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Triple-negative breast cancer (TNBC) exhibits a higher level of glycolytic capacity and are commonly associated with an inflammatory microenvironment, but the regulatory mechanism and metabolic crosstalk between the tumor and tumor microenvironment (TME) are largely unresolved. Here, we show that glucose transporter 3 (GLUT3) is particularly elevated in TNBC and associated with metastatic progression and poor prognosis in breast cancer patients. Expression of GLUT3 is crucial for promoting the epithelial-to-mesenchymal transition and enhancing invasiveness and distant metastasis of TNBC cells. Notably, GLUT3 is correlated with inflammatory gene expressions and is associated with M1 tumor-associated macrophages (TAMs), at least in part by C-X-C Motif Chemokine Ligand 8 (CXCL8). We found that expression of GLUT3 regulates CXCL8 production in TNBC cells. Secretion of CXCL8 participates in GLUT3-overexpressing TNBC cells-elicited activation of inflammatory TAMs, which further enhances GLUT3 expression and mobility of TNBC cells. Our findings demonstrate that aerobic glycolysis in TNBC not only promotes aggressiveness of tumor cells but also initiates a positive regulatory loop for enhancing tumor progression by modulating the inflammatory TME.
Collapse
Affiliation(s)
- Tai-Hua Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Tai-Chih Kou
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chang-En Yang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Zih Dai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
123
|
Blagih J, Hennequart M, Zani F. Tissue Nutrient Environments and Their Effect on Regulatory T Cell Biology. Front Immunol 2021; 12:637960. [PMID: 33868263 PMCID: PMC8050341 DOI: 10.3389/fimmu.2021.637960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for mitigating inflammation. Tregs are found in nearly every tissue and play either beneficial or harmful roles in the host. The availability of various nutrients can either enhance or impair Treg function. Mitochondrial oxidative metabolism plays a major role in supporting Treg differentiation and fitness. While Tregs rely heavily on oxidation of fatty acids to support mitochondrial activity, they have found ways to adapt to different tissue types, such as tumors, to survive in competitive environments. In addition, metabolic by-products from commensal organisms in the gut also have a profound impact on Treg differentiation. In this review, we will focus on the core metabolic pathways engaged in Tregs, especially in the context of tissue nutrient environments, and how they can affect Treg function, stability and differentiation.
Collapse
Affiliation(s)
| | | | - Fabio Zani
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
124
|
Cruz-Bermúdez A, Laza-Briviesca R, Casarrubios M, Sierra-Rodero B, Provencio M. The Role of Metabolism in Tumor Immune Evasion: Novel Approaches to Improve Immunotherapy. Biomedicines 2021; 9:361. [PMID: 33807260 PMCID: PMC8067102 DOI: 10.3390/biomedicines9040361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment exhibits altered metabolic properties as a consequence of the needs of tumor cells, the natural selection of the most adapted clones, and the selfish relationship with other cell types. Beyond its role in supporting uncontrolled tumor growth, through energy and building materials obtention, metabolism is a key element controlling tumor immune evasion. Immunotherapy has revolutionized the treatment of cancer, being the first line of treatment for multiple types of malignancies. However, many patients either do not benefit from immunotherapy or eventually relapse. In this review we overview the immunoediting process with a focus on the metabolism-related elements that are responsible for increased immune evasion, either through reduced immunogenicity or increased resistance of tumor cells to the apoptotic action of immune cells. Finally, we describe the main molecules to modulate these immune evasion processes through the control of the metabolic microenvironment as well as their clinical developmental status.
Collapse
Affiliation(s)
- Alberto Cruz-Bermúdez
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
| | - Raquel Laza-Briviesca
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Marta Casarrubios
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Belén Sierra-Rodero
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Mariano Provencio
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
| |
Collapse
|
125
|
Lin P, Dai L, Crooks DR, Neckers LM, Higashi RM, Fan TWM, Lane AN. NMR Methods for Determining Lipid Turnover via Stable Isotope Resolved Metabolomics. Metabolites 2021; 11:202. [PMID: 33805301 PMCID: PMC8065598 DOI: 10.3390/metabo11040202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022] Open
Abstract
Lipids comprise diverse classes of compounds that are important for the structure and properties of membranes, as high-energy fuel sources and as signaling molecules. Therefore, the turnover rates of these varied classes of lipids are fundamental to cellular function. However, their enormous chemical diversity and dynamic range in cells makes detailed analysis very complex. Furthermore, although stable isotope tracers enable the determination of synthesis and degradation of complex lipids, the numbers of distinguishable molecules increase enormously, which exacerbates the problem. Although LC-MS-MS (Liquid Chromatography-Tandem Mass Spectrometry) is the standard for lipidomics, NMR can add value in global lipid analysis and isotopomer distributions of intact lipids. Here, we describe new developments in NMR analysis for assessing global lipid content and isotopic enrichment of mixtures of complex lipids for two cell lines (PC3 and UMUC3) using both 13C6 glucose and 13C5 glutamine tracers.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA; (P.L.); (R.M.H.); (T.W-M.F.)
| | - Li Dai
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.D.); (D.R.C.); (L.M.N.)
| | - Daniel R. Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.D.); (D.R.C.); (L.M.N.)
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.D.); (D.R.C.); (L.M.N.)
| | - Richard M. Higashi
- Center for Environmental and Systems Biochemistry, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA; (P.L.); (R.M.H.); (T.W-M.F.)
- Department Toxicology & Cancer Biology, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA; (P.L.); (R.M.H.); (T.W-M.F.)
- Department Toxicology & Cancer Biology, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA; (P.L.); (R.M.H.); (T.W-M.F.)
- Department Toxicology & Cancer Biology, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA
| |
Collapse
|
126
|
Subia B, Dahiya UR, Mishra S, Ayache J, Casquillas GV, Caballero D, Reis RL, Kundu SC. Breast tumor-on-chip models: From disease modeling to personalized drug screening. J Control Release 2021; 331:103-120. [PMID: 33417986 PMCID: PMC8172385 DOI: 10.1016/j.jconrel.2020.12.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the leading causes of mortality worldwide being the most common cancer among women. Despite the significant progress obtained during the past years in the understanding of breast cancer pathophysiology, women continue to die from it. Novel tools and technologies are needed to develop better diagnostic and therapeutic approaches, and to better understand the molecular and cellular players involved in the progression of this disease. Typical methods employed by the pharmaceutical industry and laboratories to investigate breast cancer etiology and evaluate the efficiency of new therapeutic compounds are still based on traditional tissue culture flasks and animal models, which have certain limitations. Recently, tumor-on-chip technology emerged as a new generation of in vitro disease model to investigate the physiopathology of tumors and predict the efficiency of drugs in a native-like microenvironment. These microfluidic systems reproduce the functional units and composition of human organs and tissues, and importantly, the rheological properties of the native scenario, enabling precise control over fluid flow or local gradients. Herein, we review the most recent works related to breast tumor-on-chip for disease modeling and drug screening applications. Finally, we critically discuss the future applications of this emerging technology in breast cancer therapeutics and drug development.
Collapse
Affiliation(s)
- Bano Subia
- Elvesys Microfluidics Innovation Centre, Paris 75011, France..
| | | | - Sarita Mishra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India..
| | - Jessica Ayache
- Elvesys Microfluidics Innovation Centre, Paris 75011, France..
| | | | - David Caballero
- 3B's Research Group, I3Bs-Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarãaes 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarãaes 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs-Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarãaes 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| |
Collapse
|
127
|
Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J, Xie N. Adaptive Mechanisms of Tumor Therapy Resistance Driven by Tumor Microenvironment. Front Cell Dev Biol 2021; 9:641469. [PMID: 33732706 PMCID: PMC7957022 DOI: 10.3389/fcell.2021.641469] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a disease which frequently has a poor prognosis. Although multiple therapeutic strategies have been developed for various cancers, including chemotherapy, radiotherapy, and immunotherapy, resistance to these treatments frequently impedes the clinical outcomes. Besides the active resistance driven by genetic and epigenetic alterations in tumor cells, the tumor microenvironment (TME) has also been reported to be a crucial regulator in tumorigenesis, progression, and resistance. Here, we propose that the adaptive mechanisms of tumor resistance are closely connected with the TME rather than depending on non-cell-autonomous changes in response to clinical treatment. Although the comprehensive understanding of adaptive mechanisms driven by the TME need further investigation to fully elucidate the mechanisms of tumor therapeutic resistance, many clinical treatments targeting the TME have been successful. In this review, we report on recent advances concerning the molecular events and important factors involved in the TME, particularly focusing on the contributions of the TME to adaptive resistance, and provide insights into potential therapeutic methods or translational medicine targeting the TME to overcome resistance to therapy in clinical treatment.
Collapse
Affiliation(s)
- Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
128
|
Abstract
Metabolic reprogramming with heterogeneity is a hallmark of cancer and is at the basis of malignant behaviors. It supports the proliferation and metastasis of tumor cells according to the low nutrition and hypoxic microenvironment. Tumor cells frantically grab energy sources (such as glucose, fatty acids, and glutamine) from different pathways to produce a variety of biomass to meet their material needs via enhanced synthetic pathways, including aerobic glycolysis, glutaminolysis, fatty acid synthesis (FAS), and pentose phosphate pathway (PPP). To survive from stress conditions (e.g., metastasis, irradiation, or chemotherapy), tumor cells have to reprogram their metabolism from biomass production towards the generation of abundant adenosine triphosphate (ATP) and antioxidants. In addition, cancer cells remodel the microenvironment through metabolites, promoting an immunosuppressive microenvironment. Herein, we discuss how the metabolism is reprogrammed in cancer cells and how the tumor microenvironment is educated via the metabolic products. We also highlight potential metabolic targets for cancer therapies.
Collapse
Affiliation(s)
- Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
129
|
Correlations between glycolysis with clinical traits and immune function in bladder urothelial carcinoma. Biosci Rep 2021; 41:227821. [PMID: 33558879 PMCID: PMC7897921 DOI: 10.1042/bsr20203982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glycolysis was a representative hallmark in the tumor microenvironment (TME), and we aimed to explore the correlations between glycolysis with immune activity and clinical traits in bladder urothelial carcinoma (BLCA). METHODS Our study obtained glycolysis scores for each BLCA samples from TCGA by a single-sample gene set enrichment analysis (ssGSEA) algorithm, based on a glycolytic gene set. The relationship between glycolysis with prognosis, clinical characteristics, and immune function were investigated subsequently. RESULTS We found that enhanced glycolysis was associated with poor prognosis and metastasis in BLCA. Moreover, glycolysis had a close correlation with immune function, and enhanced glycolysis increased immune activities. In other words, glycolysis had a positive correlation with immune activities. Immune checkpoints such as IDO1, CD274, were up-regulated in high-glycolysis group as well. CONCLUSION We speculated that in BLCA, elevated glycolysis enhanced immune function, which caused tumor cells to overexpress immune checkpoints to evade immune surveillance. Inhibition of glycolysis might be a promising assistant for immunotherapy in bladder cancer.
Collapse
|
130
|
Grasmann G, Mondal A, Leithner K. Flexibility and Adaptation of Cancer Cells in a Heterogenous Metabolic Microenvironment. Int J Mol Sci 2021; 22:1476. [PMID: 33540663 PMCID: PMC7867260 DOI: 10.3390/ijms22031476] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
The metabolic microenvironment, comprising all soluble and insoluble nutrients and co-factors in the extracellular milieu, has a major impact on cancer cell proliferation and survival. A large body of evidence from recent studies suggests that tumor cells show a high degree of metabolic flexibility and adapt to variations in nutrient availability. Insufficient vascular networks and an imbalance of supply and demand shape the metabolic tumor microenvironment, which typically contains a lower concentration of glucose compared to normal tissues. The present review sheds light on the recent literature on adaptive responses in cancer cells to nutrient deprivation. It focuses on the utilization of alternative nutrients in anabolic metabolic pathways in cancer cells, including soluble metabolites and macromolecules and outlines the role of central metabolic enzymes conferring metabolic flexibility, like gluconeogenesis enzymes. Moreover, a conceptual framework for potential therapies targeting metabolically flexible cancer cells is presented.
Collapse
Affiliation(s)
- Gabriele Grasmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (G.G.); (A.M.)
| | - Ayusi Mondal
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (G.G.); (A.M.)
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (G.G.); (A.M.)
- BioTechMed-Graz, A-8010 Graz, Austria
| |
Collapse
|
131
|
Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab 2021; 3:21-32. [PMID: 33398194 PMCID: PMC8097259 DOI: 10.1038/s42255-020-00317-z] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Metabolic transformation is a hallmark of cancer and a critical target for cancer therapy. Cancer metabolism and behaviour are regulated by cell-intrinsic factors as well as metabolite availability in the tumour microenvironment (TME). This metabolic niche within the TME is shaped by four tiers of regulation: (1) intrinsic tumour cell metabolism, (2) interactions between cancer cells and non-cancerous cells, (3) tumour location and heterogeneity and (4) whole-body metabolic homeostasis. Here, we define these modes of metabolic regulation and review how distinct cell types contribute to the metabolite composition of the TME. Finally, we connect these insights to understand how each of these tiers offers unique therapeutic potential to modulate the metabolic profile and function of all cells inhabiting the TME.
Collapse
Affiliation(s)
- Ilaria Elia
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
132
|
Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J. Regulation of Autophagy by Glycolysis in Cancer. Cancer Manag Res 2020; 12:13259-13271. [PMID: 33380833 PMCID: PMC7767644 DOI: 10.2147/cmar.s279672] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a critical cellular process that generally protects cells and organisms from harsh environment, including limitations in adenosine triphosphate (ATP) availability or a lack of essential nutrients. Metabolic reprogramming, a hallmark of cancer, has recently gained interest in the area of cancer therapy. It is well known that cancer cells prefer to utilize glycolysis rather than oxidative phosphorylation (OXPHOS) as their major energy source to rapidly generate ATP even in aerobic environment called the Warburg effect. Both autophagy and glycolysis play essential roles in pathological processes of cancer. A mechanism of metabolic changes to drive tumor progression is its ability to regulate autophagy. This review will elucidate the role and the mechanism of glycolysis in regulating autophagy during tumor growth. Indeed, understanding how glycolysis can modulate cellular autophagy will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
133
|
Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, Cai K, Zhao Y, Luo Z. HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications. Cell Rep 2020; 33:108487. [DOI: 10.1016/j.celrep.2020.108487] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
|
134
|
Wenger KJ, Wagner M, Harter PN, Franz K, Bojunga J, Fokas E, Imhoff D, Rödel C, Rieger J, Hattingen E, Steinbach JP, Pilatus U, Voss M. Maintenance of Energy Homeostasis during Calorically Restricted Ketogenic Diet and Fasting-MR-Spectroscopic Insights from the ERGO2 Trial. Cancers (Basel) 2020; 12:cancers12123549. [PMID: 33261052 PMCID: PMC7760797 DOI: 10.3390/cancers12123549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The glioblastoma is a highly malignant brain tumor with very limited treatment options up to date. Metabolism of this tumor is highly dependent on glucose uptake. It is believed that glioblastoma cells cannot metabolize ketone bodies, which are found in the blood during periods of fasting or ketogenic dieting. According to this hypothesis, dieting could lead to cancer cell starvation. The ERGO2 (Ernaehrungsumstellung bei Patienten mit Rezidiv eines Glioblastoms) MR-spectroscopic imaging subtrial was designed to investigate tumor metabolism in patients randomized to calorically restricted ketogenic diet/intermittent fasting versus standard diet. The non-invasive investigation of tumor metabolism is of high clinical interest. Abstract Background: The ERGO2 (Ernaehrungsumstellung bei Patienten mit Rezidiv eines Glioblastoms) MR-spectroscopic imaging (MRSI) subtrial investigated metabolism in patients randomized to calorically restricted ketogenic diet/intermittent fasting (crKD-IF) versus standard diet (SD) in addition to re-irradiation (RT) for recurrent malignant glioma. Intracerebral concentrations of ketone bodies (KB), intracellular pH (pHi), and adenosine triphosphate (ATP) were non-invasively determined. Methods: 50 patients were randomized (1:1): Group A keeping a crKD-IF for nine days, and Group B a SD. RT was performed on day 4–8. Twenty-three patients received an extended MRSI-protocol (1H decoupled 31P MRSI with 3D chemical shift imaging (CSI) and 2D 1H point-resolved spectroscopy (PRESS)) at a 3T scanner at baseline and on day 6. Voxels were selected from the area of recurrent tumor and contralateral hemisphere. Spectra were analyzed with LCModel, adding simulated signals of 3-hydroxybutyrate (βOHB), acetone (Acn) and acetoacetate (AcAc) to the standard basis set. Results: Acn was the only reliably MRSI-detectable KB within tumor tissue and/or normal appearing white matter (NAWM). It was detected in 4/11 patients in Group A and in 0/8 patients in Group B. MRSI results showed no significant depletion of ATP in tumor tissue of patients at day 6 during crKD-IF, even though there were a significant difference in ketone serum levels between Group A and B at day 6 and a decline in fasting glucose in Group A from baseline to day 6. The tumor specific alkaline pHi was maintained. Conclusions: Our metabolic findings suggest that tumor cells maintain energy homeostasis even with reduced serum glucose levels and may generate additional ATP through other sources.
Collapse
Affiliation(s)
- Katharina J. Wenger
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.W.); (E.H.); (U.P.)
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
- Correspondence: ; Tel.: +49-69-6301-80407
| | - Marlies Wagner
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.W.); (E.H.); (U.P.)
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
| | - Patrick N. Harter
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
- Neurological Institute (Edinger-Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Kea Franz
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Jörg Bojunga
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
- Department of Medicine, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Emmanouil Fokas
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Detlef Imhoff
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Claus Rödel
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany;
- Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.W.); (E.H.); (U.P.)
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
| | - Joachim P. Steinbach
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany;
| | - Ulrich Pilatus
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.W.); (E.H.); (U.P.)
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
| | - Martin Voss
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (P.N.H.); (K.F.); (E.F.); (D.I.); (C.R.); (J.P.S.); (M.V.)
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany;
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany;
| |
Collapse
|
135
|
Smolle E, Leko P, Stacher-Priehse E, Brcic L, El-Heliebi A, Hofmann L, Quehenberger F, Hrzenjak A, Popper HH, Olschewski H, Leithner K. Distribution and prognostic significance of gluconeogenesis and glycolysis in lung cancer. Mol Oncol 2020; 14:2853-2867. [PMID: 32777161 PMCID: PMC7607181 DOI: 10.1002/1878-0261.12780] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
Inhibition of glycolysis has been considered as a therapeutic approach in aggressive cancers including lung cancer. Abbreviated gluconeogenesis, mediated by phosphoenolpyruvate carboxykinase (PEPCK), was recently discovered to partially circumvent the need for glycolysis in lung cancer cells. However, the interplay of glycolysis and gluconeogenesis in lung cancer is still poorly understood. Here, we analyzed the expression of GLUT1, the prime glucose transporter, and of PCK1 and PCK2, the cytoplasmic and mitochondrial isoforms of PEPCK, in 450 samples of non‐small cell lung cancer (NSCLC) and in 54 NSCLC metastases using tissue microarrays and whole tumor sections. Spatial distribution was assessed by automated image analysis. Additionally, glycolytic and gluconeogenic gene expression was inferred from The Cancer Genome Atlas (TCGA) datasets. We found that PCK2 was preferentially expressed in the lung adenocarcinoma subtype, while GLUT1 expression was higher in squamous cell carcinoma. GLUT1 and PCK2 were inversely correlated, GLUT1 showing elevated expression in larger tumors while PCK2 was highest in smaller tumors. However, a mixed phenotype showing the presence of both, glycolytic and gluconeogenic cancer cells was frequent. In lung adenocarcinoma, PCK2 expression was associated with significantly improved overall survival, while the opposite was found for GLUT1. The metabolic tumor microenvironment and the 3‐dimensional context play an important role in modulating both pathways, since PCK2 expression preferentially occurred at the tumor margin and hypoxia regulated both, glycolysis and gluconeogenesis, in NSCLC cells in vitro, albeit in opposite directions. PCK1/2 expression was enhanced in metastases compared to primary tumors, possibly related to the different environment. The results of this study show that glycolysis and gluconeogenesis are activated in NSCLC in a tumor size and oxygenation modulated manner and differentially correlate with outcome. The frequent co‐activation of gluconeogenesis and glycolysis in NSCLC should be considered in potential future therapeutic strategies targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Elisabeth Smolle
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Petra Leko
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria
| | | | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Amin El-Heliebi
- Gottfried Schatz Research Center, Department of Cell Biology, Histology and Embryology, Medical University of Graz, Austria.,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Lilli Hofmann
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria.,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Helmut H Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria.,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria
| |
Collapse
|
136
|
Bozzetti F, Stanga Z. Does nutrition for cancer patients feed the tumour? A clinical perspective. Crit Rev Oncol Hematol 2020; 153:103061. [DOI: 10.1016/j.critrevonc.2020.103061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
|
137
|
Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther 2020; 5:166. [PMID: 32843638 PMCID: PMC7447642 DOI: 10.1038/s41392-020-00280-x] [Citation(s) in RCA: 716] [Impact Index Per Article: 143.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence shows that cellular and acellular components in tumor microenvironment (TME) can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Cancer research and treatment have switched from a cancer-centric model to a TME-centric one, considering the increasing significance of TME in cancer biology. Nonetheless, the clinical efficacy of therapeutic strategies targeting TME, especially the specific cells or pathways of TME, remains unsatisfactory. Classifying the chemopathological characteristics of TME and crosstalk among one another can greatly benefit further studies exploring effective treating methods. Herein, we present an updated image of TME with emphasis on hypoxic niche, immune microenvironment, metabolism microenvironment, acidic niche, innervated niche, and mechanical microenvironment. We then summarize conventional drugs including aspirin, celecoxib, β-adrenergic antagonist, metformin, and statin in new antitumor application. These drugs are considered as viable candidates for combination therapy due to their antitumor activity and extensive use in clinical practice. We also provide our outlook on directions and potential applications of TME theory. This review depicts a comprehensive and vivid landscape of TME from biology to treatment.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
138
|
Zhou X, Zhao W, Wang M, Zhang S, Li Y, Hu W, Ren L, Luo S, Chen Z. Dual-Modal Therapeutic Role of the Lactate Oxidase-Embedded Hierarchical Porous Zeolitic Imidazolate Framework as a Nanocatalyst for Effective Tumor Suppression. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32278-32288. [PMID: 32580547 DOI: 10.1021/acsami.0c05783] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The increasing evidence supports the fact that lactate in the tumor microenvironment (TME) plays a vital role in tumor proliferation, metastasis, and recurrence, which in turn is emerging as one of the most interesting molecular targets for tumor treatment. Here, hierarchical porous zeolitic imidazolate framework-8 (ZIF-8) as the nanocarrier is fabricated to simultaneously load lactate oxidase (LOD) and Fe3O4 nanoparticles (NPs), called LOD & Fe3O4@ZIF-8 NPs (LFZ NPs), for tumor therapy. On one hand, the sharp consumption of lactate in the TME by LOD will change the essential "soil" where tumor cells live so as to suppress tumor rapid growth. On the other hand, hydrogen peroxide (H2O2) is produced in the TME from the oxidation of lactate catalyzed by LOD and subsequently converted to highly toxic hydroxyl radicals (•OH) catalyzed by Fe3O4 NPs via Fenton-like reactions to kill tumor cells. Based on the endogenous catalysis, this dual-modal strategy of tumor therapy based on lactate is simple, safe, and effective, which deserves to be well concerned.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Wen Zhao
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Muxue Wang
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Shuai Zhang
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yunhong Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Wenxin Hu
- Harvard College, Harvard University, 209 Dunster Mail Center, 945 Memorial Drive, Cambridge, Massachusetts 02138, United States
| | - Lei Ren
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Shenglin Luo
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P. R. China
| | - Zhiwei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
139
|
Friberg A, Rehwinkel H, Nguyen D, Pütter V, Quanz M, Weiske J, Eberspächer U, Heisler I, Langer G. Structural Evidence for Isoform-Selective Allosteric Inhibition of Lactate Dehydrogenase A. ACS OMEGA 2020; 5:13034-13041. [PMID: 32548488 PMCID: PMC7288559 DOI: 10.1021/acsomega.0c00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 05/11/2023]
Abstract
Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumors, thereby sustaining high glycolysis rates, tumor growth, and chemoresistance. High-throughput screening resulted in the identification of phthalimide and dibenzofuran derivatives as novel lactate dehydrogenase inhibitors, selectively inhibiting the activity of the LDHA isoenzyme. Cocrystallization experiments confirmed target engagement in addition to demonstrating binding to a novel allosteric binding site present in all four LDHA subunits of the LDH5 homotetramer.
Collapse
Affiliation(s)
- Anders Friberg
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
- E-mail:
| | - Hartmut Rehwinkel
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Duy Nguyen
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Vera Pütter
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Maria Quanz
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Jörg Weiske
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Uwe Eberspächer
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Iring Heisler
- Bayer
AG, Pharmaceuticals, R&D, Aprather Weg 18A, 42113 Wuppertal, Germany
| | - Gernot Langer
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
- E-mail:
| |
Collapse
|
140
|
Lane AN, Higashi RM, Fan TWM. Metabolic reprogramming in tumors: Contributions of the tumor microenvironment. Genes Dis 2020; 7:185-198. [PMID: 32215288 PMCID: PMC7083762 DOI: 10.1016/j.gendis.2019.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
The genetic alterations associated with cell transformation are in large measure expressed in the metabolic phenotype as cancer cells proliferate and change their local environment, and prepare for metastasis. Qualitatively, the fundamental biochemistry of cancer cells is generally the same as in the untransformed cells, but the cancer cells produce a local environment, the TME, that is hostile to the stromal cells, and compete for nutrients. In order to proliferate, cells need sufficient nutrients, either those that cannot be made by the cells themselves, or must be made from simpler precursors. However, in solid tumors, the nutrient supply is often limiting given the potential for rapid proliferation, and the poor quality of the vasculature. Thus, cancer cells may employ a variety of strategies to obtain nutrients for survival, growth and metastasis. Although much has been learned using established cell lines in standard culture conditions, it is becoming clear from in vivo metabolic studies that this can also be misleading, and which nutrients are used for energy production versus building blocks for synthesis of macromolecules can vary greatly from tumor to tumor, and even within the same tumor. Here we review the operation of metabolic networks, and how recent understanding of nutrient supply in the TME and utilization are being revealed using stable isotope tracers in vivo as well as in vitro.
Collapse
Key Words
- 2OG, 2-oxoglutarate
- ACO1,2, aconitase 1,2
- CP-MAS, Cross polarization Magic Angle Spinning
- Cancer metabolism
- DMEM, Dulbeccos Modified Eagles Medium
- ECAR, extracellular acidification rate
- ECM, extracellular matrix
- EMP, Embden-Meyerhof Pathway
- IDH1,2, isocitrate dehydrogenase 1,2 (NADP+dependent)
- IF, interstitial fluid
- ME, malic enzyme
- Metabolic flux
- Nutrient supply
- RPMI, Roswell Park Memorial Institute
- SIRM, Stable Isotope Resolved Metabolomics
- Stable isotope resolved metabolomics
- TIL, tumor infiltrating lymphocyte
- TIM/TPI, triose phosphate isomerase
- TME, Tumor Micro Environment
- Tumor microenvironment
Collapse
Affiliation(s)
- Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, USA
| | | | | |
Collapse
|
141
|
Sun NY, Yang MH. Metabolic Reprogramming and Epithelial-Mesenchymal Plasticity: Opportunities and Challenges for Cancer Therapy. Front Oncol 2020; 10:792. [PMID: 32509584 PMCID: PMC7252305 DOI: 10.3389/fonc.2020.00792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic reprogramming and epithelial-mesenchymal plasticity are both hallmarks of the adaptation of cancer cells for tumor growth and progression. For metabolic changes, cancer cells alter metabolism by utilizing glucose, lipids, and amino acids to meet the requirement of rapid proliferation and to endure stressful environments. Dynamic changes between the epithelial and mesenchymal phenotypes through epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are critical steps for cancer invasion and metastatic colonization. Compared to the extensively studied metabolic reprogramming in tumorigenesis, the metabolic changes in metastasis are relatively unclear. Here, we review metabolic reprogramming, epithelial-mesenchymal plasticity, and their mutual influences on tumor cells. We also review the developing treatments for targeting cancer metabolism and the impact of metabolic targeting on EMT. In summary, understanding the metabolic adaption and phenotypic plasticity will be mandatory for developing new strategies to target metastatic and refractory cancers that are intractable to current treatments.
Collapse
Affiliation(s)
- Nai-Yun Sun
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
142
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
143
|
Lundø K, Trauelsen M, Pedersen SF, Schwartz TW. Why Warburg Works: Lactate Controls Immune Evasion through GPR81. Cell Metab 2020; 31:666-668. [PMID: 32268113 DOI: 10.1016/j.cmet.2020.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lactate accumulation in tumors-a hallmark of the Warburg effect-has recently been shown to regulate cancer cell metabolism and survival through autocrine activation of GPR81. Now, Brown et al. (2020) demonstrate that lactate surprisingly also controls immune evasion through paracrine activation of GPR81 on stromal dendritic cells.
Collapse
Affiliation(s)
- Kathrine Lundø
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, The Mærsk Tower, The Panum Institute, 2200 Copenhagen, Denmark; Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mette Trauelsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, The Mærsk Tower, The Panum Institute, 2200 Copenhagen, Denmark
| | - Stine F Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, The Mærsk Tower, The Panum Institute, 2200 Copenhagen, Denmark.
| |
Collapse
|
144
|
Fahrmann JF, Vykoukal JV, Ostrin EJ. Amino Acid Oncometabolism and Immunomodulation of the Tumor Microenvironment in Lung Cancer. Front Oncol 2020; 10:276. [PMID: 32266129 PMCID: PMC7105613 DOI: 10.3389/fonc.2020.00276] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
The observation that cancer acquires significant changes in its metabolism dates back nearly a century, to Otto Warburg noting that cancer cells preferentially utilize glycolysis even when there are no hypoxic conditions in the growth media. Altered energetics are thus considered a hallmark of cancer. However, it has become clear that altered metabolism is not limited to cellular energetic pathways. Alterations in amino acid synthesis and catabolism, lipid biogenesis, and other pathways such as polyamine processing are commonly seen in cancer. Additionally, alterations in metabolism do not only have profound effects for cancer cells but also affect their surrounding microenvironment. With new cancer therapeutics targeting the immune microenvironment, these effects may have implications on cancer growth and response to therapy. These interactions are profound in lung cancer, further demonstrating the manifold interactions between developing tumors and the inflammatory microenvironment. Here, we discuss how dysregulation of metabolism in cancer alters its microenvironment and how this newfound knowledge can be exploited for anticancer treatment.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- Department of Clinical Cancer Prevention, University of Texas MD Anderson, Houston, TX, United States
| | - Jody V Vykoukal
- Department of Clinical Cancer Prevention, University of Texas MD Anderson, Houston, TX, United States
| | - Edwin J Ostrin
- Department of General Internal Medicine and Pulmonary Medicine, University of Texas MD Anderson, Houston, TX, United States
| |
Collapse
|
145
|
Comito G, Ippolito L, Chiarugi P, Cirri P. Nutritional Exchanges Within Tumor Microenvironment: Impact for Cancer Aggressiveness. Front Oncol 2020; 10:396. [PMID: 32266157 PMCID: PMC7105815 DOI: 10.3389/fonc.2020.00396] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Neoplastic tissues are composed not only by tumor cells but also by several non-transformed stromal cells, such as cancer-associated fibroblasts, endothelial and immune cells, that actively participate to tumor progression. Starting from the very beginning of carcinogenesis, tumor cells, through the release of paracrine soluble factors and vesicles, i.e., exosomes, modify the behavior of the neighboring cells, so that they can give efficient support for cancer cell proliferation and spreading. A mandatory role in tumor progression has been recently acknowledged to metabolic deregulation. Beside undergoing a metabolic reprogramming coherent to their high proliferation rate, tumor cells also rewire the metabolic assets of their stromal cells, educating them to serve as nutrient donors. Hence, an alteration in the composition and in the flow rate of many nutrients within tumor microenvironment has been associated with malignancy progression. This review is focused on metabolic remodeling of the different cell populations within tumor microenvironment, dealing with reciprocal re-education through the symbiotic sharing of metabolites, behaving both as nutrients and as transcriptional regulators, describing their impact on tumor growth and metastasis.
Collapse
Affiliation(s)
- Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| |
Collapse
|
146
|
Siska PJ, Singer K, Evert K, Renner K, Kreutz M. The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol Rev 2020; 295:187-202. [PMID: 32157706 DOI: 10.1111/imr.12846] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The "glycolytic switch" also known as the "Warburg effect" is a key feature of tumor cells and leads to the accumulation of lactate and protons in the tumor environment. Intriguingly, non-malignant lymphocytes or stromal cells such as tumor-associated macrophages and cancer-associated fibroblasts contribute to the lactate accumulation in the tumor environment, a phenomenon described as the "Reverse Warburg effect." Localized lactic acidosis has a strong immunosuppressive effect and mediates an immune escape of tumors. However, some tumors do not display the Warburg phenotype and either rely on respiration or appear as a mosaic of cells with different metabolic properties. Based on these findings and on the knowledge that T cell infiltration is predictive for patient outcome, we suggest a metabolic-tumor-stroma score to determine the likelihood of a successful anti-tumor immune response: (a) a respiring tumor with high T cell infiltration ("hot"); (b) a reverse Warburg type with respiring tumor cells but glycolytic stromal cells; (c) a mixed type with glycolytic and respiring compartments; and (d) a glycolytic (Warburg) tumor with low T cell infiltration ("cold"). Here, we provide evidence that these types can be independent of the organ of origin, prognostically relevant and might help select the appropriate immunotherapy approach.
Collapse
Affiliation(s)
- Peter J Siska
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
147
|
Proton-sensing G protein-coupled receptors: detectors of tumor acidosis and candidate drug targets. Future Med Chem 2020; 12:523-532. [PMID: 32116003 DOI: 10.4155/fmc-2019-0357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cells in tumor microenvironments (TMEs) use several mechanisms to sense their low pH (<7.0), including via proton-sensing G protein-coupled receptors (psGPCRs): GPR4, GPR65/TDAG8, GPR68/OGR1 and GPR132/G2A. Numerous cancers have increased expression of psGPCRs. The psGPCRs may contribute to features of the malignant phenotype via actions on specific cell-types in the TME and thereby promote tumor survival and growth. Here, we review data regarding psGPCR expression in tumors and cancer cells, impact of psGPCRs on survival in solid tumors and a bioinformatics approach to infer psGPCR expression in cell types in the TME. New tools are needed to help define contributions of psGPCRs in tumor biology and to identify potentially novel therapeutic agents for a variety of cancers.
Collapse
|
148
|
Taddei ML, Pietrovito L, Leo A, Chiarugi P. Lactate in Sarcoma Microenvironment: Much More than just a Waste Product. Cells 2020; 9:E510. [PMID: 32102348 PMCID: PMC7072766 DOI: 10.3390/cells9020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare and heterogeneous malignant tumors relatively resistant to radio- and chemotherapy. Sarcoma progression is deeply dependent on environmental conditions that sustain both cancer growth and invasive abilities. Sarcoma microenvironment is composed of different stromal cell types and extracellular proteins. In this context, cancer cells may cooperate or compete with stromal cells for metabolic nutrients to sustain their survival and to adapt to environmental changes. The strict interplay between stromal and sarcoma cells deeply affects the extracellular metabolic milieu, thus altering the behavior of both cancer cells and other non-tumor cells, including immune cells. Cancer cells are typically dependent on glucose fermentation for growth and lactate is one of the most heavily increased metabolites in the tumor bulk. Currently, lactate is no longer considered a waste product of the Warburg metabolism, but novel signaling molecules able to regulate the behavior of tumor cells, tumor-stroma interactions and the immune response. In this review, we illustrate the role of lactate in the strong acidity microenvironment of sarcoma. Really, in the biological context of sarcoma, where novel targeted therapies are needed to improve patient outcomes in combination with current therapies or as an alternative treatment, lactate targeting could be a promising approach to future clinical trials.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Laura Pietrovito
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Angela Leo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
- Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, 50134 Florence, Italy
| |
Collapse
|
149
|
Obara-Michlewska M, Szeliga M. Targeting Glutamine Addiction in Gliomas. Cancers (Basel) 2020; 12:cancers12020310. [PMID: 32013066 PMCID: PMC7072559 DOI: 10.3390/cancers12020310] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The most common malignant brain tumors are those of astrocytic origin, gliomas, with the most aggressive glioblastoma (WHO grade IV) among them. Despite efforts, medicine has not made progress in terms of the prognosis and life expectancy of glioma patients. Behind the malignant phenotype of gliomas lies multiple genetic mutations leading to reprogramming of their metabolism, which gives those highly proliferating cells an advantage over healthy ones. The so-called glutamine addiction is a metabolic adaptation that supplements oxidative glycolysis in order to secure neoplastic cells with nutrients and energy in unfavorable conditions of hypoxia. The present review aims at presenting the research and clinical attempts targeting the different metabolic pathways involved in glutamine metabolism in gliomas. A brief description of the biochemistry of glutamine transport, synthesis, and glutaminolysis, etc. will forego a detailed comparison of the therapeutic strategies undertaken to inhibit glutamine utilization by gliomas.
Collapse
|
150
|
Ayari A, O’Connor RS. Citius, Altius, Fortius: Performance in a Bottle for CAR T-Cells. JOURNAL OF CLINICAL HAEMATOLOGY 2020; 1:103-106. [PMID: 33554221 PMCID: PMC7861513 DOI: 10.33696/haematology.1.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Asma Ayari
- Nucleus Biologics, LLC, San Diego, CA, USA
| | - Roddy S. O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|