101
|
Francies HE, McDermott U, Garnett MJ. Genomics-guided pre-clinical development of cancer therapies. ACTA ACUST UNITED AC 2020; 1:482-492. [DOI: 10.1038/s43018-020-0067-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
|
102
|
Seto K, Masago K, Fujita S, Haneda M, Horio Y, Hida T, Kuroda H, Hosoda W, Okubo KI. Targeted RNA sequencing with touch imprint cytology samples for non-small cell lung cancer patients. Thorac Cancer 2020; 11:1827-1834. [PMID: 32372482 PMCID: PMC7327906 DOI: 10.1111/1759-7714.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023] Open
Abstract
Background RNA‐based sequencing is considered ideal for detecting pathogenic fusion‐genes compared to DNA‐based assays and provides valuable information about the relative expression of driver genes. However, RNA from formalin‐fixed paraffin‐embedded tissue has issues with both quantity and quality, making RNA‐based sequencing difficult in clinical practice. Analyzing stamp‐derived RNA with next‐generation sequencing (NGS) can address the above‐mentioned obstacles. In this study, we validated the analytical specifications and clinical performance of our custom panel for RNA‐based assays on the Ion Torrent platform. Methods To evaluate our custom RNA lung panel, we first examined the gene sequences of RNA derived from 35 NSCLC tissues with diverse backgrounds by conventional methods and NGS. Next, we moved to the clinical phase, where clinical samples (all stamp‐derived RNA) were used to examine variants. In the clinical phase we conducted an NGS analysis while simultaneously applying conventional approaches to assess the feasibility and validity of the panel in clinical practice. Results In the prerun phase, all of the variants confirmed with conventional methods were detected by NGS. In the clinical phase, a total of 80 patients were enrolled and 80 tumor specimens were sequenced from February 2018 to December 2018. There were 66 cases in which the RNA concentration was too low to be measured, but sequencing was successful in the vast majority of cases. The concordance between NGS and conventional methods was 95.0%. Conclusions RNA extraction using stamp specimens and panel sequencing by NGS were considered applicable in clinical settings. Key points Significant findings of the study Next‐generation sequencing using RNA from stamp specimens was able to detect driver gene changes in non‐small cell lung cancer including fusion genes with the same accuracy as conventional methods. What this study adds Using RNA from stamp specimens obtained from biopsy increases the number of candidate cases for RNA sequencing in clinical settings.
Collapse
Affiliation(s)
- Katsutoshi Seto
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Shiro Fujita
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Masataka Haneda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | | | - Toyoaki Hida
- Thoracic Oncology, Aichi Cancer Center, Nagoya, Japan
| | | | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Ken-Ichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
103
|
Meeks JJ, Al-Ahmadie H, Faltas BM, Taylor JA, Flaig TW, DeGraff DJ, Christensen E, Woolbright BL, McConkey DJ, Dyrskjøt L. Genomic heterogeneity in bladder cancer: challenges and possible solutions to improve outcomes. Nat Rev Urol 2020; 17:259-270. [PMID: 32235944 PMCID: PMC7968350 DOI: 10.1038/s41585-020-0304-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Histological and molecular analyses of urothelial carcinoma often reveal intratumoural and intertumoural heterogeneity at the genomic, transcriptional and cellular levels. Despite the clonal initiation of the tumour, progression and metastasis often arise from subclones that can develop naturally or during therapy, resulting in molecular alterations with a heterogeneous distribution. Variant histologies in tumour tissues that have developed distinct morphological characteristics divergent from urothelial carcinoma are extreme examples of tumour heterogeneity. Ultimately, heterogeneity contributes to drug resistance and relapse after therapy, resulting in poor survival outcomes. Mutation profile differences between patients with muscle-invasive and metastatic urothelial cancer (interpatient heterogeneity) probably contribute to variability in response to chemotherapy and immunotherapy as first-line treatments. Heterogeneity can occur on multiple levels and averaging or normalizing these alterations is crucial for clinical trial and drug design to enable appropriate therapeutic targeting. Identification of the extent of heterogeneity might shape the choice of monotherapy or additional combination treatments to target different drivers and genetic events. Identification of the lethal tumour cell clones is required to improve survival of patients with urothelial carcinoma.
Collapse
Affiliation(s)
- Joshua J Meeks
- Departments of Urology and Biochemistry, Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Bishoy M Faltas
- Department of Medicine and Department of Cell and Developmental biology, Weill-Cornell Medicine, New York, NY, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - David J DeGraff
- Departments of Pathology, Biochemistry & Molecular Biology and Surgery, Division of Urology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Emil Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | | | - David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
104
|
Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. NPJ Precis Oncol 2020; 4:11. [PMID: 32377572 PMCID: PMC7195402 DOI: 10.1038/s41698-020-0114-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
Cancers exhibit functional and structural diversity in distinct patients. In this mass, normal and malignant cells create tumor microenvironment that is heterogeneous among patients. A residue from primary tumors leaks into the bloodstream as cell clusters and single cells, providing clues about disease progression and therapeutic response. The complexity of these hierarchical microenvironments needs to be elucidated. Although tumors comprise ample cell types, the standard clinical technique is still the histology that is limited to a single marker. Multiplexed imaging technologies open new directions in pathology. Spatially resolved proteomic, genomic, and metabolic profiles of human cancers are now possible at the single-cell level. This perspective discusses spatial bioimaging methods to decipher the cascade of microenvironments in solid and liquid biopsies. A unique synthesis of top-down and bottom-up analysis methods is presented. Spatial multi-omics profiles can be tailored to precision oncology through artificial intelligence. Data-driven patient profiling enables personalized medicine and beyond.
Collapse
|
105
|
Falcao CB, Radis-Baptista G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2020; 126:170234. [PMID: 31857106 DOI: 10.1016/j.peptides.2019.170234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
A global public health crisis has emerged with the extensive dissemination of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs) from plants and animals have represented promising tools to counteract those resistant pathogens due to their multiple pharmacological properties such as antimicrobial, anticancer, immunomodulatory and cell-penetrating activities. In this review, we will focus on crotamine and crotalicidin, which are two interesting examples of membrane active peptides derived from the South America rattlesnake Crotalus durrisus terrificus venom. Their full-sequences and structurally-minimized fragments have potential applications, as anti-infective and anti-proliferative agents and diagnostics in medicine and in pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Claudio Borges Falcao
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences, Federal University of Ceara, Brazil; Peter Pan Association to Fight Childhood Cancer, Fortaleza, CE, 60410-770, Brazil.
| | - Gandhi Radis-Baptista
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences and Institute for Marine Sciences, Federal University of Ceara, Av da Abolição 3207, Fortaleza, CE, 60165-081, Brazil.
| |
Collapse
|
106
|
Hu J, Xu J, Yu M, Gao Y, Liu R, Zhou H, Zhang W. An integrated prognosis model of pharmacogenomic gene signature and clinical information for diffuse large B-cell lymphoma patients following CHOP-like chemotherapy. J Transl Med 2020; 18:144. [PMID: 32228625 PMCID: PMC7106727 DOI: 10.1186/s12967-020-02311-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background As the most common form of lymphoma, diffuse large B-cell lymphoma (DLBCL) is a clinical highly heterogeneous disease with variability in therapeutic outcomes and biological features. It is a challenge to identify of clinically meaningful tools for outcome prediction. In this study, we developed a prognosis model fused clinical characteristics with drug resistance pharmacogenomic signature to identify DLBCL prognostic subgroups for CHOP-based treatment. Methods The expression microarray data and clinical characteristics of 791 DLBCL patients from two Gene Expression Omnibus (GEO) databases were used to establish and validate this model. By using univariate Cox regression, eight clinical or genetic signatures were analyzed. The elastic net-regulated Cox regression analysis was used to select the best prognosis related factors into the predictive model. To estimate the prognostic capability of the model, Kaplan–Meier curve and the area under receiver operating characteristic (ROC) curve (AUC) were performed. Results A predictive model comprising 4 clinical factors and 2 pharmacogenomic gene signatures was established after 1000 times cross validation in the training dataset. The AUC of the comprehensive risk model was 0.78, whereas AUC value was lower for the clinical only model (0.68) or the gene only model (0.67). Compared with low-risk patients, the overall survival (OS) of DLBCL patients with high-risk scores was significantly decreased (HR = 4.55, 95% CI 3.14–6.59, log-rank p value = 1.06 × 10−15). The signature also enables to predict prognosis within different molecular subtypes of DLBCL. The reliability of the integrated model was confirmed by independent validation dataset (HR = 3.47, 95% CI 2.42–4.97, log rank p value = 1.53 × 10−11). Conclusions This integrated model has a better predictive capability to ascertain the prognosis of DLBCL patients prior to CHOP-like treatment, which may improve the clinical management of DLBCL patients and provide theoretical basis for individualized treatment.
Collapse
Affiliation(s)
- Jinglei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Muqiao Yu
- Xiangya School of Stomatology, Central South University, Changsha, 410078, Human, People's Republic of China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
107
|
Multitarget Anticancer Agents Based on Histone Deacetylase and Protein Kinase CK2 inhibitors. Molecules 2020; 25:molecules25071497. [PMID: 32218358 PMCID: PMC7180456 DOI: 10.3390/molecules25071497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The design of multitarget drugs (MTDs) has become an innovative approach for the search of effective treatments in complex diseases such as cancer. In this work, we communicate our efforts in the design of multi-targeting histone deacetylase (HDAC) and protein kinase CK2 inhibitors as a novel therapeutic strategy against cancer. Using tetrabromobenzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole (DMAT) as scaffolds for CK2 inhibition, and a hydroxamate to coordinate the zinc atom present in the active site of HDAC (zinc binding group, ZBG), new multitarget inhibitors have been designed and synthesized. According to the in vitro assays, N-Hydroxy-6-(4,5,6,7-tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazol-1-yl)hexanamide (11b) is the most interesting compound, with IC50 values of 0.66; 1.46 and 3.67 µM. for HDAC6; HDAC1 and CK2; respectively. Cellular assays on different cancer cell lines rendered promising results for N-Hydroxy-8-(4,5,6,7-tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazol-1-yl)octanamide (11d). This inhibitor presented the highest cytotoxic activity, proapoptotic capability, and the best mitochondria-targeting and multidrug-circumventing properties, thus being the most promising drug candidate for further in vivo studies.
Collapse
|
108
|
Landel I, Quambusch L, Depta L, Rauh D. Spotlight on AKT: Current Therapeutic Challenges. ACS Med Chem Lett 2020; 11:225-227. [PMID: 32184947 DOI: 10.1021/acsmedchemlett.9b00548] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The protein kinase B (Akt) exemplifies an important switch of cell death and survival within the PI3K/Akt signaling pathway, which renders Akt a valuable target in diseases such as cancer. Herein, we give a short overview of clinical applications involving Akt, outline promising and innovative approaches to investigate the role of this kinase in diseases, and highlight the current challenges that require thorough investigation to set the groundwork for successful therapeutic strategies.
Collapse
Affiliation(s)
- Ina Landel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Lena Quambusch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Laura Depta
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
109
|
Feedback analysis identifies a combination target for overcoming adaptive resistance to targeted cancer therapy. Oncogene 2020; 39:3803-3820. [PMID: 32157217 DOI: 10.1038/s41388-020-1255-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Targeted drugs aim to treat cancer by directly inhibiting oncogene activity or oncogenic pathways, but drug resistance frequently emerges. Due to the intricate dynamics of cancer signaling networks, which contain complex feedback regulations, cancer cells can rewire these networks to adapt to and counter the cytotoxic effects of a drug, thereby limiting the efficacy of targeted therapies. To identify a combinatorial drug target that can overcome such a limitation, we developed a Boolean network simulation and analysis framework and applied this approach to a large-scale signaling network of colorectal cancer with integrated genomic information. We discovered Src as a critical combination drug target that can overcome the adaptive resistance to the targeted inhibition of mitogen-activated protein kinase pathway by blocking the essential feedback regulation responsible for resistance. The proposed framework is generic and can be widely used to identify drug targets that can overcome adaptive resistance to targeted therapies.
Collapse
|
110
|
EB1-dependent long survival of glioblastoma-grafted mice with the oral tubulin-binder BAL101553 is associated with inhibition of tumor angiogenesis. Oncotarget 2020; 11:759-774. [PMID: 32165998 PMCID: PMC7055546 DOI: 10.18632/oncotarget.27374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) are aggressive brain tumors with limited treatment options. Cancer stem-like cells (CSLCs) contribute to GBM invasiveness, representing promising targets. BAL101553, a prodrug of BAL27862, is a novel small molecule tubulin-binding agent, promoting tumor cell death through spindle assembly checkpoint activation, which is currently in Phase 1/2a in advanced solid tumor patients including GBM. This study aimed to evaluate long-term daily oral BAL101553 treatment of mice orthotopically grafted with GBM CSLCs (GBM6) according to EB1 expression-level, and to decipher its mechanism of action on GBM stem cells. Oral treatment with BAL101553 for 100 days provoked a large EB1 expression level-dependent survival benefit, together with a decrease in tumor growth and brain invasion. Formation of vascular structures by the fluorescent GBM6-GFP-sh0 cells, mimicking endothelial vascular networks, was observed in the brains of control grafted mice. Following BAL101553 treatment, vessels were no longer detectable, suggesting inhibition of the endothelial trans-differentiation of GBM stem cells. In vitro, BAL27862 treatment resulted in a switch to the endothelial-like phenotype of GBM6 towards an astrocytic phenotype. Moreover, the drug inhibited secretion of VEGF, thus preventing normal endothelial cell migration activated by CSLCs. The decrease in VEGF secretion was confirmed in a human GBM explant following drug treatment. Altogether, our data first confirm the potential of EB1 expression as a response-predictive biomarker of BAL101553 in GBM we previously published and add new insights in BAL101553 long-term action by counteracting CSLCs mediated tumor angiogenesis. Our results strongly support BAL101553 clinical studies in GBM patients.
Collapse
|
111
|
Zundelevich A, Dadiani M, Kahana-Edwin S, Itay A, Sella T, Gadot M, Cesarkas K, Farage-Barhom S, Saar EG, Eyal E, Kol N, Pavlovski A, Balint-Lahat N, Dick-Necula D, Barshack I, Kaufman B, Gal-Yam EN. ESR1 mutations are frequent in newly diagnosed metastatic and loco-regional recurrence of endocrine-treated breast cancer and carry worse prognosis. Breast Cancer Res 2020; 22:16. [PMID: 32014063 PMCID: PMC6998824 DOI: 10.1186/s13058-020-1246-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Emerging mutations in the ESR1 gene that encodes for the estrogen receptor (ER) are associated with resistance to endocrine therapy. ESR1 mutations rarely exist in primary tumors (~ 1%) but are relatively common (10-50%) in metastatic, endocrine therapy-resistant cancers and are associated with a shorter progression-free survival. Little is known about the incidence and clinical implication of these mutations in early recurrence events, such as local recurrences or newly diagnosed metastatic disease. METHODS We collected 130 archival tumor samples from 103 breast cancer patients treated with endocrine therapy prior to their local/metastatic recurrence. The cohort consisted of 41 patients having at least 1 sample from local/loco-regional recurrence and 62 patients with metastatic disease (of whom 41 newly diagnosed and 28 with advanced disease). The 5 most common ESR1 hotspot mutations (D538G, L536R, Y537S/N/C) were analyzed either by targeted sequencing or by droplet digital PCR. Progression-free survival (PFS), disease-free survival (DFS), and distant recurrence-free survival (DRFS) were statistically tested by Kaplan-Meier analysis. RESULTS The prevalence of ESR1 mutations was 5/41 (12%) in newly diagnosed metastatic patients and 5/28 (18%) for advanced metastases, detected at allele frequency > 1%. All mutations in advanced metastases were detected in patients previously treated with both tamoxifen (TAM) and aromatase inhibitors (AI). However, in newly diagnosed metastatic patients, 4/5 mutations occurred in patients treated with TAM alone. PFS on AI treatment in metastatic patients was significantly shorter for ESR1 mutation carriers (p = 0.017). In the local recurrence cohort, ESR1 mutations were identified in 15/41 (36%) patients but only 4/41 (10%) were detected at allele frequency > 1%. Again, most mutations (3/4) were detected under TAM monotherapy. Notably, 1 patient developed ESR1 mutation while on neoadjuvant endocrine therapy. DFS and DRFS were significantly shorter (p = 0.04 and p = 0.017, respectively) in patients that had ESR1 mutations (> 1%) in their loco-regional recurrence tumor. CONCLUSIONS Clinically relevant ESR1 mutations are prevalent in newly diagnosed metastatic and local recurrence of endocrine-treated breast cancer. Since local recurrences are amenable to curative therapy, these mutations may inform the selection of subsequent endocrine therapies.
Collapse
Affiliation(s)
- Adi Zundelevich
- Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Maya Dadiani
- Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Amit Itay
- Breast Oncology Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Tal Sella
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, Israel.,Breast Oncology Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Moran Gadot
- Breast Oncology Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Karen Cesarkas
- NGS Unit, Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sarit Farage-Barhom
- NGS Unit, Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Efrat Glick Saar
- NGS Unit, Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Eran Eyal
- Bioinformatics Unit, Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nitzan Kol
- Bioinformatics Unit, Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Anya Pavlovski
- Pathology Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | - Iris Barshack
- Pathology Institute, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bella Kaufman
- Breast Oncology Institute, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Einav Nili Gal-Yam
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, Israel. .,Breast Oncology Institute, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
112
|
Aldonza MBD, Ku J, Hong JY, Kim D, Yu SJ, Lee MS, Prayogo MC, Tan S, Kim D, Han J, Lee SK, Im SG, Ryu HS, Kim Y. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. SCIENCE ADVANCES 2020; 6:eaav7416. [PMID: 32083171 PMCID: PMC7007258 DOI: 10.1126/sciadv.aav7416] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Secondary drug resistance stems from dynamic clonal evolution during the development of a prior primary resistance. This collateral type of resistance is often a characteristic of cancer recurrence. Yet, mechanisms that drive this collateral resistance and their drug-specific trajectories are still poorly understood. Using resistance selection and small-scale pharmacological screens, we find that cancer cells with primary acquired resistance to the microtubule-stabilizing drug paclitaxel often develop tolerance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), leading to formation of more stable resistant cell populations. We show that paclitaxel-resistant cancer cells follow distinct selection paths under EGFR-TKIs by enriching the stemness program, developing a highly glycolytic adaptive stress response, and rewiring an apoptosis control pathway. Collectively, our work demonstrates the alterations in cellular state stemming from paclitaxel failure that result in collateral resistance to EGFR-TKIs and points to new exploitable vulnerabilities during resistance evolution in the second-line treatment setting.
Collapse
Affiliation(s)
- Mark Borris D. Aldonza
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
- KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Korea
| | - Ji-Young Hong
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Donghwa Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Seung Jung Yu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Min-Seok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Monica Celine Prayogo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Stephanie Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dayeon Kim
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea
- Graduate School of Medical Science and Engineering (GSMSE), KAIST, Daejeon 34141, Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Korea
| |
Collapse
|
113
|
Xu SW, Law BYK, Qu SLQ, Hamdoun S, Chen J, Zhang W, Guo JR, Wu AG, Mok SWF, Zhang DW, Xia C, Sugimoto Y, Efferth T, Liu L, Wong VKW. SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells. Pharmacol Res 2020; 153:104660. [PMID: 31982489 DOI: 10.1016/j.phrs.2020.104660] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) represents an obstacle in anti-cancer therapy. MDR is caused by multiple mechanisms, involving ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), which reduces intracellular drug levels to sub-therapeutic concentrations. Therefore, sensitizing agents retaining effectiveness against apoptosis- or drug-resistant cancers are desired for the treatment of MDR cancers. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump is an emerging target to overcome MDR, because of its continuous expression and because the calcium transport function is crucial to the survival of tumor cells. Previous studies showed that SERCA inhibitors exhibit anti-cancer effects in Bax-Bak-deficient, apoptosis-resistant and MDR cancers, whereas specific P-gp inhibitors reverse the MDR phenotype of cancer cells by blocking efflux of chemotherapeutic agents. Here, we unraveled SERCA and P-gp as double targets of the triterpenoid, celastrol to reverse MDR. Celastrol inhibited both SERCA and P-gp to stimulate calcium-mediated autophagy and ATP depletion, thereby induced collateral sensitivity in MDR cancer cells. In vivo studies further confirmed that celastrol suppressed tumor growth and metastasis by SERCA-mediated calcium mobilization. To the best of our knowledge, our findings demonstrate collateral sensitivity in MDR cancer cells by simultaneous inhibition of SERCA and P-gp for the first time.
Collapse
Affiliation(s)
- Su-Wei Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau; Department of Basic Medicine of Zhuhai Health School, Zhuhai, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Steven Li Qun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Sami Hamdoun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau; Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, 55128, Mainz, Germany
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - An-Guo Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - David Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Chenglai Xia
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, 528000, China
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, 55128, Mainz, Germany.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
114
|
Saleem MZ, Nisar MA, Alshwmi M, Din SRU, Gamallat Y, Khan M, Ma T. Brevilin A Inhibits STAT3 Signaling and Induces ROS-Dependent Apoptosis, Mitochondrial Stress and Endoplasmic Reticulum Stress in MCF-7 Breast Cancer Cells. Onco Targets Ther 2020; 13:435-450. [PMID: 32021288 PMCID: PMC6970270 DOI: 10.2147/ott.s228702] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose Breast cancer is the most common malignancy among women across the globe. Despite concerted efforts to improve the prevailing treatment modalities, the overall prognosis of breast cancer remains unsatisfactory. Recently, antiproliferative activity of Brevilin A (Brv-A), a sesquiterpene lactone compound of Centipeda minima, has been unveiled in various cancer types. Here, we have explored anticancer activity of Brv-A in MCF-7 breast carcinoma cells by targeting various pathways. Materials and Methods Cell proliferation rate was determined by CCK-8 and clonogenic assay. Cellular morphological changes were observed under phase contrast microscope while calcein-AM and PI was used for live/dead assay. Cell cycle assay was performed by flow cytometry. Apoptotic cell percentage was determined by Hoechst 33258 staining and flow cytometric analysis. ROS generation and mitochondrial membrane potential were measured using commercially available kits while protein expression was measured by Western blotting. Results In our study, Brv-A exerted antiproliferative effect through mitotic arrest at G2/M phase of cell cycle and induced apoptosis in MCF-7 cells in a dose-dependent manner. Induction of apoptosis by Brv-A was found to be associated with ROS generation by targeting NOX2 and NOX3, mitochondrial dysfunction (MMP dissipation and Bcl-2 family proteins modulation), DNA fragmentation, JNK and p38 MAPK activation, endoplasmic reticulum (ER) stress by increasing Bip/GRP78, ATF4 and CHOP protein expressions and inhibition of STAT3 activation via decreased phosphorylation of JAK2 and SRC. Pretreatment of NAC, a ROS scavenger, partially reversed the aforesaid cellular events indicating ROS generation as the primary event to modulate cellular targets for induction of apoptosis. Besides, Brv-A has also been documented for inhibition of cell migration via decrease in COX-2 and MMP-2 expression. Conclusion Taken together, Brv-A induces G2/M phase arrest, ROS-dependent apoptosis, ER stress, mitochondrial dysfunction and inhibits STAT3 activation in MCF-7 cells signifying it to be one of the potential anticancer therapeutics in future.
Collapse
Affiliation(s)
- Muhammad Zubair Saleem
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Muhammad Azhar Nisar
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Mohammed Alshwmi
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Syed Riaz Ud Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Yaser Gamallat
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Muhammad Khan
- Department of Zoology, University of the Punjab, Lahore, Punjab 54590, Pakistan
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| |
Collapse
|
115
|
Jaiprasart P, Dogra S, Neelakantan D, Devapatla B, Woo S. Identification of signature genes associated with therapeutic resistance to anti-VEGF therapy. Oncotarget 2020; 11:99-114. [PMID: 32002127 PMCID: PMC6967771 DOI: 10.18632/oncotarget.27307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
VEGF-mediated tumor angiogenesis is a validated clinical target in many cancers, but modest efficacy and rapid development of resistance are major challenges of VEGF-targeted therapies. To establish a molecular signature of this resistance in ovarian cancer, we developed preclinical tumor models of adaptive resistance to chronic anti-VEGF treatment. We performed RNA-seq analysis and reverse-phase protein array to compare changes in gene and protein expressions in stroma and cancer cells from resistant and responsive tumors. We identified a unique set of stromal-specific genes that were strongly correlated with resistance phenotypes against two different anti-VEGF treatments, and selected the apelin/APJ signaling pathway for further in vitro validation. Using various functional assays, we showed that activation of apelin/APJ signaling reduces the efficacy of a VEGF inhibitor in endothelial cells. In patients with ovarian cancer treated with bevacizumab, increased expression of apelin was associated with significantly decreased disease-free survival. These findings link signature gene expressions with anti-VEGF response, and may thus provide novel targetable mechanisms of clinical resistance to anti-VEGF therapies.
Collapse
Affiliation(s)
- Pharavee Jaiprasart
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Samrita Dogra
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Deepika Neelakantan
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bharat Devapatla
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Gynecologic Cancers Research Program, Peggy and Charles Stephenson Cancer Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
116
|
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J, Velho S. Animal Models to Study Cancer and Its Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:389-401. [PMID: 32130710 DOI: 10.1007/978-3-030-34025-4_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancers are complex tissues composed by genetically altered cancer cells and stromal elements such as inflammatory/immune cells, fibroblasts, endothelial cells and pericytes, neuronal cells, and a non-cellular component, the extracellular matrix. The complex network of interactions and crosstalk established between cancer cells and the supportig cellular and non-cellular components of the microenvironment are of extreme importance for tumor initiation and progression, strongly impacting the course and the outcome of the disease. Therefore, a better understanding of the tumorigenic processes implies the combined study of the cancer cell and the biologic, chemical and mechanic constituents of the tumor microenvironment, as their concerted action plays a major role in the carcinogenic pathway and is a key determinant of the efficacy of anti-cancer treatments. The use of animal models (e.g. Mouse, Zebrafish and Drosophila) to study cancer has greatly impacted our understanding of the processes governing initiation, progression and metastasis and allowed the discovery and pre-clinical validation of novel cancer treatments as it allows to recreate tumor development in a more pathophysiologic environment.
Collapse
Affiliation(s)
- N Mendes
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| | - P Dias Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - F Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Mendonça
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - A R Malheiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - A Ribeiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - J Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Velho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
117
|
MacFarland SP, Naraparaju K, Iyer R, Guan P, Kolla V, Hu Y, Tan K, Brodeur GM. Mechanisms of Entrectinib Resistance in a Neuroblastoma Xenograft Model. Mol Cancer Ther 2019; 19:920-926. [PMID: 31871269 DOI: 10.1158/1535-7163.mct-18-1044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/03/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022]
Abstract
TrkB with its ligand, brain-derived neurotrophic factor (BDNF), are overexpressed in the majority of high-risk neuroblastomas (NB). Entrectinib is a novel pan-TRK, ALK, and ROS1 inhibitor that has shown excellent preclinical efficacy in NB xenograft models, and recently it has entered phase 1 trials in pediatric relapsed/refractory solid tumors. We examined entrectinib-resistant NB cell lines to identify mechanisms of resistance. Entrectinib-resistant cell lines were established from five NB xenografts initially sensitive to entrectinib therapy. Clonal cell lines were established in increasing concentrations of entrectinib and had >10X increase in IC50 Cell lines underwent genomic and proteomic analysis using whole-exome sequencing, RNA-Seq, and proteomic expression profiling with confirmatory RT-PCR and Western blot analysis. There was no evidence of NTRK2 (TrkB) gene mutation in any resistant cell lines. Inhibition of TrkB was maintained in all cell lines at increasing concentrations of entrectinib (target independent). PTEN pathway downregulation and ERK/MAPK pathway upregulation were demonstrated in all resistant cell lines. One of these clones also had increased IGF1R signaling, and two additional clones had increased P75 expression, which likely increased TrkB sensitivity to ligand. In conclusion, NB lines overexpressing TrkB developed resistance to entrectinib by multiple mechanisms, including activation of ERK/MAPK and downregulation of PTEN signaling. Individual cell lines also had IGF1R activation and increased P75 expression, allowing preservation of downstream TrkB signaling in the presence of entrectinib. An understanding of changes in patterns of expression can be used to inform multimodal therapy planning in using entrectinib in phase II/III trial planning.
Collapse
Affiliation(s)
- Suzanne P MacFarland
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Koumudi Naraparaju
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Radhika Iyer
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Peng Guan
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Venkatadri Kolla
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Yuxuan Hu
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Kai Tan
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania. .,Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
118
|
Ung CY, Ghanat Bari M, Zhang C, Liang J, Correia C, Li H. Regulostat Inferelator: a novel network biology platform to uncover molecular devices that predetermine cellular response phenotypes. Nucleic Acids Res 2019; 47:e82. [PMID: 31114928 PMCID: PMC6698671 DOI: 10.1093/nar/gkz417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
With the emergence of genome editing technologies and synthetic biology, it is now possible to engineer genetic circuits driving a cell's phenotypic response to a stressor. However, capturing a continuous response, rather than simply a binary ‘on’ or ‘off’ response, remains a bioengineering challenge. No tools currently exist to identify gene candidates responsible for predetermining and fine-tuning cell response phenotypes. To address this gap, we devised a novel Regulostat Inferelator (RSI) algorithm to decipher intrinsic molecular devices or networks that predetermine cellular phenotypic responses. The RSI algorithm is designed to extract gene expression patterns from basal transcriptomic data in order to identify ‘regulostat’ constituent gene pairs, which exhibit rheostat-like mode-of-cooperation capable of fine-tuning cellular response. Our proof-of-concept study provides computational evidence for the existence of regulostats and that these networks predetermine cellular response prior to exposure to a stressor or drug. In addition, our work, for the first time, provides evidence of context-specific, drug–regulostat interactions in predetermining drug response phenotypes in cancer cells. Given RSI-inferred regulostat networks offer insights for prioritizing gene candidates capable of rendering a resistant phenotype sensitive to a given drug, we envision that this tool will be of great value in bioengineering and medicine.
Collapse
Affiliation(s)
- Choong Yong Ung
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mehrab Ghanat Bari
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Cheng Zhang
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, OH, USA
| | - Cristina Correia
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
119
|
Zargar A, Chang S, Kothari A, Snijders AM, Mao JH, Wang J, Hernández AC, Keasling JD, Bivona TG. Overcoming the challenges of cancer drug resistance through bacterial-mediated therapy. Chronic Dis Transl Med 2019; 5:258-266. [PMID: 32055785 PMCID: PMC7004931 DOI: 10.1016/j.cdtm.2019.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
Despite tremendous efforts to fight cancer, it remains a major public health problem and a leading cause of death worldwide. With increased knowledge of cancer pathways and improved technological platforms, precision therapeutics that specifically target aberrant cancer pathways have improved patient outcomes. Nevertheless, a primary cause of unsuccessful cancer therapy remains cancer drug resistance. In this review, we summarize the broad classes of resistance to cancer therapy, particularly pharmacokinetics, the tumor microenvironment, and drug resistance mechanisms. Furthermore, we describe how bacterial-mediated cancer therapy, a bygone mode of treatment, has been revitalized by synthetic biology and is uniquely suited to address the primary resistance mechanisms that confound traditional therapies. Through genetic engineering, we discuss how bacteria can be potent anticancer agents given their tumor targeting potential, anti-tumor activity, safety, and coordinated delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Amin Zargar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
- QB3 Institute, University of California-Berkeley, 174 Stanley Hall, Berkeley, CA 94720, USA
| | - Samantha Chang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Ankita Kothari
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antoine M. Snijders
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jessica Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Amanda C. Hernández
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
- QB3 Institute, University of California-Berkeley, 174 Stanley Hall, Berkeley, CA 94720, USA
| | - Trever G. Bivona
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
120
|
Xu C, Cao H, Shi C, Feng J. The Role Of Circulating Tumor DNA In Therapeutic Resistance. Onco Targets Ther 2019; 12:9459-9471. [PMID: 31807023 PMCID: PMC6850686 DOI: 10.2147/ott.s226202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
The application of precision medicine in cancer treatment has partly succeeded in reducing the side effects of unnecessary chemotherapeutics and in improving the survival rate of patients. However, with the long-term use of therapy, the dynamically changing intratumoral and intertumoral heterogeneity eventually gives rise to therapeutic resistance. In recent years, a novel testing technology (termed liquid biopsy) using circulating tumor DNAs (ctDNAs) extracted from peripheral blood samples from patients with cancer has brought about new expectations to the medical community. Using ctDNAs, clinicians can trace the heterogeneity pattern to duly adjust individual therapy and prolong overall survival for patients with cancer. Technological advances in detecting and characterizing ctDNAs (eg, development of next-generation sequencing) have provided clinicians with a valuable tool for genotyping tumors individually and identifying genetic and epigenetic alterations of the entire tumor to capture mutations associated with therapeutic resistance.
Collapse
Affiliation(s)
- Chenxin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| | - Haixia Cao
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Chen Shi
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
121
|
Zhang J, Zhu W, Wang Q, Gu J, Huang LF, Sun X. Differential regulatory network-based quantification and prioritization of key genes underlying cancer drug resistance based on time-course RNA-seq data. PLoS Comput Biol 2019; 15:e1007435. [PMID: 31682596 PMCID: PMC6827891 DOI: 10.1371/journal.pcbi.1007435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Drug resistance is a major cause for the failure of cancer chemotherapy or targeted therapy. However, the molecular regulatory mechanisms controlling the dynamic evolvement of drug resistance remain poorly understood. Thus, it is important to develop methods for identifying key gene regulatory mechanisms of the resistance to specific drugs. In this study, we developed a data-driven computational framework, DryNetMC, using a differential regulatory network-based modeling and characterization strategy to quantify and prioritize key genes underlying cancer drug resistance. The DryNetMC does not only infer gene regulatory networks (GRNs) via an integrated approach, but also characterizes and quantifies dynamical network properties for measuring node importance. We used time-course RNA-seq data from glioma cells treated with dbcAMP (a cAMP activator) as a realistic case to reconstruct the GRNs for sensitive and resistant cells. Based on a novel node importance index that comprehensively quantifies network topology, network entropy and expression dynamics, the top ranked genes were verified to be predictive of the drug sensitivities of different glioma cell lines, in comparison with other existing methods. The proposed method provides a quantitative approach to gain insights into the dynamic adaptation and regulatory mechanisms of cancer drug resistance and sheds light on the design of novel biomarkers or targets for predicting or overcoming drug resistance.
Collapse
Affiliation(s)
- Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qianliang Wang
- School of Mathematics, Sun Yat-Sen University, Guangzhou, China
| | - Jiayu Gu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - L. Frank Huang
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Xiaoqiang Sun
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Chinese Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
122
|
Serrano C, Fletcher JA. Overcoming heterogenity in imatinib-resistant gastrointestinal stromal tumor. Oncotarget 2019; 10:6286-6287. [PMID: 31695836 PMCID: PMC6824868 DOI: 10.18632/oncotarget.27277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- César Serrano
- Department of Medical Oncology, Vall d'Hebron Hospital, Barcelona 08035, Spain
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
123
|
Wood DE, White JR, Georgiadis A, Van Emburgh B, Parpart-Li S, Mitchell J, Anagnostou V, Niknafs N, Karchin R, Papp E, McCord C, LoVerso P, Riley D, Diaz LA, Jones S, Sausen M, Velculescu VE, Angiuoli SV. A machine learning approach for somatic mutation discovery. Sci Transl Med 2019; 10:10/457/eaar7939. [PMID: 30185652 DOI: 10.1126/scitranslmed.aar7939] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/26/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022]
Abstract
Variability in the accuracy of somatic mutation detection may affect the discovery of alterations and the therapeutic management of cancer patients. To address this issue, we developed a somatic mutation discovery approach based on machine learning that outperformed existing methods in identifying experimentally validated tumor alterations (sensitivity of 97% versus 90 to 99%; positive predictive value of 98% versus 34 to 92%). Analysis of paired tumor-normal exome data from 1368 TCGA (The Cancer Genome Atlas) samples using this method revealed concordance for 74% of mutation calls but also identified likely false-positive and false-negative changes in TCGA data, including in clinically actionable genes. Determination of high-quality somatic mutation calls improved tumor mutation load-based predictions of clinical outcome for melanoma and lung cancer patients previously treated with immune checkpoint inhibitors. Integration of high-quality machine learning mutation detection in clinical next-generation sequencing (NGS) analyses increased the accuracy of test results compared to other clinical sequencing analyses. These analyses provide an approach for improved identification of tumor-specific mutations and have important implications for research and clinical management of cancer patients.
Collapse
Affiliation(s)
| | - James R White
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | | | | | | | | | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Noushin Niknafs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rachel Karchin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eniko Papp
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | | | - Peter LoVerso
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - David Riley
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - Luis A Diaz
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Siân Jones
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - Mark Sausen
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
124
|
Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis 2019; 23:93-112. [PMID: 29322476 DOI: 10.1007/s10495-018-1440-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer is a primary cause of human fatality and conventional cancer therapies, e.g., chemotherapy, are often associated with adverse side-effects, tumor drug-resistance, and recurrence. Molecularly targeted therapy, composed of small-molecule inhibitors and immunotherapy (e.g., monoclonal antibody and cancer vaccines), is a less harmful alternative being more effective against cancer cells whilst preserving healthy tissues. Drug-resistance, however, caused by negative regulation of cell death signaling pathways, is still a challenge. Circumvention of negative regulators of cell death pathways or development of predictive and response biomarkers is, therefore, quintessential. This review critically discusses the current state of knowledge on targeting negative regulators of cell death signaling pathways including apoptosis, ferroptosis, necroptosis, autophagy, and anoikis and evaluates the recent advances in clinical and preclinical research on biomarkers of negative regulators. It aims to provide a comprehensive platform for designing efficacious polytherapies including novel agents for restoring cell death signaling pathways or targeting alternative resistance pathways to improve the chances for antitumor responses. Overall, it is concluded that nonapoptotic cell death pathways are a potential research arena for drug discovery, development of novel biomarkers and targeted therapies.
Collapse
|
125
|
Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med 2019; 25:1415-1421. [PMID: 31501609 PMCID: PMC6741444 DOI: 10.1038/s41591-019-0561-9] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
During cancer therapy, tumor heterogeneity can drive the evolution of multiple tumor subclones harboring unique resistance mechanisms in an individual patient1–3. Prior case reports and small case series have suggested that liquid biopsy (specifically, cell-free DNA (cfDNA)) may better capture the heterogeneity of acquired resistance4–8. However, the effectiveness of cfDNA versus standard single-lesion tumor biopsies has not been directly compared in larger scale prospective cohorts of patients following progression on targeted therapy. Here, in a prospective cohort of 42 patients with molecularly-defined gastrointestinal cancers and acquired resistance to targeted therapy, direct comparison of post-progression cfDNA versus tumor biopsy revealed that cfDNA more frequently identified clinically-relevant resistance alterations and multiple resistance mechanisms, detecting resistance alterations not found in the matched tumor biopsy in 78% of cases. Whole-exome sequencing of serial cfDNA, tumor biopsies, and rapid autopsy specimens elucidated substantial geographic and evolutionary differences across lesions. Our data suggest that acquired resistance is frequently characterized by profound tumor heterogeneity, and that the emergence of multiple resistance alterations in an individual patient may represent the “rule” rather than the “exception.” These findings have profound therapeutic implications and highlight the potential advantages of cfDNA over tissue biopsy in the setting of acquired resistance.
Collapse
|
126
|
Serrano C, Leal A, Kuang Y, Morgan JA, Barysauskas CM, Phallen J, Triplett O, Mariño-Enríquez A, Wagner AJ, Demetri GD, Velculescu VE, Paweletz CP, Fletcher JA, George S. Phase I Study of Rapid Alternation of Sunitinib and Regorafenib for the Treatment of Tyrosine Kinase Inhibitor Refractory Gastrointestinal Stromal Tumors. Clin Cancer Res 2019; 25:7287-7293. [PMID: 31471313 DOI: 10.1158/1078-0432.ccr-19-2150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Polyclonal emergence of KIT secondary mutations is a main mechanism of imatinib progression in gastrointestinal stromal tumor (GIST). Approved KIT inhibitors sunitinib and regorafenib have complementary activity against KIT resistance mutations. Preclinical evidence suggests that rapid alternation of sunitinib and regorafenib broadens the spectrum of imatinib-resistant subclones targeted. PATIENTS AND METHODS Phase Ib study investigating continuous treatment with cycles of sunitinib (3 days) followed by regorafenib (4 days) in patients with tyrosine kinase inhibitor (TKI)-refractory GIST. A 3+3 dosing schema was utilized to determine the recommended phase II dose (RP2D). Plasma samples were analyzed for pharmacokinetics and circulating tumor DNA (ctDNA) studies using targeted error correction sequencing (TEC-seq) and droplet digital PCR (ddPCR). RESULTS Of the 14 patients enrolled, 2 experienced dose-limiting toxicities at dose level 2 (asymptomatic grade 3 hypophosphatemia). Sunitinib 37.5 mg/day and regorafenib 120 mg/day was the RP2D. Treatment was well-tolerated and no unexpected toxicities resulted from the combination. Stable disease was the best response in 4 patients, and median progression-free survival was 1.9 months. Combined assessment of ctDNA with TEC-seq and ddPCR detected plasma mutations in 11 of 12 patients (92%). ctDNA studies showed that KIT secondary mutations remain the main mechanism of resistance in TKI-refractory GIST, revealing effective suppression of KIT-mutant subpopulations in patients benefiting from the combination. CONCLUSIONS Sunitinib and regorafenib combination is feasible and tolerable. Rapid alternation of TKIs with complementary activity might be effective when combining drugs with favorable pharmacokinetics, potentially allowing active doses while minimizing adverse events. Serial monitoring with ctDNA may guide treatment in patients with GIST.
Collapse
Affiliation(s)
- César Serrano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts.,Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology; Department of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alessandro Leal
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yanan Kuang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jeffrey A Morgan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jillian Phallen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olivia Triplett
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adrián Mariño-Enríquez
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
| | - Andrew J Wagner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - George D Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Ludwig Center for Cancer Research at Dana-Farber Cancer Institute and Harvard Medical School, Boston Massachusetts
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cloud P Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
127
|
Akpa CA, Kleo K, Lenze D, Oker E, Dimitrova L, Hummel M. DZNep-mediated apoptosis in B-cell lymphoma is independent of the lymphoma type, EZH2 mutation status and MYC, BCL2 or BCL6 translocations. PLoS One 2019; 14:e0220681. [PMID: 31419226 PMCID: PMC6697340 DOI: 10.1371/journal.pone.0220681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) tri-methylates histone 3 at position lysine 27 (H3K27me3). Overexpression and gain-of-function mutations in EZH2 are regarded as oncogenic drivers in lymphoma and other malignancies due to the silencing of tumor suppressors and differentiation genes. EZH2 inhibition is sought to represent a good strategy for tumor therapy. In this study, we treated Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) cell lines with 3-deazaneplanocin—A (DZNep), an indirect EZH2 inhibitor which possesses anticancer properties both in-vitro and in-vivo. We aimed to address the impact of the lymphoma type, EZH2 mutation status, as well as MYC, BCL2 and BCL6 translocations on the sensitivity of the lymphoma cell lines to DZNep-mediated apoptosis. We show that DZNep inhibits proliferation and induces apoptosis of these cell lines independent of the type of lymphoma, the EZH2 mutation status and the MYC, BCL2 and BCL6 rearrangement status. Furthermore, DZNep induced a much stronger apoptosis in majority of these cell lines at a lower concentration, and within a shorter period when compared with EPZ-6438, a direct EZH2 inhibitor currently in phase II clinical trials. Apoptosis induction by DZNep was both concentration-dependent and time-dependent, and was associated with the inhibition of EZH2 and subsequent downregulation of H3K27me3 in DZNep-sensitive cell lines. Although EZH2, MYC, BCL2 and BCL6 are important prognostic biomarkers for lymphomas, our study shows that they poorly influence the sensitivity of lymphoma cell lines to DZNep-mediated apoptosis.
Collapse
Affiliation(s)
- Chidimma Agatha Akpa
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
- Berlin School of Integrative Oncology, Charité Medical University, Berlin, Berlin, Germany
- * E-mail:
| | - Karsten Kleo
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| | - Dido Lenze
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| | - Elisabeth Oker
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| | - Lora Dimitrova
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| | - Michael Hummel
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Berlin, Germany
| |
Collapse
|
128
|
Akhmetzhanov AR, Kim JW, Sullivan R, Beckman RA, Tamayo P, Yeang CH. Modelling bistable tumour population dynamics to design effective treatment strategies. J Theor Biol 2019; 474:88-102. [DOI: 10.1016/j.jtbi.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
|
129
|
Kumar N, Cramer GM, Dahaj SAZ, Sundaram B, Celli JP, Kulkarni RV. Stochastic modeling of phenotypic switching and chemoresistance in cancer cell populations. Sci Rep 2019; 9:10845. [PMID: 31350465 PMCID: PMC6659620 DOI: 10.1038/s41598-019-46926-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Phenotypic heterogeneity in cancer cells is widely observed and is often linked to drug resistance. In several cases, such heterogeneity in drug sensitivity of tumors is driven by stochastic and reversible acquisition of a drug tolerant phenotype by individual cells even in an isogenic population. Accumulating evidence further suggests that cell-fate transitions such as the epithelial to mesenchymal transition (EMT) are associated with drug resistance. In this study, we analyze stochastic models of phenotypic switching to provide a framework for analyzing cell-fate transitions such as EMT as a source of phenotypic variability in drug sensitivity. Motivated by our cell-culture based experimental observations connecting phenotypic switching in EMT and drug resistance, we analyze a coarse-grained model of phenotypic switching between two states in the presence of cytotoxic stress from chemotherapy. We derive analytical results for time-dependent probability distributions that provide insights into the rates of phenotypic switching and characterize initial phenotypic heterogeneity of cancer cells. The results obtained can also shed light on fundamental questions relating to adaptation and selection scenarios in tumor response to cytotoxic therapy.
Collapse
Affiliation(s)
- Niraj Kumar
- Department of Physics, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Gwendolyn M Cramer
- Department of Physics, University of Massachusetts Boston, Boston, MA, 02125, USA.,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seyed Alireza Zamani Dahaj
- Department of Physics, University of Massachusetts Boston, Boston, MA, 02125, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bala Sundaram
- Department of Physics, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jonathan P Celli
- Department of Physics, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Rahul V Kulkarni
- Department of Physics, University of Massachusetts Boston, Boston, MA, 02125, USA.
| |
Collapse
|
130
|
Thakuri PS, Gupta M, Joshi R, Singh S, Tavana H. Synergistic Inhibition of Kinase Pathways Overcomes Resistance of Colorectal Cancer Spheroids to Cyclic Targeted Therapies. ACS Pharmacol Transl Sci 2019; 2:275-284. [PMID: 32259061 DOI: 10.1021/acsptsci.9b00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Cancer cells often adapt to single-agent treatments with chemotherapeutics. Activation of alternative survival pathways is a major mechanism of drug resistance. A potential approach to block this feedback signaling is using combination treatments of a pair of drugs, although toxicity has been a limiting factor. Preclinical tumor models to identify mechanisms of drug resistance and determine low but effective combination doses are critical to effectively suppress tumor growth with reduced toxicity to patients. Using our aqueous two-phase system microtechnology, we developed colorectal tumor spheroids in high-throughput and evaluated resistance of cancer cells to three mitogen-activated protein kinase inhibitors (MAPKi) in long-term cyclic treatments. Our quantitative analysis showed that the efficacy of MAPKi significantly reduced over time, leading to an increase in proliferation of HCT116 colorectal cancer cells and growth of spheroids. We established that resistance was due to feedback activation of PI3K/AKT/mTOR pathway. Using high-throughput, dose-dependent combinations of each MAPKi and a PI3K/mTOR inhibitor, we identified low-dose, synergistic combinations that blocked resistance to MAPKi and effectively suppressed the growth of colorectal tumor spheroids in long-term treatments. Our approach to study drug resistance offers the potential to determine high priority treatments to test in animal models.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Megha Gupta
- Department of Arts and Sciences, The University of Akron, Akron, Ohio 44325, United States
| | - Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Sunil Singh
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
131
|
Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2. Proc Natl Acad Sci U S A 2019; 116:15463-15468. [PMID: 31311868 DOI: 10.1073/pnas.1906824116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.
Collapse
|
132
|
Fujino T, Kobayashi Y, Suda K, Koga T, Nishino M, Ohara S, Chiba M, Shimoji M, Tomizawa K, Takemoto T, Mitsudomi T. Sensitivity and Resistance of MET Exon 14 Mutations in Lung Cancer to Eight MET Tyrosine Kinase Inhibitors In Vitro. J Thorac Oncol 2019; 14:1753-1765. [PMID: 31279006 DOI: 10.1016/j.jtho.2019.06.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/26/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND MNNG HOS transforming gene (MET) exon 14 mutations in lung cancer, including exon 14 skipping and point mutations, have been attracting the attention of thoracic oncologists as new therapeutic targets. Tumors with these mutations almost always acquire resistance, which also occurs in other oncogene-addicted lung cancers. However, the resistance mechanisms and treatment strategies are not fully understood. METHODS We generated Ba/F3 cells expressing MET exon 14 mutations by retroviral gene transfer. The sensitivities of these cells to eight MET-tyrosine kinase inhibitors (TKIs) were determined using a colorimetric assay. In addition, using N-ethyl-N-nitrosourea mutagenesis, we generated resistant clones, searched for secondary MET mutations, and then examined the sensitivities of these resistant cells to different TKIs. RESULTS Ba/F3 cells transfected with MET mutations grew in the absence of interleukin-3, indicating their oncogenic activity. These cells were sensitive to all MET-TKIs except tivantinib. We identified a variety of secondary mutations. D1228 and Y1230 were common sites for resistance mutations for type I TKIs, which bind the active form of MET, whereas L1195 and F1200 were common sites for type II TKIs, which bind the inactive form. In general, resistance mutations against type I were sensitive to type II, and vice versa. CONCLUSIONS MET-TKIs inhibited the growth of cells with MET exon 14 mutations. We also identified mutation sites specific for TKI types as resistance mechanisms and complementary activities between type I and type II inhibitors against those mutations. These finding should provide relevant clinical implication for treating patients with lung cancer harboring MET exon 14 mutations.
Collapse
Affiliation(s)
- Toshio Fujino
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yoshihisa Kobayashi
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenichi Suda
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takamasa Koga
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masaya Nishino
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Shuta Ohara
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masato Chiba
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masaki Shimoji
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenji Tomizawa
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshiki Takemoto
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tetsuya Mitsudomi
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| |
Collapse
|
133
|
Jordan EJ, Patil K, Suresh K, Park JH, Mosse YP, Lemmon MA, Radhakrishnan R. Computational algorithms for in silico profiling of activating mutations in cancer. Cell Mol Life Sci 2019; 76:2663-2679. [PMID: 30982079 PMCID: PMC6589134 DOI: 10.1007/s00018-019-03097-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022]
Abstract
Methods to catalog and computationally assess the mutational landscape of proteins in human cancers are desirable. One approach is to adapt evolutionary or data-driven methods developed for predicting whether a single-nucleotide polymorphism (SNP) is deleterious to protein structure and function. In cases where understanding the mechanism of protein activation and regulation is desired, an alternative approach is to employ structure-based computational approaches to predict the effects of point mutations. Through a case study of mutations in kinase domains of three proteins, namely, the anaplastic lymphoma kinase (ALK) in pediatric neuroblastoma patients, serine/threonine-protein kinase B-Raf (BRAF) in melanoma patients, and erythroblastic oncogene B 2 (ErbB2 or HER2) in breast cancer patients, we compare the two approaches above. We find that the structure-based method is most appropriate for developing a binary classification of several different mutations, especially infrequently occurring ones, concerning the activation status of the given target protein. This approach is especially useful if the effects of mutations on the interactions of inhibitors with the target proteins are being sought. However, many patients will present with mutations spread across different target proteins, making structure-based models computationally demanding to implement and execute. In this situation, data-driven methods-including those based on machine learning techniques and evolutionary methods-are most appropriate for recognizing and illuminate mutational patterns. We show, however, that, in the present status of the field, the two methods have very different accuracies and confidence values, and hence, the optimal choice of their deployment is context-dependent.
Collapse
Affiliation(s)
- E Joseph Jordan
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Keshav Patil
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Krishna Suresh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin H Park
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Yael P Mosse
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark A Lemmon
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Ravi Radhakrishnan
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
134
|
Han J, Lim W, You D, Jeong Y, Kim S, Lee JE, Shin TH, Lee G, Park S. Chemoresistance in the Human Triple-Negative Breast Cancer Cell Line MDA-MB-231 Induced by Doxorubicin Gradient Is Associated with Epigenetic Alterations in Histone Deacetylase. JOURNAL OF ONCOLOGY 2019; 2019:1345026. [PMID: 31275376 PMCID: PMC6582875 DOI: 10.1155/2019/1345026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Chemoresistance is one of the major causes of therapeutic failure in breast cancer patients. In this study, the mechanism of chemoresistance in human triple-negative breast cancer (TNBC) cells (MDA-MB-231) induced by doxorubicin (DOX) gradient was investigated. These DOX-resistant cells showed higher drug efflux rate, increased anchorage-independent growth when cultured in suspension, and increased tumor-forming ability in nude mice, compared to the wild-type MDA-MB-231 cells. RNA sequencing analysis showed an increase in the expression of genes involved in membrane transport, antiapoptosis, and histone regulation. Kaplan-Meier plot analysis of TNBC patients who underwent preoperative chemotherapy showed that the relapse free survival (RFS) of patients with high HIST1H2BK (histone cluster 1 H2B family member k) expression was significantly lower than that of patients with low HIST1H2BK expression. Quantitative real-time PCR confirmed that the level of HIST1H2BK expression was increased in resistant cells. The cytotoxicity analysis showed that the DOX resistance of resistant cells was reduced by treatment with a histone deacetylase (HDAC) inhibitor. Our results suggest that, in DOX-resistant cells, HIST1H2BK expression can be rapidly induced by the high expression of genes involved in membrane transport, antiapoptosis, and histone regulation. In conclusion, chemoresistance in MDA-MB-231 cells can occur in a relatively short period by DOX gradient via this previously known mechanism of resistance, and DOX resistance is dependent on the specificity of resistant cells to HDAC.
Collapse
Affiliation(s)
- Jeonghun Han
- Regenerative Medicine and Cell Therapy Institute, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yisun Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Sangmin Kim
- Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
- Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
135
|
Clarke PA, Roe T, Swabey K, Hobbs SM, McAndrew C, Tomlin K, Westwood I, Burke R, van Montfort R, Workman P. Dissecting mechanisms of resistance to targeted drug combination therapy in human colorectal cancer. Oncogene 2019; 38:5076-5090. [PMID: 30905967 PMCID: PMC6755994 DOI: 10.1038/s41388-019-0780-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023]
Abstract
Genomic alterations in cancer cells result in vulnerabilities that clinicians can exploit using molecularly targeted drugs, guided by knowledge of the tumour genotype. However, the selective activity of these drugs exerts an evolutionary pressure on cancers that can result in the outgrowth of resistant clones. Use of rational drug combinations can overcome resistance to targeted drugs, but resistance may eventually develop to combinatorial therapies. We selected MAPK- and PI3K-pathway inhibition in colorectal cancer as a model system to dissect out mechanisms of resistance. We focused on these signalling pathways because they are frequently activated in colorectal tumours, have well-characterised mutations and are clinically relevant. By treating a panel of 47 human colorectal cancer cell lines with a combination of MEK- and PI3K-inhibitors, we observe a synergistic inhibition of growth in almost all cell lines. Cells with KRAS mutations are less sensitive to PI3K inhibition, but are particularly sensitive to the combined treatment. Colorectal cancer cell lines with inherent or acquired resistance to monotherapy do not show a synergistic response to the combination treatment. Cells that acquire resistance to an MEK-PI3K inhibitor combination treatment still respond to an ERK-PI3K inhibitor regimen, but subsequently also acquire resistance to this combination treatment. Importantly, the mechanisms of resistance to MEK and PI3K inhibitors observed, MEK1/2 mutation or loss of PTEN, are similar to those detected in the clinic. ERK inhibitors may have clinical utility in overcoming resistance to MEK inhibitor regimes; however, we find a recurrent active site mutation of ERK2 that drives resistance to ERK inhibitors in mono- or combined regimens, suggesting that resistance will remain a hurdle. Importantly, we find that the addition of low concentrations of the BCL2-family inhibitor navitoclax to the MEK-PI3K inhibitor regimen improves the synergistic interaction and blocks the acquisition of resistance.
Collapse
Affiliation(s)
- Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Toby Roe
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Kate Swabey
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Steve M Hobbs
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Craig McAndrew
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Kathy Tomlin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Isaac Westwood
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Robert van Montfort
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| |
Collapse
|
136
|
Lou K, Steri V, Ge AY, Hwang YC, Yogodzinski CH, Shkedi AR, Choi ALM, Mitchell DC, Swaney DL, Hann B, Gordan JD, Shokat KM, Gilbert LA. KRAS G12C inhibition produces a driver-limited state revealing collateral dependencies. Sci Signal 2019; 12:12/583/eaaw9450. [PMID: 31138768 DOI: 10.1126/scisignal.aaw9450] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibitors targeting KRASG12C, a mutant form of the guanosine triphosphatase (GTPase) KRAS, are a promising new class of oncogene-specific therapeutics for the treatment of tumors driven by the mutant protein. These inhibitors react with the mutant cysteine residue by binding covalently to the switch-II pocket (S-IIP) that is present only in the inactive guanosine diphosphate (GDP)-bound form of KRASG12C, sparing the wild-type protein. We used a genome-scale CRISPR interference (CRISPRi) functional genomics platform to systematically identify genetic interactions with a KRASG12C inhibitor in cellular models of KRASG12C mutant lung and pancreatic cancer. Our data revealed genes that were selectively essential in this oncogenic driver-limited cell state, meaning that their loss enhanced cellular susceptibility to direct KRASG12C inhibition. We termed such genes "collateral dependencies" (CDs) and identified two classes of combination therapies targeting these CDs that increased KRASG12C target engagement or blocked residual survival pathways in cells and in vivo. From our findings, we propose a framework for assessing genetic dependencies induced by oncogene inhibition.
Collapse
Affiliation(s)
- Kevin Lou
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Preclinical Therapeutics Core, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alex Y Ge
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Y Christina Hwang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Medicine and Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher H Yogodzinski
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arielle R Shkedi
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alex L M Choi
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Medicine and Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dominique C Mitchell
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Medicine and Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.,Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Preclinical Therapeutics Core, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John D Gordan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Medicine and Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Luke A Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA. .,Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA.,Innovative Genomics Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
137
|
Optimal control nodes in disease-perturbed networks as targets for combination therapy. Nat Commun 2019; 10:2180. [PMID: 31097707 PMCID: PMC6522545 DOI: 10.1038/s41467-019-10215-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Most combination therapies are developed based on targets of existing drugs, which only represent a small portion of the human proteome. We introduce a network controllability-based method, OptiCon, for de novo identification of synergistic regulators as candidates for combination therapy. These regulators jointly exert maximal control over deregulated genes but minimal control over unperturbed genes in a disease. Using data from three cancer types, we show that 68% of predicted regulators are either known drug targets or have a critical role in cancer development. Predicted regulators are depleted for known proteins associated with side effects. Predicted synergy is supported by disease-specific and clinically relevant synthetic lethal interactions and experimental validation. A significant portion of genes regulated by synergistic regulators participate in dense interactions between co-regulated subnetworks and contribute to therapy resistance. OptiCon represents a general framework for systemic and de novo identification of synergistic regulators underlying a cellular state transition. Synergistic interactions may arise between regulators in complex molecular networks. Here, the authors develop OptiCon, a computational method for de novo identification of synergistic key regulators and investigate their potential roles as candidate targets for combination therapy.
Collapse
|
138
|
Chen J, Bell J, Lau BT, Whittaker T, Stapleton D, Ji HP. A functional CRISPR/Cas9 screen identifies kinases that modulate FGFR inhibitor response in gastric cancer. Oncogenesis 2019; 8:33. [PMID: 31076567 PMCID: PMC6510732 DOI: 10.1038/s41389-019-0145-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 01/23/2023] Open
Abstract
Some gastric cancers have FGFR2 amplifications, making them sensitive to FGFR inhibitors. However, cancer cells inevitably develop resistance despite initial response. The underlying resistance mechanism to FGFR inhibition is unclear. In this study, we applied a kinome-wide CRISPR/Cas9 screen to systematically identify kinases that are determinants of sensitivity to a potent FGFR inhibitor AZD4547 in KatoIII cells, a gastric cancer cell line with FGFR2 amplification. In total, we identified 20 kinases, involved in ILK, SRC, and EGFR signaling pathways, as determinants that alter cell sensitivity to FGFR inhibition. We functionally validated the top negatively selected and positively selected kinases, ILK and CSK, from the CRISPR/Cas9 screen using RNA interference. We observed synergistic effects on KatoIII cells as well as three additional gastric cancer cell lines with FGFR2 amplification when AZD4547 was combined with small molecular inhibitors Cpd22 and lapatinib targeting ILK and EGFR/HER2, respectively. Furthermore, we demonstrated that GSK3b is one of the downstream effectors of ILK upon FGFR inhibition. In summary, our study systematically evaluated the kinases and associated signaling pathways modulating cell response to FGFR inhibition, and for the first time, demonstrated that targeting ILK would enhance the effectiveness of AZD4547 treatment of gastric tumors with amplifications of FGFR2.
Collapse
Affiliation(s)
- Jiamin Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - John Bell
- Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Billy T Lau
- Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tyler Whittaker
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Darren Stapleton
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
139
|
mTOR Signaling Pathway in Cancer Targets Photodynamic Therapy In Vitro. Cells 2019; 8:cells8050431. [PMID: 31075885 PMCID: PMC6563036 DOI: 10.3390/cells8050431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023] Open
Abstract
The Mechanistic or Mammalian Target of Rapamycin (mTOR) is a major signaling pathway in eukaryotic cells belonging to the P13K-related kinase family of the serine/threonine protein kinase. It has been established that mTOR plays a central role in cellular processes and implicated in various cancers, diabetes, and in the aging process with very poor prognosis. Inhibition of the mTOR pathway in the cells may improve the therapeutic index in cancer treatment. Photodynamic therapy (PDT) has been established to selectively eradicate neoplasia at clearly delineated malignant lesions. This review highlights recent advances in understanding the role or regulation of mTOR in cancer therapy. It also discusses how mTOR currently contributes to cancer as well as future perspectives on targeting mTOR therapeutically in cancer in vitro.
Collapse
|
140
|
Tahmasebi-Birgani MJ, Teimoori A, Ghadiri A, Mansoury-Asl H, Danyaei A, Khanbabaei H. Fractionated radiotherapy might induce epithelial-mesenchymal transition and radioresistance in a cellular context manner. J Cell Biochem 2019; 120:8601-8610. [PMID: 30485518 DOI: 10.1002/jcb.28148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Despite the fact that radiotherapy is a main therapeutic modality in cancer treatment, recent evidence suggests that fractionated radiotherapy (FR) might confer radioresistance through epithelial-mesenchymal transition (EMT). Nevertheless, the effects of FR on EMT phenotype and the potential link between EMT induction and radioresistance development yet to be clarified. The aim of this study was to assess whether FR could promote EMT, and to elucidate if induction of EMT contributes to the acquisition of radioresistance. To this end, two human cancer cell lines (A549 and HT-29) were irradiated (2 Gy/day) and analyzed using wound healing, transwell migration and invasion assays, real-time polymerase chain reaction (for E-cadherin, N-cadherin, Vimentin, CD44, CD133, Snail, and Twist), clonogenic assay, Annexin V/PI, and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Irradiation of A549 (for 5 or 10 consecutive days) resulted in morphological changes including elongation of cytoplasm and nuclei and pleomorphic nuclei. Also, irradiation-enhanced migratory and invasive potential of A549. These phenotypic changes were in agreement with decreased expression of the epithelial marker (E-cadherin), enhanced expression of mesenchymal markers (N-cadherin, Vimentin, Snail, and Twist) and increased stemness factors (CD44 and CD133). Moreover, induction of EMT phenotype was accompanied with enhanced radioresistance and proliferation of irradiated A549. However, FR (for 5 consecutive days) did not increase HT-29 motility. Furthermore, molecular alterations did not resemble EMT phenotype (downregulation of E-cadherin, Vimentin, ALDH, CD44, CD133, and Snail). Eventually, FR led to enhanced radiosensitivity and decreased proliferation of HT-29. Altogether, our findings suggest that FR might induce EMT and confer radioresistance in a cell context-dependent manner.
Collapse
Affiliation(s)
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Ata Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Halime Mansoury-Asl
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Danyaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hashem Khanbabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
141
|
Zhang W, Liang X, Gong Y, Xiao C, Guo B, Yang T. The Signal Transducer and Activator of Transcription 5B (STAT5B) Gene Promotes Proliferation and Drug Resistance of Human Mantle Cell Lymphoma Cells by Activating the Akt Signaling Pathway. Med Sci Monit 2019; 25:2599-2608. [PMID: 30964854 PMCID: PMC6474296 DOI: 10.12659/msm.914934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Mantle cell lymphoma (MCL) is a high-grade B-cell lymphoma with poor prognosis. Fludarabine is used alone or in combination for relapsed and advanced-stage MCL. The expression of the signal transducer and activator of transcription 5B (STAT5B) gene is associated with tumorigenesis in solid tumors, but its role in MCL remains unknown. The aims of this study were to investigate the role of STAT5B in GRANTA-519 human mantle cell lymphoma cells and drug resistance. Material/Methods GRANTA-519 human mantle cell lymphoma cells were cultured with and without 10 μM fludarabine dephosphorylated 9-β-D-arabinofuranosyl-2-fluoroadenine, (2-F-araA) or 10 μM 4-hydroperoxycyclophosphamide (4-HC). The MTT assay assessed cell proliferation. Flow cytometry was used to investigate the cell cycle in MCL cells treated with the specific inhibitor of the Akt pathway, LY294002, and assessed cell cycle and cell apoptosis. Western blot was used to detect the expression levels of p-Akt/Akt and STAT5B/p-STAT5B. The gene expression profiles of lymph node (LN)-derived MCL cells were compared with peripheral blood (PB)-derived lymphocytes using bioinformatics and hierarchical cluster analysis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed to determine the expression of the marker of proliferation Ki-67 (MKI67) gene. Results STAT5B was significantly upregulated in LN-derived MCL cells compared with PB lymphocytes. Increased expression of STAT5B was associated with increased MCL cell proliferation and reduced cell apoptosis and was associated with drug resistance and activation of Akt. Conclusions STAT5B promoted cell proliferation and drug resistance in human MCL cells by activating the Akt signaling pathway.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China (mainland)
| | - Xiping Liang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China (mainland)
| | - Yi Gong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China (mainland)
| | - Chunyan Xiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China (mainland)
| | - Bingling Guo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China (mainland)
| | - Tao Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China (mainland)
| |
Collapse
|
142
|
Ma L, Chen Y, Han R, Wang S. Benzyl isothiocyanate inhibits invasion and induces apoptosis via reducing S100A4 expression and increases PUMA expression in oral squamous cell carcinoma cells. ACTA ACUST UNITED AC 2019; 52:e8409. [PMID: 30970087 PMCID: PMC6459467 DOI: 10.1590/1414-431x20198409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/01/2019] [Indexed: 01/17/2023]
Abstract
Benzyl isothiocyanate (BITC) has been shown to inhibit invasion and induce apoptosis of various types of cancer. However, its role on human oral squamous cell carcinoma (OSCC) cells is still not well elucidated. In the present study, we investigated the effect of BITC on apoptosis and invasion of SCC9 cells, and its underlying mechanisms in vitro and in vivo. SCC9 cells were exposed to BITC (5 and 25 μM) for 24 and 48 h. Cell growth, apoptosis, invasion, and migration were detected in vitro by MTT, FITC-conjugated annexin V/propidium iodide staining followed by flow cytometry, Matrigel-coated semi-permeable modified Boyden, and wound-healing assay. S100A4, PUMA, and MMP-9 expressions were detected to investigate its mechanisms. Xenotransplantation experiments were used to investigate the role of BITC on tumor growth and lung metastasis. BITC inhibited cell viability and induced cell apoptosis in a dose- and time-dependent manner through upregulation of PUMA signals. BITC inhibited cell invasion and migration by downregulation of S100A4 dependent MMP-9 signals. The ip administration of BITC reduced tumor growth but not lung metastasis of SCC9 cells subcutaneously implanted in nude mice. BITC treatment activated pro-apoptotic PUMA and inhibited S100A4-dependent MMP-9 signals, resulting in the inhibition of cell growth and invasion in cultured and xenografted SCC9 cells. Thereby, BITC is a potential therapeutic approach for OSCC.
Collapse
Affiliation(s)
- Lei Ma
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yongjun Chen
- Department of Traditional Chinese medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Rui Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shuangyi Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
143
|
Qu Y, Dou B, Tan H, Feng Y, Wang N, Wang D. Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Mol Cancer 2019; 18:69. [PMID: 30927928 PMCID: PMC6441162 DOI: 10.1186/s12943-019-0992-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is of great concern in cancer treatment because most effective drugs are limited by the development of resistance following some periods of therapeutic administration. The tumor microenvironment (TME), which includes various types of cells and extracellular components, mediates tumor progression and affects treatment efficacy. TME-mediated drug resistance is associated with tumor cells and their pericellular matrix. Noninherent-adaptive drug resistance refers to a non-cell-autonomous mechanism in which the resistance lies in the treatment process rather than genetic or epigenetic changes, and this mechanism is closely related to the TME. A new concept is therefore proposed in which tumor cell resistance to targeted therapy may be due to non-cell-autonomous mechanisms. However, knowledge of non-cell-autonomous mechanisms of resistance to different treatments is not comprehensive. In this review, we outlined TME factors and molecular events involved in the regulation of non-cell-autonomous resistance of cancer, summarized how the TME contributes to non-cell-autonomous drug resistance in different types of antineoplastic treatment, and discussed the novel strategies to investigate and overcome the non-cell-autonomous mechanism of cancer non-cell-autonomous resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bo Dou
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Horyue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China. .,School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
144
|
Liu X, Cao J, Huang G, Zhao Q, Shen J. Biological Activities of Artemisinin Derivatives Beyond Malaria. Curr Top Med Chem 2019; 19:205-222. [DOI: 10.2174/1568026619666190122144217] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
Artemisinin is isolated from Artemisia annua L. with peroxide-containing sesquiterpene lactone structure. Because of its unique structural characteristics and promising anticancer, antivirus activities, it has recently received increasing attention. The aim of this review is to summarize recent discoveries of artemisinin's novel derivatives with new pharmaceutical effects beyond malaria with a focus on its antitumor and antivirus activity, as well as potential results of combination therapy with other clinical drugs.
Collapse
Affiliation(s)
- Xiaoyan Liu
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianguo Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Guozheng Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 201418, China
| | - Qingjie Zhao
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
145
|
Heffeter P, Pape VFS, Enyedy ÉA, Keppler BK, Szakacs G, Kowol CR. Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development. Antioxid Redox Signal 2019; 30:1062-1082. [PMID: 29334758 DOI: 10.1089/ars.2017.7487] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE During the past decades, thiosemicarbazones were clinically developed for a variety of diseases, including tuberculosis, viral infections, malaria, and cancer. With regard to malignant diseases, the class of α-N-heterocyclic thiosemicarbazones, and here especially 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine), was intensively developed in multiple clinical phase I/II trials. Recent Advances: Very recently, two new derivatives, namely COTI-2 and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) have entered phase I evaluation. Based on the strong metal-chelating/metal-interacting properties of thiosemicarbazones, interference with the cellular iron (and copper) homeostasis is assumed to play an important role in their biological activity. CRITICAL ISSUES In this review, we summarize and analyze the data on the interaction of (α-N-heterocyclic) thiosemicarbazones with iron, with the special aim of bridging the current knowledge on their mode of action from chemistry to (cell) biology. In addition, we highlight the difference to classical iron(III) chelators such as desferrioxamine (DFO), which are used for the treatment of iron overload. FUTURE DIRECTIONS We want to emphasize that thiosemicarbazones are not solely removing iron from the cells/organism. In contrast, they should be considered as iron-interacting drugs influencing diverse biological pathways in a complex and multi-faceted mode of action. Consequently, in addition to the discussion of physicochemical properties (e.g., complex stability, redox activity), this review contains an overview on the diversity of cellular thiosemicarbazone targets and drug resistance mechanisms.
Collapse
Affiliation(s)
- Petra Heffeter
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria
| | - Veronika F S Pape
- 3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary .,4 Department of Physiology, Faculty of Medicine, Semmelweis University , Budapest, Hungary
| | - Éva A Enyedy
- 5 Department of Inorganic and Analytical Chemistry, University of Szeged , Szeged, Hungary
| | - Bernhard K Keppler
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| | - Gergely Szakacs
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christian R Kowol
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| |
Collapse
|
146
|
Cisplatin Synergistically Enhances Antitumor Potency of Conditionally Replicating Adenovirus via p53 Dependent or Independent Pathways in Human Lung Carcinoma. Int J Mol Sci 2019; 20:ijms20051125. [PMID: 30841620 PMCID: PMC6429304 DOI: 10.3390/ijms20051125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/09/2019] [Accepted: 02/27/2019] [Indexed: 01/31/2023] Open
Abstract
Cisplatin is ranked as one of the most powerful and commonly prescribed anti-tumor chemotherapeutic agents which improve survival in many solid tumors including non-small cell lung cancer. However, the treatment of advanced lung cancer is restricted due to chemotherapy resistance. Here, we developed and investigated survivin promoter regulating conditionally replicating adenovirus (CRAd) for its anti-tumor potential alone or in combination with cisplatin in two lung cancer cells, H23, H2126, and their resistant cells, H23/CPR, H2126/CPR. To measure the expression of genes which regulate resistance, adenoviral transduction, metastasis, and apoptosis in cancer cells, RT-PCR and Western blotting were performed. The anti-tumor efficacy of the treatments was evaluated through flow cytometry, MTT and transwell assays. This study demonstrated that co-treatment with cisplatin and CRAd exerts synergistic anti-tumor effects on chemotherapy sensitive lung cancer cells and monotherapy of CRAd could be a practical approach to deal with chemotherapy resistance. Combined treatment induced stronger apoptosis by suppressing the anti-apoptotic molecule Bcl-2, and reversed epithelial to mesenchymal transition. In conclusion, cisplatin synergistically increased the tumor-killing of CRAd by (1) increasing CRAd transduction via enhanced CAR expression and (2) increasing p53 dependent or independent apoptosis of lung cancer cell lines. Also, CRAd alone proved to be a very efficient anti-tumor agent in cancer cells resistant to cisplatin owing to upregulated CAR levels. In an exciting outcome, we have revealed novel therapeutic opportunities to exploit intrinsic and acquired resistance to enhance the therapeutic index of anti-tumor treatment in lung cancer.
Collapse
|
147
|
Corcoran RB. Circulating Tumor DNA: Clinical Monitoring and Early Detection. ANNUAL REVIEW OF CANCER BIOLOGY 2019. [DOI: 10.1146/annurev-cancerbio-030518-055719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Roughly 70 years after the presence of cell-free DNA (cfDNA) in circulating blood was discovered, cfDNA has emerged as a transformative technology in clinical oncology. The ability to assess the presence, level, and composition of tumor DNA from a routine, noninvasive blood draw has opened the door to a broad array of high-impact clinical applications. While cfDNA is rapidly gaining clinical favor as a means of tumor mutational profiling without the need for an invasive biopsy, emerging applications in the areas of clinical monitoring and early cancer detection hold tremendous promise. These developing applications of cfDNA are reviewed herein.
Collapse
Affiliation(s)
- Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
148
|
Chatterjee N, Bivona TG. Polytherapy and Targeted Cancer Drug Resistance. Trends Cancer 2019; 5:170-182. [PMID: 30898264 PMCID: PMC6446041 DOI: 10.1016/j.trecan.2019.02.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
A current challenge in cancer treatment is drug resistance. Even the most effective therapies often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. However, how resistance arises in cancer remains incompletely understood. While drug resistance in cancer is thought to be driven by irreversible genetic mutations, emerging evidence also implicates reversible proteomic and epigenetic mechanisms in the development of drug resistance. Tumor microenvironment-mediated mechanisms and tumor heterogeneity can significantly contribute to cancer treatment resistance. Here, we discuss the diverse and dynamic strategies that cancers use to evade drug response, the promise of upfront combination and intermittent therapies and therapy switching in forestalling resistance, and epigenetic reprogramming to combat resistance.
Collapse
Affiliation(s)
- Nilanjana Chatterjee
- Department of Medicine, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA.
| |
Collapse
|
149
|
Pham-Danis C, Gehrke S, Danis E, Rozhok AI, Daniels MW, Gao D, Collins C, Paola JTD, D'Alessandro A, DeGregori J. Urea Cycle Sustains Cellular Energetics upon EGFR Inhibition in EGFR-Mutant NSCLC. Mol Cancer Res 2019; 17:1351-1364. [PMID: 30808730 DOI: 10.1158/1541-7786.mcr-18-1068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/06/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Abstract
Mutations in oncogenes and tumor suppressor genes engender unique metabolic phenotypes crucial to the survival of tumor cells. EGFR signaling has been linked to the rewiring of tumor metabolism in non-small cell lung cancer (NSCLC). We have integrated the use of a functional genomics screen and metabolomics to identify metabolic vulnerabilities induced by EGFR inhibition. These studies reveal that following EGFR inhibition, EGFR-driven NSCLC cells become dependent on the urea cycle and, in particular, the urea cycle enzyme CPS1. Combining knockdown of CPS1 with EGFR inhibition further reduces cell proliferation and impedes cell-cycle progression. Profiling of the metabolome demonstrates that suppression of CPS1 potentiates the effects of EGFR inhibition on central carbon metabolism, pyrimidine biosynthesis, and arginine metabolism, coinciding with reduced glycolysis and mitochondrial respiration. We show that EGFR inhibition and CPS1 knockdown lead to a decrease in arginine levels and pyrimidine derivatives, and the addition of exogenous pyrimidines partially rescues the impairment in cell growth. Finally, we show that high expression of CPS1 in lung adenocarcinomas correlated with worse patient prognosis in publicly available databases. These data collectively reveal that NSCLC cells have a greater dependency on the urea cycle to sustain central carbon metabolism, pyrimidine biosynthesis, and arginine metabolism to meet cellular energetics upon inhibition of EGFR. IMPLICATIONS: Our results reveal that the urea cycle may be a novel metabolic vulnerability in the context of EGFR inhibition, providing an opportunity to develop rational combination therapies with EGFR inhibitors for the treatment of EGFR-driven NSCLC.
Collapse
Affiliation(s)
- Catherine Pham-Danis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrii I Rozhok
- Department of Dermatology, Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael W Daniels
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dexiang Gao
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christina Collins
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - José T Di Paola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Department of Dermatology, Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
150
|
Cooper JM, Patel AJ, Chen Z, Liao CP, Chen K, Mo J, Wang Y, Le LQ. Overcoming BET Inhibitor Resistance in Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res 2019; 25:3404-3416. [PMID: 30796033 DOI: 10.1158/1078-0432.ccr-18-2437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE BET bromodomain inhibitors have emerged as a promising therapy for numerous cancer types in preclinical studies, including neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumor (MPNST). However, potential mechanisms underlying resistance to these inhibitors in different cancers are not completely understood. In this study, we explore new strategy to overcome BET inhibitor resistance in MPNST.Experimental Design: Through modeling tumor evolution by studying genetic changes underlying the development of MPNST, a lethal sarcoma with no effective medical treatment, we identified a targetable addiction to BET bromodomain family member BRD4 in MPNST. This served as a controlled model system to delineate mechanisms of sensitivity and resistance to BET bromodomain inhibitors in this disease. RESULTS Here, we show that a malignant progression-associated increase in BRD4 protein levels corresponds to partial sensitivity to BET inhibition in MPNST. Strikingly, genetic depletion of BRD4 protein levels synergistically sensitized MPNST cells to diverse BET inhibitors in culture and in vivo. CONCLUSIONS Collectively, MPNST sensitivity to combination genetic and pharmacologic inhibition of BRD4 revealed the presence of a unique addiction to BRD4 in MPNST. Our discovery that a synthetic lethality exists between BET inhibition and reduced BRD4 protein levels nominates MPNST for the investigation of emerging therapeutic interventions such as proteolysis-targeting chimeras (PROTACs) that simultaneously target bromodomain activity and BET protein abundance.
Collapse
Affiliation(s)
- Jonathan M Cooper
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Amish J Patel
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Kun Chen
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Yong Wang
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. .,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|