101
|
Marinoff AE, Spurr LF, Fong C, Li YY, Forrest SJ, Ward A, Doan D, Corson L, Mauguen A, Pinto N, Maese L, Colace S, Macy ME, Kim A, Sabnis AJ, Applebaum MA, Laetsch TW, Glade-Bender J, Weiser DA, Anderson M, Crompton BD, Meyers P, Zehir A, MacConaill L, Lindeman N, Nowak JA, Ladanyi M, Church AJ, Cherniack AD, Shukla N, Janeway KA. Clinical Targeted Next-Generation Panel Sequencing Reveals MYC Amplification Is a Poor Prognostic Factor in Osteosarcoma. JCO Precis Oncol 2023; 7:e2200334. [PMID: 36996377 PMCID: PMC10531050 DOI: 10.1200/po.22.00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023] Open
Abstract
PURPOSE Osteosarcoma risk stratification, on the basis of the presence of metastatic disease at diagnosis and histologic response to chemotherapy, has remained unchanged for four decades, does not include genomic features, and has not facilitated treatment advances. We report on the genomic features of advanced osteosarcoma and provide evidence that genomic alterations can be used for risk stratification. MATERIALS AND METHODS In a primary analytic patient cohort, 113 tumor and 69 normal samples from 92 patients with high-grade osteosarcoma were sequenced with OncoPanel, a targeted next-generation sequencing assay. In this primary cohort, we assessed the genomic landscape of advanced disease and evaluated the correlation between recurrent genomic events and outcome. We assessed whether prognostic associations identified in the primary cohort were maintained in a validation cohort of 86 patients with localized osteosarcoma tested with MSK-IMPACT. RESULTS In the primary cohort, 3-year overall survival (OS) was 65%. Metastatic disease, present in 33% of patients at diagnosis, was associated with poor OS (P = .04). The most frequently altered genes in the primary cohort were TP53, RB1, MYC, CCNE1, CCND3, CDKN2A/B, and ATRX. Mutational signature 3 was present in 28% of samples. MYC amplification was associated with a worse 3-year OS in both the primary cohort (P = .015) and the validation cohort (P = .012). CONCLUSION The most frequently occurring genomic events in advanced osteosarcoma were similar to those described in prior reports. MYC amplification, detected with clinical targeted next-generation sequencing panel tests, is associated with poorer outcomes in two independent cohorts.
Collapse
Affiliation(s)
- Amanda E. Marinoff
- Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
- Pediatric Hematology/Oncology, UCSF Benioff Children's Hospital, San Francisco, CA
| | - Liam F. Spurr
- Broad Institute of Harvard and MIT, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Christina Fong
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yvonne Y. Li
- Harvard Medical School, Boston, MA
- Broad Institute of Harvard and MIT, Boston, MA
| | - Suzanne J. Forrest
- Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Abigail Ward
- Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Duong Doan
- Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Laura Corson
- Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Audrey Mauguen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Navin Pinto
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA
| | - Luke Maese
- University of Utah, Huntsman Cancer Institute, and Primary Children's Hospital, Salt Lake City, UT
| | - Susan Colace
- Pediatric Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH
| | - Margaret E. Macy
- Department of Pediatric Hematology/Oncology, University of Colorado and The Center for Cancer and Blood Disorders, Colorado Children's Hospital, Denver, CO
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC
| | - Amit J. Sabnis
- Pediatric Hematology/Oncology, UCSF Benioff Children's Hospital, San Francisco, CA
| | | | - Theodore W. Laetsch
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA
| | - Julia Glade-Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel A. Weiser
- Department of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, New York, NY
| | - Megan Anderson
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA
| | - Brian D. Crompton
- Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Paul Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Zehir
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Laura MacConaill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Neal Lindeman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alanna J. Church
- Harvard Medical School, Boston, MA
- Department of Pathology, Boston Children's Hospital, Boston, MA
| | - Andrew D. Cherniack
- Harvard Medical School, Boston, MA
- Broad Institute of Harvard and MIT, Boston, MA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katherine A. Janeway
- Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
102
|
Li S, Zhang H, Liu J, Shang G. Targeted therapy for osteosarcoma: a review. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04614-4. [PMID: 36807762 DOI: 10.1007/s00432-023-04614-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Osteosarcoma is a common primary malignant tumour of the bone that usually occurs in children and adolescents. It is characterised by difficult treatment, recurrence and metastasis, and poor prognosis. Currently, the treatment of osteosarcoma is mainly based on surgery and auxiliary chemotherapy. However, for recurrent and some primary osteosarcoma cases, owing to the rapid progression of disease and chemotherapy resistance, the effects of chemotherapy are poor. With the rapid development of tumour-targeted therapy, molecular-targeted therapy for osteosarcoma has shown promise. PURPOSE In this paper, we review the molecular mechanisms, related targets, and clinical applications of targeted osteosarcoma therapy. In doing this, we provide a summary of recent literature on the characteristics of targeted osteosarcoma therapy, the advantages of its clinical application, and development of targeted therapy in future. We aim to provide new insights into the treatment of osteosarcoma. CONCLUSION Targeted therapy shows potential in the treatment of osteosarcoma and may offer an important means of precise and personalised treatment in the future, but drug resistance and adverse effects may limit its application.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China.,Graduate School, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - He Zhang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Jinxin Liu
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Guanning Shang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China.
| |
Collapse
|
103
|
Preston AJ, Rogers A, Sharp M, Mitchell G, Toruno C, Barney BB, Donovan LN, Bly J, Kennington R, Payne E, Iovino A, Furukawa G, Robinson R, Shamloo B, Buccilli M, Anders R, Eckstein S, Fedak EA, Wright T, Maley CC, Kiso WK, Schmitt D, Malkin D, Schiffman JD, Abegglen LM. Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Cell Death Discov 2023; 9:66. [PMID: 36797268 PMCID: PMC9935553 DOI: 10.1038/s41420-023-01348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Approximately 20 TP53 retrogenes exist in the African and Asian elephant genomes (Loxodonta Africana, Elephas Maximus) in addition to a conserved TP53 gene that encodes a full-length protein. Elephant TP53-RETROGENE 9 (TP53-R9) encodes a p53 protein (p53-R9) that is truncated in the middle of the canonical DNA binding domain. This C-terminally truncated p53 retrogene protein lacks the nuclear localization signals and oligomerization domain of its full-length counterpart. When expressed in human osteosarcoma cells (U2OS), p53-R9 binds to Tid1, the chaperone protein responsible for mitochondrial translocation of human p53 in response to cellular stress. Tid1 expression is required for p53-R9-induced apoptosis. At the mitochondria, p53-R9 binds to the pro-apoptotic BCL-2 family member Bax, which leads to caspase activation, cytochrome c release, and cell death. Our data show, for the first time, that expression of this truncated elephant p53 retrogene protein induces apoptosis in human cancer cells. Understanding the molecular mechanism by which the additional elephant TP53 retrogenes function may provide evolutionary insight that can be utilized for the development of therapeutics to treat human cancers.
Collapse
Affiliation(s)
- Aidan J Preston
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Aaron Rogers
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Miranda Sharp
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gareth Mitchell
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cristhian Toruno
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Brayden B Barney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Journey Bly
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ryan Kennington
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Emily Payne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anthony Iovino
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gabriela Furukawa
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | - Matthew Buccilli
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Rachel Anders
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sarah Eckstein
- Duke Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth A Fedak
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| | - Tanner Wright
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlo C Maley
- Biodesign Institute, School of Life Sciences, and Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
| | | | - Dennis Schmitt
- Department of Animal Science, William H. Darr College of Agriculture, Missouri State University, Springfield, MO, USA
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Joshua D Schiffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Salt Lake City, UT, USA
| | - Lisa M Abegglen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.
- Peel Therapeutics, Salt Lake City, UT, USA.
| |
Collapse
|
104
|
Xu L, Duan J, Li M, Zhou C, Wang Q. Circ_0000253 promotes the progression of osteosarcoma via the miR-1236-3p/SP1 axis. J Pharm Pharmacol 2023; 75:227-235. [PMID: 36444162 DOI: 10.1093/jpp/rgac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Circular RNAs (circRNAs) play important roles in modulating tumour progression. This study investigated the role of circ_0000253 in osteosarcoma (OS). METHODS We downloaded the chip dataset GSE140256 from the Gene Expression Omnibus database and the circRNAs differentially expressed in OS tissue and normal tissue samples were analysed. Quantitative real-time PCR (qRT-PCR) was carried out to examine circ_0000253 expression in OS tissues and cells. Cell counting kit-8, BrdU and flow cytometry assays were performed to verify the effects of circ_0000253 on OS cell growth and apoptosis. Bioinformatics analysis was conducted to predict, and RNA immunoprecipitation assay and dual-luciferase reporter gene assay were performed to verify the targeted relationships of miR-1236-3p with circ_0000253 and Sp1 transcription factor (SP1) mRNA 3'UTR. The effects of miR-1236-3p and circ_0000253 on SP1 expression in OS cells were detected through Western blot. KEY FINDINGS Circ_0000253 was upregulated in OS tissues and cell lines. Circ_0000253 overexpression facilitated OS cell growth and suppressed apoptosis, whereas knocking down circ_0000253 inhibited OS cell growth and facilitated apoptosis. Circ_0000253 targeted miR-1236-3p directly and negatively modulated its expression. SP1 was miR-1236-3p's target gene and positively regulated by circ_0000253. CONCLUSION Circ_0000253 promotes OS cell proliferation and suppresses cell apoptosis via regulating the miR-1236-3p/SP1 molecular axis.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Orthopedics, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| | - Jun Duan
- Department of Orthopedics, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| | - Mingwu Li
- Department of Orthopedics, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| | - Cong Zhou
- Department of Blood Transfusion, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China
| | - Qinzhi Wang
- Department of Orthopedics, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| |
Collapse
|
105
|
Dai Z, Liu Z, Yang R, Cao W, Ji T. EVI2B Is a Prognostic Biomarker and Is Correlated with Monocyte and Macrophage Infiltration in Osteosarcoma Based on an Integrative Analysis. Biomolecules 2023; 13:327. [PMID: 36830696 PMCID: PMC9953216 DOI: 10.3390/biom13020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor. However, treatment strategies have not changed over the past 30 years. The relationship between OS and the immune microenvironment may provide a basis for the establishment of novel therapeutic targets. In this study, a large-scale gene expression dataset (GSE42352) was used to identify key genes in OS. A Target-OS dataset from the Cancer Genome Atlas was used as a validation set. Ecotropic viral integration site 2B (EVI2B) was significantly upregulated in OS tumor samples. Differentially expressed genes (DEGs) were identified between samples with high and low EVI2B expression in both the test and validation cohorts. The top three functions of DEGs determined by a gene set enrichment analysis (GSEA) were chemokine signaling, cytokine-cytokine receptor interaction, and Human T-cell leukemia virus 1 infection. A prognostic prediction model including EVI2B, DOCK2, and CD33 was constructed by a Cox regression analysis. This model indicated that EVI2B is an independent protective prognostic marker in OS. An analysis of immune infiltration further showed that high EVI2B expression levels were correlated with high levels of macrophage infiltration. Protein expression data derived from the Human Protein Atlas suggested EVI2B to be highly expressed in monocytes. Finally, we validated the elevated expression of EVI2B in OS cell lines and OS tissue samples; these results were consistent with those of the analyses of the GSE42352 and Target-OS datasets. Our integrative bioinformatics analysis and experimental results provide clear evidence for the prognostic value of EVI2B in OS and its close relationship with monocyte and macrophage infiltration.
Collapse
Affiliation(s)
- Zhenlin Dai
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Zheqi Liu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Rong Yang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Tong Ji
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| |
Collapse
|
106
|
Loss of RanGAP1 drives chromosome instability and rapid tumorigenesis of osteosarcoma. Dev Cell 2023; 58:192-210.e11. [PMID: 36696903 DOI: 10.1016/j.devcel.2022.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/27/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Chromothripsis is a catastrophic event of chromosomal instability that involves intensive fragmentation and rearrangements within localized chromosomal regions. However, its cause remains unclear. Here, we show that reduction and inactivation of Ran GTPase-activating protein 1 (RanGAP1) commonly occur in human osteosarcoma, which is associated with a high rate of chromothripsis. In rapidly expanding mouse osteoprogenitors, RanGAP1 deficiency causes chromothripsis in chr1q, instant inactivation of Rb1 and degradation of p53, consequent failure in DNA damage repair, and ultrafast osteosarcoma tumorigenesis. During mitosis, RanGAP1 anchors to the kinetochore, where it recruits PP1-γ to counteract the activity of the spindle-assembly checkpoint (SAC) and prevents TOP2A degradation, thus safeguarding chromatid decatenation. Loss of RanGAP1 causes SAC hyperactivation and chromatid decatenation failure. These findings demonstrate that RanGAP1 maintains mitotic chromosome integrity and that RanGAP1 loss drives tumorigenesis through its direct effects on SAC and decatenation and secondary effects on DNA damage surveillance.
Collapse
|
107
|
Wei H, Du X, Zhao H, Sun P, Yang J. Propofol Regulates ER Stress to Inhibit Tumour Growth and Sensitize Osteosarcoma to Doxorubicin. Int J Clin Pract 2023; 2023:3093945. [PMID: 36756222 PMCID: PMC9897936 DOI: 10.1155/2023/3093945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumour affecting children and young adults. The antitumour role of propofol, a widely used intravenous sedative-hypnotic agent, has been recently reported in different cancer types. In this study, we aimed to assess the role of propofol on osteosarcoma and explore the possible mechanisms. Propofol of increasing concentrations (2.5, 5, 10, and 20 μg/ml) was used to treat the MG63 and 143B cells for 72 hours, and the CCK8 assay was applied to evaluate the tumour cell proliferation. Tumour cell migration and invasion were assessed with the transwell assay. The tumour cells were also treated with doxorubicin single agent or in combination with propofol to explore their synergic role. Differential expressed genes after propofol treatment were obtained and functionally assessed with bioinformatic tools. Expression of ER stress markers CHOP, p-eIF2α, and XBP1s was evaluated to validate the activation of ER stress response with western blot and qRT-PCR. The statistical analyses were performed with R v4.2.1. Propofol treatment led to significant growth inhibition in MG63 and 143B cells in a dose-dependent manner (p < 0.05). Osteosarcoma migration (MG63 91.4 (82-102) vs. 56.8 (49-65), p < 0.05; 143B 96.6 (77-104) vs. 45.4 (28-54), p < 0.05) and invasion (MG63 68.6 (61-80) vs. 32 (25-39), p < 0.05; 143B 90.6 (72-100) vs. 39.2 (26-55), p < 0.05) were reduced after propofol treatment. Doxorubicin sensitivity was increased after propofol treatment compared with the control group (p < 0.05). Bioinformatic analysis showed significant functional enrichment in ER stress response after propofol treatment. Upregulation of CHOP, p-eIF2α, and XBP1s was detected in MG63 and 143B secondary to propofol treatment. In conclusion, we found that propofol treatment suppressed osteosarcoma proliferation and invasion and had a synergic role with doxorubicin by inducing ER stress. Our findings provided a novel option in osteosarcoma therapy.
Collapse
Affiliation(s)
- Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| | - Xinhui Du
- Bone and Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Huaping Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| | - Peipei Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| |
Collapse
|
108
|
Kinnaman MD, Zaccaria S, Makohon-Moore A, Arnold B, Levine M, Gundem G, Ossa JEA, Glodzik D, Rodríguez-Sánchez MI, Bouvier N, Li S, Stockfisch E, Dunigan M, Cobbs C, Bhanot U, You D, Mullen K, Melchor J, Ortiz MV, O'Donohue T, Slotkin E, Wexler LH, Dela Cruz FS, Hameed M, Glade Bender JL, Tap WD, Meyers PA, Papaemmanuil E, Kung AL, Iacobuzio-Donahue CA. Subclonal somatic copy number alterations emerge and dominate in recurrent osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522765. [PMID: 36711976 PMCID: PMC9881990 DOI: 10.1101/2023.01.05.522765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple large-scale tumor genomic profiling efforts have been undertaken in osteosarcoma, however, little is known about the spatial and temporal intratumor heterogeneity and how it may drive treatment resistance. We performed whole-genome sequencing of 37 tumor samples from eight patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. We identified subclonal copy number alterations in all but one patient. We observed that in five patients, a subclonal copy number clone from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clone in 6 out of 7 patients with more than one clone. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy number clones. Our study sheds light on intratumor heterogeneity and the potential drivers of treatment resistance in osteosarcoma.
Collapse
Affiliation(s)
- Michael D Kinnaman
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Alvin Makohon-Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA (current affiliation)
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA (current affiliation)
| | - Brian Arnold
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Max Levine
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Isabl, New York, NY, USA (current affiliation)
| | - Gunes Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan E Arango Ossa
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dominik Glodzik
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA (current affiliation)
| | - M Irene Rodríguez-Sánchez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Wunderman Thompson Health, New York, NY, USA (current affiliation)
| | - Nancy Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- IT and Digital Initiatives, Memorial Sloan Kettering Cancer Center, New York, NY, USA (current affiliation)
| | - Shanita Li
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Stockfisch
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marisa Dunigan
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cassidy Cobbs
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umesh Bhanot
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katelyn Mullen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Jerry Melchor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tara O'Donohue
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia L Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanuil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
109
|
Schott CR, Koehne AL, Sayles LC, Young EP, Luck C, Yu K, Lee AG, Breese MR, Leung SG, Xu H, Shah AT, Liu HY, Spillinger A, Behroozfard IH, Marini KD, Dinh PT, Pons Ventura MAV, Vanderboon EN, Hazard FK, Cho SJ, Avedian RS, Mohler DG, Zimel M, Wustrack R, Curtis C, Sirota M, Sweet-Cordero EA. Development and characterization of new patient-derived xenograft (PDX) models of osteosarcoma with distinct metastatic capacities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524562. [PMID: 36711882 PMCID: PMC9882347 DOI: 10.1101/2023.01.19.524562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology, especially for highly aggressive cancers with a propensity for metastatic spread. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, a large panel of models is needed to fully elucidate key aspects of disease biology and to recapitulate clinically-relevant phenotypes. We describe the development and characterization of osteosarcoma patient-derived xenografts (PDXs) and a panel of PDX-derived cell lines. Matched patient samples, PDXs, and PDX-derived cell lines were comprehensively evaluated using whole genome sequencing and RNA sequencing. PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication (WGD) in a subset of cell lines. These cell line models were heterogeneous in their metastatic capacity and their tissue tropism as observed in both intravenous and orthotopic models. As proof-of-concept study, we used one of these models to test the preclinical effectiveness of a CDK inhibitor on the growth of metastatic tumors in an orthotopic amputation model. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden in this model.
Collapse
|
110
|
Landuzzi L, Ruzzi F, Lollini PL, Scotlandi K. Synovial Sarcoma Preclinical Modeling: Integrating Transgenic Mouse Models and Patient-Derived Models for Translational Research. Cancers (Basel) 2023; 15:cancers15030588. [PMID: 36765545 PMCID: PMC9913760 DOI: 10.3390/cancers15030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Synovial sarcomas (SyS) are rare malignant tumors predominantly affecting children, adolescents, and young adults. The genetic hallmark of SyS is the t(X;18) translocation encoding the SS18-SSX fusion gene. The fusion protein interacts with both the BAF enhancer and polycomb repressor complexes, and either activates or represses target gene transcription, resulting in genome-wide epigenetic perturbations and altered gene expression. Several experimental in in vivo models, including conditional transgenic mouse models expressing the SS18-SSX fusion protein and spontaneously developing SyS, are available. In addition, patient-derived xenografts have been estab-lished in immunodeficient mice, faithfully reproducing the complex clinical heterogeneity. This review focuses on the main molecular features of SyS and the related preclinical in vivo and in vitro models. We will analyze the different conditional SyS mouse models that, after combination with some of the few other recurrent alterations, such as gains in BCL2, Wnt-β-catenin signaling, FGFR family, or loss of PTEN and SMARCB1, have provided additional insight into the mechanisms of synovial sarcomagenesis. The recent advancements in the understanding of SyS biology and improvements in preclinical modeling pave the way to the development of new epigenetic drugs and immunotherapeutic approaches conducive to new treatment options.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (L.L.); (P.-L.L.); Tel.: +39-051-2094796 (L.L.); +39-051-2094786 (P.-L.L.)
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.L.); (P.-L.L.); Tel.: +39-051-2094796 (L.L.); +39-051-2094786 (P.-L.L.)
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
111
|
Farzaneh M, Najafi S, Anbiyaee O, Azizidoost S, Khoshnam SE. LncRNA MALAT1-related signaling pathways in osteosarcoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:21-32. [PMID: 35790599 DOI: 10.1007/s12094-022-02876-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is a common and malignant form of bone cancer, which affects children and young adults. OS is identified by osteogenic differentiation and metastasis. However, the exact molecular mechanism of OS development and progression is still unclear. Recently, long non-coding RNAs (lncRNA) have been proven to regulate OS proliferation and drug resistance. LncRNAs are longer than 200 nucleotides that represent the extensive applications in the processing of pre-mRNA and the pathogenesis of human diseases. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA known as a transcriptional and translational regulator. The aberrant expression of MALAT1 has been shown in several human cancers. The high level of MALAT1 is involved in OS cell growth and tumorigenicity by targeting several signaling pathways and miRNAs. Hence, MALAT1 might be a suitable approach for OS diagnosis and treatment. In this review, we will summarize the role of lncRNA MALAT1 in the pathophysiology of OS.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
112
|
Du X, Wei H, Zhang B, Wang B, Li Z, Pang LK, Zhao R, Yao W. Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front Oncol 2023; 13:1117867. [PMID: 37197432 PMCID: PMC10183593 DOI: 10.3389/fonc.2023.1117867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In osteosarcoma patients, metastasis of the primary cancer is the leading cause of death. At present, management options to prevent metastasis are limited and non-curative. In this study, we review the current state of knowledge on the molecular mechanisms of metastasis and discuss promising new therapies to combat osteosarcoma metastasis. Genomic and epigenomic changes, metabolic reprogramming, transcription factors, dysregulation of physiologic pathways, and alterations to the tumor microenvironment are some of the changes reportedly involved in the regulation of osteosarcoma metastasis. Key factors within the tumor microenvironment include infiltrating lymphocytes, macrophages, cancer-associated fibroblasts, platelets, and extracellular components such as vesicles, proteins, and other secreted molecules. We conclude by discussing potential osteosarcoma-limiting agents and their clinical studies.
Collapse
Affiliation(s)
- Xinhui Du
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
- *Correspondence: Xinhui Du,
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zhang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Bangmin Wang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Zhehuang Li
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Lon Kai Pang
- Baylor College of Medicine, Houston, TX, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Weitao Yao
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| |
Collapse
|
113
|
Zheng K, Hou Y, Zhang Y, Wang F, Sun A, Yang D. Molecular features and predictive models identify the most lethal subtype and a therapeutic target for osteosarcoma. Front Oncol 2023; 13:1111570. [PMID: 36874110 PMCID: PMC9980341 DOI: 10.3389/fonc.2023.1111570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Background Osteosarcoma is the most common primary malignant bone tumor. The existing treatment regimens remained essentially unchanged over the past 30 years; hence the prognosis has plateaued at a poor level. Precise and personalized therapy is yet to be exploited. Methods One discovery cohort (n=98) and two validation cohorts (n=53 & n=48) were collected from public data sources. We performed a non-negative matrix factorization (NMF) method on the discovery cohort to stratify osteosarcoma. Survival analysis and transcriptomic profiling characterized each subtype. Then, a drug target was screened based on subtypes' features and hazard ratios. We also used specific siRNAs and added a cholesterol pathway inhibitor to osteosarcoma cell lines (U2OS and Saos-2) to verify the target. Moreover, PermFIT and ProMS, two support vector machine (SVM) tools, and the least absolute shrinkage and selection operator (LASSO) method, were employed to establish predictive models. Results We herein divided osteosarcoma patients into four subtypes (S-I ~ S-IV). Patients of S- I were found probable to live longer. S-II was characterized by the highest immune infiltration. Cancer cells proliferated most in S-III. Notably, S-IV held the most unfavorable outcome and active cholesterol metabolism. SQLE, a rate-limiting enzyme for cholesterol biosynthesis, was identified as a potential drug target for S-IV patients. This finding was further validated in two external independent osteosarcoma cohorts. The function of SQLE to promote proliferation and migration was confirmed by cell phenotypic assays after the specific gene knockdown or addition of terbinafine, an inhibitor of SQLE. We further employed two machine learning tools based on SVM algorithms to develop a subtype diagnostic model and used the LASSO method to establish a 4-gene model for predicting prognosis. These two models were also verified in a validation cohort. Conclusion The molecular classification enhanced our understanding of osteosarcoma; the novel predicting models served as robust prognostic biomarkers; the therapeutic target SQLE opened a new way for treatment. Our results served as valuable hints for future biological studies and clinical trials of osteosarcoma.
Collapse
Affiliation(s)
- Kun Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiming Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wang
- Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
114
|
Fazli J, Fattah K, Moliani A, Valizadeh A, Bazavar M. The expression of miR-181b, CYLD, CBX-7, BCL2, and p53 in osteosarcoma patients and correlation with clinicopathological factors. Chem Biol Drug Des 2023; 101:2-8. [PMID: 36098711 DOI: 10.1111/cbdd.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is a common human malignancy with a high mortality rate worldwide. Recent studies have been focused on understanding the involvement of microRNA (miRNAs) in the pathogenesis of osteosarcoma. Therefore, the present study aimed to measure the expression levels of miR-181a, cylindromatosis (CYLD), chromo box homolog 7 (CBX7), B-cell lymphoma 2 (BCL2), and tumor protein p53 in tumor tissue and adjacent normal tissues in patients with osteosarcoma and its relationship with clinicopathological factors. The expression levels of miR-181a, CYLD, CBX7, BCL2, and p53 were measured in 60 patients with osteosarcoma using quantitative real-time polymerase chain reaction. Finally, we compared the relationship between these gene levels and clinicopathological factors in tumor and healthy tissues. Our results showed that the expression levels of miR-181a, BCL2, and p53 were significantly higher in osteosarcoma tissue in comparison with normal tissues (p < .05). On the contrary, CYLD and CBX7 were downregulated in osteosarcoma tumor tissues compared to adjacent healthy tissues (p < .05). In addition, the expression levels of miR-181a in tumor tissues were strongly correlated with patients' age, tumor size, clinical stage, cancer grade, and lymph node metastasis (p < .05). Our findings highlight new insights into understanding the role of miR-181a in the pathogenesis of osteosarcoma. However, further studies are needed to elucidate miRNA as therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Jafar Fazli
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Bazavar
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
115
|
Harrison D, Gill J, Roth M, Hingorani P, Zhang W, Teicher B, Earley E, Erickson S, Gatto G, Kumasheva R, Houghton P, Smith M, Kolb EA, Gorlick R. Evaluation of the pan-class I phosphoinositide 3-kinase (PI3K) inhibitor copanlisib in the Pediatric Preclinical Testing Consortium in vivo models of osteosarcoma. Pediatr Blood Cancer 2023; 70:e30017. [PMID: 36250964 PMCID: PMC11146293 DOI: 10.1002/pbc.30017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 01/09/2023]
Abstract
Copanlisib is a pan-class I phosphoinositide 3-kinase (PI3K) inhibitor, with activity against all four PI3K class I isoforms (PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ). Whole-genome and RNA sequencing data have revealed several PI3K aberrations in osteosarcoma tumor samples. The in vivo anticancer effects of copanlisib were assessed in a panel of six osteosarcoma models. Copanlisib induced prolonged event-free survival in five of six osteosarcoma models; however, all models demonstrated progressive disease suggesting minimal activity. While copanlisib did not result in tumor regression, more data are needed to fully explore the role of the PI3K pathway in the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric Earley
- RTI International, Research Triangle Park, NC
| | | | | | | | - Peter Houghton
- Greehey Children’s Cancer Research Institute, San Antonio, TX
| | | | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Wilmington, DE
| | | |
Collapse
|
116
|
Xu H, Zheng H, Zhang Q, Song H, Wang Q, Xiao J, Dong Y, Shen Z, Wang S, Wu S, Wei Y, Lu W, Zhu Y, Niu X. A Multicentre Clinical Study of Sarcoma Personalised Treatment Using Patient-Derived Tumour Xenografts. Clin Oncol (R Coll Radiol) 2023; 35:e48-e59. [PMID: 35781406 DOI: 10.1016/j.clon.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/21/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023]
Abstract
AIMS Medication for advanced sarcomas has not improved for three decades. Patient-derived tumour xenografts (PDTX) are a promising solution for developing new therapies and real-time personalised medicine because of their highly effective prediction of drug efficacy. However, there is a dearth of PDTX models for sarcomas due to the scarcity and heterogeneity of the disease. MATERIALS AND METHODS A multicentre clinical collaborative study (ChiCTR-OOC-17013617) was carried out. Fresh patient tumour tissues via resection or biopsy were used for the PDTX set-up. The standard medical care chosen by the physician was given to the patient, in parallel with testing on multiple regimens. The outcomes of patients' responses and PDTX tests were compared. Comprehensive analyses were carried out to assess the clinical value of PDTX for the treatment of sarcomas. Living tissues from successfully engrafted cases were deposited into a repository. RESULTS Forty-two cases, including 36 bone sarcomas and six soft-tissue sarcomas, were enrolled; the overall engraftment rate was 73.8%. Histopathological examination showed a 100% consistency between primary tumours and tumour grafts. The engraftment rate was independent of age, gender and sampling methods, but was associated with subtypes of tumour. The outgrowth time of tumour grafts could be associated with prognosis. Major somatic mutations in tumour grafts occurred primarily in common tumour driver genes. Poor prognosis was associated with the KMT2C mutation. A drug efficacy test showed complete concordance between the PDTX model and patients' responses in 17 regimens. CONCLUSION PDTX is an ideal preclinical model for sarcomas because of its faithful preservation of the heterogeneity of the disease, a satisfactory engraftment rate and high accuracy in its prediction of drug efficacy.
Collapse
Affiliation(s)
- H Xu
- Beijing Jishuitan Hospital, Beijing, China
| | - H Zheng
- Nanjing Personal Oncology Biological Technology Co. Ltd, Nanjing, China
| | - Q Zhang
- Beijing Jishuitan Hospital, Beijing, China
| | - H Song
- Nanjing Personal Oncology Biological Technology Co. Ltd, Nanjing, China
| | - Q Wang
- Nanjing Personal Oncology Biological Technology Co. Ltd, Nanjing, China
| | - J Xiao
- Changzheng Hospital, Shanghai, China
| | - Y Dong
- The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Z Shen
- The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - S Wang
- Spine Surgery, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - S Wu
- Jinling Hospital, Nanjing, Jiangsu, China
| | - Y Wei
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - W Lu
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Zhu
- Nanjing Personal Oncology Biological Technology Co. Ltd, Nanjing, China
| | - X Niu
- Beijing Jishuitan Hospital, Beijing, China.
| |
Collapse
|
117
|
Liu Z, Liu B, Feng C, Li C, Wang H, Zhang H, Liu P, Li Z, He S, Tu C. Molecular characterization of immunogenic cell death indicates prognosis and tumor microenvironment infiltration in osteosarcoma. Front Immunol 2022; 13:1071636. [PMID: 36569869 PMCID: PMC9780438 DOI: 10.3389/fimmu.2022.1071636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Osteosarcoma (OS) is a highly aggressive bone malignancy with a poor prognosis, mainly in children and adolescents. Immunogenic cell death (ICD) is classified as a type of programmed cell death associated with the tumor immune microenvironment, prognosis, and immunotherapy. However, the feature of the ICD molecular subtype and the related tumor microenvironment (TME) and immune cell infiltration has not been carefully investigated in OS. Methods The ICD-related genes were extracted from previous studies, and the RNA expression profiles and corresponding data of OS were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus database. The ICD-related molecular subtypes were classed by the "ConsensusclusterPlus" package and the construction of ICD-related signatures through univariate regression analysis. ROC curves, independent analysis, and internal validation were used to evaluate signature performance. Moreover, a series of bioinformatic analyses were used for Immunotherapy efficacy, tumor immune microenvironments, and chemotherapeutic drug sensitivity between the high- and low-risk groups. Results Herein, we identified two ICD-related subtypes and found significant heterogeneity in clinical prognosis, TME, and immune response signaling among distinct ICD subtypes. Subsequently, a novel ICD-related prognostic signature was developed to determine its predictive performance in OS. Also, a highly accurate nomogram was then constructed to improve the clinical applicability of the novel ICD-related signature. Furthermore, we observed significant correlations between ICD risk score and TME, immunotherapy response, and chemotherapeutic drug sensitivity. Notably, the in vitro experiments further verified that high GALNT14 expression is closely associated with poor prognosis and malignant progress of OS. Discussion Hence, we identified and validated that the novel ICD-related signature could serve as a promising biomarker for the OS's prognosis, chemotherapy, and immunotherapy response prediction, providing guidance for personalized and accurate immunotherapy strategies for OS.
Collapse
Affiliation(s)
- Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haixia Zhang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shasha He, ; Chao Tu,
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shasha He, ; Chao Tu,
| |
Collapse
|
118
|
Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, Janeway KA, Livingston JA, Roberts RD, Strauss SJ, Gorlick R. Osteosarcoma. Nat Rev Dis Primers 2022; 8:77. [PMID: 36481668 DOI: 10.1038/s41572-022-00409-y] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Osteosarcoma is the most common primary malignant tumour of the bone. Osteosarcoma incidence is bimodal, peaking at 18 and 60 years of age, and is slightly more common in males. The key pathophysiological mechanism involves several possible genetic drivers of disease linked to bone formation, causing malignant progression and metastasis. While there have been significant improvements in the outcome of patients with localized disease, with event-free survival outcomes exceeding 60%, in patients with metastatic disease, event-free survival outcomes remain poor at less than 30%. The suspicion of osteosarcoma based on radiographs still requires pathological evaluation of a bone biopsy specimen for definitive diagnosis and CT imaging of the chest should be performed to identify lung nodules. So far, population-based screening and surveillance strategies have not been implemented due to the rarity of osteosarcoma and the lack of reliable markers. Current screening focuses only on groups at high risk such as patients with genetic cancer predisposition syndromes. Management of osteosarcoma requires a multidisciplinary team of paediatric and medical oncologists, orthopaedic and general surgeons, pathologists, radiologists and specialist nurses. Survivors of osteosarcoma require specialized medical follow-up, as curative treatment consisting of chemotherapy and surgery has long-term adverse effects, which also affect the quality of life of patients. The development of osteosarcoma model systems and related research as well as the evaluation of new treatment approaches are ongoing to improve disease outcomes, especially for patients with metastases.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stefan S Bielack
- Pediatric Oncology, Hematology, Immunology, Klinikum Stuttgart - Olgahospital, Stuttgart Cancer Center, Stuttgart, Germany
| | - Adrienne M Flanagan
- Research Department of Pathology, Cancer Institute, University College London, London, UK
| | - Jonathan Gill
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sandra J Strauss
- University College London Hospitals NHS Foundation Trust, University College London, London, UK
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. .,Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
119
|
Sasa K, Saito T, Kurihara T, Hasegawa N, Sano K, Kubota D, Akaike K, Okubo T, Hayashi T, Takagi T, Ishijima M, Suehara Y. Establishment of Rapid and Accurate Screening System for Molecular Target Therapy of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221138217. [PMID: 36475952 PMCID: PMC9742709 DOI: 10.1177/15330338221138217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Comprehensive analyses using clinical sequences subcategorized osteosarcoma (OS) into several groups according to the activated signaling pathways. Mutually exclusive co-occurrences of gene amplification (PDGFRA/KIT/KDR, VEGFA/CCND3, and MDM2/CDK4) have been identified in approximately 40% of OS, representing candidate subsets for clinical evaluation of additional therapeutic options. Thus, it would be desirable to evaluate the specific gene amplification before starting therapy in patients with OS. Materials and Methods This is a retrospective study. We examined 13 cases of clinical OS samples using NanoString-based copy number variation (CNV) analysis. Decalcification and chemotherapeutic effects on this analysis were also assessed. Results First, the accuracy of this system was validated by showing that amplification/deletion data obtained from this system using various types of cancer cell lines almost perfectly matched to that from the Cancer Cell Line Encyclopedia (CCLE). We identified potentially actionable alterations in CDK4/MDM2 amplification in 10% of samples and potential additional therapeutic targets (PDGFRA/KIT/KDR and VEGFA/CCND3) in 20% of samples, which is consistent with the reported frequencies. Furthermore, this assay could identify these potential therapeutic targets regardless of the sample status (frozen vs formalin-fixed paraffin-embedded [FFPE] tissues). Conclusion We established a NanoString-based rapid and cost-effective method with a short turnaround time (TAT) to examine gene amplification status in OS. This CNV analysis using FFPE samples is recommended where the histological evaluation of viable tumor cells is possible, especially for tumors after chemotherapy with higher chemotherapeutic effects.
Collapse
Affiliation(s)
- Keita Sasa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan,Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan,Tsuyoshi Saito, Department of Human Pathology, MD, PhD, Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
Yoshiyuki Suehara, MD, PhD, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan.
| | - Taisei Kurihara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Sano
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Kubota
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Keisuke Akaike
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan,Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
120
|
Chen F, Zhang Z, Shen R, Chen M, Li G, Zhu X. Generation and characterization of patient-derived xenografts from patients with osteosarcoma. Tissue Cell 2022; 79:101911. [DOI: 10.1016/j.tice.2022.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 02/07/2023]
|
121
|
Jiang Y, Wang J, Sun M, Zuo D, Wang H, Shen J, Jiang W, Mu H, Ma X, Yin F, Lin J, Wang C, Yu S, Jiang L, Lv G, Liu F, Xue L, Tian K, Wang G, Zhou Z, Lv Y, Wang Z, Zhang T, Xu J, Yang L, Zhao K, Sun W, Tang Y, Cai Z, Wang S, Hua Y. Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment. Nat Commun 2022; 13:7207. [PMID: 36418292 PMCID: PMC9684515 DOI: 10.1038/s41467-022-34689-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that most commonly affects children, adolescents, and young adults. Here, we comprehensively analyze genomic, epigenomic and transcriptomic data from 121 OS patients. Somatic mutations are diverse within the cohort, and only TP53 is significantly mutated. Through unsupervised integrative clustering of the multi-omics data, we classify OS into four subtypes with distinct molecular features and clinical prognosis: (1) Immune activated (S-IA), (2) Immune suppressed (S-IS), (3) Homologous recombination deficiency dominant (S-HRD), and (4) MYC driven (S-MD). MYC amplification with HR proficiency tumors is identified with a high oxidative phosphorylation signature resulting in resistance to neoadjuvant chemotherapy. Potential therapeutic targets are identified for each subtype, including platinum-based chemotherapy, immune checkpoint inhibitors, anti-VEGFR, anti-MYC and PARPi-based synthetic lethal strategies. Our comprehensive integrated characterization provides a valuable resource that deepens our understanding of the disease, and may guide future clinical strategies for the precision treatment of OS.
Collapse
Affiliation(s)
- Yafei Jiang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Jinzeng Wang
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Mengxiong Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Dongqing Zuo
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Hongsheng Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Jiakang Shen
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Wenyan Jiang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200001 Shanghai, PR China
| | - Haoran Mu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Xiaojun Ma
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Fei Yin
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Jun Lin
- grid.16821.3c0000 0004 0368 8293Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Chongren Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Shuting Yu
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Lu Jiang
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Gang Lv
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Feng Liu
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Linghang Xue
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Kai Tian
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Gangyang Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Zifei Zhou
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Yu Lv
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Zhuoying Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Tao Zhang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Jing Xu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Liu Yang
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Kewen Zhao
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200001 Shanghai, PR China
| | - Wei Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Yujie Tang
- grid.16821.3c0000 0004 0368 8293Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200001 Shanghai, PR China
| | - Zhengdong Cai
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| | - Shengyue Wang
- grid.16821.3c0000 0004 0368 8293National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 PR China
| | - Yingqi Hua
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 PR China
| |
Collapse
|
122
|
Depletion of R270C Mutant p53 in Osteosarcoma Attenuates Cell Growth but Does Not Prevent Invasion and Metastasis In Vivo. Cells 2022; 11:cells11223614. [PMID: 36429043 PMCID: PMC9688353 DOI: 10.3390/cells11223614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Novel therapeutic targets are needed to better treat osteosarcoma, which is the most common bone malignancy. We previously developed mouse osteosarcoma cells, designated AX (accelerated bone formation) cells from bone marrow stromal cells. AX cells harbor both wild-type and mutant forms of p53 (R270C in the DNA-binding domain, which is equivalent to human R273C). In this study, we showed that mutant p53 did not suppress the transcriptional activation function of wild-type p53 in AX cells. Notably, AXT cells, which are cells derived from tumors originating from AX cells, lost wild-type p53 expression, were devoid of the intact transcription activation function, and were resistant to doxorubicin. ChIP-seq analyses revealed that this mutant form of p53 bound to chromatin in the vicinity of the transcription start sites of various genes but exhibited a different binding profile from wild-type p53. The knockout of mutant p53 in AX and AXT cells by CRISPR-Cas9 attenuated tumor growth but did not affect the invasion of these cells. In addition, depletion of mutant p53 did not prevent metastasis in vivo. Therefore, the therapeutic potency targeting R270C (equivalent to human R273C) mutant p53 is limited in osteosarcoma. However, considering the heterogeneous nature of osteosarcoma, it is important to further evaluate the biological and clinical significance of mutant p53 in various cases.
Collapse
|
123
|
Cillo AR, Mukherjee E, Bailey NG, Onkar S, Daley J, Salgado C, Li X, Liu D, Ranganathan S, Burgess M, Sembrat J, Weiss K, Watters R, Bruno TC, Vignali DAA, Bailey KM. Ewing Sarcoma and Osteosarcoma Have Distinct Immune Signatures and Intercellular Communication Networks. Clin Cancer Res 2022; 28:4968-4982. [PMID: 36074145 PMCID: PMC9669190 DOI: 10.1158/1078-0432.ccr-22-1471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE Ewing sarcoma and osteosarcoma are primary bone sarcomas occurring most commonly in adolescents. Metastatic and relapsed disease are associated with dismal prognosis. Although effective for some soft tissue sarcomas, current immunotherapeutic approaches for the treatment of bone sarcomas have been largely ineffective, necessitating a deeper understanding of bone sarcoma immunobiology. EXPERIMENTAL DESIGN Multiplex immunofluorescence analysis of immune infiltration in relapsed versus primary disease was conducted. To better understand immune states and drivers of immune infiltration, especially during disease progression, we performed single-cell RNA sequencing (scRNAseq) of immune populations from paired blood and bone sarcoma tumor samples. RESULTS Our multiplex immunofluorescence analysis revealed increased immune infiltration in relapsed versus primary disease in both Ewing sarcoma and osteosarcoma. scRNAseq analyses revealed terminally exhausted CD8+ T cells expressing co-inhibitory receptors in osteosarcoma and an effector T-cell subpopulation in Ewing sarcoma. In addition, distinct subsets of CD14+CD16+ macrophages were present in Ewing sarcoma and osteosarcoma. To determine pathways driving tumor immune infiltration, we conducted intercellular communication analyses and uncovered shared mechanisms of immune infiltration driven by CD14+CD16+ macrophages and unique pathways of immune infiltration driven by CXCL10 and CXCL12 in osteosarcoma. CONCLUSIONS Our study provides preclinical rationale for future investigation of specific immunotherapeutic targets upon relapse and provides an invaluable resource of immunologic data from bone sarcomas.
Collapse
Affiliation(s)
- Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Elina Mukherjee
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathanael G Bailey
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sayali Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Program in Microbiology and Immunology, Pittsburgh, PA, USA
| | - Jessica Daley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudia Salgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Xiang Li
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,School of Medicine, Tsinghua University, Beijing, China
| | - Dongyan Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,School of Medicine, Tsinghua University, Beijing, China
| | | | - Melissa Burgess
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kurt Weiss
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rebecca Watters
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario AA Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kelly M. Bailey
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
124
|
Albarrán V, Villamayor ML, Chamorro J, Rosero DI, Pozas J, San Román M, Calvo JC, Pérez de Aguado P, Moreno J, Guerrero P, González C, García de Quevedo C, Álvarez-Ballesteros P, Vaz MÁ. Receptor Tyrosine Kinase Inhibitors for the Treatment of Recurrent and Unresectable Bone Sarcomas. Int J Mol Sci 2022; 23:13784. [PMID: 36430263 PMCID: PMC9697271 DOI: 10.3390/ijms232213784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Bone sarcomas are a heterogeneous group of rare tumors with a predominance in the young population. Few options of systemic treatment are available once they become unresectable and resistant to conventional chemotherapy. A better knowledge of the key role that tyrosine kinase receptors (VEGFR, RET, MET, AXL, PDGFR, KIT, FGFR, IGF-1R) may play in the pathogenesis of these tumors has led to the development of multi-target inhibitors (TKIs) that are progressively being incorporated into our therapeutic arsenal. Osteosarcoma (OS) is the most frequent primary bone tumor and several TKIs have demonstrated clinical benefit in phase II clinical trials (cabozantinib, regorafenib, apatinib, sorafenib, and lenvatinib). Although the development of TKIs for other primary bone tumors is less advanced, preclinical data and early trials have begun to show their potential benefit in advanced Ewing sarcoma (ES) and rarer bone tumors (chondrosarcoma, chordoma, giant cell tumor of bone, and undifferentiated pleomorphic sarcoma). Previous reviews have mainly provided information on TKIs for OS and ES. We aim to summarize the existing knowledge regarding the use of TKIs in all bone sarcomas including the most recent studies as well as the potential synergistic effects of their combination with other systemic therapies.
Collapse
Affiliation(s)
- Víctor Albarrán
- Department of Medical Oncology, Ramon y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Hu Z, Wen S, Huo Z, Wang Q, Zhao J, Wang Z, Chen Y, Zhang L, Zhou F, Guo Z, Liu H, Zhou S. Current Status and Prospects of Targeted Therapy for Osteosarcoma. Cells 2022; 11:3507. [PMID: 36359903 PMCID: PMC9653755 DOI: 10.3390/cells11213507] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor occurring in bone tissue with a high propensity to metastasize, and its underlying mechanisms remain largely elusive. The OS prognosis is poor, and improving the survival of OS patients remains a challenge. Current treatment methods such as surgical approaches, chemotherapeutic drugs, and immunotherapeutic drugs remain ineffective. As research progresses, targeted therapy is gradually becoming irreplaceable. In this review, several treatment modalities for osteosarcoma, such as surgery, chemotherapy, and immunotherapy, are briefly described, followed by a discussion of targeted therapy, the important targets, and new technologies for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zunguo Hu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuang Wen
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Qing Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Jiantao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Zihao Wang
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zhangyu Guo
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
126
|
Zhang Y, Li Z, Wei J, Kong L, Song M, Zhang Y, Xiao X, Cao H, Jin Y. Network pharmacology and molecular docking reveal the mechanism of Angelica dahurica against Osteosarcoma. Medicine (Baltimore) 2022; 101:e31055. [PMID: 36343039 PMCID: PMC9646661 DOI: 10.1097/md.0000000000031055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor of mesenchymal origin. Angelica dahurica is a typical traditional Chinese herb. Angelica dahurica is used in the treatment of a variety of tumors. However, the studies of Angelica dahurica for OS have not been reported. To investigate Angelica dahurica's potential mechanism of action in the treatment of OS, we used network pharmacology and molecular docking methods in this study. Of which the network pharmacology includes the collection of active ingredients of Angelica dahurica, the collection of predicted targets of Angelica dahurica and predicted targets of OS, the analysis of therapeutic targets of Angelica dahurica, gene ontology (GO) enrichment, and Kyoto encyclopedia of genes and genomes (KEGG) enrichment. The Venn plot performance showed that there were 225 predicted targets of Angelica dahurica for the treatment of OS. The therapeutic targets enrichment analysis results showed that Angelica dahurica treated OS through multiple targets and pathways. Angelica dahurica could affect OS's proliferation, apoptosis, migration, infiltration, and angiogenesis through a signaling network formed by pivotal genes crosstalking numerous signaling pathways. In addition, molecular docking results showed that sen-byakangelicol, beta-sitosterol, and Prangenin, have a relatively high potential to become a treatment for patients with OS and improve 5-year survival in OS patients. We used network pharmacology and molecular docking methods to predict the active ingredients and significant targets of Angelica dahurica for the treatment of OS and, to a certain extent, elucidated the potential molecular mechanism of Angelica dahurica in the treatment of OS. This study provided a theoretical basis for Angelica dahurica in the treatment of OS.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhehong Li
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Junqiang Wei
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Lingwei Kong
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Mingze Song
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yange Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xiangyu Xiao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Haiying Cao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yu Jin
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
- *Correspondence: Yu Jin, Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, China (e-mail: )
| |
Collapse
|
127
|
Han J, Hu Y, Ding S, Liu S, Wang H. The analysis of the pyroptosis-related genes and hub gene TP63 ceRNA axis in osteosarcoma. Front Immunol 2022; 13:974916. [PMID: 36389801 PMCID: PMC9664215 DOI: 10.3389/fimmu.2022.974916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Pyroptosis is a type of programmed cell death that is associated with tumor development, prognosis, and therapeutic response. The significance of pyroptosis-related genes (PRGs) in the tumor microenvironment (TME) remains unclear. We examined the expression patterns of PRGs in 141 OS samples from two different datasets and characterized the genetic and transcriptional changes in PRGs. Based on these PRGs, all OS samples could be classified into two clusters. We discovered that multilayer PRG changes were linked to clinicopathological traits, prognosis, and TME characteristics in two separate genetic subtypes. The PRG score was then developed for predicting overall survival, and its predictive efficacy in OS patients was tested. As a result, we developed a very precise nomogram to improve the PRG-predictive model in clinical application. Furthermore, a competing endogenous RNA (ceRNA) network was built to find a LAMTOR5-AS1/hsa-miR-23a-3p/TP63 regulatory axis. Through experimental verification, it was found that the pyroptosis gene TP63 plays an important role in the regulation of osteosarcoma pyroptosis. The possible functions of PRGs in the TME, clinicopathological characteristics, and prognosis were established in our investigation of PRGs in OS. These findings may aid in our understanding of PRGs in OS as well as provide a novel way for prognostic evaluation and the creation of more effective immunotherapy treatments.
Collapse
Affiliation(s)
- Jun Han
- School of Graduates, Dalian Medical University, Dalian, China,Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian, China,Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China
| | - Shengqiang Ding
- Department of Spine Surgery, The People’s Hospital of Liuyang City, Changsha, China
| | - Sanmao Liu
- School of Graduates, Dalian Medical University, Dalian, China,Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China
| | - Hong Wang
- Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China,*Correspondence: Hong Wang,
| |
Collapse
|
128
|
Celik B, Cicek K, Leal AF, Tomatsu S. Regulation of Molecular Targets in Osteosarcoma Treatment. Int J Mol Sci 2022; 23:12583. [PMID: 36293439 PMCID: PMC9604206 DOI: 10.3390/ijms232012583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The most prevalent malignant bone tumor, osteosarcoma, affects the growth plates of long bones in adolescents and young adults. Standard chemotherapeutic methods showed poor response rates in patients with recurrent and metastatic phases. Therefore, it is critical to develop novel and efficient targeted therapies to address relapse cases. In this regard, RNA interference technologies are encouraging options in cancer treatment, in which small interfering RNAs regulate the gene expression following RNA interference pathways. The determination of target tissue is as important as the selection of tissue-specific promoters. Moreover, small interfering RNAs should be delivered effectively into the cytoplasm. Lentiviral vectors could encapsulate and deliver the desired gene into the cell and integrate it into the genome, providing long-term regulation of targeted genes. Silencing overexpressed genes promote the tumor cells to lose invasiveness, prevents their proliferation, and triggers their apoptosis. The uniqueness of cancer cells among patients requires novel therapeutic methods that treat patients based on their unique mutations. Several studies showed the effectiveness of different approaches such as microRNA, drug- or chemotherapy-related methods in treating the disease; however, identifying various targets was challenging to understanding disease progression. In this regard, the patient-specific abnormal gene might be targeted using genomics and molecular advancements such as RNA interference approaches. Here, we review potential therapeutic targets for the RNA interference approach, which is applicable as a therapeutic option for osteosarcoma patients, and we point out how the small interfering RNA method becomes a promising approach for the unmet challenge.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kader Cicek
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Andrés Felipe Leal
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
129
|
Xia X, Wen L, Zhou F, Li J, Lu Q, Liu J, Yu X. Predictive value of DCE-MRI and IVIM-DWI in osteosarcoma patients with neoadjuvant chemotherapy. Front Oncol 2022; 12:967450. [PMID: 36313686 PMCID: PMC9614152 DOI: 10.3389/fonc.2022.967450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the predictive value of dynamic contrast enhanced MRI (DCE-MRI) and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for clinical outcomes of osteosarcoma patients with neoadjuvant chemotherapy. Methods The present prospective single-arm cohort study enrolled 163 patients of osteosarcoma during July 2017 to July 2022. All patients received the same treatment strategy of neoadjuvant chemotherapy. Both DCE-MRI and IVIM-DWI were conducted for the patients before the chemotherapy, as well as after one or two chemotherapy treatment cycles. The imaging parameters of contrast agent transfer rate between blood and tissue (Ktrans), contrast agent back-flux rate constant (Kep), extravascular extracellular fractional volume (Ve), as well as pure diffusion coefficient (D value), pseudo-diffusion coefficient (D* value), apparent diffusion coefficient (ADC) and the perfusion fraction (f value) were recorded. RECIST standard [complete response (CR), partial response (PR), stable disease (SD), progressive disease (PD)] was used as the main clinical outcome. Results After two treatment cycles, 112 (68.71%) cases were with CR and PR, 31 (19.02%) cases were with SD and 20 cases (12.27%) were with PD. After 1~2 treatment cycles, patients with CR/PR showed significantly markedly lower Ktrans, Kep, Ve values, while higher D, ADC and f values compared with SD or PD patients. Alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were positively correlated with values of Ktrans, Kep, and Ve, while negative correlation was observed between ALP and values of D, ADC and f, as well as between LDH and D and ADC after the whole treatment. D and Kep values after two treatment cycles showed the best predictive value for diagnosis of PD. The values of Ktran, Kep, ADC as well as ALP and LDH were all risk factors for PD after neoadjuvant chemotherapy. Conclusion DCE-MRI and IVIM-DWI have the potential to predict clinical outcomes of osteosarcoma patients with neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Xibin Xia
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Wen
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Feng Zhou
- Department of Orthopedics and Soft Tissue, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Junjun Li
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiang Lu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jun Liu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Xiaoping Yu, ; Jun Liu,
| | - Xiaoping Yu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Xiaoping Yu, ; Jun Liu,
| |
Collapse
|
130
|
Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022; 12:1022973. [PMID: 36313662 PMCID: PMC9606592 DOI: 10.3389/fonc.2022.1022973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that mainly affects the pediatric and adolescent population; limb salvage treatment has become one of the most concerned and expected outcomes of OS patients recently. Phototherapy (PT), as a novel, non-invasive, and efficient antitumor therapeutic approach including photodynamic therapy (PDT), photothermal therapy (PTT), and photobiomodulation therapy (PBMT), has been widely applied in superficial skin tumor research and clinical treatment. OS is the typical deep tumor, and its phototherapy research faces great limitations and challenges. Surprisingly, pulse mode LED light can effectively improve tissue penetration and reduce skin damage caused by high light intensity and has great application potential in deep tumor research. In this review, we discussed the research progress and related molecular mechanisms of phototherapy in the treatment of OS, mainly summarized the status quo of blue light PBMT in the scientific research and clinical applications of tumor treatment, and outlooked the application prospect of pulsed blue LED light in the treatment of OS, so as to further improve clinical survival rate and prognosis of OS treatment and explore corresponding cellular mechanisms.
Collapse
Affiliation(s)
- Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yinghua Li
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| |
Collapse
|
131
|
Long Noncoding RNA LINC00909 Induces Epithelial-Mesenchymal Transition and Contributes to Osteosarcoma Tumorigenesis and Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:8660965. [PMID: 36262353 PMCID: PMC9576421 DOI: 10.1155/2022/8660965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Background Osteosarcoma (OS) is a malignant tumor that is highly metastatic with a high mortality rate. Although mounting evidence suggests that LINC00909 is strongly associated with the malignant progression of various tumors, the exact role of LINC00909 in OS remains unknown. Therefore, the current study was designed to investigate the relationship between LINC00909 and the malignant progression of OS. Methods LINC00909 expression was measured in OS cell lines and clinical specimens using RT-qPCR assays. The effects of LINC00909 on OS proliferation, invasion, and migration were calculated both in vitro and in vivo. Apart from that, bioinformatics analyses, FISH, RIP, and luciferase reporter assays were carried out to investigate the downstream target of LINC00909. Rescue experiments were also conducted to investigate the potential mechanisms of action of competitive endogenous RNAs (ceRNAs). Results In this study, we found that LINC00909 was highly expressed in OS cell lines and clinical specimens. In vivo and in vitro experiments demonstrated that LINC00909 induces epithelial-to-mesenchymal transition (EMT) and contributes to OS tumorigenesis and metastasis. FISH, RIP, and luciferase assays indicated that miR-875-5p is a direct target of LINC00909. Moreover, HOXD9 was validated as the downstream target of miR-875-5p in a luciferase reporter assay and western blotting experiments. Rescue experiments revealed that HOXD9 reversed the effect of LV-sh-LINC00909 on OS cells by positively regulating the PI3K/AKT/mTOR signaling pathway. Conclusion Collectively, LINC00909 induces EMT and contributes to OS tumorigenesis and metastasis through the PI3K/AKT/mTOR pathway by binding to miR-875-5p to upregulate HOXD9 expression. Targeting the LINC00909/miR-875-5p/HOXD9 axis may have potential in treating OS.
Collapse
|
132
|
Wang H, Jin X, Zhang Y, Wang Z, Zhang T, Xu J, Shen J, Zan P, Sun M, Wang C, Hua Y, Ma X, Sun W. Inhibition of sphingolipid metabolism in osteosarcoma protects against CD151-mediated tumorigenicity. Cell Biosci 2022; 12:169. [PMID: 36209197 PMCID: PMC9548188 DOI: 10.1186/s13578-022-00900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, with a poor prognosis owing to the lack of efficient molecular-based targeted therapies. Previous studies have suggested an association between CD151 and distinct consequences in osteosarcoma tumorigenicity. However, the potential of CD151 as a therapeutic target has not yet been sufficiently explored. Here, we performed integrated transcriptomic and metabolomic analyses of osteosarcoma and identified sphingolipid metabolism as the top CD151-regulated pathway. CD151 regulates sphingolipid metabolism primarily through SPTCL1, the first rate-limiting enzyme in sphingolipid biosynthesis. Mechanistically, depletion of CD151 enhanced c-myc polyubiquitination and subsequent degradation. c-myc is vital for the transcriptional activation of SPTLC1. Functionally, sphingolipid synthesis and the SPTLC1 inhibitor, myriocin, significantly suppressed the clonogenic growth of CD151-overexpression cells. Importantly, myriocin selectively restrained CD151-high expression tumor growth in preclinical patient-derived xenograft models. Collectively, these data establish that CD151 is a key mediator of sphingolipid metabolism and provide a new approach to developing novel CD151-based targeted therapies for osteosarcoma.
Collapse
Affiliation(s)
- Hongsheng Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Xinmeng Jin
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Yangfeng Zhang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Jiakang Shen
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Pengfei Zan
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengxiong Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Chongren Wang
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiaojun Ma
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China ,grid.412478.c0000 0004 1760 4628Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
133
|
Cui Y, Dong YY. ZCCHC12 promotes the progression of osteosarcoma via PI3K/AKT pathway. Aging (Albany NY) 2022; 14:7505-7516. [PMID: 36126191 PMCID: PMC9550259 DOI: 10.18632/aging.204296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Researchers have reported that zinc finger CCHC domain containing 12 gene (ZCCHC12) plays a role in the progression and tumorigenesis of papillary thyroid cancer. However, the biological role of ZCCHC12 in osteosarcoma (OS) remains unknown. ZCCHC12 was highly upregulated in OS cell lines according to our present study. Also, our subsequent assays demonstrated that ZCCHC12 enhanced the proliferation, tumor growth and migration of OS cells. Moreover, the epithelial-mesenchymal transition (EMT) of OS cells was also promoted by ZCCHC12. In addition, downregulation of ZCCHC12 induced apoptosis and S-phase arrest in OS cells. Then, our study indicated that ZCCHC12 exerts its oncogenic function in OS cells by activating the PI3K/AKT pathway. Inhibition of the PI3K/AKT pathway greatly limits the oncogenic function of ZCCHC12 in OS cells. Also, overexpression of ZCCHC12 promotes tumor growth in vivo. Altogether, our study suggests ZCCHC12 promotes OS cells progression by activating the PI3K/AKT pathway. The ZCCHC12 gene may be a novel diagnostic and therapeutic target for OS.
Collapse
Affiliation(s)
- Yong Cui
- Department of Orthopedics, Jincheng People's Hospital, Jincheng 048026, Shanxi Province, China
| | - Yong-Yong Dong
- Department of Orthopedics, Jincheng People's Hospital, Jincheng 048026, Shanxi Province, China
| |
Collapse
|
134
|
Díaz ECG, Lee AG, Sayles LC, Feria C, Sweet-Cordero EA, Yang F. A 3D Osteosarcoma Model with Bone-Mimicking Cues Reveals a Critical Role of Bone Mineral and Informs Drug Discovery. Adv Healthc Mater 2022; 11:e2200768. [PMID: 35767377 PMCID: PMC10162498 DOI: 10.1002/adhm.202200768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/10/2022] [Indexed: 01/27/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone cancer for which survival has not improved over three decades. While biomaterials have been widely used to engineer 3D soft-tissue tumor models, the potential of engineering 3D biomaterials-based OS models for comprehensive interrogation of OS pathology and drug discovery remains untapped. Bone is characterized by high mineral content, yet the role of bone mineral in OS progression and drug response remains unknown. Here, a microribbon-based OS model with bone-mimicking compositions is developed to elucidate the role of 3D culture and hydroxyapatite in OS signaling and drug response. The results reveal that hydroxyapatite in 3D is critical to support retention of OS signaling and drug resistance similar to patient tissues and mouse orthotopic tumors. The physiological relevance of this 3D model is validated using four established OS cell lines, seven patient-derived xenograft (PDX) cell lines and two animal models. Integrating 3D OS PDX models with RNA-sequencing identified 3D-specific druggable target, which predicts drug response in mouse orthotopic model. These results establish microribbon-based 3D OS models as a novel experimental tool to enable discovery of novel therapeutics that would be otherwise missed with 2D model and may serve as platforms to study patient-specific OS heterogeneity and drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Alex G. Lee
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, USA
| | - Leanne C. Sayles
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, USA
| | - Criselle Feria
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - E. Alejandro Sweet-Cordero
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
135
|
Persha HE, Kato S, De P, Adashek JJ, Sicklick JK, Subbiah V, Kurzrock R. Osteosarcoma with cell-cycle and fibroblast growth factor genomic alterations: case report of Molecular Tumor Board combination strategy resulting in long-term exceptional response. J Hematol Oncol 2022; 15:119. [PMID: 36031605 PMCID: PMC9420268 DOI: 10.1186/s13045-022-01344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractThere is a paucity of information about molecularly driven therapy in osteosarcomas. We report a 31-year-old woman with chemotherapy–refractory metastatic osteosarcoma who was successfully treated with the combination of palbociclib (CDK4/6 inhibitor) and lenvatinib (multikinase FGFR inhibitor), selected based on next generation sequencing that showed CDK4 and CCND2 amplifications (upregulates CDK4/6), and FGF6 (ligand for FGFR1,2 and 4), FGF23 (ligand for FGFR1,2,3, and 4) and FRS2 (adaptor protein for FGFR signaling) amplifications. The patient’s tumor showed 68% reduction in positron emission tomography (PET) avidity, lasting 31 months after therapy initiation, when a solitary recurrence occurred, was resected, and treatment continued. The patient remains on matched targeted therapy at 51 + months from the start of the combination. Treatment was given at reduced dosing (lenvatinib 10 mg oral daily (approved dose = 24 mg daily)) and palbociclib 75 mg oral daily, one week on and one week off (approved dose = 125 mg oral daily, three weeks on/one week off) and is tolerated well. Therefore, co-targeting the aberrant cyclin and FGFR pathways resulted in long-term exceptional response in a patient with refractory advanced osteosarcoma.
Collapse
|
136
|
IL-11Rα-targeted nanostrategy empowers chemotherapy of relapsed and patient-derived osteosarcoma. J Control Release 2022; 350:460-470. [PMID: 36041590 DOI: 10.1016/j.jconrel.2022.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Osteosarcoma (OS) is a rare but frequently lethal bone malignancy in children and adolescents. The adjuvant chemotherapy with doxorubicin (Dox) and cisplatin remains a mainstream clinical practice though it affords only limited clinical benefits due to low tumor deposition, dose-limiting toxicity and high rate of relapse/metastasis. Here, taking advantage of high IL-11Rα expression in the OS patients, we installed IL-11Rα specific peptide (sequence: CGRRAGGSC) onto redox-responsive polymersomes encapsulating Dox (IL11-PDox) to boost the specificity and anti-OS efficacy of chemotherapy. Of note, IL-11Rα peptide at a density of 20% greatly augmented the internalization, apoptotic activity, and migration inhibition of Dox in IL-11Rα-overexpressing 143B OS cells. The active targeting effect of IL-11-PDox was supported in orthotopic and relapsed 143B OS models, as shown by striking repression of tumor growth and lung metastasis and substantial survival benefits over free Dox control. We further verified that IL11-PDox could effectively inhibit patient-derived OS xenografts. IL-11Rα-targeted nanodelivery of chemotherapeutics provides a potential therapeutic strategy for advanced osteosarcoma.
Collapse
|
137
|
Yang YT, Yuzbasiyan-Gurkan V. Sorafenib and Doxorubicin Show Synergistic Effects in Human and Canine Osteosarcoma Cell Lines. Int J Mol Sci 2022; 23:ijms23169345. [PMID: 36012610 PMCID: PMC9408891 DOI: 10.3390/ijms23169345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OSA) is the most common bone tumor in both humans and dogs and has a nearly ten-fold higher incidence in dogs than humans. Despite advances in the treatment of other cancers, the overall survival rates for OSA have stagnated for the past four decades. Therefore, there is a great need to identify novel and effective treatments. We screened a series of tyrosine kinase inhibitors and selected sorafenib, a multi-kinase inhibitor, for further evaluation alone and in combination with cisplatin, carboplatin, and doxorubicin on canine and human OSA cell lines. Our data point to synergistic effects when sorafenib is combined with doxorubicin, but not when combined with cisplatin or carboplatin, in both human and canine OSA. Based on current findings, clinical trials using a combination of doxorubicin and sorafenib in proof-of-concept studies in dogs are warranted. These studies can be carried out relatively quickly in dogs where case load is high and, in turn, provide useful data for the initiation of clinical trials in humans.
Collapse
Affiliation(s)
- Ya-Ting Yang
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Vilma Yuzbasiyan-Gurkan
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology & Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
138
|
Du Y, Zeng X, Yu W, Xie W. A transmembrane protein family gene signature for overall survival prediction in osteosarcoma. Front Genet 2022; 13:937300. [PMID: 35991561 PMCID: PMC9388755 DOI: 10.3389/fgene.2022.937300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The transmembrane (TMEM) protein family is constituted by a large number of proteins that span the lipid bilayer. Dysregulation of TMEM protein genes widely occurs and is associated with clinical outcomes of patients with multiple tumors. Nonetheless, the significance of TMEM genes in the prognosis prediction of patients with osteosarcoma remains largely unclear. Here, we comprehensively analyzed TMEM protein family genes in osteosarcoma using public resources and bioinformatics methods. Prognosis-related TMEM protein family genes were identified by the univariate Cox regression analysis and were utilized to construct a signature based on six TMEM protein family genes (TMEM120B, TMEM147, TMEM9B, TMEM8A, TMEM59, and TMEM39B) in osteosarcoma. The prognostic signature stratified patients into high- and low-risk groups, and validation in the internal and external cohorts confirmed the risk stratification ability of the signature. Functional enrichment analyses of differentially expressed genes between high- and low-risk groups connected immunity with the prognostic signature. Moreover, we found that M2 and M0 macrophages were the most abundant infiltrated immune cell types in the immune microenvironment, and samples of the high-risk group showed a decreased proportion of M2 macrophages. Single-sample gene set enrichment analysis revealed that the scores of neutrophils and Treg were markedly lower in the high-risk group than these in the low-risk group in The Cancer Genome Atlas and GSE16091 cohorts. As for the related immune functions, APC co-inhibition and cytolytic activity exhibited fewer active levels in the high-risk group than that in the low-risk group in both cohorts. Of the six TMEM genes, the expression of TMEM9B was lower in the high-risk group than in the low-risk group and was positively associated with the overall survival of osteosarcoma patients. In conclusion, our TMEM protein family gene-based signature is a novel and clinically useful prognostic biomarker for osteosarcoma patients, and TMEM9B might be a potential therapeutic target in osteosarcoma.
Collapse
|
139
|
de Nonneville A, Salas S, Bertucci F, Sobinoff AP, Adélaïde J, Guille A, Finetti P, Noble JR, Churikov D, Chaffanet M, Lavit E, Pickett HA, Bouvier C, Birnbaum D, Reddel RR, Géli V. TOP3A amplification and ATRX inactivation are mutually exclusive events in pediatric osteosarcomas using ALT. EMBO Mol Med 2022; 14:e15859. [PMID: 35920001 PMCID: PMC9549729 DOI: 10.15252/emmm.202215859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
In some types of cancer, telomere length is maintained by the alternative lengthening of telomeres (ALT) mechanism. In many ALT cancers, the α-thalassemia/mental retardation syndrome X-linked (ATRX) gene is mutated leading to the conclusion that the ATRX complex represses ALT. Here, we report that most high-grade pediatric osteosarcomas maintain their telomeres by ALT, and that the majority of these ALT tumors are ATRX wild-type (wt) and instead carry an amplified 17p11.2 chromosomal region containing TOP3A. We found that TOP3A was overexpressed in the ALT-positive ATRX-wt tumors consistent with its amplification. We demonstrated the functional significance of these results by showing that TOP3A overexpression in ALT cancer cells countered ATRX-mediated ALT inhibition and that TOP3A knockdown disrupted the ALT phenotype in ATRX-wt cells. Moreover, we report that TOP3A is required for proper BLM localization and promotes ALT DNA synthesis in ALT cell lines. Collectively, our results identify TOP3A as a major ALT player and potential therapeutic target.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance,Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia,Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Sébastien Salas
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - François Bertucci
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - José Adélaïde
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Arnaud Guille
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Pascal Finetti
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Jane R Noble
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Dimitri Churikov
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| | - Max Chaffanet
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Elise Lavit
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Corinne Bouvier
- Department of PathologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Roger R Reddel
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| |
Collapse
|
140
|
Wei H, Chen F, Chen J, Lin H, Wang S, Wang Y, Wu C, Lin J, Zhong G. Mesenchymal Stem Cell Derived Exosomes as Nanodrug Carrier of Doxorubicin for Targeted Osteosarcoma Therapy via SDF1-CXCR4 Axis. Int J Nanomedicine 2022; 17:3483-3495. [PMID: 35959282 PMCID: PMC9359454 DOI: 10.2147/ijn.s372851] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The objective of this study was to investigate the antitumor activity, targeting capability, and mechanism of the developed nanodrug consisting of doxorubicin and exosome (Exo-Dox) derived from mesenchymal stem cells in vitro and in vivo. Methods The exosomes were isolated with Exosome Isolation Kit, and the Exo-Dox was prepared by mixing exosome with Dox-HCl, desalinizing with triethylamine and then dialyzing against PBS overnight. The exosome and Exo-Dox were examined by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The antitumor activity, targeting capability, and mechanism of the developed Exo-Dox were evaluated by cell viability assay, histological and immunofluorescence analysis and in vivo imaging system. Results NTA results showed the size of the exosomes had increased from 141.6 nm to 178.1 nm after loading with doxorubicin. Compared with free Dox, the Exo-Dox exhibited higher cytotoxicity against osteosarcoma MG63 cells, HOS cells, and 143B cells than free Dox, the half-maximal inhibitory concentrations (IC50) of Dox, Exo-Dox were calculated to be 0.178 and 0.078 μg mL−1 in MG63 cells, 0.294 and 0.109μg mL−1 in HOS cells, 0.315 and 0.123 μg mL−1 in 143B cells, respectively. The in vivo imaging showed that MSC derived Exo could serve as a highly efficient delivery vehicle for targeted drug delivery. The immunohistochemistry and histology analysis indicated that compared with the free Dox group, the Ki67-positive cells and cardiotoxicity in Exo-Dox group were significantly decreased. Conclusion Our results suggested that MSC-derived Exo could be excellent nanocarriers used to deliver chemotherapeutic drug Dox specifically and efficiently in osteosarcoma, resulting in enhanced toxicity against osteosarcoma and less toxicity in heart tissue. We further demonstrated the targeting capability of Exo was due to the chemotaxis of MSC-derived exosomes to osteosarcoma cells via SDF1-CXCR4 axis.
Collapse
Affiliation(s)
- Hongxiang Wei
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Fei Chen
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Jinyuan Chen
- The Centralab, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Huangfeng Lin
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Shenglin Wang
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Yunqing Wang
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Chaoyang Wu
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Jianhua Lin
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Guangxian Zhong
- Department of Orthopaedics, Fujian Institute of Orthopaedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Correspondence: Guangxian Zhong; Jianhua Lin, Tel/Fax +86 591 87981029, Email ;
| |
Collapse
|
141
|
Li T, Xing G, Lu L, Kong X, Guo J. CircAGFG1 Promotes Osteosarcoma Progression and Stemness by Competing with miR-302a-3p to Upregulate the Expression of LATS2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6370766. [PMID: 35958928 PMCID: PMC9357677 DOI: 10.1155/2022/6370766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the effect of circRNA (circAGFG1) on the proliferation, migration, invasion, and cell stemness of osteosarcoma cells by targeting miR-302a to regulate LATS2. The expression of circAGFG1 in osteosarcoma cells and normal osteoblasts was detected by real-time fluorescent quantitative PCR (RT-qPCR). Cell proliferation, clone formation, and invasion were detected by CCK-8, clone formation, and cell invasion assays. In vivo tumor formation assay was used to detect the effect of circAGFG1 on tumor growth. The expression level of circAGFG1 was upregulated in osteosarcoma cells. The downregulation of circAGFG1 inhibited the proliferation, invasion, and migration of osteosarcoma cells. The overexpression of circAGFG1 enhanced the stemness of osteosarcoma cells. CircAGFG1 was specifically bound to miR-302a to regulate the expression activity of miR-302a. MiR-302a specifically bound to the 3'UTR of LATS2 and inhibited the expression of LATS2. The overexpression of miR-302a reversed the effect of circAGFG1 on the proliferation, invasion, and migration of osteosarcoma cells. CircAGFG1 regulated the expression of LATS2 by miR-302a, thereby regulating the proliferation, migration, and invasion of osteosarcoma cells.
Collapse
Affiliation(s)
- Tongchun Li
- Department of Orthopedics, Changle County People's Hospital, Weifang 262400, Shandong, China
| | - Guangjie Xing
- Department of Orthopedics, Changle County People's Hospital, Weifang 262400, Shandong, China
| | - Liangliang Lu
- Department of Oncology, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, Shandong, China
| | - Xiangzhen Kong
- Department of Oncology, Sishui County People's Hospital, Jining 273299, Shandong, China
| | - Jinwei Guo
- Department of Orthopedics, Chongqing University Jiangjin Hospital, Chongqing 402260, China
| |
Collapse
|
142
|
A Cohort Study to Evaluate the Efficacy and Value of CT Perfusion Imaging in Patients with Metastatic Osteosarcoma after Chemotherapy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5417753. [PMID: 35903433 PMCID: PMC9325339 DOI: 10.1155/2022/5417753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
Objective A case-control study was conducted to explore the efficacy of cohort study and value of CT perfusion imaging in patients with metastatic osteosarcoma after chemotherapy. Methods Eighty patients with metastatic osteosarcoma treated in our hospital from March 2020 to December 2021 were divided into two groups. According to their different treatment methods, the chemotherapy+antiangiogenesis group had 36 cases and the chemotherapy group had 44 cases. All patients were scanned by 64-slice spiral CT before and after treatment. The differences of tumor volume and perfusion parameters before and after treatment were compared, and the correlation between perfusion parameters and tumor microvessel density (MVD) was analyzed. The receiver working curve (ROC curve) was used to evaluate the efficacy of the two groups after chemotherapy. Results Blood flow (BF), blood volume (BV), Pallak blood volume (PBV), and time to start (TTS) in the antitumor angiogenesis+chemotherapy group were significantly lower than those before treatment (P < 0.05). Microvessel density was positively correlated with PS, BF, BV, and PBV (P < 0.05). The reduction rate of BV and BF in the remission group after treatment was significantly higher than that in the nonremission group. When the BV and BF decline rates were 47.37% and 21.53% and the areas under the curve were 0.968 and 0.916, respectively, the diagnostic effect was the best. When the decrease rate of BV was 47.48% and the decrease rate of BF was 21.55%, the sensitivity was 94.72% and 89.56% and the specificity was 91.31% and 91.31%. Conclusion The reduction rate of BV and BF in CT perfusion imaging is of high value in evaluating the efficacy of radiotherapy and chemotherapy in patients with NSCLC and can provide more objective basis for observing the changes and judging the prognosis of osteosarcoma after treatment.
Collapse
|
143
|
Xu K, Fei W, Huo Z, Wang S, Li Y, Yang G, Hong Y. PDCD10 promotes proliferation, migration, and invasion of osteosarcoma by inhibiting apoptosis and activating EMT pathway. Cancer Med 2022; 12:1673-1684. [PMID: 35848121 PMCID: PMC9883585 DOI: 10.1002/cam4.5025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Osteosarcoma, a common primary malignant tumor, occurs in children and adolescents with a poor prognosis. The current treatment methods are various, while the five-year survival rate of patients has not been significantly improved. As a member of the programmed death factor (PDCD) family, programmed death factor 10 (PDCD10) plays a role in regulating cell apoptosis. Several studies of PDCD10 in CCM and cancers have been reported before. However, there are no relevant research reports on the effects of PDCD10 on osteosarcoma. METHODS We used bioinformatics analysis, IHC, and clinical data to confirm the expression of PDCD10 and its correlation with prognosis in osteosarcoma. Then, we used shRNAs and cDNA to knock down or overexpress PDCD10 in U2OS and MG63 cell lines. A series of function assays such as CCK8, Wound healing test, Plate cloning formation assay, and Transwell were done to confirm how PDCD10 affects osteosarcoma. Animal assays were done to confirm the conclusions in cell lines. At last, WB was used to measure the protein expression levels of apoptosis and the EMT pathway. RESULTS PDCD10 was highly expressed in patients with osteosarcoma and correlated with prognosis; PDCD10 knockdown inhibited osteosarcoma growth, proliferation, migration, and invasion; PDCD10 overexpression promoted osteosarcoma growth, proliferation, migration, and invasion. In vivo experiments confirmed the conclusions in cell lines; PDCD10 inhibited apoptosis and activated the EMT pathway. CONCLUSIONS In this study, it was found that PDCD10 was highly expressed in patients with osteosarcoma, and it was closely related to patient prognosis. PDCD10 inhibited tumor cell apoptosis and promoted tumor progression by activating the EMT pathway. These findings may provide a potential target for gene therapy of osteosarcoma.
Collapse
Affiliation(s)
- Ke Xu
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Ziqi Huo
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Shuoer Wang
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghaiChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yinghua Li
- Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina,Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Yang Hong
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| |
Collapse
|
144
|
Paediatric Strategy Forum for medicinal product development of multi-targeted kinase inhibitors in bone sarcomas: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 173:71-90. [PMID: 35863108 DOI: 10.1016/j.ejca.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The eighth Paediatric Strategy Forum focused on multi-targeted kinase inhibitors (mTKIs) in osteosarcoma and Ewing sarcoma. The development of curative, innovative products in these tumours is a high priority and addresses unmet needs in children, adolescents and adults. Despite clinical and investigational use of mTKIs, efficacy in patients with bone tumours has not been definitively demonstrated. Randomised studies, currently being planned or in progress, in front-line and relapse settings will inform the further development of this class of product. It is crucial that these are rapidly initiated to generate robust data to support international collaborative efforts. The experience to date has generally indicated that the safety profile of mTKIs as monotherapy, and in combination with chemotherapy or other targeted therapy, is consistent with that of adults and that toxicity is manageable. Increasing understanding of relevant predictive biomarkers and tumour biology is absolutely critical to further develop this class of products. Biospecimen samples for correlative studies and biomarker development should be shared, and a joint academic-industry consortium created. This would result in an integrated collection of serial tumour tissues and a systematic retrospective and prospective analyses of these samples to ensure robust assessment of biologic effect of mTKIs. To support access for children to benefit from these novel therapies, clinical trials should be designed with sufficient scientific rationale to support regulatory and payer requirements. To achieve this, early dialogue between academia, industry, regulators, and patient advocates is essential. Evaluating feasibility of combination strategies and then undertaking a randomised trial in the same protocol accelerates drug development. Where possible, clinical trials and development should include children, adolescents, and adults less than 40 years. To respond to emerging science, in approximately 12 months, a multi-stakeholder group will meet and review available data to determine future directions and priorities.
Collapse
|
145
|
Osteosarcoma Arising in Fibrous Dysplasia of the Long Bone: Characteristic Images and Molecular Profiles. Diagnostics (Basel) 2022; 12:diagnostics12071622. [PMID: 35885527 PMCID: PMC9323252 DOI: 10.3390/diagnostics12071622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrous dysplasia (FD) is a benign fibro-osseous lesion that frequently involves the craniofacial bones and femur. Malignant transformation of FD is a rare occurrence. We report a 38-year-old woman with osteosarcoma (OS) arising from FD of the femur. Magnetic resonance imaging revealed a well-defined lesion in the medulla of the femur, with cortical thinning and local bone destruction. Wide excision of the femur was performed. Grossly, the inner part of the mass was hard and tan-gray in color, and the outer part of the mass adjacent to the cortex showed myxoid discoloration with infiltrative borders. Microscopically, most of the tumor consisted of curvilinear woven bone and fibrous stroma with bland spindle cells, which transitioned to the outer portion of the tumor, showing cellular proliferation of pleomorphic cells with frequent mitotic activity. Next-generation sequencing revealed GNAS and TP53 mutations, and the diagnosis of OS arising from FD was strongly supported. This case highlights the characteristic images and molecular features of the malignant transformation of FD.
Collapse
|
146
|
Solomon PE, Kirkemo LL, Wilson GM, Leung KK, Almond MH, Sayles LC, Sweet-Cordero EA, Rosenberg OS, Coon JJ, Wells JA. Discovery Proteomics Analysis Determines That Driver Oncogenes Suppress Antiviral Defense Pathways Through Reduction in Interferon-β Autocrine Stimulation. Mol Cell Proteomics 2022; 21:100247. [PMID: 35594991 PMCID: PMC9212846 DOI: 10.1016/j.mcpro.2022.100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Since the discovery of oncogenes, there has been tremendous interest to understand their mechanistic basis and to develop broadly actionable therapeutics. Some of the most frequently activated oncogenes driving diverse cancers are c-MYC, EGFR, HER2, AKT, KRAS, BRAF, and MEK. Using a reductionist approach, we explored how cellular proteomes are remodeled in isogenic cell lines engineered with or without these driver oncogenes. The most striking discovery for all oncogenic models was the systematic downregulation of scores of antiviral proteins regulated by type 1 interferon. These findings extended to cancer cell lines and patient-derived xenograft models of highly refractory pancreatic cancer and osteosarcoma driven by KRAS and MYC oncogenes. The oncogenes reduced basal expression of and autocrine stimulation by type 1 interferon causing remarkable convergence on common phenotypic and functional profiles. In particular, there was dramatically lower expression of dsRNA sensors including DDX58 (RIG-I) and OAS proteins, which resulted in attenuated functional responses when the oncogenic cells were treated with the dsRNA mimetic, polyI:C, and increased susceptibility to infection with an RNA virus shown using SARS-CoV-2. Our reductionist approach provides molecular and functional insights connected to immune evasion hallmarks in cancers and suggests therapeutic opportunities.
Collapse
Affiliation(s)
- Paige E Solomon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Mark H Almond
- Division of Infectious Diseases, Department of Medicine, UCSF Medical Center, University of California, San Francisco, California, USA
| | - Leanne C Sayles
- Department of Pediatrics, University of California San Francisco, California, USA
| | | | - Oren S Rosenberg
- Division of Infectious Diseases, Department of Medicine, UCSF Medical Center, University of California, San Francisco, California, USA; Department of Biophysics and Biochemistry, Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
147
|
Cheng S, Wang W. Analysis of the subcellular location of FAM230B and its interaction with premature miR-302b in osteosarcoma. J Bone Miner Metab 2022; 40:554-560. [PMID: 35639175 DOI: 10.1007/s00774-022-01319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION FAM230B has been characterized as an oncogenic lncRNA in papillary thyroid cancer and gastric cancer, while its role in osteosarcoma (OS) is unclear. This research was conducted to analyze the interaction between FAM230B and miR-302b in OS. MATERIALS AND METHODS Paired OS and non-tumor tissues donated by 58 OS patients were subjected to RNA preparation and RT-qPCR to quantify the expression of FAM230B and miR-302b (both mature and premature). The subcellular location of FAM230B and its interaction with premature miR-320b were analyzed by cellular fractionation assay and RNA pull-down assay, respectively. The roles of FAM230B and miR-302b in OS cell movement were evaluated using Transwell assay. RESULTS Increased FAM230B and premature miR-302b and decreased mature miR-302b were observed in OS. FAM230B was detected in both nuclear and cytoplasm samples and directly interacted with premature miR-302b. FAM230B overexpression in OS cells 143B and HOS decreased miR-302b maturation and increased cell invasion and migration, while miR-302b overexpression suppressed cell invasion and migration. FAM230B silencing restrained cell invasion and migration, and miR-302b inhibitor accelerated cell invasion and migration. MiR-302b knockdown significantly reversed the suppressive effects of shFAM230B on migration and invasion of 143B and HOS cells. CONCLUSION FAM230B is accumulated to high levels in OS and may serve as an endogenous competing RNA for premature miR-302b in the nucleus to promote OS cell invasion and migration.
Collapse
Affiliation(s)
- Shigao Cheng
- Department of Orthopedics, Central Hospital of Loudi City, Loudi, 417000, Hunan, China
- Department of Orthopedics, Second Xianya Hospital, Central South University, No. Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, Second Xianya Hospital, Central South University, No. Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
148
|
Zhang Y, He R, Lei X, Mao L, Yin Z, Zhong X, Cao W, Zheng Q, Li D. Comprehensive Analysis of a Ferroptosis-Related lncRNA Signature for Predicting Prognosis and Immune Landscape in Osteosarcoma. Front Oncol 2022; 12:880459. [PMID: 35837104 PMCID: PMC9273977 DOI: 10.3389/fonc.2022.880459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Research on the implications of ferroptosis in tumors has increased rapidly in the last decades. There are evidences that ferroptosis is involved in several aspects of cancer biology, including tumor progression, metastasis, immunomodulation, and therapeutic response. Nonetheless, the interaction between ferroptosis-related lncRNAs (FRLs) and the osteosarcoma immune microenvironment is poorly understood. In this study, a risk model composed of FRLs was developed using univariate and LASSO Cox regression analyses. On the basis of this model, FRL scores were calculated to systematically explore the role of the model in predicting the prognosis and immune characteristics of osteosarcoma patients. Survival analysis showed that osteosarcoma samples with lower FRL-score had better overall survival. After predicting the abundance of immune cells in osteosarcoma microenvironment by single-sample gene-set enrichment analysis (ssGSEA) and ESTIMATE analysis, we found that the FRL-score could distinguish immune function, immune score, stromal score, tumor purity, and tumor infiltration of immune cells in different osteosarcoma patients. In addition, FRL-score was also associated with immune checkpoint gene expression and half-maximal inhibitory concentration of chemotherapeutic agents. Finally, we confirmed that knockdown of RPARP-AS1 suppressed the malignant activity of osteosarcoma cells in vitro experiments. In general, the FRL-based prognostic signature could promote our understanding of the immune microenvironment characteristics of osteosarcoma and guide more effective treatment regimens.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rong He
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xuan Lei
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyu Yin
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyu Zhong
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenbing Cao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
- *Correspondence: Dapeng Li, ; Qiping Zheng,
| | - Dapeng Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Dapeng Li, ; Qiping Zheng,
| |
Collapse
|
149
|
Tang L, Niu X, Wang Z, Cai Q, Tu C, Fan Z, Yao Y. Anlotinib for Recurrent or Metastatic Primary Malignant Bone Tumor: A Multicenter, Single-Arm Trial. Front Oncol 2022; 12:811687. [PMID: 35692789 PMCID: PMC9177947 DOI: 10.3389/fonc.2022.811687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Anlotinib, a novel multitarget kinase inhibitor of VEGFR, FGFR, PDGFR and c-Kit, has proven to be effective and safe for refractory soft tissue sarcoma patients, but has not been examined in recurrent or metastatic primary malignant bone tumors in a clinical trial setting. Methods This is a multicenter single-arm trial. Patients with pathologically proven recurrent or metastatic primary malignant bone tumors were eligible. Anlotinib was administered orally at 12 mg per day. Each cycle consisted of 2 weeks of treatment followed by 1-week off-treatment. The primary endpoint was progression-free survival (PFS), as assessed in the intention-to-treat (ITT) population. Secondary endpoints included objective response rate (ORR), disease control rate (DCR) and overall survival (OS). Adverse events (AEs) were assessed per NCI CTCAE version 4.03. Results A total of 42 patients were enrolled. Median PFS was 5.3 months (95% CI 3.5-8.4 months) in the overall analysis, 4.8 months (95%CI 3.5-7.1 months) in osteosarcoma patients and 2.8 months [95%CI 1.3 months to not reached (NR)] in chondrosarcoma patients. The median OS was 11.4 months (95% CI 10.1 months to NR) in the overall analysis, not reached (95% CI, NR, NR) in osteosarcoma patients and 11.4 months (95% CI 1.8 to 21.1 months) in chondrosarcoma patients. The ORR was 9.52% and DCR was 78.57%. Grade 3 or above AEs occurred in 54.76% of the patients, and included hypertension (19.05%), hypertriglyceridemia (9.52%) and pustulosis palmaris et plantaris (7.14%). No treatment-related death was reported. Conclusion Anlotinib demonstrated promising antitumor activities in recurrent or metastatic primary malignant bone tumors with manageable AEs.
Collapse
Affiliation(s)
- Lina Tang
- Shanghai 6th People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Niu
- Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Zhen Wang
- Department of Orthopaedics, The First Affiliated Hospital, The Air Force Medical University, Xi’an, China
| | - Qiqing Cai
- Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Chongqi Tu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengfu Fan
- Beijing Cancer Hospital, Peking University, Beijing, China
| | - Yang Yao
- Shanghai 6th People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yang Yao,
| |
Collapse
|
150
|
Nance RL, Cooper SJ, Starenki D, Wang X, Matz B, Lindley S, Smith AN, Smith AA, Bergman N, Sandey M, Koehler J, Agarwal P, Smith BF. Transcriptomic Analysis of Canine Osteosarcoma from a Precision Medicine Perspective Reveals Limitations of Differential Gene Expression Studies. Genes (Basel) 2022; 13:genes13040680. [PMID: 35456486 PMCID: PMC9031617 DOI: 10.3390/genes13040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Despite significant advances in cancer diagnosis and treatment, osteosarcoma (OSA), an aggressive primary bone tumor, has eluded attempts at improving patient survival for many decades. The difficulty in managing OSA lies in its extreme genetic complexity, drug resistance, and heterogeneity, making it improbable that a single-target treatment would be beneficial for the majority of affected individuals. Precision medicine seeks to fill this gap by addressing the intra- and inter-tumoral heterogeneity to improve patient outcome and survival. The characterization of differentially expressed genes (DEGs) unique to the tumor provides insight into the phenotype and can be useful for informing appropriate therapies as well as the development of novel treatments. Traditional DEG analysis combines patient data to derive statistically inferred genes that are dysregulated in the group; however, the results from this approach are not necessarily consistent across individual patients, thus contradicting the basis of precision medicine. Spontaneously occurring OSA in the dog shares remarkably similar clinical, histological, and molecular characteristics to the human disease and therefore serves as an excellent model. In this study, we use transcriptomic sequencing of RNA isolated from primary OSA tumor and patient-matched normal bone from seven dogs prior to chemotherapy to identify DEGs in the group. We then evaluate the universality of these changes in transcript levels across patients to identify DEGs at the individual level. These results can be useful for reframing our perspective of transcriptomic analysis from a precision medicine perspective by identifying variations in DEGs among individuals.
Collapse
Affiliation(s)
- Rebecca L. Nance
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.L.N.); (X.W.); (P.A.)
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.S.); (J.K.)
| | - Sara J. Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (S.J.C.); (D.S.)
| | - Dmytro Starenki
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (S.J.C.); (D.S.)
| | - Xu Wang
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.L.N.); (X.W.); (P.A.)
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.S.); (J.K.)
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (S.J.C.); (D.S.)
- Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL 36849, USA
| | - Brad Matz
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (B.M.); (S.L.); (A.N.S.); (A.A.S.); (N.B.)
| | - Stephanie Lindley
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (B.M.); (S.L.); (A.N.S.); (A.A.S.); (N.B.)
| | - Annette N. Smith
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (B.M.); (S.L.); (A.N.S.); (A.A.S.); (N.B.)
| | - Ashley A. Smith
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (B.M.); (S.L.); (A.N.S.); (A.A.S.); (N.B.)
| | - Noelle Bergman
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (B.M.); (S.L.); (A.N.S.); (A.A.S.); (N.B.)
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.S.); (J.K.)
| | - Jey Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.S.); (J.K.)
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.L.N.); (X.W.); (P.A.)
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.S.); (J.K.)
| | - Bruce F. Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.L.N.); (X.W.); (P.A.)
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.S.); (J.K.)
- Correspondence: ; Tel.: +1-334-844-5587
| |
Collapse
|