101
|
Finch CE. Developmental origins of aging in brain and blood vessels: an overview. Neurobiol Aging 2005; 26:281-91. [PMID: 15639305 DOI: 10.1016/j.neurobiolaging.2004.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/17/2004] [Accepted: 03/30/2004] [Indexed: 01/22/2023]
Abstract
Emerging evidence suggests a remarkable convergence of inflammatory mechanisms in the etiology of cardiovascular disease and Alzheimer disease. A broad set of NSAIDs and statins used to reduce the risk of vascular occlusion and to slow atherogensis may also be protective for Alzheimer disease. Elevated blood levels of C-reactive protein are risk factors for cardiovascular disease and possibly for Alzheimer disease. Monocyte-lineage cells are also fundamental to both conditions: in blood vessels, macrophages are important to atherogenesis for the accumulation of lipids (foam cells), whereas brain microglia show activation during aging and direct involvement in amyloid metabolism in the senile plaque. Genetic influences are recognized through the apoE4 allele, which is associated with hypercholesterolemia and is a risk factor in vascular events and Alzheimer disease, and is recognized for its proinflammatory profile. ApoE4 also accelerates Alzheimer disease pathogenesis in Down's syndrome and many other chronic neurodegenerative conditions, as is well-supported by animal models. Inflammatory changes are present at the earliest stages of vascular disease and Down's syndrome in human fetuses, and are also prominent early in Alzheimer disease. These findings give a basis for considering inflammatory processes early in life which can lead to fully fired pathogenesis of cardiovascular disease and possibly for Alzheimer disease.
Collapse
Affiliation(s)
- Caleb E Finch
- Department of Biological Sciences, Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
102
|
Zabłocka A, Janusz M, Macała J, Lisowski J. A proline-rich polypeptide complex and its nonapeptide fragment inhibit nitric oxide production induced in mice. ACTA ACUST UNITED AC 2005; 125:35-9. [PMID: 15582711 DOI: 10.1016/j.regpep.2004.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 07/21/2004] [Accepted: 07/21/2004] [Indexed: 11/18/2022]
Abstract
A proline-rich polypeptide complex (PRP) isolated from ovine colostrum shows immunoregulatory and procognitive activities. It shows beneficial effects in Alzheimer's disease (AD) patients when orally administered in the form of tablets called Colostrinin. The mechanism of action of PRP/Colostrinin in AD has not been yet clarified. It is known that oxidative stress and overproduction of NO may enhance neurodegenerative processes. PRP regulates the secretion of cytokines, inhibits NO and O2- release in cell cultures. Since the results on isolated cells or cell lines frequently do not reflect the events in vivo, the effect of PRP and its nonapeptide fragment (NP) on the level of NO2- in sera of mice untreated or intraperitoneally treated with LPS was studied. PRP and NP did not induce production of NO. However, when applicated 6 h after LPS, they inhibited the release of NO induced by LPS in about 30-50%. The results in vivo presented in this paper confirm the results obtained in cell cultures and indicate that the beneficial effects of PRP/Colostrinin observed in AD patients may be, among others, due to an inhibition of overproduction of NO.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Department of Immunochemistry, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla, 53-114 Wrocław, Poland
| | | | | | | |
Collapse
|
103
|
Abstract
Atherosclerosis, the leading cause of death in developed countries, is characterized by chronic inflammation in the artery wall. It has been appreciated for decades that this disease is linked to hypercholesterolemia and the accumulation of macrophages in the artery wall, yet the exact mechanisms underlying this inflammatory process remain unclear. The role of innate and adaptive immune responses in the pathogenesis of atherosclerosis has been an area of intense study. It now appears that activation of innate immune signaling pathways designed to protect us from microbes may be responsible for initiating and feeding the chronic inflammatory cascade that characterizes this disease. In this review, we discuss the recent identification of Toll-like receptors and their downstream signaling pathways as critical contributors to atherosclerosis. Unraveling the contribution of individual Toll-like receptors and identifying the ligands that activate these pathways will be a central focus of atherosclerosis research in the next few years. The involvement of these pathways in atherogenesis will not only open up new avenues of investigation, but it also provides new targets for therapeutic manipulation that could ameliorate the atherosclerotic inflammatory response directly.
Collapse
Affiliation(s)
- Marc A Laberge
- Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
104
|
Viles-Gonzalez JF, Fuster V, Badimon JJ. Thrombin/inflammation paradigms: a closer look at arterial and venous thrombosis. Am Heart J 2005; 149:S19-31. [PMID: 15644789 DOI: 10.1016/j.ahj.2004.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Juan F Viles-Gonzalez
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
105
|
Kunjathoor VV, Tseng AA, Medeiros LA, Khan T, Moore KJ. beta-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins. J Neuroinflammation 2004; 1:23. [PMID: 15546489 PMCID: PMC535814 DOI: 10.1186/1742-2094-1-23] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 11/16/2004] [Indexed: 01/10/2023] Open
Abstract
Background Recent studies suggest that hypercholesterolemia, an established risk factor for atherosclerosis, is also a risk factor for Alzheimer's disease. The myeloid scavenger receptor CD36 binds oxidized lipoproteins that accumulate with hypercholesterolemia and mediates their clearance from the circulation and peripheral tissues. Recently, we demonstrated that CD36 also binds fibrillar β-amyloid and initiates a signaling cascade that regulates microglial recruitment and activation. As increased lipoprotein oxidation and accumulation of lipid peroxidation products have been reported in Alzheimer's disease, we investigated whether β-amyloid altered oxidized lipoprotein clearance via CD36. Methods The availability of mice genetically deficient in class A (SRAI & II) and class B (CD36) scavenger receptors has facilitated studies to discriminate their individual actions. Using primary microglia and macrophages, we assessed the impact of Aβ on: (a) cholesterol ester accumulation by GC-MS and neutral lipid staining, (b) binding, uptake and degradation of 125I-labeled oxidized lipoproteins via CD36, SR-A and CD36/SR-A-independent pathways, (c) expression of SR-A and CD36. In addition, using mice with targeted deletions in essential kinases in the CD36-signaling cascade, we investigated whether Aβ-CD36 signaling altered metabolism of oxidized lipoproteins. Results In primary microglia and macrophages, Aβ inhibited binding, uptake and degradation of oxidized low density lipoprotein (oxLDL) in a dose-dependent manner. While untreated cells accumulated abundant cholesterol ester in the presence of oxLDL, cells treated with Aβ were devoid of cholesterol ester. Pretreatment of cells with Aβ did not affect subsequent degradation of oxidized lipoproteins, indicating that lysosomal accumulation of Aβ did not disrupt this degradation pathway. Using mice with targeted deletions of the scavenger receptors, we demonstrated that Aβ inhibited oxidized lipoprotein binding and its subsequent degradation via CD36, but not SRA, and this was independent of Aβ-CD36-signaling. Furthermore, Aβ treatment decreased CD36, but not SRA, mRNA and protein, thereby reducing cell surface expression of this oxLDL receptor. Conclusions Together, these data demonstrate that in the presence of β-amyloid, CD36-mediated clearance of oxidized lipoproteins is abrogated, which would promote the extracellular accumulation of these pro-inflammatory lipids and perpetuate lipid peroxidation.
Collapse
Affiliation(s)
- Vidya V Kunjathoor
- Lipid Metabolism Unit, Dept. of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114 USA
| | - Anita A Tseng
- Lipid Metabolism Unit, Dept. of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114 USA
| | - Lea A Medeiros
- Lipid Metabolism Unit, Dept. of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114 USA
| | - Tayeba Khan
- Lipid Metabolism Unit, Dept. of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114 USA
| | - Kathryn J Moore
- Lipid Metabolism Unit, Dept. of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114 USA
| |
Collapse
|
106
|
Abstract
During the past decade, interrelationships between inflammation and thrombosis have been the subject of extensive works, and it is now commonly recognized that inflammation (notably leucocyte recruitment) directly affects thrombosis, and that thrombosis also constitutes a pro-inflammatory event. This tight link is partly attributable to P-selectin, which is functional not only when expressed on the surface of activated platelets and endothelial cells, but also when shed, generating its soluble form, termed sP-selectin. In this review, we will provide an overview of the relative roles of the different compartments of P-selectin (platelet, endothelial cell, plasma) in haemostasis and vascular pathologies, and the potential therapeutic benefits achievable in targeting this molecule.
Collapse
Affiliation(s)
- Patrick André
- Portola Pharmaceuticals, South San Francisco, CA 94080, USA.
| |
Collapse
|
107
|
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004; 5:347-60. [PMID: 15100718 DOI: 10.1038/nrn1387] [Citation(s) in RCA: 1597] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Costantino Iadecola
- Division of Neurobiology, Weill Medical College of Cornell University, room KB410, 411 East 69th Street, New York, New York 10021, USA.
| |
Collapse
|
108
|
Hagihara M, Higuchi A, Tamura N, Ueda Y, Hirabayashi K, Ikeda Y, Kato S, Sakamoto S, Hotta T, Handa S, Goto S. Platelets, after Exposure to a High Shear Stress, Induce IL-10-Producing, Mature Dendritic Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2004; 172:5297-303. [PMID: 15100268 DOI: 10.4049/jimmunol.172.9.5297] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is evidence for immune system involvement in atherogenesis. In the present study the effect of platelets on dendritic cells (DC), an important immunologic regulator, was examined in vitro. Platelet-rich plasma, after exposure to shear stress, was added to human monocyte-derived immature DC, which were then examined for surface Ag expression, allogeneic T lymphocyte stimulatory activity, and cytokine production. After exposure, the number of anti-CD40 ligand (anti-CD40L) and anti-P-selectin IgG molecules bound per platelet was increased. These activated platelets induced DC maturation, as revealed by significant up-regulation of CD83, CD80, and CD86 Ags. The addition of platelets in the presence of IFN-gamma plus LPS significantly enhanced IL-10 production from immature DC. After platelet addition, mature DC provoked a significant proliferation of allogeneic naive T lymphocytes. These activated T cells showed lower IFN-gamma production than those stimulated by LPS- and IFN-gamma-treated DC. CD40L on the platelet surface was not involved in maturation of DC, as mAb to CD40L failed to block maturation. The effect of platelets was observed even if platelets and DC were separated using large pore-sized membranes or when platelets were depleted from plasma by centrifugation. Furthermore, it was abrogated after the depletion of protein fraction. Thus, soluble protein factors excreted from activated platelets contribute to IL-10-producing DC maturation.
Collapse
Affiliation(s)
- Masao Hagihara
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Ricciarelli R, D'Abramo C, Zingg JM, Giliberto L, Markesbery W, Azzi A, Marinari UM, Pronzato MA, Tabaton M. CD36 overexpression in human brain correlates with beta-amyloid deposition but not with Alzheimer's disease. Free Radic Biol Med 2004; 36:1018-24. [PMID: 15059642 DOI: 10.1016/j.freeradbiomed.2004.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/29/2003] [Accepted: 01/15/2004] [Indexed: 11/20/2022]
Abstract
Scavenger receptors recently have been related to Alzheimer's disease, although it is still unclear whether they contribute to the pathogenesis of the disease or reflect an inflammatory response to the deposition of amyloid beta-protein (Abeta). In this study we demonstrate that CD36, a class B scavenger receptor, is highly expressed in the cerebral cortex of Alzheimer's disease patients and cognitively normal aged subjects with diffuse amyloid plaques compared with age-matched amyloid-free control brains. Moreover, in vitro experiments indicated that Abeta is able to induce CD36 expression in neuronal cells after 24 h treatment. The interaction between CD36 and Abeta has been reported to trigger oxidant production by macrophages and microglia. In line with this observation, we found an increased presence of nitrated proteins in brains showing Abeta loads and CD36 overexpression, independent of the occurrence of Alzheimer's disease pathologic features.
Collapse
Affiliation(s)
- Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. Lancet 2004; 363:1139-46. [PMID: 15064035 DOI: 10.1016/s0140-6736(04)15900-x] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Late-onset sporadic Alzheimer's disease is a heterogeneous disorder. In elderly patients, increasing evidence suggests a link between this neurodegenerative disease, and vascular risk factors and atherosclerosis. The nature of this link remains speculative. Some investigators have suggested that the disease arises as a secondary event related to atherosclerosis of extracranial or intracranial vessels. A toxic effect of vascular factors on the microvasculature of susceptible brain regions has also been argued. An alternative explanation is that atherosclerosis and Alzheimer's disease are independent but convergent disease processes. This hypothesis is lent support by observations of shared epidemiology, pathophysiological elements, and response to treatment in both disorders. It provides a potential framework for an improved understanding of the pathogenesis of Alzheimer's disease, especially in elderly patients with vascular risk factors, and offers some promise toward the search for preventive and therapeutic treatments.
Collapse
Affiliation(s)
- Ivan Casserly
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
111
|
Jans DM, Martinet W, Fillet M, Kockx MM, Merville MP, Bult H, Herman AG, De Meyer GRY. Effect of Non-Steroidal Anti-Inflammatory Drugs on Amyloid-β Formation and Macrophage Activation after Platelet Phagocytosis. J Cardiovasc Pharmacol 2004; 43:462-70. [PMID: 15076232 DOI: 10.1097/00005344-200403000-00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, we showed that platelet phagocytosis occurs in human atherosclerotic plaques and leads to foam cell formation. Platelet phagocytosis, resulting in macrophage activation and iNOS induction, was associated with the formation of amyloid-beta peptide (Abeta) via proteolytic cleavage of platelet-derived amyloid precursor protein (APP), possibly by secretases. To test the involvement of gamma-secretase in this process, we used indomethacin, ibuprofen, and sulindac sulfide, non-steroidal anti-inflammatory drugs (NSAIDs) known to alter the gamma-secretase cleaving site of APP, on their ability to inhibit macrophage activation evoked by platelet phagocytosis. J774 macrophages were incubated with human platelets or lipopolysaccharide (LPS) with or without NSAIDs. Nitrite was quantified as a measure for inducible nitric oxide synthase (iNOS) activity. Indomethacin, ibuprofen, sulindac sulfide, and meloxicam concentration-dependently reduced nitrite production by macrophages incubated with platelets, but did not alter LPS-induced iNOS activity or platelet uptake. However, acetylsalicylic acid and naproxen, two NSAIDs without effect on the gamma-secretase cleaving site of APP, did not affect nitrite production in either platelet- or LPS-stimulated macrophages. Surface-enhanced laser desorption/ionization time-of-flight mass-spectrometry demonstrated time-dependent formation of Abeta-containing peptides after platelet phagocytosis, which could be inhibited by indomethacin. In conclusion, these results point to the involvement of gamma-secretase in macrophage activation following platelet phagocytosis.
Collapse
Affiliation(s)
- Dominique M Jans
- Division of Pharmacology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Li L, Cao D, Garber DW, Kim H, Fukuchi KI. Association of aortic atherosclerosis with cerebral beta-amyloidosis and learning deficits in a mouse model of Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2155-64. [PMID: 14633589 PMCID: PMC1892402 DOI: 10.1016/s0002-9440(10)63572-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
High fat/high cholesterol diets exacerbate beta-amyloidosis in mouse models of Alzheimer's disease (AD). It has been impossible, however, to study the relationship between atherosclerosis and beta-amyloidosis in those models because such mice were on atherosclerosis-resistant genetic backgrounds. Here we report the establishment of AD model mice, B6Tg2576, that are prone to atherosclerosis. B6Tg2576 mice were produced by back-crossing Tg2576 mice, an AD mouse model overexpressing human amyloid beta-protein precursor with the Swedish double mutation, to C57BL/6 mice, a strain susceptible to diet-induced atherosclerosis. An atherogenic diet induced aortic atherosclerosis and exacerbated cerebral beta-amyloidosis in B6Tg2576 mice. Compared with age-matched non-transgenic littermates, B6Tg2576 mice developed significantly more diet-induced aortic atherosclerosis. Unexpectedly, normal diet-fed B6Tg2576 mice also developed fatty streak lesions (early atherosclerosis) in the aorta. The aortic atherosclerotic lesion area positively correlated with cerebral beta-amyloid deposits in B6Tg2576 mice on both atherogenic and normal diets. Furthermore, behavioral assessments demonstrated that B6Tg2576 mice fed an atherogenic diet had more spatial learning impairment than those fed a normal diet. Our results suggest that synergistic mechanisms may be involved in the pathogenesis of atherosclerosis and AD. These findings may have important implications in the prevention and treatment of cardiovascular diseases as well as AD.
Collapse
Affiliation(s)
- Ling Li
- Departments of Medicine, Pharmacology, and Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
113
|
Medeiros LA, Khan T, El Khoury JB, Pham CLL, Hatters DM, Howlett GJ, Lopez R, O'Brien KD, Moore KJ. Fibrillar amyloid protein present in atheroma activates CD36 signal transduction. J Biol Chem 2003; 279:10643-8. [PMID: 14699114 DOI: 10.1074/jbc.m311735200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The self-association of proteins to form amyloid fibrils has been implicated in the pathogenesis of a number of diseases including Alzheimer's, Parkinson's, and Creutzfeldt-Jakob diseases. We recently reported that the myeloid scavenger receptor CD36 initiates a signaling cascade upon binding to fibrillar beta-amyloid that stimulates recruitment of microglia in the brain and production of inflammatory mediators. This receptor plays a key role in the pathogenesis of atherosclerosis, prompting us to evaluate whether fibrillar proteins were present in atherosclerotic lesions that could initiate signaling via CD36. We show that apolipoprotein C-II, a component of very low and high density lipoproteins, readily forms amyloid fibrils that initiate macrophage inflammatory responses including reactive oxygen production and tumor necrosis factor alpha expression. Using macrophages derived from wild type and Cd36(-/-) mice to distinguish CD36-specific events, we show that fibrillar apolipoprotein C-II activates a signaling cascade downstream of this receptor that includes Lyn and p44/42 MAPKs. Interruption of this signaling pathway through targeted deletion of Cd36 or blocking of p44/42 MAPK activation inhibits macrophage tumor necrosis factor alpha gene expression. Finally, we demonstrate that apolipoprotein C-II in human atheroma co-localizes to regions positive for markers of amyloid and macrophage accumulation. Together, these data characterize a CD36-dependent signaling cascade initiated by fibrillar amyloid species that may promote atherogenesis.
Collapse
Affiliation(s)
- Lea A Medeiros
- Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
|
115
|
Abstract
Why inflammatory responses become chronic and how adjuvants work remain unanswered. Macrophage-lineage cells are key components of chronic inflammatory reactions and in the actions of immunologic adjuvants. One explanation for the increased numbers of macrophages long term at sites of chronic inflammation could be enhanced cell survival or even local proliferation. The evidence supporting a unifying hypothesis for one way in which this macrophage survival and proliferation may be promoted is presented. Many materials, often particulate, of which macrophages have difficulty disposing, can promote monocyte/macrophage survival and even proliferation. Materials active in this regard and which can initiate chronic inflammatory reactions include oxidized low-density lipoprotein, inflammatory microcrystals (calcium phosphate, monosodium urate, talc, calcium pyrophosphate), amyloidogenic peptides (amyloid beta and prion protein), and joint implant biomaterials. Additional, similar materials, which have been shown to have adjuvant activity (alum, oil-in-water emulsions, heat-killed bacteria, CpG oligonucleotides, methylated bovine serum albumin, silica), induce similar responses. Cell proliferation can be striking, following uptake of some of the materials, when macrophage-colony stimulating factor is included at low concentrations, which normally promote mainly survival. It is proposed that if such responses were occurring in vivo, there would be a shift in the normal balance between cell survival and cell death, which maintains steady-state, macrophage-lineage numbers in tissues. Thus, there would be more cells in an inflammatory lesion or at a site of adjuvant action with the potential, following activation and/or differentiation, to perpetuate inflammatory or antigen-specific, immune responses, respectively.
Collapse
Affiliation(s)
- John A Hamilton
- Arthritis and Inflammation Research Centre and Cooperative Research Centre for Chronic Inflammatory Diseases, University of Melbourne, Department of Medicine, The Royal Melbourne Hospital, Parkville, Australia.
| |
Collapse
|
116
|
Kockx MM, Cromheeke KM, Knaapen MWM, Bosmans JM, De Meyer GRY, Herman AG, Bult H. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23:440-6. [PMID: 12615689 DOI: 10.1161/01.atv.0000057807.28754.7f] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Previously, we demonstrated that activated inducible NO synthase (iNOS)-expressing foam cells in human carotid plaques often produce autofluorescent (per)oxidized lipids (ceroid). Here, we investigate whether intraplaque microvessels can provide foam cells with lipids and trigger macrophage activation. METHODS AND RESULTS Microvessels (von Willebrand factor [vWf] immunoreactivity), activated macrophages (iNOS immunoreactivity), and ceroid were systematically mapped in longitudinal sections of 15 human carotid endarterectomy specimens. An unbiased hierarchical cluster analysis classified vascular regions into 2 categories. One type with normal vWf expression and without inflammatory cells was seen, and another type with cuboidal endothelial cells, perivascular vWf deposits, and iNOS and ceroid-containing foam cells was seen in 4 (27%) of 15 plaques. The perivascular foam cells frequently contained platelets (glycoprotein Ibalpha) and erythrocytes (hemoglobin, iron), pointing to microhemorrhage/thrombosis and subsequent phagocytosis. Similar lipid-containing cells, expressing both ceroid and iNOS, were generated in atherosclerosis-free settings by incubating murine J774 macrophages with platelets or oxidized erythrocytes and also in vivo in organizing thrombi in normocholesterolemic rabbits. CONCLUSIONS Focal intraplaque microhemorrhages initiate platelet and erythrocyte phagocytosis, leading to iron deposition, macrophage activation, ceroid production, and foam cell formation. Neovascularization, besides supplying plaques with leukocytes and lipoproteins, can thus promote focal plaque expansion when microvessels become thrombotic or rupture prone.
Collapse
Affiliation(s)
- Mark M Kockx
- Division of Pharmacology, University of Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
117
|
Moore KJ, El Khoury J, Medeiros LA, Terada K, Geula C, Luster AD, Freeman MW. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid. J Biol Chem 2002; 277:47373-9. [PMID: 12239221 DOI: 10.1074/jbc.m208788200] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
beta-Amyloid accumulation is associated with pathologic changes in the brain in Alzheimer's disease and has recently been identified in plaques of another chronic inflammatory disorder, atherosclerosis. The class B scavenger receptor, CD36, mediates binding of fibrillar beta-amyloid to cells of the monocyte/macrophage lineage, including brain macrophages (microglia). In this study, we demonstrate that in microglia and other tissue macrophages, beta-amyloid initiates a CD36-dependent signaling cascade involving the Src kinase family members, Lyn and Fyn, and the mitogen-activated protein kinase, p44/42. Interruption of this signaling cascade, through targeted disruption of Src kinases downstream of CD36, inhibits macrophage inflammatory responses to beta-amyloid, including reactive oxygen and chemokine production, and results in decreased recruitment of microglia to sites of amyloid deposition in vivo. The finding that engagement of CD36 by beta-amyloid initiates a Src kinase-dependent production of inflammatory mediators in cells of the macrophage lineage reveals a novel receptor-mediated pro-inflammatory signaling pathway of potential therapeutic importance.
Collapse
Affiliation(s)
- Kathryn J Moore
- Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Affiliation(s)
- Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
119
|
|