101
|
Ye L, Zhang P, Duval S, Su L, Xiong Q, Zhang J. Thymosin β4 increases the potency of transplanted mesenchymal stem cells for myocardial repair. Circulation 2013; 128:S32-41. [PMID: 24030419 DOI: 10.1161/circulationaha.112.000025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Thymosin β4 (Tβ4) has been shown to enhance the survival of cultured cardiomyocytes. Here, we investigated whether the cytoprotective effects of Tβ4 can increase the effectiveness of transplanted swine mesenchymal stem cells (sMSCs) for cardiac repair in a rat model of myocardial infarction (MI). METHODS AND RESULTS Under hypoxic conditions, cellular damage (lactate dehydrogenase leakage), apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labelingc cells), and caspase-8 activity were significantly lower, whereas B-cell lymphoma-extra large protein expression was significantly higher, in sMSCs cultured with Tβ4 (1 μg/mL) than in sMSCs cultured without Tβ4, and Tβ4 also increased sMSC proliferation. For in vivo experiments, animals were treated with basal medium (MI: n=6), a fibrin patch (Patch: n=6), a patch containing sMSCs (sMSC: n=9), or a patch containing sMSCs and Tβ4 (sMSC/Tβ4: n=11); Tβ4 was encapsulated in gelatin microspheres to extend Tβ4 delivery. Four weeks after treatment, echocardiographic assessments of left-ventricular ejection fraction and fractional shortening were significantly better (P<0.05) in sMSC/Tβ4 animals (left-ventricular ejection fraction=51.7 ± 1.1%; fractional shortening=26.7 ± 0.7%) than in animals from MI (39 ± 3%; 19.5 ± 1.7%) and Patch (43 ± 1.4%; 21.6 ± 0.9%) groups. Histological assessment of infarct wall thickness was significantly higher (P<0.05) in sMSC/Tβ4 animals (50%, [45%, 80%]) than in animals from MI (25%, [20%, 25%]) group. Measurements in sMSC (left-ventricular ejection fraction=45 ± 2.6%; fractional shortening=22.9 ± 1.6%; TH = 43% [25%, 45%]), Patch, and MI animals were similar. Tβ4 administration also significantly increased vascular growth, the retention/survival of the transplanted sMSCs, and the recruitment of endogenous c-Kit(+) progenitor cells to the infarcted region. CONCLUSIONS Extended-release Tβ4 administration improves the retention, survival, and regenerative potency of transplanted sMSCs after myocardial injury.
Collapse
Affiliation(s)
- Lei Ye
- Division of Cardiology, Department of Medicine (L.Y., P.Z., S.D., L.S., Q.X., J.Z.), Stem Cell Institute (L.Y., J.Z.), and Department of Biomedical Engineering (J.Z.), University of Minnesota, Minneapolis, MN
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
Transplantation of engineered tissue patches containing either progenitor cells or cardiomyocytes for cardiac repair is emerging as an exciting treatment option for patients with postinfarction left ventricular remodeling. The beneficial effects may evolve directly from remuscularization or indirectly through paracrine mechanisms that mobilize and activate endogenous progenitor cells to promote neovascularization and remuscularization, inhibit apoptosis, and attenuate left ventricular dilatation and disease progression. Despite encouraging results, further improvements are necessary to enhance current tissue engineering concepts and techniques and to achieve clinical impact. Herein, we review several strategies for cardiac remuscularization and paracrine support that can induce cardiac repair and attenuate left ventricular dysfunction from both within and outside the myocardium.
Collapse
Affiliation(s)
- Lei Ye
- From the University of Minnesota, Minneapolis
| | | | | | | |
Collapse
|
103
|
Hughey CC, James FD, Ma L, Bracy DP, Wang Z, Wasserman DH, Rottman JN, Shearer J. Diminishing impairments in glucose uptake, mitochondrial content, and ADP-stimulated oxygen flux by mesenchymal stem cell therapy in the infarcted heart. Am J Physiol Cell Physiol 2013; 306:C19-27. [PMID: 24196528 DOI: 10.1152/ajpcell.00156.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A constant provision of ATP is of necessity for cardiac contraction. As the heart progresses toward failure following a myocardial infarction (MI), it undergoes metabolic alterations that have the potential to compromise the ability to meet energetic demands. This study evaluated the efficacy of mesenchymal stem cell (MSC) transplantation into the infarcted heart to minimize impairments in the metabolic processes that contribute to energy provision. Seven and twenty-eight days following the MI and MSC transplantation, MSC administration minimized cardiac systolic dysfunction. Hyperinsulinemic-euglycemic clamps, coupled with 2-[(14)C]deoxyglucose administration, were employed to assess systemic insulin sensitivity and tissue-specific, insulin-mediated glucose uptake 36 days following the MI in the conscious, unrestrained, C57BL/6 mouse. The improved systolic performance in MSC-treated mice was associated with a preservation of in vivo insulin-stimulated cardiac glucose uptake. Conserved glucose uptake in the heart was linked to the ability of the MSC treatment to diminish the decline in insulin signaling as assessed by Akt phosphorylation. The MSC treatment also sustained mitochondrial content, ADP-stimulated oxygen flux, and mitochondrial oxidative phosphorylation efficiency in the heart. Maintenance of mitochondrial function and density was accompanied by preserved peroxisome proliferator-activated receptor-γ coactivator-1α, a master regulator of mitochondrial biogenesis. These studies provide insight into mechanisms of action that lead to an enhanced energetic state in the infarcted heart following MSC transplantation that may assist in energy provision and dampen cardiac dysfunction.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Naftali-Shani N, Itzhaki-Alfia A, Landa-Rouben N, Kain D, Holbova R, Adutler-Lieber S, Molotski N, Asher E, Grupper A, Millet E, Tessone A, Winkler E, Kastrup J, Feinberg MS, Zipori D, Pevsner-Fischer M, Raanani E, Leor J. The origin of human mesenchymal stromal cells dictates their reparative properties. J Am Heart Assoc 2013; 2:e000253. [PMID: 24080908 PMCID: PMC3835227 DOI: 10.1161/jaha.113.000253] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Human mesenchymal stromal cells (hMSCs) from adipose cardiac tissue have attracted considerable interest in regard to cell‐based therapies. We aimed to test the hypothesis that hMSCs from the heart and epicardial fat would be better cells for infarct repair. Methods and Results We isolated and grew hMSCs from patients with ischemic heart disease from 4 locations: epicardial fat, pericardial fat, subcutaneous fat, and the right atrium. Significantly, hMSCs from the right atrium and epicardial fat secreted the highest amounts of trophic and inflammatory cytokines, while hMSCs from pericardial and subcutaneous fat secreted the lowest. Relative expression of inflammation‐ and fibrosis‐related genes was considerably higher in hMSCs from the right atrium and epicardial fat than in subcutaneous fat hMSCs. To determine the functional effects of hMSCs, we allocated rats to hMSC transplantation 7 days after myocardial infarction. Atrial hMSCs induced greatest infarct vascularization as well as highest inflammation score 27 days after transplantation. Surprisingly, cardiac dysfunction was worst after transplantation of hMSCs from atrium and epicardial fat and minimal after transplantation of hMSCs from subcutaneous fat. These findings were confirmed by using hMSC transplantation in immunocompromised mice after myocardial infarction. Notably, there was a correlation between tumor necrosis factor‐α secretion from hMSCs and posttransplantation left ventricular remodeling and dysfunction. Conclusions Because of their proinflammatory properties, hMSCs from the right atrium and epicardial fat of cardiac patients could impair heart function after myocardial infarction. Our findings might be relevant to autologous mesenchymal stromal cell therapy and development and progression of ischemic heart disease.
Collapse
Affiliation(s)
- Nili Naftali-Shani
- Leviev Heart Center, Sheba Medical Center, Tamman Cardiovascular Research Institute, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Hughey CC, Ma L, James FD, Bracy DP, Wang Z, Wasserman DH, Rottman JN, Hittel DS, Shearer J. Mesenchymal stem cell transplantation for the infarcted heart: therapeutic potential for insulin resistance beyond the heart. Cardiovasc Diabetol 2013; 12:128. [PMID: 24007410 PMCID: PMC3847505 DOI: 10.1186/1475-2840-12-128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/30/2013] [Indexed: 12/28/2022] Open
Abstract
Background This study aimed to evaluate the efficacy of mesenchymal stem cell (MSC) transplantation to mitigate abnormalities in cardiac-specific and systemic metabolism mediated by a combination of a myocardial infarction and diet-induced insulin resistance. Methods C57BL/6 mice were high-fat fed for eight weeks prior to induction of a myocardial infarction via chronic ligation of the left anterior descending coronary artery. MSCs were administered directly after myocardial infarction induction through a single intramyocardial injection. Echocardiography was performed prior to the myocardial infarction as well as seven and 28 days post-myocardial infarction. Hyperinsulinemic-euglycemic clamps coupled with 2-[14C]deoxyglucose were employed 36 days post-myocardial infarction (13 weeks of high-fat feeding) to assess systemic insulin sensitivity and insulin-mediated, tissue-specific glucose uptake in the conscious, unrestrained mouse. High-resolution respirometry was utilized to evaluate cardiac mitochondrial function in saponin-permeabilized cardiac fibers. Results MSC administration minimized the decline in ejection fraction following the myocardial infarction. The greater systolic function in MSC-treated mice was associated with increased in vivo cardiac glucose uptake and enhanced mitochondrial oxidative phosphorylation efficiency. MSC therapy promoted reductions in fasting arterial glucose and fatty acid concentrations. Additionally, glucose uptake in peripheral tissues including skeletal muscle and adipose tissue was elevated in MSC-treated mice. Enhanced glucose uptake in these tissues was associated with improved insulin signalling as assessed by Akt phosphorylation and prevention of a decline in GLUT4 often associated with high-fat feeding. Conclusions These studies provide insight into the utility of MSC transplantation as a metabolic therapy that extends beyond the heart exerting beneficial systemic effects on insulin action.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 2500 University Drive N,W,, Calgary, AB, Canada, T2N 1N4.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013; 113:810-34. [PMID: 23989721 PMCID: PMC3892665 DOI: 10.1161/circresaha.113.300219] [Citation(s) in RCA: 443] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/07/2013] [Indexed: 12/28/2022]
Abstract
Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, KY, USA
| | | |
Collapse
|
107
|
Yu B, Gong M, Wang Y, Millard RW, Pasha Z, Yang Y, Ashraf M, Xu M. Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One 2013; 8:e73304. [PMID: 24015301 PMCID: PMC3756018 DOI: 10.1371/journal.pone.0073304] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/18/2013] [Indexed: 01/12/2023] Open
Abstract
Introduction microRNAs (miRs), a novel class of small non-coding RNAs, are involved in cell proliferation, differentiation, development, and death. In this study, we found that miR-221 translocation by microvesicles (MVs) plays an important role in cardioprotection mediated by GATA-4 overexpressed mesenchymal stem cells (MSC). Methods and Results Adult rat bone marrow MSC and neonatal rat ventricle cardiomyocytes (CM) were harvested as primary cultures. MSC were transduced with GATA-4 (MSCGATA-4) using the murine stem cell virus (pMSCV) retroviral expression system. Empty vector transfection was used as a control (MSCNull). The expression of miRs was assessed by real-time PCR and localized using in situ hybridization (ISH). MVs collected from MSC cultures were characterized by expression of CD9, CD63, and HSP70, and photographed with electron microscopy. Cardioprotection during hypoxia afforded by conditioned medium (CdM) from MSC cultures was evaluated by lactate dehydrogenase (LDH) release, MTS uptake by CM, and caspase 3/7 activity. Expression of miR-221/222 was significantly higher in MSC than in CM and miR-221 was upregulated in MSCGATA-4. MSC overexpression of miR-221 significantly enhanced cardioprotection by reducing the expression of p53 upregulated modulator of apoptosis (PUMA). Moreover, expression of PUMA was significantly decreased in CM co-cultured with MSC. MVs derived from MSC expressed high levels of miR-221, and were internalized quickly by CM as documented in images obtained from a Time-Lapse Imaging System. Conclusions Our results demonstrate that cardioprotection by MSCGATA-4 may be regulated in part by a transfer of anti-apoptotic miRs contained within MVs.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Min Gong
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Ronald W. Millard
- Department of Pharmacology and Cell Biophysics, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Zeeshan Pasha
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Yueting Yang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
108
|
Duran JM, Makarewich CA, Sharp TE, Starosta T, Fang Z, Hoffman NE, Chiba Y, Madesh M, Berretta RM, Kubo H, Houser SR. Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res 2013; 113:539-52. [PMID: 23801066 PMCID: PMC3822430 DOI: 10.1161/circresaha.113.301202] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/25/2013] [Indexed: 12/21/2022]
Abstract
RATIONALE Autologous bone marrow-derived or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials, but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is the key toward improving clinical outcomes. OBJECTIVE To determine the mechanism by which novel bone-derived stem cells support the injured heart. METHODS AND RESULTS Cortical bone-derived stem cells (CBSCs) and cardiac-derived stem cells were isolated from enhanced green fluorescent protein (EGFP+) transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis, and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction with injection of CBSCs (n=67), cardiac-derived stem cells (n=36), or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor), and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to cardiac-derived stem cells- or saline-treated myocardial infarction controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle, and endothelial cells could be identified in CBSC-treated, but not in cardiac-derived stem cells-treated, animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. CONCLUSIONS CBSCs improve survival, cardiac function, and attenuate remodeling through the following 2 mechanisms: (1) secretion of proangiogenic factors that stimulate endogenous neovascularization, and (2) differentiation into functional adult myocytes and vascular cells.
Collapse
Affiliation(s)
- Jason M. Duran
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | | | - Thomas E. Sharp
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Timothy Starosta
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Zhu Fang
- Fox Chase Cancer Center Biostatistics and Bioinformatics Facility, Philadelphia PA
| | - Nicholas E. Hoffman
- Temple University School of Medicine Center for Translational Medicine, Philadelphia, PA
| | - Yumi Chiba
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Muniswamy Madesh
- Temple University School of Medicine Center for Translational Medicine, Philadelphia, PA
| | - Remus M. Berretta
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Hajime Kubo
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Steven R. Houser
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| |
Collapse
|
109
|
Li X, Zhang F, Song G, Gu W, Chen M, Yang B, Li D, Wang D, Cao K. Intramyocardial Injection of Pig Pluripotent Stem Cells Improves Left Ventricular Function and Perfusion: A Study in a Porcine Model of Acute Myocardial Infarction. PLoS One 2013; 8:e66688. [PMID: 23805264 PMCID: PMC3689724 DOI: 10.1371/journal.pone.0066688] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/10/2013] [Indexed: 11/18/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have the potential to differentiate to various types of cardiovascular cells to repair an injured heart. The potential therapeutic benefits of iPS cell based treatment have been established in small-animal models of myocardial infarction (MI). We hypothesize that porcine iPS (piPS) cell transplantation may be an effective treatment for MI. After a 90-minute occlusion of the left anterior descending artery in a porcine model, undifferentiated piPS cells or PBS were injected into the ischemic myocardium. Cardiac function, myocardial perfusion and cell differentiation were investigated. One week after piPS cell delivery, global left ventricular ejection fraction (LVEF) significantly decreased in both the iPS group and the PBS group compared to the Sham group (p<0.05, respectively). Six weeks after piPS cell delivery, LVEF of the iPS group significantly improved compared to the PBS group (56.68% vs. 50.93%, p = 0.04) but was still lower than the Sham group. Likewise, the piPS cell transplantation improved the regional perfusion compared to the PBS injection (19.67% vs. 13.67%, p = 0.02). The infarct area was significantly smaller in the iPS group than the PBS group (12.04% vs. 15.98% p = 0.01). PiPS cells engrafted into the myocardium can differentiate into vessel cells, which result in increased formation of new vessels in the infarcted heart. Direct intramyocardial injection of piPS cells can decrease infarct size and improve left ventricular function and perfusion for an immunosuppressed porcine AMI model.
Collapse
Affiliation(s)
- Xiaorong Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fengxiang Zhang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guixian Song
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weijuan Gu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Minglong Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bing Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dianfu Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Daowu Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kejiang Cao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
110
|
Maureira P, Marie PY, Liu Y, Yu F, Poussier S, Maskali F, Groubatch F, Karcher G, Tran N. Sustained therapeutic perfusion outside transplanted sites in chronic myocardial infarction after stem cell transplantation. Int J Cardiovasc Imaging 2013; 29:809-17. [PMID: 23404382 DOI: 10.1007/s10554-012-0147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022]
Abstract
This study aimed at comparing long-term variations in the perfusion of chronic myocardial infarction (MI) areas after local injections of autologous bone marrow stem cells (BMSCs). 14 coronary ligated rats with transmural chronic MI (4 months) were used: a control group (n = 7) versus a treated group (n = 7) in which (111)In labeled-BMSCs were directly engrafted on MI areas. By using (111)In/(99m)Tc SPECT and Sestamibi gated-SPECT,. left ventricle perfusion and function were monitored in all animals by serial (99m)Tc-Sestamibi pinhole gated-SPECT over a period of 6 months. Post-therapeutic myocardial perfusion improved as early as 48 h following injection in the 2 groups. This benefice was sustained during the 6-month follow-up in the non-engrafted MI-areas from treated rats (at 6-months: +10 ± 5 %), whereas the engrafted ones, as well as the MI areas from control rats, exhibited progressive deterioration over time (at 6-months: -9 ± 10 % and -5 ± 3 %, respectively). Perfusion enhancement of the chronic MI areas treated by BMSCs transplantation is: (1) marked in the following days, presumably because of an unspecific inflammatory reaction, and (2) sustained over the long term but only outside the sites of cell engraftment, suggesting a distant paracrine effect of transplanted cells.
Collapse
Affiliation(s)
- Pablo Maureira
- Faculty of Medicine, School of Surgery, University of Lorraine, 9 Avenue de Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Xiong Q, Ye L, Zhang P, Lepley M, Tian J, Li J, Zhang L, Swingen C, Vaughan JT, Kaufman DS, Zhang J. Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation 2013; 127:997-1008. [PMID: 23371930 DOI: 10.1161/circulationaha.112.000641] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The use of cells derived from human induced pluripotent stem cells as cellular therapy for myocardial injury has yet to be examined in a large-animal model. METHODS AND RESULTS Immunosuppressed Yorkshire pigs were assigned to 1 of 3 groups: A myocardial infarction group (MI group; distal left anterior descending coronary artery ligation and reperfusion; n=13); a cell-treatment group (MI with 4×10(6) vascular cells derived from human induced pluripotent stem cells administered via a fibrin patch; n=14); and a normal group (n=15). At 4 weeks, left ventricular structural and functional abnormalities were less pronounced in hearts in the cell-treated group than in MI hearts (P<0.05), and these improvements were accompanied by declines in scar size (10.4±1.6% versus 8.3±1.1%, MI versus cell-treatment group, P<0.05). The cell-treated group displayed a significant increase in vascular density and blood flow (0.83±0.11 and 1.05±0.13 mL·min(-1)·g(-1), MI versus cell-treatment group, P<0.05) in the periscar border zone (BZ), which was accompanied by improvements in systolic thickening fractions (infarct zone, -10±7% versus 5±5%; BZ, 7±4% versus 23±6%; P<0.05). Transplantation of vascular cells derived from human induced pluripotent stem cells stimulated c-kit(+) cell recruitment to BZ and the rate of bromodeoxyuridine incorporation in both c-kit(+) cells and cardiomyocytes (P<0.05). Using a magnetic resonance spectroscopic saturation transfer technique, we found that the rate of ATP hydrolysis in BZ of MI hearts was severely reduced, and the severity of this reduction was linearly related to the severity of the elevations of wall stresses (r=0.82, P<0.05). This decline in BZ ATP utilization was markedly attenuated in the cell-treatment group. CONCLUSIONS Transplantation of vascular cells derived from human induced pluripotent stem cells mobilized endogenous progenitor cells into the BZ, attenuated regional wall stress, stimulated neovascularization, and improved BZ perfusion, which in turn resulted in marked increases in BZ contractile function and ATP turnover rate.
Collapse
Affiliation(s)
- Qiang Xiong
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Effective cardiac myocyte differentiation of human induced pluripotent stem cells requires VEGF. PLoS One 2013; 8:e53764. [PMID: 23326500 PMCID: PMC3542360 DOI: 10.1371/journal.pone.0053764] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Perhaps one of the most significant achievements in modern science is the discovery of human induced pluripotent stem cells (hiPSCs), which have paved the way for regeneration therapy using patients’ own cells. Cardiomyocytes differentiated from hiPSCs (hiPSC-CMs) could be used for modelling patients with heart failure, for testing new drugs, and for cellular therapy in the future. However, the present cardiomyocyte differentiation protocols exhibit variable differentiation efficiency across different hiPSC lines, which inhibit the application of this technology significantly. Here, we demonstrate a novel myocyte differentiation protocol that can yield a significant, high percentage of cardiac myocyte differentiation (>85%) in 2 hiPSC lines, which makes the fabrication of a human cardiac muscle patch possible. The established hiPSCs cell lines being examined include the transgene integrated UCBiPS7 derived from cord blood cells and non-integrated PCBC16iPS from skin fibroblasts. The results indicate that hiPSC-CMs derived from established hiPSC lines respond to adrenergic or acetylcholine stimulation and beat regularly for greater than 60 days. This data also demonstrates that this novel differentiation protocol can efficiently generate hiPSC-CMs from iPSC lines that are derived not only from fibroblasts, but also from blood mononuclear cells.
Collapse
|
113
|
Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW, Hare JM. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 2012; 127:213-23. [PMID: 23224061 DOI: 10.1161/circulationaha.112.131110] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Because mesenchymal stem cells (MSCs) induce proliferation and differentiation of c-kit(+) cardiac stem cells (CSCs) in vivo and in vitro, we hypothesized that combining human (h) MSCs with c-kit(+) hCSCs produces greater infarct size reduction compared with either cell administered alone after myocardial infarction (MI). METHODS AND RESULTS Yorkshire swine underwent balloon occlusion of the left anterior descending coronary artery followed by reperfusion and were immunosuppressed after MI with cyclosporine and methylprednisolone. Intramyocardial combination hCSCs/hMSCs (1 million cells/200 million cells, n=5), hCSCs alone (1 million cells, n=5), hMSCs alone (200 million cells, n=5), or placebo (phosphate-buffered saline; n=5) was injected into the infarct border zones at 14 days after MI. Phenotypic response to cell therapy was assessed by cardiac magnetic resonance imaging and micromanometer conductance catheterization hemodynamics. Although each cell therapy group had reduced MI size relative to placebo (P<0.05), the MI size reduction was 2-fold greater in combination versus either cell therapy alone (P<0.05). Accompanying enhanced MI size reduction were substantial improvement in left ventricular chamber compliance (end-diastolic pressure-volume relationship; P<0.01) and contractility (preload recruitable stroke work and dP/dtmax; P<0.05) in combination-treated swine. Ejection fraction was restored to baseline in cell-treated pigs, whereas placebo pigs had persistently depressed left ventricular function (P<0.05). Immunohistochemistry showed 7-fold enhanced engraftment of stem cells in the combination therapy group versus either cell type alone (P<0.001). CONCLUSIONS Combining hMSCs and hCSCs as a cell therapeutic enhances scar size reduction and restores diastolic and systolic function toward normal after MI. Taken together, these findings illustrate important biological interactions between c-kit(+) CSCs and MSCs that enhance cell-based therapeutic responses.
Collapse
Affiliation(s)
- Adam R Williams
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Allogeneic stem cell transplantation for ischemic myocardial dysfunction. Curr Opin Organ Transplant 2012; 17:675-80. [DOI: 10.1097/mot.0b013e32835a66a1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
115
|
Kamdar F, Jameel MN, Score P, Zhang J. Cellular therapy promotes endogenous stem cell repair. Can J Physiol Pharmacol 2012; 90:1335-44. [PMID: 23020202 DOI: 10.1139/y2012-115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cellular transplantation for cardiac repair has emerged as an exciting treatment option for patients with myocardial infarction (MI) and heart failure. Animal models of post-infarction left ventricular remodeling have demonstrated an improvement in left ventricular (LV) function, decrease in scar size, and amelioration of adverse cardiac remodeling after stem cell transplantation. These beneficial effects occur despite minimal engraftment and negligible differentiation of transplanted cells. Evidence of the heart capability to self-renew continues to mount; however, the extent to which this occurs is still unclear. Although there is a specific population of cardiac stem cells capable of differentiating into cardiomyocytes, they alone are not capable of fully regenerating tissue damaged by MI. Therefore, paracrine mechanisms may be responsible for activating endogenous stem cells to promote regeneration and prevent apoptosis. These structural beneficial effects may reduce regional wall stresses, consequently leading to long-term host myocardium gene/protein expression changes, which may subsequently result in improvement in LV function.
Collapse
Affiliation(s)
- Forum Kamdar
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC 508, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
116
|
|
117
|
Abstract
Cardiac stem cell therapy to promote engraftment of de novo beating cardiac muscle cells in cardiomyopathies could potentially improve clinical outcomes for many patients with congestive heart failure. Clinical trials carried out over the last decade for cardiac regeneration have revealed inadequacy of current approaches in cell therapy. Chief among them is the choice of stem cells to achieve the desired outcomes. Initial enthusiasm of adult bone marrow stems cells for myocyte regeneration has largely been relegated to paracrine-driven, donor cell-independent, endogenous cardiac repair. However, true functional restoration in heart failure is likely to require considerable myocyte replacement. In order to match stem cell application to various clinical scenarios, we review the necessity to preprime stem cells towards cardiac fate before myocardial transplantation and if these differentiated stem cells could confer added advantage over current choice of undifferentiated stem cells. We explore differentiation ability of various stem cells to cardiac progenitors/cardiomyocytes and compare their applicability in providing targeted recovery in light of current clinical challenges of cell therapy.
Collapse
Affiliation(s)
- Ashish Mehta
- Research and Development Unit, National Heart Centre Singapore, Singapore
| | | |
Collapse
|
118
|
Durand E, Fournier B, Couty L, Lemitre M, Achouh P, Julia P, Trinquart L, Fabiani JN, Seguier S, Gogly B, Coulomb B, Lafont A. Endoluminal Gingival Fibroblast Transfer Reduces the Size of Rabbit Carotid Aneurisms via Elastin Repair. Arterioscler Thromb Vasc Biol 2012; 32:1892-901. [DOI: 10.1161/atvbaha.112.251439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eric Durand
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Benjamin Fournier
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Ludovic Couty
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Mathilde Lemitre
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Paul Achouh
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Pierre Julia
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Ludovic Trinquart
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Jean Noel Fabiani
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Sylvie Seguier
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Bruno Gogly
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Bernard Coulomb
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| | - Antoine Lafont
- From the Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, Laboratoire de Recherche Bio-Chirurgicale Fondation Alain Carpentier (E.D., B.F., L.C., M.L., P.A., P.J., L.T., J.N.F., S.S., B.G., B.C., A.L.); INSERM UMR 970, PARCC, European Georges Pompidou Hospital (E.D., B.F., L.C., M.L., P.A., P.J., J.N.F., S.S., B.G., B.C., A.L.); and Unité de Recherche Clinique (L.T.), Paris, France
| |
Collapse
|
119
|
SUN JUNHUI, ZHANG YUELIN, NIE CHUNHUI, QIAN SUPING, YU XIAOBO, XIE HAIYANG, ZHOU LIN, ZHENG SHUSEN. In vitro labeling of endothelial progenitor cells isolated from peripheral blood with superparamagnetic iron oxide nanoparticles. Mol Med Rep 2012; 6:282-6. [PMID: 22580964 PMCID: PMC3493051 DOI: 10.3892/mmr.2012.912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/04/2012] [Indexed: 01/03/2023] Open
Abstract
The transplantation of endothelial progenitor cells (EPCs) provides a novel method for the treatment of human tumors or vascular diseases. Magnetic resonance imaging (MRI) has proven to be effective in tracking transplanted stem cells by labeling the cells with superparamagnetic iron oxide (SPIO) nanoparticles. The SPIO has been used to label and track the EPCs; however, the effect of SPIO upon EPCs remains unclear on a cellular level. In the present study, EPCs were labeled with home-synthesized SPIO nanoparticles in vitro and the biological characteristics of the labeled EPCs were evaluated. The EPCs were isolated from the peripheral blood of New Zealand rabbits and cultured in fibronectin-coated culture flasks. The EPCs were labeled with home-synthesized SPIO nanoparticles at a final iron concentration of 20 µg/ml. Labeled EPCs were confirmed with transmission electron microscopy and Prussian blue staining. The quantity of iron/cell was detected by atomic absorption spectrometry. The membranous antigens of EPCs were detected by cytofluorimetric analysis. Cell viability and proliferative capability between the labeled and unlabeled EPCs were compared. The rabbit EPCs were effectively labeled and the labeling efficiency was approximately 95%. The SPIO nanoparticles were localized in the endosomal vesicles of the EPCs, which were confirmed by transmission electron microscopy. No significant differences were found in cell viability and proliferative capability between labeled and unlabeled EPCs (P>0.05). In conclusion, rabbit peripheral blood EPCs were effectively labeled by home-synthesized SPIO nanoparticles, without influencing their main biological characteristics.
Collapse
Affiliation(s)
- JUN-HUI SUN
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, and Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - YUE-LIN ZHANG
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, and Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - CHUN-HUI NIE
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, and Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - SU-PING QIAN
- Molecular Imaging Platform, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - XIAO-BO YU
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, and Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - HAI-YANG XIE
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, and Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - LIN ZHOU
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, and Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - SHU-SEN ZHENG
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, and Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
120
|
Xiong Q, Ye L, Zhang P, Lepley M, Swingen C, Zhang L, Kaufman DS, Zhang J. Bioenergetic and functional consequences of cellular therapy: activation of endogenous cardiovascular progenitor cells. Circ Res 2012; 111:455-68. [PMID: 22723295 DOI: 10.1161/circresaha.112.269894] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE The mechanism by which endogenous progenitor cells contribute to functional and beneficial effects in stem cell therapy remains unknown. OBJECTIVE Utilizing a novel (31)P magnetic resonance spectroscopy-2-dimensional chemical shift imaging method, this study examined the heterogeneity and bioenergetic consequences of postinfarction left ventricular (LV) remodeling and the mechanisms of endogenous progenitor cell contribution to the cellular therapy. METHODS AND RESULTS Human embryonic stem cell-derived vascular cells (hESC-VCs) that stably express green fluorescent protein and firefly luciferase (GFP(+)/Luc(+)) were used for the transplantation. hESC-VCs may release various cytokines to promote angiogenesis, prosurvival, and antiapoptotic effects. Both in vitro and in vivo experiments demonstrated that hESC-VCs effectively inhibit myocyte apoptosis. In the mouse model, a fibrin patch-based cell delivery resulted in a significantly better cell engraftment rate that was accompanied by a better ejection fraction. In the swine model of ischemia-reperfusion, the patch-enhanced delivery of hESC-VCs resulted in alleviation of abnormalities including border zone myocardial perfusion, contractile dysfunction, and LV wall stress. These results were also accompanied by a pronounced recruitment of endogenous c-kit(+) cells to the injury site. These improvements were directly associated with a remarkable improvement in myocardial energetics, as measured by a novel in vivo (31)P magnetic resonance spectroscopy-2-dimensional chemical shift imaging technology. CONCLUSIONS The findings of this study demonstrate that a severely abnormal heterogeneity of myocardial bioenergetics in hearts with postinfarction LV remodeling can be alleviated by the hESC-VCs therapy. These findings suggest an important therapeutic target of peri-scar border zone and a promising therapeutic potential for using hESC-VCs together with the fibrin patch-based delivery system.
Collapse
Affiliation(s)
- Qiang Xiong
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Lehman N, Cutrone R, Raber A, Perry R, Van't Hof W, Deans R, Ting AE, Woda J. Development of a surrogate angiogenic potency assay for clinical-grade stem cell production. Cytotherapy 2012; 14:994-1004. [PMID: 22687190 DOI: 10.3109/14653249.2012.688945] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. METHODS AND RESULTS Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. CONCLUSIONS A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.
Collapse
Affiliation(s)
- Nicholas Lehman
- Athersys Inc., Regenerative Medicine Program, Cleveland, Ohio 44115, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Karantalis V, Balkan W, Schulman IH, Hatzistergos KE, Hare JM. Cell-based therapy for prevention and reversal of myocardial remodeling. Am J Physiol Heart Circ Physiol 2012; 303:H256-70. [PMID: 22636682 DOI: 10.1152/ajpheart.00221.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although pharmacological and interventional advances have reduced the morbidity and mortality of ischemic heart disease, there is an ongoing need for novel therapeutic strategies that prevent or reverse progressive ventricular remodeling following myocardial infarction, the process that forms the substrate for ventricular failure. The development of cell-based therapy as a strategy to repair or regenerate injured tissue offers extraordinary promise for a powerful anti-remodeling therapy. In this regard, the field of cell therapy has made major advancements in the past decade. Accumulating data from preclinical studies have provided novel insights into stem cell engraftment, differentiation, and interactions with host cellular elements, as well as the effectiveness of various methods of cell delivery and accuracy of diverse imaging modalities to assess therapeutic efficacy. These findings have in turn guided rationally designed translational clinical investigations. Collectively, there is a growing understanding of the parameters that underlie successful cell-based approaches for improving heart structure and function in ischemic and other cardiomyopathies.
Collapse
Affiliation(s)
- Vasileios Karantalis
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Florida, USA
| | | | | | | | | |
Collapse
|
123
|
Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA, Koch WJ. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 2012; 111:131-50. [PMID: 22595296 DOI: 10.1161/res.0b013e3182582523] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
124
|
|
125
|
Zhang EY, Xiong Q, Ye L, Suntharalingam P, Wang X, Astle CM, Zhang J, Harrison DE. Fetal myocardium in the kidney capsule: an in vivo model of repopulation of myocytes by bone marrow cells. PLoS One 2012; 7:e31099. [PMID: 22383995 PMCID: PMC3285614 DOI: 10.1371/journal.pone.0031099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/02/2012] [Indexed: 11/25/2022] Open
Abstract
Debate surrounds the question of whether the heart is a post-mitotic organ in part due to the lack of an in vivo model in which myocytes are able to actively regenerate. The current study describes the first such mouse model — a fetal myocardial environment grafted into the adult kidney capsule. Here it is used to test whether cells descended from bone marrow can regenerate cardiac myocytes. One week after receiving the fetal heart grafts, recipients were lethally irradiated and transplanted with marrow from green fluorescent protein (GFP)-expressing C57Bl/6J (B6) donors using normal B6 recipients and fetal donors. Levels of myocyte regeneration from GFP marrow within both fetal myocardium and adult hearts of recipients were evaluated histologically. Fetal myocardium transplants had rich neovascularization and beat regularly after 2 weeks, continuing at checkpoints of 1, 2, 4, 6, 8 and12 months after transplantation. At each time point, GFP-expressing rod-shaped myocytes were found in the fetal myocardium, but only a few were found in the adult hearts. The average count of repopulated myocardium with green rod-shaped myocytes was 996.8 cells per gram of fetal myocardial tissue, and 28.7 cells per adult heart tissue, representing a thirty-five fold increase in fetal myocardium compared to the adult heart at 12 months (when numbers of green rod-shaped myocytes were normalized to per gram of myocardial tissue). Thus, bone marrow cells can differentiate to myocytes in the fetal myocardial environment. The novel in vivo model of fetal myocardium in the kidney capsule appears to be valuable for testing repopulating abilities of potential cardiac progenitors.
Collapse
Affiliation(s)
- Eric Y. Zhang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Qiang Xiong
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Lei Ye
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Piradeep Suntharalingam
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Xiaohong Wang
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - C. Michael Astle
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jianyi Zhang
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail: (JZ); david.harrison@.jax.org (DEH)
| | - David E. Harrison
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail: (JZ); david.harrison@.jax.org (DEH)
| |
Collapse
|
126
|
Moonen JRA, Harmsen MC, Krenning G. Cellular plasticity: the good, the bad, and the ugly? Microenvironmental influences on progenitor cell therapy. Can J Physiol Pharmacol 2012; 90:275-85. [DOI: 10.1139/y11-107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Progenitor cell based therapies have emerged for the treatment of ischemic cardiovascular diseases where there is insufficient endogenous repair. However, clinical success has been limited, which challenges the original premise that transplanted progenitor cells would orchestrate repair. In this review, we discuss the basics of endothelial progenitor cell therapy and describe how microenvironmental changes (i.e., trophic and mechano-structural factors) in the damaged myocardium influence progenitor cell plasticity and hamper beneficial therapeutic outcome. Further understanding of these microenvironmental clues will enable optimization of cell therapy at all levels. We discuss current concepts and provide future perspectives for the enhancement of progenitor cell therapy, and merge these advances into a combined approach for ischemic tissue repair.
Collapse
Affiliation(s)
- Jan-Renier A.J. Moonen
- Cardiovascular Regenerative Medicine Research Group (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, the Netherlands
| | - Martin C. Harmsen
- Cardiovascular Regenerative Medicine Research Group (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, the Netherlands
| | - Guido Krenning
- Cardiovascular Regenerative Medicine Research Group (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, the Netherlands
| |
Collapse
|
127
|
Hughey CC, Johnsen VL, Ma L, James FD, Young PP, Wasserman DH, Rottman JN, Hittel DS, Shearer J. Mesenchymal stem cell transplantation for the infarcted heart: a role in minimizing abnormalities in cardiac-specific energy metabolism. Am J Physiol Endocrinol Metab 2012; 302:E163-72. [PMID: 21971524 PMCID: PMC3340898 DOI: 10.1152/ajpendo.00443.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intense interest has been focused on cell-based therapy for the infarcted heart given that stem cells have exhibited the ability to reduce infarct size and mitigate cardiac dysfunction. Despite this, it is unknown whether mesenchymal stem cell (MSC) therapy can prevent metabolic remodeling following a myocardial infarction (MI). This study examines the ability of MSCs to rescue the infarcted heart from perturbed substrate uptake in vivo. C57BL/6 mice underwent chronic ligation of the left anterior descending coronary artery to induce a MI. Echocardiography was performed on conscious mice at baseline as well as 7 and 23 days post-MI. Twenty-eight days following the ligation procedure, hyperinsulinemic euglycemic clamps assessed in vivo insulin sensitivity. Isotopic tracer administration evaluated whole body, peripheral tissue, and cardiac-specific glucose and fatty acid utilization. To gain insight into the mechanisms by which MSCs modulate metabolism, mitochondrial function was assessed by high-resolution respirometry using permeabilized cardiac fibers. Data show that MSC transplantation preserves insulin-stimulated fatty acid uptake in the peri-infarct region (4.25 ± 0.64 vs. 2.57 ± 0.34 vs. 3.89 ± 0.54 μmol·100 g(-1)·min(-1), SHAM vs. MI + PBS vs. MI + MSC; P < 0.05) and prevents increases in glucose uptake in the remote left ventricle (3.11 ± 0.43 vs. 3.81 ± 0.79 vs. 6.36 ± 1.08 μmol·100 g(-1)·min(-1), SHAM vs. MI + PBS vs. MI + MSC; P < 0.05). This was associated with an enhanced efficiency of mitochondrial oxidative phosphorylation with a respiratory control ratio of 3.36 ± 0.18 in MSC-treated cardiac fibers vs. 2.57 ± 0.14 in the infarct-only fibers (P < 0.05). In conclusion, MSC therapy exhibits the potential to rescue the heart from metabolic aberrations following a MI. Restoration of metabolic flexibility is important given the metabolic demands of the heart and the role of energetics in the progression to heart failure.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Xu M, Millard RW, Ashraf M. Role of GATA-4 in differentiation and survival of bone marrow mesenchymal stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:217-41. [PMID: 22917233 DOI: 10.1016/b978-0-12-398459-3.00010-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell and tissue regeneration is a relatively new research field and it incorporates a novel application of molecular genetics. Combinatorial approaches for stem-cell-based therapies wherein guided differentiation into cardiac lineage cells and cells secreting paracrine factors may be necessary to overcome the limitations and shortcomings of a singular approach. GATA-4, a GATA zinc-finger transcription factor family member, has been shown to regulate differentiation, growth, and survival of a wide range of cell types. In this chapter, we discuss whether overexpression of GATA-4 increases mesenchymal stem cell (MSC) transdifferentiation into cardiac phenotype and enhances the MSC secretome, thereby increasing cell survival and promoting postinfarction cardiac angiogenesis. MSCs engineered with GATA-4 enhance their capacity to differentiate into cardiac cell phenotypes, improve survival of the cardiac progenitor cells and their offspring, and modulate the paracrine activity of stem cells to support their angiomyogenic potential and cardioprotective effects.
Collapse
Affiliation(s)
- Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
129
|
Wang X, From AH, Zhang J. Myocardial Regeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:195-215. [DOI: 10.1016/b978-0-12-398459-3.00009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
130
|
Xiong Q, Hill KL, Li Q, Suntharalingam P, Mansoor A, Wang X, Jameel MN, Zhang P, Swingen C, Kaufman DS, Zhang J. A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells 2011; 29:367-75. [PMID: 21732493 DOI: 10.1002/stem.580] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is unknown how to use human embryonic stem cell (hESC) to effectively treat hearts with postinfarction left ventricular (LV) remodeling. Using a porcine model of postinfarction LV remodeling, this study examined the functional improvement of enhanced delivery of combined transplantation of hESC-derived endothelial cells (ECs) and hESC-derived smooth muscle cells (SMCs) with a fibrin three-dimensional (3D) porous scaffold biomatrix. To facilitate tracking the transplanted cells, the hESCs were genetically modified to stably express green fluorescent protein and luciferase (GFP/Luc). Myocardial infarction (MI) was created by ligating the first diagonal coronary artery for 60 minutes followed by reperfusion. Two million each of GFP/Luc hESC-derived ECs and SMCs were seeded in the 3D porous biomatrix patch and applied to the region of ischemia/reperfusion for cell group (MI+P+C, n = 6), whereas biomatrix without cell (MI+P, n = 5), or saline only (MI, n = 5) were applied to control group hearts with same coronary artery ligation. Functional outcome (1 and 4 weeks follow-up) of stem cell transplantation was assessed by cardiac magnetic resonance imaging. The transplantation of hESC-derived vascular cells resulted in significant LV functional improvement. Significant engraftment of hESC-derived cells was confirmed by both in vivo and ex vivo bioluminescent imaging. The mechanism underlying the functional beneficial effects of cardiac progenitor transplantation is attributed to the increased neovascularization. These findings demonstrate a promising therapeutic potential of using these hESC-derived vascular cell types and the mode of patch delivery.
Collapse
Affiliation(s)
- Qiang Xiong
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 5545, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
Despite recent studies suggesting that the heart has instrinsic mechanisms of self-regeneration following myocardial infarction, it cannot regenerate itself to an optimal level. Mesenchymal stem cells (MSCs) are currently being investigated for regeneration of mesenchyme-derived tissues, such as bone, cartilage and tendon. In vitro evidence suggests that MSCs can also differentiate into cardiomyogenic and vasculogenic lineages, offering another cell source for cardiovascular regeneration. In vivo, MSCs may contribute to the re-growth and protection of vasculature and cardiomyocytes, mediated by paracrine actions, and/or persist within the myocardium in a differentiated state; although proof of cardiomyocytic phenotype and functional integration remains elusive. Herein, we review the evidence of MSCs as a cell source for cardiovascular regeneration, as well as their limitations that may prevent them from being effectively used in the clinic.
Collapse
Affiliation(s)
- Drew Kuraitis
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | | | | |
Collapse
|
132
|
Nguyen PK, Lan F, Wang Y, Wu JC. Imaging: guiding the clinical translation of cardiac stem cell therapy. Circ Res 2011; 109:962-79. [PMID: 21960727 DOI: 10.1161/circresaha.111.242909] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stem cells have been touted as the holy grail of medical therapy, with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large-animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Patricia K Nguyen
- Department of Medicine, Division of Cardiology, Molecular Imaging Program at Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
133
|
Penn MS, Ellis S, Gandhi S, Greenbaum A, Hodes Z, Mendelsohn FO, Strasser D, Ting AE, Sherman W. Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circ Res 2011; 110:304-11. [PMID: 22052917 DOI: 10.1161/circresaha.111.253427] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE MultiStem is an allogeneic bone marrow-derived adherent adult stem cell product that has shown efficacy in preclinical models of acute myocardial infarction (AMI). In this phase I clinical trial in patients with first ST-elevation-myocardial infarction (STEMI), we combine first-in-man delivery of MultiStem with a first-in-coronary adventitial delivery system to determine the effects of this system on left ventricular function at 4 months after AMI. OBJECTIVE Test the effects of adventitial delivery of Multistem in the peri-infarct period in patients with first STEMI. METHODS AND RESULTS This study was a phase I, open-label, dose-escalating registry control group study. Nineteen patients received MultiStem (20 million, n=6; 50 million, n=7; or 100 million, n=6) and 6 subjects were assigned to the registry control group. Two to 5 days after AMI, we delivered MultiStem to the adventitia of the infarct-related vessel in patients with first-time STEMI. All patients underwent primary percutaneous coronary intervention with resulting Thrombolysis In Myocardial Infarction grade 3 flow and with ejection fraction (EF) ≤45% as determined by echocardiogram or left ventriculogram within 12 hours of primary percutaneous coronary intervention. The cell product (20 million, 50 million, or 100 million) was well tolerated, and no serious adverse events were deemed related to MultiStem. There was no increase in creatine kinase-MB or troponin associated with the adventitial delivery of MultiStem. In patients with EF determined to be ≤45% by a core laboratory within 24 hours before the MultiStem injection, we observed a 0.9 (n=4), 3.9 (n=4), 13.5 (n=5), and 10.9 (n=2) percent absolute increases in EF in the registry, 20 million, 50 million, and 100 million dose groups, respectively. The increases in EF in the 50 million and 100 million groups were accompanied by 25.4 and 8.4 mL increases in left ventricular stroke volume. CONCLUSIONS In this study, the delivery of MultiStem to the myocardium in patients with recent STEMI was well tolerated and safe. In patients who exhibited significant myocardial damage, the delivery of ≥50 million MultiStem resulted in improved EF and stroke volume 4 months later. These findings support further development of MultiStem in patients with AMI and they validate the potential of a system for delivery of adult stem cells at any time after primary percutaneous coronary intervention.
Collapse
Affiliation(s)
- Marc S Penn
- Summa Cardiovascular Institute, 525 E. Market St., Akron, OH 44309, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Kean TJ, Duesler L, Young RG, Dadabayev A, Olenyik A, Penn M, Wagner J, Fink DJ, Caplan AI, Dennis JE. Development of a peptide-targeted, myocardial ischemia-homing, mesenchymal stem cell. J Drug Target 2011; 20:23-32. [DOI: 10.3109/1061186x.2011.622398] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
135
|
Medicetty S, Wiktor D, Lehman N, Raber A, Popovic ZB, Deans R, Ting AE, Penn MS. Percutaneous adventitial delivery of allogeneic bone marrow-derived stem cells via infarct-related artery improves long-term ventricular function in acute myocardial infarction. Cell Transplant 2011; 21:1109-20. [PMID: 22004910 DOI: 10.3727/096368911x603657] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acute myocardial infarction (AMI) results in ischemic damage and death of cardiomyocytes and loss of vasculature. Stem cell therapy has emerged as a potentially promising strategy for maximizing cardiac function following ischemic injury. Issues of cell source, delivery, and quantification of response have challenged development of clinically viable strategies. In this study we investigate the effects of a well-defined bone marrow-derived allogeneic cell product delivered by catheter directly to the myocardium via the infarct-related vessel on global and regional measures of left ventricular (LV) function in a porcine model of anterior wall myocardial infarction. Multipotent adult progenitor cells (MAPCs) were derived and expanded from the bone marrow of a donor Yorkshire pig. Anterior wall myocardial infarction (AMI) was induced by 90 min of mid-LAD occlusion using a balloon catheter. Two days after AMI was induced, either vehicle (Plasma Lyte-A, n = 7), low-dose (20 million, n = 6), or high-dose (200 million, n = 6) MAPCs were delivered directly to the myocardium via the infarct-related vessel using a transarterial microsyringe catheter-based delivery system. Echocardiography was used to measure LV function as a function of time after AMI. Animals that received low-dose cell treatment showed significant improvement in regional and global LV function and remodeling compared to the high-dose or control animals. Direct myocardial delivery of allogeneic MAPCs 2 days following AMI through the vessel wall of the infarct-related vessel is safe and results in delivery of cells throughout the infarct zone and improved cardiac function despite lack of long-term cell survival. These data further support the hypothesis of cell-based myocardial tissue repair by a paracrine mechanism and suggest a clinically translatable strategy for delivering cells at any time after AMI to modulate cardiac remodeling and function.
Collapse
Affiliation(s)
- Satish Medicetty
- Regenerative Medicine Department, Athersys, Inc., Cleveland, OH 44309, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Ye Z, Zhou Y, Cai H, Tan W. Myocardial regeneration: Roles of stem cells and hydrogels. Adv Drug Deliv Rev 2011; 63:688-97. [PMID: 21371512 DOI: 10.1016/j.addr.2011.02.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 01/19/2023]
Abstract
Heart failure remains the leading cause of morbidity and mortality. Recently, it was reported that the adult heart has intrinsic regenerative capabilities, prompting a great wave of research into applying cell-based therapies, especially with skeletal myoblasts and bone marrow-derived cells, to regenerate heart tissues. While the mechanism of action for the observed beneficial effects of bone marrow-derived cells remains unclear, new cell candidates are emerging, including embryonic stem (ES) and introduced pluripotent stem (iPS) cells, as well as cardiac stem cells (CSCs) from adult hearts. However, the very low engraftment efficiency and survival of implanted cells prevent cell therapy from turning into a clinical reality. Injectable hydrogel biomaterials based on hydrophilic, biocompatible polymers and peptides have great potential for addressing many of these issues by serving as cell/drug delivery vehicles and as a platform for cardiac tissue engineering. In this review, we will discuss the application of stem cells and hydrogels in myocardial regeneration.
Collapse
Affiliation(s)
- Zhaoyang Ye
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | |
Collapse
|
137
|
Choi JW, Lee KH, Kim SH, Jin T, Lee BS, Oh J, Won HY, Kim SY, Kang SM, Chung JH. C-reactive protein induces p53-mediated cell cycle arrest in H9c2 cardiac myocytes. Biochem Biophys Res Commun 2011; 410:525-30. [PMID: 21679689 DOI: 10.1016/j.bbrc.2011.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
C-reactive protein (CRP) is one of the most important biomarker for cardiovascular diseases. Recent studies have shown that CRP affects cell survival, differentiation and apoptosis. However, the effect of CRP on the cell cycle has not been studied yet. We investigated the cell cycle alterations and cellular mechanisms induced by CRP in H9c2 cardiac myocytes. Flow cytometry analysis showed that CRP-treated H9c2 cells displayed cell cycle arrest in G0/G1 phase. CRP treatment resulted in a significant reduction in the levels of CDK4, CDK6 and cyclin D1 in a concentration-dependent manner. Interestingly, CRP caused an increase in the p53 accumulation and its phosphorylation on Ser15, leading to induce p21 upregulation. Treatment with a specific p53 inhibitor, PFT-α restored the levels of CDK4 and CDK6. A significant increase of ERK1/2 phosphorylation level was detected in CRP-treated cells. Furthermore, pretreatment of a specific ERK inhibitor resulted in decreased p53 phosphorylation and p21 induction. ERK inhibitor pretreatment induced significant restoration of protein levels of CDK4 and CDK6, leading to re-entry into the cell cycle. In addition, increased phosphorylation of p53 and ERK induced by CRP was considerably reversed by Fc gamma receptor IIIa (FcγRIIIa) knock-down using siRNA. FcγRIIIa siRNA transfection also restored the levels of cell cycle proteins. Our study has provided the first proposal on the novel insights into how CRP directly affects cell cycle in cells.
Collapse
Affiliation(s)
- Ji-Won Choi
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Hematopoietic stem cells (HSCs) are the most well-characterized and studied stem cells. They have been used to treat various benign and malignant hematologic disorders. Most stem cell transplant recipients survive more than 5 years without any evidence of their original clinical disease. Early animal trials have demonstrated the ability to improve cardiac function by transfer of HSCs into the myocardium, and early human studies have demonstrated the feasibility and safety of this approach. Trials in patients after myocardial infarction and with chronic heart failure have seen limited and mixed success, probably because of the various cell types and methods used.
Collapse
Affiliation(s)
- Allen J Naftilan
- Vanderbilt Heart and Vascular Institute, Hematology Division, Department of Medicine, Vanderbilt University, Nashville, TN 37240, USA.
| | | |
Collapse
|
139
|
Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A. Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS One 2011; 6:e19300. [PMID: 21556322 PMCID: PMC3083437 DOI: 10.1371/journal.pone.0019300] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/28/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Energetic and metabolic circuits that orchestrate cell differentiation are largely unknown. Adenylate kinase (AK) and associated AMP-activated protein kinase (AMPK) constitute a major metabolic signaling axis, yet the role of this system in guiding differentiation and lineage specification remains undefined. METHODS AND RESULTS Cardiac stem cell differentiation is the earliest event in organogenesis, and a suitable model of developmental bioenergetics. Molecular profiling of embryonic stem cells during cardiogenesis revealed here a distinct expression pattern of adenylate kinase and AMPK genes that encode the AK-AMP-AMPK metabolic surveillance axis. Cardiac differentiation upregulated cytosolic AK1 isoform, doubled AMP-generating adenylate kinase activity, and increased AMP/ATP ratio. At cell cycle initiation, AK1 translocated into the nucleus and associated with centromeres during energy-consuming metaphase. Concomitantly, the cardiac AMP-signal receptor AMPKα2 was upregulated and redistributed to the nuclear compartment as signaling-competent phosphorylated p-AMPKα(Thr172). The cardiogenic growth factor TGF-β promoted AK1 expression, while knockdown of AK1, AK2 and AK5 activities with siRNA or suppression by hyperglycemia disrupted cardiogenesis compromising mitochondrial and myofibrillar network formation and contractile performance. Induction of creatine kinase, the alternate phosphotransfer pathway, compensated for adenylate kinase-dependent energetic deficits. CONCLUSIONS Developmental deployment and upregulation of the adenylate kinase/AMPK tandem provides a nucleocytosolic energetic and metabolic signaling vector integral to execution of stem cell cardiac differentiation. Targeted redistribution of the adenylate kinase-AMPK circuit associated with cell cycle and asymmetric cell division uncovers a regulator for cardiogenesis and heart tissue regeneration.
Collapse
Affiliation(s)
- Petras P. Dzeja
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Susan Chung
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Randolph S. Faustino
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Atta Behfar
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andre Terzic
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
140
|
Abstract
Myocardial infarction is the leading cause of death among people in industrialized nations. Although the heart has some ability to regenerate after infarction, myocardial restoration is inadequate. Consequently, investigators are currently exploring the use of human embryonic stem cells (hESCs), skeletal myoblasts and adult bone marrow stem cells to limit infarct size. hESCs are pluripotent cells that can regenerate myocardium in infarcted hearts, attenuate heart remodeling and contribute to left ventricle (LV) systolic force development. Since hESCs can form heart teratomas, investigators are differentiating hESCs toward cardiac progenitor cells prior to transplantation into hearts. Large quantities of hESCs cardiac progenitor cells, however, must be generated, immune rejection must be prevented and grafts must survive over the long term to significantly improve myocardial performance. Transplanted autologous skeletal myoblasts can survive in infarcted myocardium in small numbers, proliferate, differentiate into skeletal myofibers and increase the LV ejection fraction. These cells, however, do not form electromechanical connections with host cardiomyocytes. Consequently, electrical re-entry can occur and cause cardiac arrhythmias. Autologous bone marrow mononuclear cells contain hematopoietic and mesenchymal stem cells. In several meta-analyses, patients with coronary disease who received autologous bone marrow cells by intracoronary injection show significant 3.7% (range: 1.9-5.4%) increases in LV ejection fraction, decreases in LV end-systolic volume of -4.8 ml (range: -1.4 to -8.2 ml) and reductions in infarct size of 5.5% (-1.9 to -9.1%), without experiencing arrhythmias. Bone marrow cells appear to release biologically active factors that limit myocardial damage. Unfortunately, bone marrow cells from patients with chronic diseases propagate poorly and can die prematurely. Substantial challenges must be addressed and resolved to advance the use of stem cells in cardiac repair including identifying the optimal stem cell(s) that permit transplantation without requirements for host immune suppression; timing of stem cell transplantation that maximizes chemoattraction of stem cells to infarcts; and determining the optimal technique for injecting stem cells for cardiac repair. Techniques must be developed to enhance survival and propagation of stem cells in the myocardium. These studies will require close cooperation and interaction of scientists and clinicians. Cell-based cardiac repair in the 21st century will offer new hope for millions of patients worldwide with myocardial infarctions who, otherwise, would suffer from the relentless progression of heart disease to heart failure and death.
Collapse
Affiliation(s)
- Robert J Henning
- James A. Haley VA Hospital/University of South Florida College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
141
|
van der Spoel TIG, Jansen of Lorkeers SJ, Agostoni P, van Belle E, Gyongyosi M, Sluijter JPG, Cramer MJ, Doevendans PA, Chamuleau SAJ. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 2011; 91:649-58. [DOI: 10.1093/cvr/cvr113] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
142
|
He Z, Li H, Zuo S, Pasha Z, Wang Y, Yang Y, Jiang W, Ashraf M, Xu M. Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes. Stem Cells Dev 2011; 20:1771-8. [PMID: 21231807 DOI: 10.1089/scd.2010.0380] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) has emerged as a potential treatment for ischemic heart repair. Previous studies have suggested that Wnt11 plays a critical role in cardiac specification and morphogenesis. In this study, we examined whether transduction of Wnt11 directly increases MSC differentiation into cardiac phenotypes. MSCs harvested from rat bone marrow were transduced with both Wnt11 and green fluorescent protein (GFP) (MSC(Wnt11)) using the murine stem cell virus (pMSCV) retroviral expression system; control cells were only GFP-transfected (MSC(Null)). Compared with control cells, MSC(Wnt11) was shown to have higher expression of Wnt11 by immunofluorescence, real-time polymerase chain reaction, and western blotting. MSC(Wnt11) shows a higher expression of cardiac-specific genes, including GATA-4, brain natriuretic peptide (BNP), islet-1, and α-actinin, after being cultured with cardiomyocytes (CMs) isolated from ventricles of neonatal (1-3 day) SD rats. Some MSC(Wnt11) were positive for α-actinin when MSCs were cocultured with native CMs for 7 days. Electron microscopy further confirmed the appearance of sarcomeres in MSC(Wnt11). Connexin 43 was found between GFP-positive MSCs and neonatal rat CMs labeled with red fluorescent probe PKH26. The transdifferentiation rate was significantly higher in MSC(Wnt11) than in MSC(Null), as assessed by flow cytometry. Functional studies indicated that the differentiation of MSC(Wnt11) was diminished by knockdown of GATA-4 with GATA-4-siRNA. Transduction of Wnt11 into MSCs increases their differentiation into CMs by upregulating GATA-4.
Collapse
Affiliation(s)
- Zhisong He
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Cho J, Zhai P, Maejima Y, Sadoshima J. Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circ Res 2011; 108:478-89. [PMID: 21233455 PMCID: PMC3109296 DOI: 10.1161/circresaha.110.229658] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/30/2010] [Indexed: 01/01/2023]
Abstract
RATIONALE Glycogen synthase kinase (GSK)-3β upregulates cardiac genes in bone marrow-derived mesenchymal stem cells (MSCs) in vitro. Ex vivo modification of signaling mechanisms in MSCs may improve the efficiency of cardiac cell-based therapy (CBT). OBJECTIVE To test the effect of GSK-3β on the efficiency of CBT with MSCs after myocardial infarction (MI). METHODS AND RESULTS MSCs overexpressing either GSK-3β (GSK-3β-MSCs), LacZ (LacZ-MSCs), or saline was injected into the heart after coronary ligation. A significant improvement in the mortality and left ventricular (LV) function was observed at 12 weeks in GSK-3β-MSC-injected mice compared with in LacZ-MSC- or saline-injected mice. MI size and LV remodeling were reduced in GSK-3β-MSC-injected mice compared with in LacZ-MSC- or saline-injected ones. GSK-3β increased survival and increased cardiomyocyte differentiation of MSCs, as evidenced by activation of an Nkx2.5-LacZ reporter and upregulation of troponin T. Injection of GSK-3β-MSCs induced Ki67-positive myocytes and c-Kit-positive cells, suggesting that GSK-3β-MSCs upregulate cardiac progenitor cells. GSK-3β-MSCs also increased capillary density and upregulated paracrine factors, including vascular endothelial growth factor A (Vegfa). Injection of GSK-3β-MSCs in which Vegfa had been knocked down abolished the increase in survival and capillary density. However, the decrease in MI size and LV remodeling and the improvement of LV function were still observed in MI mice injected with GSK-3β-MSCs without Vegfa. CONCLUSIONS GSK-3β significantly improves the efficiency of CBT with MSCs in the post-MI heart. GSK-3β not only increases survival of MSCs but also induces cardiomyocyte differentiation and angiogenesis through Vegfa-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Jaeyeaon Cho
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
144
|
Abstract
INTRODUCTION Stem cell therapy has emerged as a promising strategy for the treatment of ischemic cardiomyopathy. SOURCES OF DATA Multiple candidate cell types have been used in preclinical animal models and in clinical trials to repair or regenerate the injured heart either directly (through formation of new transplanted tissue) or indirectly (through paracrine effects activating endogenous regeneration). AREAS OF AGREEMENT (i) Clinical trials examining the safety and efficacy of bone marrow derived cells in patients with heart disease are promising, but results leave much room for improvement. (ii) The safety profile has been quite favorable. (iii) Efficacy has been inconsistent and, overall, modest. (iv) Tissue retention of cells after delivery into the heart is disappointingly low. (v) The beneficial effects of adult stem cell therapy are predominantly mediated by indirect paracrine mechanisms. AREAS OF CONTROVERSY The cardiogenic potential of bone marrow-derived cells, the mechanism whereby small numbers of poorly-retained cells translate to measurable clinical benefit, and the overall impact on clinical outcomes are hotly debated. GROWING POINTS/AREAS TIMELY FOR DEVELOPING RESEARCH: This overview of the field leaves us with cautious optimism, while motivating a search for more effective delivery methods, better strategies to boost cell engraftment, more apt patient populations, safe and effective 'off the shelf' cell products and more potent cell types.
Collapse
|
145
|
Abstract
Stem cell transplantation has emerged as a novel treatment option for ischemic heart disease. Different cell types have been utilized and the recent development of induced pluripotent stem cells has generated tremendous excitement in the regenerative field. Bone marrow-derived multipotent progenitor cell transplantation in preclinical large animal models of postinfarction left ventricular remodeling has demonstrated long-term functional and bioenergetic improvement. These beneficial effects are observed despite no significant engraftment of bone marrow cells in the myocardium and even lower differentiation of these cells into cardiomyocytes. It is thought to be related to the paracrine effect of these stem cells, which secrete factors that lead to long-term gene expression changes in the host myocardium, thereby promoting neovascularization, inhibiting apoptosis, and stimulating resident cardiac progenitor cells. Future studies are warranted to examine the changes in the recipient myocardium after stem cell transplantation and to investigate the signaling pathways involved in these effects.
Collapse
|
146
|
Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. BONE MARROW RESEARCH 2010; 2011:207326. [PMID: 22046556 PMCID: PMC3195349 DOI: 10.1155/2011/207326] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022]
Abstract
During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.
Collapse
|
147
|
Jameel MN, Li Q, Mansoor A, Xiong Q, Swingen C, Zhang J. Long-term preservation of myocardial energetic in chronic hibernating myocardium. Am J Physiol Heart Circ Physiol 2010; 300:H836-44. [PMID: 21131472 DOI: 10.1152/ajpheart.00540.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We previously reported that the myocardial energetic state, as defined by the ratio of phosphocreatine to ATP (PCr/ATP), was preserved at baseline (BL) in a swine model of chronic myocardial ischemia with mild reduction of myocardial blood flow (MBF) 10 wk after the placement of an external constrictor on the left anterior descending coronary artery. It remains to be seen whether this stable energetic state is maintained at a longer-term follow-up. Hibernating myocardium (HB) was created in minipigs (n = 7) by the placement of an external constrictor (1.25 mm internal diameter) on the left anterior descending coronary artery. Function was assessed with MRI at regular intervals until 6 mo. At 6 mo, myocardial energetic in the HB was assessed by (31)P-magnetic resonance spectrometry and myocardial oxygenation was examined from the deoxymyoglobin signal using (1)H-magnetic resonance spectrometry during BL, coronary vasodilation with adenosine, and high cardiac workload with dopamine and dobutamine (DpDb). MBF was measured with radiolabeled microspheres. At BL, systolic thickening fraction was significantly lower in the HB compared with remote region (34.4 ± 9.4 vs. 50.1 ± 10.7, P = 0.006). This was associated with a decreased MBF in the HB compared with the remote region (0.73 ± 0.08 vs. 0.97 ± 0.07 ml · min(-1) · g, P = 0.03). The HB PCr/ATP at BL was normal. DpDb resulted in a significant increase in rate pressure product, which caused a twofold increase in MBF in the HB and a threefold increase in the remote region. The systolic thickening fraction increased with DpDb, which was significantly higher in the remote region than HB (P < 0.05). The high cardiac workload was associated with a significant reduction in the HB PCr/ATP (P < 0.02), but this response was similar to normal myocardium. Thus HB has stable BL myocardial energetic despite the reduction MBF and regional left ventricular function. More importantly, HB has a reduced contractile reserve but has a similar energetic response to high cardiac workload like normal myocardium.
Collapse
Affiliation(s)
- Mohammad Nurulqadr Jameel
- Department of Medicine, University of Minnesota Medical School, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
148
|
Krause K, Schneider C, Kuck KH, Jaquet K. REVIEW: Stem Cell Therapy in Cardiovascular Disorders. Cardiovasc Ther 2010; 28:e101-10. [DOI: 10.1111/j.1755-5922.2010.00208.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
149
|
Krause K, Schneider C, Jaquet K, Kuck KH. Potential and clinical utility of stem cells in cardiovascular disease. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2010; 3:49-56. [PMID: 24198510 PMCID: PMC3781732 DOI: 10.2147/sccaa.s5867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recent identification of bone marrow-derived adult stem cells and other types of stem cells that could improve heart function after transplantation have raised high expectations. The basic mechanisms have been studied mostly in murine models. However, these experiments revealed controversial results on transdifferentiation vs transfusion of adult stem cells vs paracrine effects of these cells, which is still being debated. Moreover, the reproducibility of these results in precisely translated large animal models is still less well investigated. Despite these weaknesses results of several clinical trials including several hundreds of patients with ischemic heart disease have been published. However, there are no solid data showing that any of these approaches can regenerate human myocardium. Even the effectiveness of cell therapy in these approaches is doubtful. In future we need in this important field of regenerative medicine: i) more experimental data in large animals that are closer to the anatomy and physiology of humans, including data on dose effects, comparison of different cell types and different delivery routes; ii) a better understanding of the molecular mechanisms involved in the fate of transplanted cells; iii) more intensive research on genuine regenerative medicine, applying genetic regulation and cell engineering.
Collapse
Affiliation(s)
- Korff Krause
- Hanseatic Heart Center Hamburg, Department of Cardiology, Asklepios Hospital St. Georg, Hamburg, Germany
| | | | | | | |
Collapse
|
150
|
Wollert KC, Drexler H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 2010; 7:204-15. [DOI: 10.1038/nrcardio.2010.1] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|