101
|
Okamoto R, Ueno M, Yamada Y, Takahashi N, Sano H, Suda T, Takakura N. Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood 2004; 105:2757-63. [PMID: 15572584 DOI: 10.1182/blood-2004-08-3317] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic cells (HCs) promote blood vessel formation by producing various proangiogenic cytokines and chemokines and matrix metalloproteinases. We injected mouse colon26 colon cancer cells or human PC3 prostate adenocarcinoma cells into mice and studied the localization of HCs during tumor development. HCs were distributed in the inner tumor mass in all of the tumor tissues examined; however, the localization of HCs in the tumor tissue differed depending on the tumor cell type. In the case of colon26 tumors, as the tumor grew, many mature HCs migrated into the tumor mass before fine capillary formation was observed. On the other hand, although very few HCs migrated into PC3 tumor tissue, c-Kit+ hematopoietic stem/progenitor cells accumulated around the edge of the tumor. Bone marrow suppression induced by injection of anti-c-Kit neutralizing antibody suppressed tumor angiogenesis by different mechanisms according to the tumor cell type: bone marrow suppression inhibited the initiation of sprouting angiogenesis in colon26 tumors, while it suppressed an increase in the caliber of newly developed blood vessels at the tumor edge in PC3 tumors. Our findings suggest that HCs are involved in tumor angiogenesis and regulate the angiogenic switch during tumorigenesis.
Collapse
Affiliation(s)
- Rika Okamoto
- Department of Stem Cell Biology, Cancer Research Institute of Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan
| | | | | | | | | | | | | |
Collapse
|
102
|
Popova SN, Rodriguez-Sánchez B, Lidén A, Betsholtz C, Van Den Bos T, Gullberg D. The mesenchymal alpha11beta1 integrin attenuates PDGF-BB-stimulated chemotaxis of embryonic fibroblasts on collagens. Dev Biol 2004; 270:427-42. [PMID: 15183724 DOI: 10.1016/j.ydbio.2004.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 03/04/2004] [Accepted: 03/04/2004] [Indexed: 11/22/2022]
Abstract
alpha11beta1 constitutes the most recent addition to the integrin family and has been shown to display a binding preference for interstitial collagens found in mesenchymal tissues. We have previously observed that when alpha11beta1 integrin is expressed in cells lacking endogenous collagen receptors, it can mediate PDGF-BB-dependent chemotaxis on collagen I in vitro. To determine in which cells PDGF and alpha11beta1 might cooperate in regulating cell migration in vivo, we studied in detail the expression and distribution of alpha11 integrin chain in mouse embryos and tested the ability of PDGF isoforms to stimulate the alpha11beta1-mediated cell migration of embryonic fibroblasts. Full-length mouse alpha11 cDNA was sequenced and antibodies were raised to deduced alpha11 integrin amino acid sequence. In the embryonic mouse head, alpha11 protein and RNA were localized to ectomesenchymally derived cells. In the periodontal ligament, alpha11beta1 was expressed as the only detectable collagen-binding integrin, and alpha11beta1 is thus a major receptor for cell migration and matrix organization in this cell population. In the remainder of the embryo, the alpha11 chain was expressed in a subset of mesenchymal cells including tendon/ligament fibroblasts, perichondrial cells, and intestinal villi fibroblasts. Most of the alpha11-expressing cells also expressed the alpha2 integrin chain, but no detectable overlap was found with the alpha1 integrin chain. In cells expressing multiple collagen receptors, these might function to promote a more stable cell adhesion and render the cells more resistant to chemotactic stimuli. Wild-type embryonic fibroblasts activated mainly the PDGF beta receptor in response to PDGF-BB and migrated on collagens I, II, III, IV, V, and XI in response to PDGF-BB in vitro, whereas mutant fibroblasts that lacked alpha11beta1 in their collagen receptor repertoire showed a stronger chemotactic response on collagens when stimulated with PDGF-BB. In the cellular context of embryonic fibroblasts, alpha11beta1 is thus anti-migratory. We speculate that the PDGF BB-dependent cell migration of mesenchymal cells is tightly regulated by the collagen receptor repertoire, and disturbances of this repertoire might lead to unregulated cell migration that could affect normal embryonic development and tissue structure.
Collapse
Affiliation(s)
- Svetlana N Popova
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
103
|
Weston JA, Yoshida H, Robinson V, Nishikawa S, Fraser ST, Nishikawa S. Neural crest and the origin of ectomesenchyme: neural fold heterogeneity suggests an alternative hypothesis. Dev Dyn 2004; 229:118-30. [PMID: 14699583 DOI: 10.1002/dvdy.10478] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The striking similarity between mesodermally derived fibroblasts and ectomesenchyme cells, which are thought to be derivatives of the neural crest, has long been a source of interest and controversy. In mice, the gene encoding the alpha subunit of the platelet-derived growth factor receptor (PDGFRalpha) is expressed both by mesodermally derived mesenchymal cells and by ectomesenchyme. Whole-mount immunostaining previously revealed that PDGFRalpha is present in the cephalic neural fold epithelium of early murine embryos (Takakura et al. [1997] J Histochem Cytochem 45:883-893). We now show that, within the neural fold, a sharp boundary exists between E-cadherin-expressing non-neural epithelium and the neural epithelium of the dorsal ridge. In addition, we found that cells coexpressing E-cadherin and PDGFRalpha are present in the non-neural epithelium of the neural folds. These observations raise the possibility that at least some PDGFRalpha(+) ectomesenchyme originates from the lateral non-neural domain of neural fold epithelium. This inference is consistent with previous reports (Nichols [ 1981] J Embryol Exp Morphol 64:105-120; Nichols [ 1986] Am J Anat 176:221-231) that mesenchymal cells emerge precociously from an epithelial neural fold domain resembling the primitive streak in the early embryonic epiblast. Therefore, we propose the name "metablast" for this non-neural epithelial domain to indicate that it is the site of a delayed local delamination of mesenchyme similar to involution of mesoderm during gastrulation. We further propose the testable hypothesis that neural crest and ectomesenchyme are developmentally distinct progenitor populations and that at least some ectomesenchyme is metablast-derived rather than neural crest-derived tissue. Developmental Dynamics 229:118-130, 2004.
Collapse
Affiliation(s)
- James A Weston
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA.
| | | | | | | | | | | |
Collapse
|
104
|
Tallquist MD, French WJ, Soriano P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol 2003; 1:E52. [PMID: 14624252 PMCID: PMC261889 DOI: 10.1371/journal.pbio.0000052] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 09/16/2003] [Indexed: 11/19/2022] Open
Abstract
The platelet-derived growth factor β receptor (PDGFRβ) is known to activate many molecules involved in signal transduction and has been a paradigm for receptor tyrosine kinase signaling for many years. We have sought to determine the role of individual signaling components downstream of this receptor in vivo by analyzing an allelic series of tyrosine–phenylalanine mutations that prevent binding of specific signal transduction components. Here we show that the incidence of vascular smooth muscle cells/pericytes (v/p), a PDGFRβ-dependent cell type, can be correlated to the amount of receptor expressed and the number of activated signal transduction pathways. A decrease in either receptor expression levels or disruption of multiple downstream signaling pathways lead to a significant reduction in v/p. Conversely, loss of RasGAP binding leads to an increase in this same cell population, implicating a potential role for this effector in attenuating the PDGFRβ signal. The combined in vivo and biochemical data suggest that the summation of pathways associated with the PDGFRβ signal transduction determines the expansion of developing v/p cells. Using both in vivo and biochemical approaches, the summation of pathways associated with the PDGFRβ signal transduction is shown to determine the expansion of a specific PDGFRβ-dependent cell type
Collapse
MESH Headings
- Alleles
- Animals
- Blotting, Southern
- Blotting, Western
- Cytoplasm/metabolism
- Fibroblasts/metabolism
- Immunohistochemistry
- Kidney/metabolism
- Mice
- Mice, Transgenic
- Models, Genetic
- Muscle, Smooth, Vascular/cytology
- Mutation
- Myocytes, Smooth Muscle/cytology
- Pericytes/metabolism
- Phenylalanine/chemistry
- Point Mutation
- Protein Structure, Tertiary
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Retina/embryology
- Signal Transduction
- Time Factors
- Transgenes
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Michelle D Tallquist
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | |
Collapse
|
105
|
Hamilton TG, Klinghoffer RA, Corrin PD, Soriano P. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol 2003; 23:4013-25. [PMID: 12748302 PMCID: PMC155222 DOI: 10.1128/mcb.23.11.4013-4025.2003] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) direct diverse cellular and developmental responses by stimulating a relatively small number of overlapping signaling pathways. Specificity may be determined by RTK expression patterns or by differential activation of individual signaling pathways. To address this issue we generated knock-in mice in which the extracellular domain of the mouse platelet-derived growth factor alpha receptor (PDGFalphaR) is fused to the cytosolic domain of Drosophila Torso (alpha(Tor)) or the mouse fibroblast growth factor receptor 1 (alpha(FR)). alpha(Tor) homozygous embryos exhibit significant rescue of neural crest and angiogenesis defects normally found in PDGFalphaR-null embryos yet fail to rescue skeletal or extraembryonic defects. This phenotype was associated with the ability of alpha(Tor) to stimulate the mitogen-activated protein (MAP) kinase pathway to near wild-type levels but failure to completely activate other pathways, such as phosphatidylinositol (PI) 3-kinase. The alpha(FR) chimeric receptor fails to rescue any aspect of the PDGFalphaR-null phenotype. Instead, alpha(FR) expression leads to a gain-of-function phenotype highlighted by ectopic bone development. The alpha(FR) phenotype was associated with a failure to limit MAP kinase signaling and to engage significant PI3-kinase response. These results suggest that precise regulation of divergent downstream signaling pathways is critical for specification of RTK function.
Collapse
MESH Headings
- Animals
- Blood Vessels/anatomy & histology
- Blood Vessels/growth & development
- Bone and Bones/abnormalities
- Bone and Bones/physiology
- Cell Line
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Embryo, Mammalian/abnormalities
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Embryo, Nonmammalian
- Evolution, Molecular
- Fibroblasts/cytology
- Fibroblasts/physiology
- Genes, Reporter
- Mice
- Mice, Transgenic
- Neural Crest/growth & development
- Neural Crest/pathology
- Phenotype
- Placenta/abnormalities
- Placentation
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- T Guy Hamilton
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
106
|
Nakayama N, Duryea D, Manoukian R, Chow G, Han CYE. Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells. J Cell Sci 2003; 116:2015-28. [PMID: 12679385 DOI: 10.1242/jcs.00417] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The totipotent embryonic stem cell generates various mesodermal cells when stimulated with BMP4. Among the resulting cells, those expressing flk-1 and/or PDGFRalpha displayed chondrogenic activity in the presence of TGFbeta3 and expressed cartilage-specific genes in 7 to 16 day pellet cultures. Depositions of cartilage matrix and type II collagen were detected by day 14. TGFbeta-stimulated chondrogenesis was synergistically enhanced by PDGF-BB, resulting in a larger cartilage particle filled with a cartilaginous area containing type II collagen, with a surface cell layer expressing type I collagen. In contrast, noggin inhibited both the TGFbeta- and TGFbeta+PDGF-stimulated cartilage formation, suggesting that a BMP-dependent pathway is involved. In fact, replacement of TGFbeta3 with BMP4 on days 10 to 12 markedly elevated the cartilage matrix deposition during the following 7 to 8 days. Moreover, culture with TGFbeta3 and PDGF-BB, followed by the incubation with BMP4 alone, resulted in a cartilage particle lacking type I collagen in the matrix and the surface layer, which suggests hyaline cartilage formation. Furthermore, such hyaline cartilage particles were mineralized. These studies indicate that the PDGFRalpha+ and/or flk-1+ cells derived from embryonic stem cells possess the full developmental potential toward chondrocytes, in common with embryonic mesenchymal cells.
Collapse
Affiliation(s)
- Naoki Nakayama
- Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | | | | | | | |
Collapse
|
107
|
Price RL, Haley ST, Bullard TA, Goldsmith EC, Simpson DG, Thielen TE, Yost MJ, Terracio L. Effects of platelet-derived growth factor-AA and -BB on embryonic cardiac development. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 272:424-33. [PMID: 12704700 DOI: 10.1002/ar.a.10054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several studies have shown that disruption of the normal expression patterns of platelet-derived growth factor (PDGF) ligands and receptors during development results in gross cardiac defects and embryonic or neonatal death. However, little is known about the specific role that PDGF plays in the differentiation of cardiac myocytes. In experiments complementing studies that utilized naturally-occurring Patch mice lacking the PDGFr alpha, or knockout animals lacking a PDGF ligand or receptor, we used rat and mouse whole-embryo culture (WEC) techniques to increase the exposure of embryos to the PDGF-AA or -BB ligands. Following a 48-hr culture period, we analyzed heart growth and cardiac myocyte differentiation. Exposure of rat embryos to 50 ng/ml of PDGF-AA resulted in a 42% increase in total protein levels in the heart, but did not result in a significant increase in heart growth, as determined by measurements of the atrioventricular length and the left ventricular length and width. Exposure of embryos to 50 ng/ml of PDGF-BB resulted in a 77% increase in total protein levels and a significant (P < 0.05) 8-15% increase in the measured heart parameters. Although a comparison of control and PDGF-AA-treated embryos showed no increase in the overall size of the heart, confocal microscopy showed an increase in the size and number of myofibrillar bundles in the developing myocardium. In addition, transmission electron microscopy (TEM) revealed an increase in the presence of sarcomeres, indicating that myofibrils were more highly differentiated in these areas of the treated embryos. In PDGF-BB-treated embryos, the compact zone of the myocardium was thicker and, as shown by confocal microscopy and TEM, f-actin and well-developed sarcomeres were more prevalent, indicating that the myofibrils were more differentiated in the treated embryos than in the control embryos. These studies indicate that increased exposure of embryonic hearts to PDGF-AA or -BB increases the rate of myocardial development.
Collapse
Affiliation(s)
- Robert L Price
- Department of Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Tallquist MD, Soriano P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development 2003; 130:507-18. [PMID: 12490557 DOI: 10.1242/dev.00241] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac and cephalic neural crest cells (NCCs) are essential components of the craniofacial and aortic arch mesenchyme. Genetic disruption of the platelet-derived growth factor receptor alpha (PDGFRalpha) results in defects in multiple tissues in the mouse, including neural crest derivatives contributing to the frontonasal process and the aortic arch. Using chimeric analysis, we show that loss of the receptor in NCCs renders them inefficient at contributing to the cranial mesenchyme. Conditional gene ablation in NCCs results in neonatal lethality because of aortic arch defects and a severely cleft palate. The conotruncal defects are first observed at E11.5 and are consistent with aberrant NCC development in the third, fourth and sixth branchial arches, while the bone malformations present in the frontonasal process and skull coincide with defects of NCCs from the first to third branchial arches. Changes in cell proliferation, migration, or survival were not observed in PDGFRalpha NCC conditional embryos, suggesting that the PDGFRalpha may play a role in a later stage of NCC development. Our results demonstrate that the PDGFRalpha plays an essential, cell-autonomous role in the development of cardiac and cephalic NCCs and provides a model for the study of aberrant NCC development.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/abnormalities
- Aorta, Thoracic/embryology
- Cell Differentiation
- Cell Movement
- Fetal Heart/embryology
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heterozygote
- Homozygote
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Neural Crest/cytology
- Neural Crest/embryology
- Phenotype
- Receptor, Platelet-Derived Growth Factor alpha/deficiency
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Skull/abnormalities
- Skull/embryology
Collapse
Affiliation(s)
- Michelle D Tallquist
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
109
|
Joosten PHLJ, Toepoel M, van Oosterhout D, Afink GB, van Zoelen EJJ. A regulating element essential for PDGFRA transcription is recognized by neural tube defect-associated PRX homeobox transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1588:254-60. [PMID: 12393181 DOI: 10.1016/s0925-4439(02)00175-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously shown that deregulated expression of the platelet-derived growth factor alpha-receptor (PDGFRA) can be associated with neural tube defects (NTDs) in both men and mice. In the present study, we have investigated the transcription factors that control the up-regulation of PDGFRA expression during differentiation of early embryonic human cells in culture. In Tera-2 embryonal carcinoma cells, PDGFRA expression is strongly enhanced upon differentiation induced by retinoic acid and cAMP treatment. Here we show that the corresponding increase in promoter activity is controlled by an ATTA-sequence-containing element located near the transcription initiation site, which is bound by a transcriptional complex that includes PBX and PRX homeobox transcription factors. Mutation of the putative binding sites for these transcription factors results in strong impairment of PDGFRA promoter activity in differentiated cells. Since functional inactivation of Prx genes has been associated with NTDs in mice, these data support a model in which improper PDGFRA expression as a result of mutations in or altered binding of its upstream regulators may be causally related to NTDs.
Collapse
Affiliation(s)
- Paul H L J Joosten
- Department of Cell Biology, Faculty of Science, University of Nijmegen, Toernooiveld 1, The Netherlands
| | | | | | | | | |
Collapse
|
110
|
Endo Y, Osumi N, Wakamatsu Y. Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 2002; 129:863-73. [PMID: 11861470 DOI: 10.1242/dev.129.4.863] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural crest is induced at the junction of epidermal ectoderm and neural plate by the mutual interaction of these tissues. In previous studies, BMP4 has been shown to pattern the ectodermal tissues, and BMP4 can induce neural crest cells from the neural plate. In this study, we show that epidermally expressed Delta1, which encodes a Notch ligand, is required for the activation and/or maintenance of Bmp4 expression in this tissue, and is thus indirectly required for neural crest induction by BMP4 at the epidermis-neural plate boundary. Notch activation in the epidermis additionally inhibits neural crest formation in this tissue, so that neural crest generation by BMP4 is restricted to the junction.
Collapse
Affiliation(s)
- Yukinori Endo
- Department of Developmental Neurobiology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | | | | |
Collapse
|
111
|
Clark K, Bender G, Murray BP, Panfilio K, Cook S, Davis R, Murnen K, Tuan RS, Gilbert SF. Evidence for the neural crest origin of turtle plastron bones. Genesis 2001; 31:111-7. [PMID: 11747201 DOI: 10.1002/gene.10012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The migrating cranial neural crest cells of birds, fish, and mammals have been shown to form the membranous bones of the cranium and face. These findings have been extrapolated to suggest that all the dermal bones of the vertebrate exoskeleton are derived from the neural crest ectomesenchyme. However, only one group of extant animals, the Chelonians, has an extensive bony exoskeleton in the trunk. We have previously shown that the autapomorphic carapacial and plastron bones of the turtle shell arise from dermal intramembranous ossification. Here, we show that the bones of the plastron stain positively for HNK-1 and PDGFRalpha and are therefore most likely of neural crest origin. This extends the hypothesis of the neural crest origin of the exoskeleton to include the turtle plastron.
Collapse
Affiliation(s)
- K Clark
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Zhang XQ, Takakura N, Oike Y, Inada T, Gale NW, Yancopoulos GD, Suda T. Stromal cells expressing ephrin-B2 promote the growth and sprouting of ephrin-B2(+) endothelial cells. Blood 2001; 98:1028-37. [PMID: 11493448 DOI: 10.1182/blood.v98.4.1028] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ephrin-B2 is a transmembrane ligand that is specifically expressed on arterial endothelial cells (ECs) and surrounding cells and interacts with multiple EphB class receptors. Conversely, EphB4, a specific receptor for ephrin-B2, is expressed on venous ECs, and both ephrin-B2 and EphB4 play essential roles in vascular development. The bidirectional signals between EphB4 and ephrin-B2 are thought to be specific for the interaction between arteries and veins and to regulate cell mixing and the making of particular boundaries. However, the molecular mechanism during vasculogenesis and angiogenesis remains unclear. Manipulative functional studies were performed on these proteins in an endothelial cell system. Using in vitro stromal cells (OP9 cells) and a paraaortic splanchnopleura (P-Sp) coculture system, these studies found that the stromal cells expressing ephrin-B2 promoted vascular network formation and ephrin-B2(+) EC proliferation and that they also induced the recruitment and proliferation of alpha-smooth muscle actin (alpha-SMA)-positive cells. Stromal cells expressing EphB4 inhibited vascular network formation, ephrin-B2(+) EC proliferation, and alpha-SMA(+) cell recruitment and proliferation. Thus, these data suggest that ephrin-B2 and EphB4 mediate reciprocal interactions between arterial and venous ECs and surrounding cells to form each characteristic vessel. (Blood. 2001;98:1028-1037)
Collapse
Affiliation(s)
- X Q Zhang
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
113
|
Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, Tamechika M, Yamaguchi K, Fukumoto T, Chiba T, Nishikawa SI. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer's patch organogenesis. J Exp Med 2001; 193:621-30. [PMID: 11238592 PMCID: PMC2193398 DOI: 10.1084/jem.193.5.621] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Accepted: 01/31/2001] [Indexed: 12/19/2022] Open
Abstract
Mice deficient in lymphotoxin beta receptor (LTbetaR) or interleukin 7 receptor alpha (IL-7Ralpha) lack Peyer's patches (PPs). Deficiency in CXC chemokine receptor 5 (CXCR5) also severely affects the development of PPs. A molecular network involving these three signaling pathways has been implicated in PP organogenesis, but it remains unclear how they are connected during this process. We have shown that PP organogenesis is initiated at sites containing IL-7Ralpha(+) lymphoid cells and vascular cell adhesion molecule (VCAM)-1/intercellular adhesion molecule (ICAM)-1 expressing nonlymphoid elements. Here we characterize these lymphoid and nonlymphoid components in terms of chemokine signals. The lymphoid population expresses CXCR5 and has a strong chemotactic response to B lymphocyte chemoattractant (BLC). Importantly, chemokines produced by VCAM-1(+)ICAM-1(+) nonlymphoid cells mediate the recruitment of lymphoid cells. Furthermore, we show that these VCAM-1(+)ICAM-1(+) cells are mesenchymal cells that are activated by lymphoid cells through the LTbetaR to express adhesion molecules and chemokines. Thus, promotion of PP development relies on mutual interaction between mesenchymal and lymphoid cells.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules/biosynthesis
- Cell Communication/drug effects
- Cell Communication/immunology
- Cell Separation
- Cells, Cultured
- Chemokine CXCL13
- Chemokines/biosynthesis
- Chemokines/pharmacology
- Chemokines, CXC/pharmacology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Intercellular Adhesion Molecule-1/biosynthesis
- Lymphocytes/cytology
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Lymphotoxin beta Receptor
- Mesoderm/cytology
- Mesoderm/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis/immunology
- Peyer's Patches/cytology
- Peyer's Patches/embryology
- Peyer's Patches/metabolism
- Receptors, CXCR5
- Receptors, Chemokine
- Receptors, Cytokine/deficiency
- Receptors, Cytokine/genetics
- Receptors, Interleukin-7/deficiency
- Receptors, Interleukin-7/genetics
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction/drug effects
- Vascular Cell Adhesion Molecule-1/biosynthesis
Collapse
Affiliation(s)
- K Honda
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Syogoin-Kawaharacho 53, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Yokomizo T, Ogawa M, Osato M, Kanno T, Yoshida H, Fujimoto T, Fraser S, Nishikawa S, Okada H, Satake M, Noda T, Nishikawa S, Ito Y. Requirement of Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes Cells 2001; 6:13-23. [PMID: 11168593 DOI: 10.1046/j.1365-2443.2001.00393.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies revealing that endothelial cells derived from E8.5-E10.5 mouse embryos give rise to haematopoietic cells appear to correspond to previous histological observations that haematopoietic cell clusters are attached to the ventral aspect of dorsal aorta in such a way as if they were budding from the endothelial cell layer. Gene disruption studies have revealed that Runx1/AML1 is required for definitive haematopoiesis but not for primitive haematopoiesis, but the precise stage of gene function is not yet known. We found that mice deficient in Runx1/AML1 (an alpha subunit of the transcription factor PEBP2/CBF) lack c-Kit+ haematopoietic cell clusters in the dorsal aorta, omphalomesenteric and umbilical arteries, as well as yolk sac vessels. Moreover, endothelial cells sorted from the embryo proper and the yolk sac of AML1-/- embryos are unable to differentiate into haematopoietic cells on OP9 stromal cells, whereas colonies of AML1-/- endothelial cells can be formed in culture. These results strongly suggest that the emergence of haematopoietic cells from endothelial cells represents a major pathway of definitive haematopoiesis and is an event that also occurs in the yolk sac in vivo, as suggested by earlier in vitro experiments.
Collapse
Affiliation(s)
- T Yokomizo
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Shogoin-Kawaharacho, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Nishikawa SI, Hashi H, Honda K, Fraser S, Yoshida H. Inflammation, a prototype for organogenesis of the lymphopoietic/hematopoietic system. Curr Opin Immunol 2000; 12:342-5. [PMID: 10781400 DOI: 10.1016/s0952-7915(00)00097-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- S I Nishikawa
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Sakyo-ku, 606-8507, Japan.
| | | | | | | | | |
Collapse
|
116
|
Ikeda W, Nakanishi H, Miyoshi J, Mandai K, Ishizaki H, Tanaka M, Togawa A, Takahashi K, Nishioka H, Yoshida H, Mizoguchi A, Nishikawa SI, Takai Y. Afadin: A key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J Cell Biol 1999; 146:1117-32. [PMID: 10477764 PMCID: PMC2169488 DOI: 10.1083/jcb.146.5.1117] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Afadin is an actin filament-binding protein that binds to nectin, an immunoglobulin-like cell adhesion molecule, and is colocalized with nectin at cadherin-based cell-cell adherens junctions (AJs). To explore the function of afadin in cell-cell adhesion during embryogenesis, we generated afadin(-/-) mice and embryonic stem cells. In wild-type mice at embryonic days 6.5-8.5, afadin was highly expressed in the embryonic ectoderm and the mesoderm, but hardly detected in the extraembryonic regions such as the visceral endoderm. Afadin(-/-) mice showed developmental defects at stages during and after gastrulation, including disorganization of the ectoderm, impaired migration of the mesoderm, and loss of somites and other structures derived from both the ectoderm and the mesoderm. Cystic embryoid bodies derived from afadin(-/-) embryonic stem cells showed normal organization of the endoderm but disorganization of the ectoderm. Cell-cell AJs and tight junctions were improperly organized in the ectoderm of afadin(-/-) mice and embryoid bodies. These results indicate that afadin is highly expressed in the ectoderm- derived cells during embryogenesis and plays a key role in proper organization of AJs and tight junctions of the highly expressing cells, which is essential for proper tissue morphogenesis.
Collapse
Affiliation(s)
- Wataru Ikeda
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka 565-0871, Japan
| | - Hiroyuki Nakanishi
- Takai Biotimer Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Jun Miyoshi
- Takai Biotimer Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Kenji Mandai
- Takai Biotimer Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Hiroyoshi Ishizaki
- Takai Biotimer Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Miki Tanaka
- Takai Biotimer Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Atushi Togawa
- Takai Biotimer Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Kenichi Takahashi
- Takai Biotimer Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Hideo Nishioka
- Takai Biotimer Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Hisahiro Yoshida
- Department of Molecular Genetics, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Akira Mizoguchi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shin-ichi Nishikawa
- Department of Molecular Genetics, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshimi Takai
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka 565-0871, Japan
- Takai Biotimer Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| |
Collapse
|
117
|
Mice Homozygous for a Truncated Form of CREB-Binding Protein Exhibit Defects in Hematopoiesis and Vasculo-angiogenesis. Blood 1999. [DOI: 10.1182/blood.v93.9.2771] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
CREB-binding protein (CBP) and the closely related adenovirus E1A-associated 300-kD protein (p300) function as coactivators of transcription factors such as CREB, c-Fos, c-Jun, c-Myb, and several nuclear receptors. To study the roles of CBP in embryonic development, we generated CBP homozygous mutant mouse embryos that expressed a truncated form of CBP protein (1-1084 out of 2441 residues). The embryos died between embryonic days 9.5 (E9.5) and E10.5 and exhibited a defect in neural tube closure. They appeared pale and showed decreases in erythroid cells and colony-forming cells (CFCs) in the yolk sac, suggesting defects in primitive hematopoiesis. Immunohistochemistry with an anti-PECAM antibody showed a lack of vascular network formation. Organ culture of para-aortic splanchnopleural mesoderm (P-Sp) with stromal cells (OP9) showed an autonomous abnormality of putative endothelial precursors, which may induce the microenvironmental defect in hematopoiesis. In addition, these defects were partially rescued by the addition of VEGF to this culture. Our analyses demonstrate that CBP plays an essential role in hematopoiesis and vasculo-angiogenesis.
Collapse
|
118
|
Mice Homozygous for a Truncated Form of CREB-Binding Protein Exhibit Defects in Hematopoiesis and Vasculo-angiogenesis. Blood 1999. [DOI: 10.1182/blood.v93.9.2771.409a46_2771_2779] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CREB-binding protein (CBP) and the closely related adenovirus E1A-associated 300-kD protein (p300) function as coactivators of transcription factors such as CREB, c-Fos, c-Jun, c-Myb, and several nuclear receptors. To study the roles of CBP in embryonic development, we generated CBP homozygous mutant mouse embryos that expressed a truncated form of CBP protein (1-1084 out of 2441 residues). The embryos died between embryonic days 9.5 (E9.5) and E10.5 and exhibited a defect in neural tube closure. They appeared pale and showed decreases in erythroid cells and colony-forming cells (CFCs) in the yolk sac, suggesting defects in primitive hematopoiesis. Immunohistochemistry with an anti-PECAM antibody showed a lack of vascular network formation. Organ culture of para-aortic splanchnopleural mesoderm (P-Sp) with stromal cells (OP9) showed an autonomous abnormality of putative endothelial precursors, which may induce the microenvironmental defect in hematopoiesis. In addition, these defects were partially rescued by the addition of VEGF to this culture. Our analyses demonstrate that CBP plays an essential role in hematopoiesis and vasculo-angiogenesis.
Collapse
|
119
|
In Vitro Hematopoietic and Endothelial Cell Development From Cells Expressing TEK Receptor in Murine Aorta-Gonad-Mesonephros Region. Blood 1999. [DOI: 10.1182/blood.v93.5.1549.405k25_1549_1556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that long-term repopulating hematopoietic stem cells (HSCs) first appear in the aorta-gonad-mesonephros (AGM) region. Our immunohistochemistry study showed that TEK+cells existed in the AGM region. Approximately 5% of AGM cells were TEK+, and most of these were CD34+ and c-Kit+. We then established a coculture system of AGM cells using a stromal cell line, OP9, which is deficient in macrophage colony-stimulating factor (M-CSF). With this system, we showed that AGM cells at 10.5 days postcoitum (dpc) differentiated and proliferated into both hematopoietic and endothelial cells. Proliferating hematopoietic cells contained a significant number of colony-forming cells in culture (CFU-C) and in spleen (CFU-S). Among primary AGM cells at 10.5 dpc, sorted TEK+ AGM cells generated hematopoietic cells and platelet endothelial cell adhesion molecule (PECAM)-1+ endothelial cells on the OP9 stromal layer, while TEK− cells did not. When a ligand for TEK, angiopoietin-1, was added to the single-cell culture of AGM, endothelial cell growth was detected in the wells where hematopoietic colonies grew. Although the incidence was still low (1/135), we showed that single TEK+ cells generated hematopoietic cells and endothelial cells simultaneously, using a single-cell deposition system. This in vitro coculture system shows that the TEK+ fraction of primary AGM cells is a candidate for hemangioblasts, which can differentiate into both hematopoietic cells and endothelial cells.
Collapse
|
120
|
In Vitro Hematopoietic and Endothelial Cell Development From Cells Expressing TEK Receptor in Murine Aorta-Gonad-Mesonephros Region. Blood 1999. [DOI: 10.1182/blood.v93.5.1549] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recent studies have shown that long-term repopulating hematopoietic stem cells (HSCs) first appear in the aorta-gonad-mesonephros (AGM) region. Our immunohistochemistry study showed that TEK+cells existed in the AGM region. Approximately 5% of AGM cells were TEK+, and most of these were CD34+ and c-Kit+. We then established a coculture system of AGM cells using a stromal cell line, OP9, which is deficient in macrophage colony-stimulating factor (M-CSF). With this system, we showed that AGM cells at 10.5 days postcoitum (dpc) differentiated and proliferated into both hematopoietic and endothelial cells. Proliferating hematopoietic cells contained a significant number of colony-forming cells in culture (CFU-C) and in spleen (CFU-S). Among primary AGM cells at 10.5 dpc, sorted TEK+ AGM cells generated hematopoietic cells and platelet endothelial cell adhesion molecule (PECAM)-1+ endothelial cells on the OP9 stromal layer, while TEK− cells did not. When a ligand for TEK, angiopoietin-1, was added to the single-cell culture of AGM, endothelial cell growth was detected in the wells where hematopoietic colonies grew. Although the incidence was still low (1/135), we showed that single TEK+ cells generated hematopoietic cells and endothelial cells simultaneously, using a single-cell deposition system. This in vitro coculture system shows that the TEK+ fraction of primary AGM cells is a candidate for hemangioblasts, which can differentiate into both hematopoietic cells and endothelial cells.
Collapse
|
121
|
Takakura N, Huang XL, Naruse T, Hamaguchi I, Dumont DJ, Yancopoulos GD, Suda T. Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity 1998; 9:677-86. [PMID: 9846489 DOI: 10.1016/s1074-7613(00)80665-2] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have investigated the function of TIE2/TEK receptor tyrosine kinase in the development of definitive hematopoiesis. In the vitelline artery at 9.5 days postcoitum (d.p.c.), TIE2+ hematopoietic cells aggregated and adhered to TIE2+ endothelial cells. Soluble TIE2-Fc chimeric protein inhibited the development of hematopoiesis and angiogenesis in the para-aortic splanchnopleural mesoderm (P-Sp) explant culture, and TIE2-deficient mice showed severely impaired definitive hematopoiesis. An in vitro study revealed that Angiopoietin-1 but not Angiopoietin-2 promoted the adhesion to fibronectin (FN) through integrins in TIE2-transfected cells and primary TIE2+ cells sorted from 9.5 d.p.c. P-Sp. Adhesion of TIE2+ cells induced by Angiopoietin-1 enhanced the proliferation of hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Nobuyuki Takakura
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
122
|
Nishikawa SI, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H, Katsura Y. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 1998; 8:761-9. [PMID: 9655490 DOI: 10.1016/s1074-7613(00)80581-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have investigated the lymphohematopoietic potentials of endothelial cells (EC) and hematopoietic cells (HPC) sorted from embryos. Expression of VE-cadherin, CD45, and Ter119 was used to distinguish EC (VE-cadherin+CD45-Ter119-) from HPC (VE-cadherin-CD45+). Thus defined, EC population takes up acetylated LDL and coexpresses CD31, Flk1, and CD34. In E9.5 embryos, EC from yolk sac (YS) and the embryo proper generate blood cells, including lymphocytes. Thus, lymphohematopoietic EC do exist in the embryo, and they are generated both in YS and the embryo proper. On the other hand, HPC with lymphopoietic potency appear first in the embryo proper. These findings implicate involvement of multiple environmental cues for acquiring lymphopoietic competency during differentiation of HPC.
Collapse
Affiliation(s)
- S I Nishikawa
- Department of Molecular Genetics, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
123
|
Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 1998; 125:1747-57. [PMID: 9521912 DOI: 10.1242/dev.125.9.1747] [Citation(s) in RCA: 542] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Totipotent murine ES cells have an enormous potential for the study of cell specification. Here we demonstrate that ES cells can differentiate to hemopoietic cells through the proximal lateral mesoderm, merely upon culturing in type IV collagen-coated dishes. Separation of the Flk1+ mesoderm from other cell lineages was critical for hemopoietic cell differentiation, whereas formation of the embryoid body was not. Since the two-dimensionally spreading cells can be monitored easily in real time, this culture system will greatly facilitate the study of the mechanisms involved in the cell specification to mesoderm, endothelial, and hemopoietic cells. In the culture of ES cells, however, lineages and stages of differentiating cells can only be defined by their own characteristics. We showed that a combination of monoclonal antibodies against E-cadherin, Flk1/KDR, PDGF receptor(alpha), VE-cadherin, CD45 and Ter119 was sufficient to define most intermediate stages during differentiation of ES cells to blood cells. Using this culture system and surface markers, we determined the following order for blood cell differentiation: ES cell (E-cadherin+Flk1-PDGFRalpha-), proximal lateral mesoderm (E-cadherin-Flk1+VE-cadherin-), progenitor with hemoangiogenic potential (Flk1+VE-cadherin+CD45-), hemopoietic progenitor (CD45+c-Kit+) and mature blood cells (c-Kit-CD45+ or Ter119+), though direct differentiation of blood cells from the Flk1+VE-cadherin- stage cannot be ruled out. Not only the VE-cadherin+CD45- population generated from ES cells but also those directly sorted from the yolk sac of 9.5 dpc embryos have a potential to give rise to hemopoietic cells. Progenitors with hemoangiogenic potential were identified in both the Flk1+VE-cadherin- and Flk1+VE-cadherin+ populations by the single cell deposition experiment. This line of evidence implicates Flk1+VE-cadherin+ cells as a diverging point of hemopoietic and endothelial cell lineages.
Collapse
Affiliation(s)
- S I Nishikawa
- Department of Molecular Genetics, Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | |
Collapse
|