101
|
Fiskvik I, Beiske K, Delabie J, Yri O, Spetalen S, Karjalainen-Lindsberg ML, Leppä S, Liestøl K, Smeland EB, Holte H. Combining MYC, BCL2 and TP53 gene and protein expression alterations improves risk stratification in diffuse large B-cell lymphoma. Leuk Lymphoma 2014; 56:1742-9. [DOI: 10.3109/10428194.2014.970550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
102
|
FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-κB to promote survival of human B cells. Blood 2014; 124:3431-40. [PMID: 25267198 DOI: 10.1182/blood-2014-01-553412] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The forkhead transcription factor FOXP1 is involved in B-cell development and function and is generally regarded as an oncogene in activated B-cell-like subtype of diffuse large B-cell lymphoma (DLBCL) and mucosa-associated lymphoid tissue lymphoma, lymphomas relying on constitutive nuclear factor κB (NF-κB) activity for survival. However, the mechanism underlying its putative oncogenic activity has not been established. By gene expression microarray, upon overexpression or silencing of FOXP1 in primary human B cells and DLBCL cell lines, combined with chromatin immunoprecipitation followed by next-generation sequencing, we established that FOXP1 directly represses a set of 7 proapoptotic genes. Low expression of these genes, encoding the BH3-only proteins BIK and Harakiri, the p53-regulatory proteins TP63, RASSF6, and TP53INP1, and AIM2 and EAF2, is associated with poor survival in DLBCL patients. In line with these findings, we demonstrated that FOXP1 promotes the expansion of primary mature human B cells by inhibiting caspase-dependent apoptosis, without affecting B-cell proliferation. Furthermore, FOXP1 is dependent upon, and cooperates with, NF-κB signaling to promote B-cell expansion and survival. Taken together, our data indicate that, through direct repression of proapoptotic genes, (aberrant) expression of FOXP1 complements (constitutive) NF-κB activity to promote B-cell survival and can thereby contribute to B-cell homeostasis and lymphomagenesis.
Collapse
|
103
|
Janaki Ramaiah M, Lavanya A, Honarpisheh M, Zarea M, Bhadra U, Bhadra MP. MiR-15/16 complex targets p70S6 kinase 1 and controls cell proliferation in MDA-MB-231 breast cancer cells. Gene 2014; 552:255-64. [PMID: 25261849 DOI: 10.1016/j.gene.2014.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND MicroRNAs are small non-coding RNAs that regulate post-transcriptional mRNA expression by binding to 3' untranslated region (3'-UTR) of the complementary mRNA sequence resulting in translational repression and gene silencing. They act as negative regulators of gene expression and play a pivotal role in regulating apoptosis and cell proliferation. Studies have shown that miRNAs interact with p53 by regulating the activity and function of p53 through direct repression or its regulators. Mammalian target of rapamycin (mTOR) is an evolutionary conserved check point protein kinase that plays a major effect in the control of cell division via protein synthesis regulation. mTOR regulates protein synthesis through phosphorylation and inactivation of 4E-BP1 and through phosphorylation and activation of S6 kinase 1 (S6K1). These two downstream effectors of mTOR control cell growth and metabolism. In mammals, mTOR protein kinase is the central node in the nutrient and growth factor signaling and p53 plays a critical role in sensing genotoxic stress. Activation of p53 inhibits mTOR activity, which in turn regulates its downstream targets providing a cross talk among both the signaling machinery. MicroRNA-15 and 16 belong to a common precursor family and are highly conserved. Deletion or downregulation of these two microRNAs has been shown to accelerate cell division by modulating the expression of the genes involved in controlling cell cycle progression. These microRNAs may function as tumor suppressors and act on the downstream targets of p53 signaling pathway. To have a better insight of the role of miR-15/16 in regulating the cross talk of p53 and mTOR, we performed an in depth study in MDA-MB-231 breast cancer cells by performing a gain-of-function analysis with lentiviral plasmids expressing microRNA-15 and 16. METHODS The effect of individual microRNAs on RPS6KB1 was examined by using 3'-UTR clones via luciferase based assays. The cell cycle effects were observed by flow-cytometric analysis. Reverse transcription PCR was used to explore the expression of mTOR and RPS6KB1 in cells transfected with miR-15/16. RESULTS Overexpression of miR-15/16 led to inhibition of cell proliferation causing G1 cell cycle arrest as well as caspase-3 dependent apoptosis. Forced expression of miR-15/16 might lead to decrease in mRNA level of RPS6KB1, mTOR. The effect was a complete reversal after treatment with anti-miRs against miR-15/16 proving the specificity of the expression. In addition, the dual luciferase reporter assays indicated a clear decrease in luciferase gene expression in cells transfected with lentiviral based miR-15 and 16 plasmids indicating that miR-15/16 directly targets RPS6KB1 through its 3'-UTR binding. Further, these microRNAs also inhibit epithelial to mesenchymal transition (EMT) by targeting key proteins such as Twist1 and EZH2 clearly demonstrating its crucial role in controlling cell proliferation. CONCLUSION This study suggests that exogenous microRNA-15/16 can target RPS6KB1, control cell proliferation and cause apoptosis in caspase-dependent manner even in the absence of functional p53.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India; School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, India.
| | - A Lavanya
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| | - Mohsen Honarpisheh
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| | - Mojtaba Zarea
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| | - Utpal Bhadra
- Centre For Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, India.
| | - Manika Pal Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| |
Collapse
|
104
|
Savorani C, Manfé V, Biskup E, Gniadecki R. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage. Leuk Lymphoma 2014; 56:739-47. [PMID: 24898668 DOI: 10.3109/10428194.2014.929673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tumor suppressor p53 is often mutated in human cancers. Restoring its antitumor activity has been shown to be a promising therapeutic approach for cancer treatment. Here we analyzed the activity and mechanism of a p53 reactivator, ellipticine, in a cellular model of cutaneous T-cell lymphoma (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage. Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma.
Collapse
Affiliation(s)
- Cecilia Savorani
- Department of Dermatology, Bispebjerg Hospital , Copenhagen , Denmark
| | | | | | | |
Collapse
|
105
|
Abstract
The aim of this study was to assess the efficiency of p53 reactivation and induction of massive apoptosis (PRIMA-1(Met)) in inducing myeloma cell death, using 27 human myeloma cell lines (HMCLs) and 23 primary samples. Measuring the lethal dose (LD50) of HMCLs revealed that HMCLs displayed heterogeneous sensitivity, with an LD50 ranging from 4 μM to more than 200 μM. The sensitivity of HMCLs did not correlate with myeloma genomic heterogeneity or TP53 status, and PRIMA-1(Met) did not induce or increase expression of the p53 target genes CDKN1A or TNFRSF10B/DR5. However, PRIMA-1(Met) increased expression of NOXA in a p53-independent manner, and NOXA silencing decreased PRIMA1(Met)-induced cell death. PRIMA-1(Met) depleted glutathione (GSH) content and induced reactive oxygen species production. The expression of GSH synthetase correlated with PRIMA-1(Met) LD50 values, and we showed that a GSH decrease mediated by GSH synthetase silencing or by and L-buthionine sulphoximine, an irreversible inhibitor of γ-glutamylcysteine synthetase, increased PRIMA-1(Met)-induced cell death and overcame PRIMA-1(Met) resistance. PRIMA-1(Met) (10 μM) induced cell death in 65% of primary cells independent of the presence of del17p; did not increase DR5 expression, arguing against an activation of p53 pathway; and synergized with L-buthionine sulphoximine in all samples. Finally, we showed in mouse TP53(neg) JJN3-xenograft model that PRIMA-1(Met) inhibited myeloma growth and synergized with L-buthionine sulphoximine in vivo.
Collapse
|
106
|
Surget S, Descamps G, Brosseau C, Normant V, Maïga S, Gomez-Bougie P, Gouy-Colin N, Godon C, Béné MC, Moreau P, Le Gouill S, Amiot M, Pellat-Deceunynck C. RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway. BMC Cancer 2014; 14:437. [PMID: 24927749 PMCID: PMC4094448 DOI: 10.1186/1471-2407-14-437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/05/2014] [Indexed: 11/27/2022] Open
Abstract
Background The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. Methods A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Results Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53mutated cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤19%). Conclusion These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.
Collapse
|
107
|
Carbone A, Gloghini A, Kwong YL, Younes A. Diffuse large B cell lymphoma: using pathologic and molecular biomarkers to define subgroups for novel therapy. Ann Hematol 2014; 93:1263-77. [PMID: 24870942 PMCID: PMC4082139 DOI: 10.1007/s00277-014-2116-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/22/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) comprises specific subtypes, disease entities, and other not otherwise specified (NOS) lymphomas. This review will focus on DLBCL NOS because of their prevalence and their heterogeneity with respect to morphology, clinical presentation, biology, and response to treatment. Gene expression profiling of DLBCL NOS has identified molecular subgroups that correlate with prognosis and may have relevance for treatment based on signaling pathways. New technologies have revealed that the "activated B cell" subgroup is linked to activation of the nuclear factor kB (NF-kB) pathway, with mutations found in CD79A/B, CARD11, and MYD88, and loss of function mutations in TNFAIP3. The "germinal center B cell-like" subgroup is linked to mutational changes in EZH2 and CREBBP. Biomarkers that are related to pathways promoting tumor cell growth and survival in DLBCL have been recognized, although their predictive role requires clinical validation. Immunohistochemistry for detecting the expression of these biomarkers is a practical technique that could provide a rational for clinical trial design.
Collapse
Affiliation(s)
- Antonino Carbone
- Department of Pathology, Centro di Riferimento Oncologico (CRO) Aviano, Istituto Nazionale Tumori, IRCCS, Via F. Gallini 2, 33081, Aviano, Italy,
| | | | | | | |
Collapse
|
108
|
Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med 2014; 20:599-606. [PMID: 24813251 PMCID: PMC4057660 DOI: 10.1038/nm.3562] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022]
Abstract
Oncogene-induced DNA damage elicits genomic instability in epithelial cancer cells, but apoptosis is blocked through inactivation of the tumor suppressor p53. In hematological cancers, the relevance of ongoing DNA damage and the mechanisms by which apoptosis is suppressed are largely unknown. We found pervasive DNA damage in hematologic malignancies, including multiple myeloma, lymphoma and leukemia, which leads to activation of a p53-independent, proapoptotic network centered on nuclear relocalization of ABL1 kinase. Although nuclear ABL1 triggers cell death through its interaction with the Hippo pathway coactivator YAP1 in normal cells, we show that low YAP1 levels prevent nuclear ABL1-induced apoptosis in these hematologic malignancies. YAP1 is under the control of a serine-threonine kinase, STK4. Notably, genetic inactivation of STK4 restores YAP1 levels, triggering cell death in vitro and in vivo. Our data therefore identify a new synthetic-lethal strategy to selectively target cancer cells presenting with endogenous DNA damage and low YAP1 levels.
Collapse
|
109
|
Lin TC, Liu TY, Hsu SM, Lin CW. Epstein-Barr virus-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 182:1865-75. [PMID: 23608226 DOI: 10.1016/j.ajpath.2013.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 02/09/2023]
Abstract
Nasal NK/T-cell lymphoma (NNL) is an Epstein-Barr virus (EBV)-associated lymphoma derived from cytotoxic NK or T cells of the nasal mucosa. NNLs are noninvasive in the earliest stage, and become invasive with disease progression. The EBV encodes at least 44 miRNAs, whose functions in the pathogenesis of NNL are mostly unknown. We evaluated the levels of 39 EBV-encoded miRNAs with quantitative real-time RT-PCR in a series of 20 noninvasive NNLs and 20 invasive NNLs. miR-BART20-5p was associated most strongly with invasion (P ≤ 0.001), and lack of T-bet, the master transcription factor for cytotoxic NK cells. However, we identified T-bet (official symbol, TBX21) transcripts in T-bet-negative NNLs, implying a block in the translation of T-bet by miR-BART20-5p. In co-transfection experiments, miR-BART20-5p inhibited T-bet translation in both non-Hodgkin and Hodgkin lymphoma cell lines. Endogenous mir-BART20-5p also inhibited translation of T-bet in EBV-infected YT lymphoma cells of NK-cell origin. Induction of T-bet in YT cells up-regulated p53, leading to increased sensitivity in response to doxorubicin. Finally, YT cells transplanted into severe combined immunodeficiency mice had an invasive behavior. Taken together, we conclude that EBV-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma. An antagomir to miR-BART20-5p might be an effective therapeutic agent through induction of T-bet and p53.
Collapse
Affiliation(s)
- Ting-Chu Lin
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
110
|
Kaindl U, Morak M, Portsmouth C, Mecklenbräuker A, Kauer M, Zeginigg M, Attarbaschi A, Haas OA, Panzer-Grümayer R. Blocking ETV6/RUNX1-induced MDM2 overexpression by Nutlin-3 reactivates p53 signaling in childhood leukemia. Leukemia 2014; 28:600-8. [PMID: 24240203 PMCID: PMC3948158 DOI: 10.1038/leu.2013.345] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/16/2023]
Abstract
ETV6/RUNX1 (E/R) is the most common fusion gene in childhood acute lymphoblastic leukemia. It is responsible for the initiation of leukemia but also indispensable for disease maintenance and propagation, although its function in these latter processes is less clear. We therefore investigated the effects of the perceived p53 pathway alterations in model cell lines and primary leukemias and, in particular, how E/R upregulates MDM2, the predominant negative regulator of p53. We found that E/R transactivates MDM2 in both p53(+/+) and p53(-/-) HCT116 cells by binding to promoter-inherent RUNX1 motifs, which indicates that this activation occurs in a direct and p53-independent manner. Treatment of E/R-positive leukemic cell lines with Nutlin-3, a small molecule that inhibits the MDM2/p53 interaction, arrests their cell cycle and induces apoptosis. These phenomena concur with a p53-induced expression of p21, pro-apoptotic BAX and PUMA, as well as caspase 3 activation and poly ADP-ribose polymerase cleavage. The addition of DNA-damaging and p53-activating chemotherapeutic drugs intensifies apoptosis. Moreover, Nutlin-3 exposure leads to an analogous p53 accumulation and apoptotic surge in E/R-positive primary leukemic cells. Our findings clarify the role of p53 signaling in E/R-positive leukemias and outline the potential basis for its therapeutic exploitation in this setting.
Collapse
Affiliation(s)
- U Kaindl
- St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - M Morak
- St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - C Portsmouth
- St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - A Mecklenbräuker
- St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - M Kauer
- St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - M Zeginigg
- St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - A Attarbaschi
- St Anna Kinderspital, Medical University Vienna, Vienna, Austria
| | - O A Haas
- St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
- St Anna Kinderspital, Medical University Vienna, Vienna, Austria
| | - R Panzer-Grümayer
- St Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
111
|
Tamimi Y, Al-Harthy S, Al-Haddabi I, Al-Kindi M, Babiker H, Al-Moundhri M, Burney I. The p53 Mutation/Deletion Profile in a Small Cohort of the Omani Population with Diffuse Large B-Cell Lymphoma. Sultan Qaboos Univ Med J 2014; 14:e50-8. [PMID: 24516754 DOI: 10.12816/0003336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/01/2013] [Accepted: 08/25/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Mutations/deletions affecting the TP53 gene are considered an independent marker predicting a poor prognosis for patients with diffuse large B-cell lymphoma (DLBCL). A cohort within a genetically isolated population was investigated for p53 mutation/deletion status. METHODS Deoxyribonucleic acid (DNA) samples were extracted from 23 paraffin-embedded blocks obtained from DLBCL patients, and subjected to polymerase chain reaction (PCR) amplification and sequencing of exons 4-9 of the p53 gene. RESULTS While 35% of patients analysed displayed allelic deletions (P <0.01), immunohistochemical analysis revealed a mutation rate of 69.5%. It is noteworthy that the rate of p53 mutations/deletions in this small cohort was found to be higher than that previously reported in the literature. Interestingly, patients with p53 mutations displayed a better overall survival when compared to those without. The survival of patients treated with rituximab-containing combination chemotherapy was significantly better than those who did not receive rituximab (P <0.05). Furthermore, a modelling analysis of the deleted form of p53 revealed a huge structural change affecting the DNA-binding domain. CONCLUSION The TP53 mutation/deletion status plays a role in mechanism(s) ruling the pathogenesis of DLBCL and may be useful for stratifying patients into distinct prognostic subsets.
Collapse
Affiliation(s)
- Yahya Tamimi
- Departments of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University
| | - Sheikha Al-Harthy
- Departments of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University
| | - Ibrahim Al-Haddabi
- Departments of Pathology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mohammed Al-Kindi
- Departments of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University
| | - Hamza Babiker
- Departments of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University
| | | | - Ikram Burney
- Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
112
|
Bai N, Zhang C, Liang N, Zhang Z, Chang A, Yin J, Li Z, Luo N, Tan X, Luo N, Luo Y, Xiang R, Li X, Reisfeld RA, Stupack D, Lv D, Liu C. Yes-associated protein (YAP) increases chemosensitivity of hepatocellular carcinoma cells by modulation of p53. Cancer Biol Ther 2014; 14:511-20. [PMID: 23760493 DOI: 10.4161/cbt.24345] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The yes-associated protein (YAP) transcription co-activator has been reported either as an oncogene candidate or a tumor suppressor. Liver tissue chips revealed that about 51.4% human hepatocellular carcinoma (HCC) samples express YAP and 32.9% HCC samples express phosphorylated YAP. In this study, we found that chemotherapy increased YAP protein expression and nuclear translocation in HepG2 cells, as well as p53 protein expression and nuclear translocation. However, little is known about YAP functions during chemotherapy. Our results show that overexpression of YAP increases chemosensitivity of HepG2 cells during chemotherapy. Dominant negative transfection of Flag-S94A (TEAD binding domain mutant) or Flag-W1W2 (WW domain mutant) to HepG2 cells decreases p53 expression/ nuclear translocation and chemosensitivity when compared with control HepG2 cells. Furthermore, rescue transfection of Flag-5SA-S94A or Flag-5SA-W1W2, respectively to HepG2 cells regains p53 expression/nuclear translocation and chemosensitivity. These results indicate that YAP promotes chemosensitivity by modulating p53 during chemotherapy and both TEAD and WW binding domains are required for YAP-mediated p53 function. ChIP assay results also indicated that YAP binds directly to the p53 promoter to improve its expression. In addition, p53 could positively feedback YAP expression through binding to the YAP promoter. Taken together, our current data indicate that YAP functions as a tumor suppressor that enhances apoptosis by modulating p53 during chemotherapy.
Collapse
Affiliation(s)
- Nan Bai
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Pierdominici M, Barbati C, Vomero M, Locatelli SL, Carlo-Stella C, Ortona E, Malorni W. Autophagy as a pathogenic mechanism and drug target in lymphoproliferative disorders. FASEB J 2013; 28:524-35. [PMID: 24196588 DOI: 10.1096/fj.13-235655] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autophagy represents a key mechanism of cytoprotection that can be activated by a variety of extracellular and intracellular stresses and allows the cell to sequester cytoplasmic components and damaged organelles, delivering them to lysosomes for degradation and recycling. However, the autophagy process has also been associated with the death of the cell. It has been demonstrated to be constitutive in some instances and inducible in others, and the idea that it could represent a pathogenetic determinant as well as a possible prognostic tool and a therapeutic target in a plethora of human diseases has recently been considered. Among these, cancer represents a major one. In this review, we recapitulate the critical implications of autophagy in the pathogenesis, progression, and treatment of lymphoproliferative disorders. Leukemias and lymphomas, in fact, represent paradigmatic human diseases in which advances have recently been made in this respect.
Collapse
Affiliation(s)
- Marina Pierdominici
- 2Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
114
|
Xu-Monette ZY, Møller MB, Tzankov A, Montes-Moreno S, Hu W, Manyam GC, Kristensen L, Fan L, Visco C, Dybkaer K, Chiu A, Tam W, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huang Q, Huh J, Ai W, Ponzoni M, Ferreri AJM, Wu L, Zhao X, Bueso-Ramos CE, Wang SA, Go RS, Li Y, Winter JN, Piris MA, Medeiros LJ, Young KH. MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program. Blood 2013; 122:2630-2640. [PMID: 23982177 PMCID: PMC3952598 DOI: 10.1182/blood-2012-12-473702] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/18/2013] [Indexed: 01/15/2023] Open
Abstract
MDM2 is a key negative regulator of the tumor suppressor p53, however, the prognostic significance of MDM2 overexpression in diffuse large B-cell lymphoma (DLBCL) has not been defined convincingly. In a p53 genetically-defined large cohort of de novo DLBCL patients treated with rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP) chemotherapy, we assessed MDM2 and p53 expression by immunohistochemistry (n = 478), MDM2 gene amplification by fluorescence in situ hybridization (n = 364), and a single nucleotide polymorphism in the MDM2 promoter, SNP309, by SNP genotyping assay (n = 108). Our results show that MDM2 overexpression, unlike p53 overexpression, is not a significant prognostic factor in overall DLBCL. Both MDM2 and p53 overexpression do not predict for an adverse clinical outcome in patients with wild-type p53 but predicts for significantly poorer survival in patients with mutated p53. Variable p53 activities may ultimately determine the survival differences, as suggested by the gene expression profiling analysis. MDM2 amplification was observed in 3 of 364 (0.8%) patients with high MDM2 expression. The presence of SNP309 did not correlate with MDM2 expression and survival. This study indicates that evaluation of MDM2 and p53 expression correlating with TP53 genetic status is essential to assess their prognostic significance and is important for designing therapeutic strategies that target the MDM2-p53 interaction.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Boi M, Rinaldi A, Kwee I, Bonetti P, Todaro M, Tabbò F, Piva R, Rancoita PMV, Matolcsy A, Timar B, Tousseyn T, Rodríguez-Pinilla SM, Piris MA, Beà S, Campo E, Bhagat G, Swerdlow SH, Rosenwald A, Ponzoni M, Young KH, Piccaluga PP, Dummer R, Pileri S, Zucca E, Inghirami G, Bertoni F. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood 2013; 122:2683-2693. [PMID: 24004669 DOI: 10.1182/blood-2013-04-497933] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) is a mature T-cell lymphoma that can present as a systemic or primary cutaneous disease. Systemic ALCL represents 2% to 5% of adult lymphoma but up to 30% of all pediatric cases. Two subtypes of systemic ALCL are currently recognized on the basis of the presence of a translocation involving the anaplastic lymphoma kinase ALK gene. Despite considerable progress, several questions remain open regarding the pathogenesis of both ALCL subtypes. To investigate the molecular pathogenesis and to assess the relationship between the ALK(+) and ALK(-) ALCL subtypes, we performed a genome-wide DNA profiling using high-density, single nucleotide polymorphism arrays on a series of 64 cases and 7 cell lines. The commonest lesions were losses at 17p13 and at 6q21, encompassing the TP53 and PRDM1 genes, respectively. The latter gene, coding for BLIMP1, was inactivated by multiple mechanisms, more frequently, but not exclusively, in ALK(-)ALCL. In vitro and in vivo experiments showed that that PRDM1 is a tumor suppressor gene in ALCL models, likely acting as an antiapoptotic agent. Losses of TP53 and/or PRDM1 were present in 52% of ALK(-)ALCL, and in 29% of all ALCL cases with a clinical implication.
Collapse
Affiliation(s)
- Michela Boi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Bronevetsky Y, Ansel KM. Regulation of miRNA biogenesis and turnover in the immune system. Immunol Rev 2013; 253:304-16. [PMID: 23550654 DOI: 10.1111/imr.12059] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of gene expression in diverse biological processes ranging from cell proliferation and survival to organ development and immunity. Here, we review mechanisms that regulate the expression of miRNAs themselves in the immune system. Like protein-coding genes, miRNAs can be regulated at the transcriptional level, downstream of signaling pathways and circuits that activate or inhibit transcription factors and chromatin remodeling. The resulting primary miRNAs are processed into active mature miRNAs through a series of biochemical steps, and miRNA abundance can be regulated at each step of this biogenesis pathway. Recent work has uncovered regulation of mature miRNA turnover in the immune system as well. A better understanding of these processes and their regulation by immunogenic stimuli is critical for integrating miRNAs into current models of gene expression networks that determine cell identity and immune function.
Collapse
Affiliation(s)
- Yelena Bronevetsky
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
117
|
ΔNp63 regulates select routes of reprogramming via multiple mechanisms. Cell Death Differ 2013; 20:1698-708. [PMID: 24013722 DOI: 10.1038/cdd.2013.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022] Open
Abstract
Somatic cells can be converted into induced pluripotent stem cells (iPSCs) by forced expression of various combinations of transcription factors, but the molecular mechanisms of reprogramming are poorly understood. Specifically, evidence that the reprogramming process can take many distinct routes only begins to emerge. It is definitively established that p53 deficiency greatly enhances reprogramming, revealing p53's barrier function for induced pluripotency, but the role of its homologs p63 and p73 are unknown. Here we report that in stark contrast to p53, p73 has no role in reprogramming. However, p63 is an enabling (rather than a barrier) factor for Oct4, Sox2 and Klf4 (OSK) and Oct4 and Sox2 (OS), but not for Oct4 and Klf4 (OK) reprogramming of mouse embryonic fibroblasts. Specifically, p63 is essential during reprogramming for maximum efficiency, albeit not for the ability to reprogram per se, and is dispensable for maintaining stability and pluripotency of established iPSC colonies. ΔNp63, but not TAp63, is the principal isoform involved. Loss of p63 can affect reprogramming via several mechanisms such as reduced expression of mesenchymal-epithelial transition and pluripotency genes, hypoproliferation and loss of the most reprogrammable cell populations. During OSK and OS reprogramming, different mechanisms seem to be critical, such as regulation of epithelial and pluripotency genes in OSK reprogramming versus regulation of proliferation in OS reprogramming. Finally, our data reveal three different routes of reprogramming by OSK, OS or OK, based on their differential p63 requirements for iPSC efficiency and pluripotency marker expression. This supports the concept that many distinct routes of reprogramming exist.
Collapse
|
118
|
Du P, Tang F, Qiu Y, Dong F. GFI1 is repressed by p53 and inhibits DNA damage-induced apoptosis. PLoS One 2013; 8:e73542. [PMID: 24023884 PMCID: PMC3762790 DOI: 10.1371/journal.pone.0073542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/20/2013] [Indexed: 12/12/2022] Open
Abstract
GFI1 is a transcriptional repressor that plays a critical role in hematopoiesis and has also been implicated in lymphomagenesis. It is still poorly understood how GFI1 expression is regulated in the hematopoietic system. We show here that GFI1 transcription was repressed by the tumor suppressor p53 in hematopoietic cells. Knockdown of p53 resulted in increased GFI1 expression and abolished DNA damage-induced GFI1 downregulation. In contrast, GFI1 expression was reduced and its downregulation in response to DNA damage was rescued upon restoration of p53 function in p53-deficient cells. In luciferase reporter assays, wild type p53, but not a DNA binding-defective p53 mutant, repressed the GFI1 promoter. Chromatin immunoprecipitation (ChIP) assays demonstrated that p53 bound to the proximal region of the GFI1 promoter. Detailed mapping of the GFI1 promoter indicated that GFI1 core promoter region spanning from -33 to +6 bp is sufficient for p53-mediated repression. This core promoter region contains a putative p53 repressive response element, mutation of which abolished p53 binding to and repression of GFI1 promoter. Significantly, apoptosis induced by DNA damage was inhibited upon Gfi1 overexpression, but augmented following GFI1 knockdown. Our data establish for the first time that GFI1 is repressed by p53 and add to our understanding of the roles of GFI1 in normal hematopoiesis and lymphomagenesis.
Collapse
Affiliation(s)
- Pei Du
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Fangqiang Tang
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Yaling Qiu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Fan Dong
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
119
|
Shirinian M, Kfoury Y, Dassouki Z, El-Hajj H, Bazarbachi A. Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation. Front Microbiol 2013; 4:231. [PMID: 23966989 PMCID: PMC3744011 DOI: 10.3389/fmicb.2013.00231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 post-translational modifications and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-kappaB (NF-κB) activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein–protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-κB activation. In this present review, structural and functional differences between Tax-1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in oncogenecity both in vivo and in vitro.
Collapse
Affiliation(s)
- Margret Shirinian
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | |
Collapse
|
120
|
Zhao X, Zhang W, Wang L, Zhao WL. Genetic methylation and lymphoid malignancies: biomarkers of tumor progression and targeted therapy. Biomark Res 2013; 1:24. [PMID: 24252620 PMCID: PMC4101819 DOI: 10.1186/2050-7771-1-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/06/2013] [Indexed: 11/20/2022] Open
Abstract
Lymphoid malignancies, mainly including lymphocytic leukemia and lymphoma, are a group of heterogeneous diseases. Although the clinical outcome of patients has been significantly improved with current immuno-chemotherapy, definitive biomarkers remain to be investigated, particularly those reflecting the malignant behavior of tumor cells and those helpful for developing optimal targeted therapy. Recently, genome-wide analysis reveals that altered genetic methylations play an important role in tumor progression through regulation of multiple cellular transduction pathways. This review describes the pathogenetic effect of the aberrant genetic methylation in lymphoid malignancies, with special emphasis on potential therapeutic strategies targeting key signaling networks.
Collapse
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China.
| | | | | | | |
Collapse
|
121
|
Abstract
In this issue of Blood, Li et al report mutations in the 3′ untranslated region (3′UTR) of TP53 that modify the expression of p53 and thus its effect on response to therapy in diffuse large B-cell lymphoma (DLBCL) patients.
Collapse
|
122
|
Rouhigharabaei L, Ferreiro JF, Put N, Michaux L, Tousseyn T, Lefebvre C, Gardiner A, De Kelver W, Demuynck H, Verschuere J, Théate I, Vicente C, Vandenberghe P, Cools J, Wlodarska I. BMI1, the polycomb-group gene, is recurrently targeted by genomic rearrangements in progressive B-cell leukemia/lymphoma. Genes Chromosomes Cancer 2013; 52:928-44. [PMID: 23873701 DOI: 10.1002/gcc.22088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023] Open
Abstract
BMI1, a Polycomb-group gene located at 10p12.2, is implicated in the pathogenesis of a variety of tumors. However, the genetic molecular mechanisms underlying its aberrant expression in cancer cells remain largely unknown. In this study, we show that BMI1 is recurrently targeted by chromosomal aberrations in B-cell leukemia/lymphoma. We identified a novel t(10;14)(p12;q32)/IGH-BMI1 rearrangement and its IGL variant in six cases of chronic lymphocytic leukemia (CLL) and found that these aberrations were consistently acquired at time of disease progression and high grade transformation of leukemia (Richter syndrome). The IG-BMI1 translocations were not associated with any particular molecular subtype of CLL and the leukemias were negative for common mutations of NOTCH1 and TP53, known to increase a risk of progression and transformation in CLL. In addition, using FISH and SNP array analysis, we identified a wide range of BMI1-involving 10p12 lesions in 17 cases of mantle cell lymphoma (MCL). These aberrations included various balanced and unbalanced structural abnormalities and very frequently but not exclusively, were associated with gain of the BMI1 locus and loss of the 10p terminal sequences. These findings point to genomic instability at the 10p region in MCL which likely promotes rearrangements and deregulation of BMI1. Our findings are in line with previously published observations correlating overexpression of BMI1 with tumor progression and chemoresistance. In summary, our study provides new insights into genetic molecular mechanisms underlying aberrant expression of BMI1 in lymphoma and documents its contribution in the pathogenesis of Richter syndrome and MCL.
Collapse
|
123
|
Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R. Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk Lymphoma 2013; 54:2351-64. [PMID: 23480493 DOI: 10.3109/10428194.2013.783913] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically and biologically heterogeneous disease where the majority of patients have an indolent disease course, while others may experience a far more aggressive disease, treatment failure and poor overall survival. During the last two decades, there has been an intense search to find novel biomarkers that can predict prognosis as well as guide treatment decisions. Two of the most reliable molecular prognostic markers, both of which are offered in routine diagnostics, are the immunoglobulin heavy chain variable (IGHV) gene mutational status and fluorescence in situ hybridization (FISH) detection of prognostically relevant genomic aberrations (e.g. 11q-, 13q-, +12 and 17p-). In addition to these markers, a myriad of additional biomarkers have been postulated as potential prognosticators in CLL, on the protein (e.g. CD38, ZAP70, TCL1), the RNA (e.g. LPL, CLLU1, micro-RNAs) and the genomic (e.g. TP53, NOTCH1, SF3B1 and BIRC3 mutations) level. Efforts are now being made to test these novel markers in larger patient cohorts as well as in prospective trials, with the ultimate goal to combine the "best" markers in a "CLL prognostic index" applicable for the individual patient. Although it is clear that these studies have significantly improved our knowledge regarding both prognostication and the biology of the disease, there is still an immediate need for recognizing biomarkers that can predict therapy response, and efforts should now focus on addressing this pertinent issue. In the present article, we review the extensive literature in the field of prognostic markers in CLL, focus on the most clinically relevant markers and discuss future directions regarding biomarkers in CLL.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | | | | | | |
Collapse
|
124
|
Liu YC, Li YJ, Huang CC. Information Derived from Cluster Ions from DNA-Modified Gold Nanoparticles under Laser Desorption/Ionization: Analysis of Coverage, Structure, and Single-Nucleotide Polymorphism. Anal Chem 2012; 85:1021-8. [DOI: 10.1021/ac302847n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Chih-Ching Huang
- School of Pharmacy, College of
Pharmacy, Kaohsiung Medical University,
Kaohsiung, 80708, Taiwan
| |
Collapse
|
125
|
Zane L, Yasunaga J, Mitagami Y, Yedavalli V, Tang SW, Chen CY, Ratner L, Lu X, Jeang KT. Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis. Retrovirology 2012; 9:114. [PMID: 23256545 PMCID: PMC3532233 DOI: 10.1186/1742-4690-9-114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/15/2012] [Indexed: 01/07/2023] Open
Abstract
Background Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. Results Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53−/− genotype). Thus, we find statistically significant differences in tumorigenesis between Tax+p53+/+versus Tax+p53−/− mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1−/− mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1+/+ counterparts. Conclusions Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice.
Collapse
Affiliation(s)
- Linda Zane
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Wall M, Poortinga G, Stanley KL, Lindemann RK, Bots M, Chan CJ, Bywater MJ, Kinross KM, Astle MV, Waldeck K, Hannan KM, Shortt J, Smyth MJ, Lowe SW, Hannan RD, Pearson RB, Johnstone RW, McArthur GA. The mTORC1 inhibitor everolimus prevents and treats Eμ-Myc lymphoma by restoring oncogene-induced senescence. Cancer Discov 2012; 3:82-95. [PMID: 23242809 PMCID: PMC3547521 DOI: 10.1158/2159-8290.cd-12-0404] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED MYC deregulation is common in human cancer. IG-MYC translocations that are modeled in Eμ-Myc mice occur in almost all cases of Burkitt lymphoma as well as in other B-cell lymphoproliferative disorders. Deregulated expression of MYC results in increased mTOR complex 1 (mTORC1) signaling. As tumors with mTORC1 activation are sensitive to mTORC1 inhibition, we used everolimus, a potent and specific mTORC1 inhibitor, to test the requirement for mTORC1 in the initiation and maintenance of Eμ-Myc lymphoma. Everolimus selectively cleared premalignant B cells from the bone marrow and spleen, restored a normal pattern of B-cell differentiation, and strongly protected against lymphoma development. Established Eμ-Myc lymphoma also regressed after everolimus therapy. Therapeutic response correlated with a cellular senescence phenotype and induction of p53 activity. Therefore, mTORC1-dependent evasion of senescence is critical for cellular transformation and tumor maintenance by MYC in B lymphocytes. SIGNIFICANCE This work provides novel insights into the requirements for MYC-induced oncogenesis by showing that mTORC1 activity is necessary to bypass senescence during transformation of B lymphocytes. Furthermore, tumor eradication through senescence elicited by targeted inhibition of mTORC1 identifies a previously uncharacterized mechanism responsible for significant anticancer activity of rapamycin analogues and serves as proof-of-concept that senescence can be harnessed for therapeutic benefit
Collapse
Affiliation(s)
- Meaghan Wall
- Divisions of Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world and shows a remarkable heterogeneity in the clinical course. Understand the genetic basis of CLL may help in clarifying the molecular bases of this clinical heterogeneity. Recurrent chromosomal aberrations at 13q14, 12q, 11q22–q23 and 17p13, and TP53 mutations are the first genetic lesions identified as drivers of the disease. While some of these lesions are associated with poor outcome (17p13 deletion, TP53 mutations and, to a lesser extent, 11q22–q23 deletion) others are linked to a favorable course (13q14 deletion as sole aberration). Recently, next generation sequencing has revealed additional recurrent alterations in CLL targeting the NOTCH1, SF3B1, and BIRC3 genes. NOTCH1, SF3B1, and BIRC3 lesions provide: I) new insights on the mechanisms of leukemogenesis, tumor progression and chemoresistance in this leukemia; II) new biomarkers for the identification of poor risk patients, having individually shown correlations with survival in CLL; and III) new therapeutic targets, especially in the setting of high risk disease. This review will summarize the most important genetic aberrations in CLL and how our improved knowledge of the genome of leukemic cells may translate into improved patients' management.
Collapse
|
128
|
Xu-Monette ZY, Wu L, Visco C, Tai YC, Tzankov A, Liu WM, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Zhao XF, Choi WWL, Zhao X, van Krieken JH, Huang Q, Huh J, Ai W, Ponzoni M, Ferreri AJM, Zhou F, Kahl BS, Winter JN, Xu W, Li J, Go RS, Li Y, Piris MA, Møller MB, Miranda RN, Abruzzo LV, Medeiros LJ, Young KH. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood 2012; 120:3986-3996. [PMID: 22955915 PMCID: PMC3496956 DOI: 10.1182/blood-2012-05-433334] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/18/2012] [Indexed: 12/18/2022] Open
Abstract
TP53 mutation is an independent marker of poor prognosis in patients with diffuse large B-cell lymphoma (DLBCL) treated with cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (CHOP) therapy. However, its prognostic value in the rituximab immunochemotherapy era remains undefined. In the present study of a large cohort of DLBCL patients treated with rituximab plus CHOP (R-CHOP), we show that those with TP53 mutations had worse overall and progression-free survival compared with those without. Unlike earlier studies of patients treated with CHOP, TP53 mutation has predictive value for R-CHOP-treated patients with either the germinal center B-cell or activated B-cell DLBCL subtypes. Furthermore, we identified the loop-sheet-helix and L3 motifs in the DNA-binding domain to be the most critical structures for maintaining p53 function. In contrast, TP53 deletion and loss of heterozygosity did not confer worse survival. If gene mutation data are not available, immunohistochemical analysis showing > 50% cells expressing p53 protein is a useful surrogate and was able to stratify patients with significantly different prognoses. We conclude that assessment of TP53 mutation status is important for stratifying R-CHOP-treated patients into distinct prognostic subsets and has significant value in the design of future therapeutic strategies.
Collapse
MESH Headings
- Adult
- Aged
- Alleles
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cohort Studies
- Computational Biology
- Cyclophosphamide/therapeutic use
- Doxorubicin/therapeutic use
- Exons
- Female
- Gene Deletion
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Loss of Heterozygosity
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Male
- Middle Aged
- Mutation
- Mutation Rate
- Mutation, Missense
- Neoplasm Staging
- Prednisone/therapeutic use
- Prognosis
- Rituximab
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Vincristine/therapeutic use
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Aberrations in the p53 tumor suppressor pathway are associated with hematologic malignancies. p53-dependent cell cycle control, senescence, and apoptosis functions are actively involved in maintaining hematopoietic homeostasis under normal and stress conditions. Whereas loss of p53 function promotes leukemia and lymphoma development in humans and mice, increased p53 activity inhibits hematopoietic stem cell function and results in myelodysplasia. Thus, exquisite regulation of p53 activity is critical for homeostasis. Most of our understanding of p53 function in hematopoiesis is derived from genetically engineered mice. Here we summarize some of these models, the various mechanisms that disrupt the regulation of p53 activity, and their relevance to human disease.
Collapse
|
130
|
Surget S, Chiron D, Gomez-Bougie P, Descamps G, Ménoret E, Bataille R, Moreau P, Le Gouill S, Amiot M, Pellat-Deceunynck C. Cell death via DR5, but not DR4, is regulated by p53 in myeloma cells. Cancer Res 2012; 72:4562-73. [PMID: 22738917 DOI: 10.1158/0008-5472.can-12-0487] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myeloma cells are sensitive to TRAIL through the two death receptors DR4 and DR5. Because p53 directly modulates expression of death receptors, we investigated here whether p53 can modulate myeloma sensitivity to TRAIL. We found that p53 affects the sensitivity of myeloma cells to the DR5 agonistic human antibody lexatumumab but not the DR4 antibody mapatumumab. TP53 wild-type myeloma cells overexpressed DR5 in correlation with sensitivity to lexatumumab. Both nongenotoxic (nutlin-3a) and genotoxic (melphalan) p53-inducing stresses increased DR5 expression only in TP53 wild-type cells and synergistically increased lexatumumab efficiency yet did not increase DR4 expression, nor sensitivity to mapatumumab. Silencing of p53 strongly decreased DR5 expression and induced resistance to nutlin-3a and lexatumumab but did not modulate DR4 expression or sensitivity to mapatumumab. Increase of lexatumumab efficiency induced by nutlin-3a was related to a p53-dependent increase of DR5 expression. In primary myeloma cells, nutlin-3a increased DR5 expression and lexatumumab efficiency but did not increase mapatumumab efficiency. Taken together, our findings indicate that p53 controls the sensitivity of myeloma through DR5 but not DR4 and suggest that a subset of patients with multiple myeloma may benefit from DR5 therapy.
Collapse
|
131
|
Best G, Thompson P, Tam CS. Diagnostic techniques and therapeutic challenges in patients with TP53 dysfunctional chronic lymphocytic leukemia. Leuk Lymphoma 2012; 53:2105-15. [PMID: 22568511 DOI: 10.3109/10428194.2012.692088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Aberrations of the TP53 pathway, whether by deletion or mutation, are increasingly recognized as one of the most important biological risk factors in chronic lymphocytic leukemia. Yet, there is little consensus on how to assess for TP53 defects in the clinic, and very few clinical studies to guide optimal management of such patients. In this review, we discuss the state-of-the-art in the assessment of the TP53 pathway, and review the evidence-base for therapeutic recommendations.
Collapse
Affiliation(s)
- Giles Best
- Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | |
Collapse
|