101
|
Tsukida K, Muramatsu SI, Osaka H, Yamagata T, Muramatsu K. WDR45 variants cause ferrous iron loss due to impaired ferritinophagy associated with nuclear receptor coactivator 4 and WD repeat domain phosphoinositide interacting protein 4 reduction. Brain Commun 2022; 4:fcac304. [PMID: 36751498 PMCID: PMC9897194 DOI: 10.1093/braincomms/fcac304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/01/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Static encephalopathy of childhood with neurodegeneration in adulthood/β-propeller protein-associated neurodegeneration is a neurodegenerative disorder with brain iron accumulation caused by the variants of WDR45, a core autophagy-related gene that encodes WD repeat domain phosphoinositide interacting protein 4. However, the pathophysiology of the disease, particularly the function of WDR45/WD repeat domain phosphoinositide interacting protein 4 in iron metabolism, is largely unknown. As no other variants of core autophagy-related genes show abnormalities in iron metabolism, the relation between autophagy and iron metabolism remains to be elucidated. Since iron deposition in the brain is the hallmark of static encephalopathy of childhood with neurodegeneration in adulthood/β-propeller protein-associated neurodegeneration, iron chelation therapy has been attempted, but it was found to worsen the symptoms; thus, the establishment of a curative treatment is essential. Here, we evaluated autophagy and iron metabolism in patient-derived cells. The expression of ferritin and ferric iron increased and that of ferrous iron decreased in the patient cells with WDR45 variants. In addition, the expression of nuclear receptor coactivator 4 was markedly reduced in patient-derived cells. Furthermore, divalent metal transporter 1, which takes in ferrous iron, was upregulated, while ferroportin, which exports ferrous iron, was downregulated in patient-derived cells. The transfer of WDR45 via an adeno-associated virus vector restored WD repeat domain phosphoinositide interacting protein 4 and nuclear receptor coactivator 4 expression, reduced ferritin levels, and improved other phenotypes observed in patient-derived cells. As nuclear receptor coactivator 4 mediates the ferritin-specific autophagy, i.e. ferritinophagy, its deficiency impaired ferritinophagy, leading to the accumulation of ferric iron-containing ferritin and insufficiency of ferrous iron. Because ferrous iron is required for various essential biochemical reactions, the changes in divalent metal transporter 1 and ferroportin levels may indicate a compensatory response for maintaining the intracellular levels of ferrous iron. Our study revealed that the pathophysiology of static encephalopathy of childhood with neurodegeneration in adulthood/β-propeller protein-associated neurodegeneration involves ferrous iron insufficiency via impaired ferritinophagy through nuclear receptor coactivator 4 expression reduction. Our findings could aid in developing a treatment strategy involving WDR45 manipulation, which may have clinical applications.
Collapse
Affiliation(s)
- Kiwako Tsukida
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shin-ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi 329-0498, Japan,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kazuhiro Muramatsu
- Correspondence to: Kazuhiro Muramatsu, MD, PhD Department of Pediatrics, Jichi Medical University 3311-1 Yakushiji, Shimotsuke-city, Tochigi 329-0498, Japan E-mail:
| |
Collapse
|
102
|
Abulseoud OA, Yehia A, Egol CJ, Nettey VN, Aly M, Qu Y, Skolnik AB, Grill MF, Sen A, Schneekloth TD. Attenuated initial serum ferritin concentration in critically ill coronavirus disease 2019 geriatric patients with comorbid psychiatric conditions. Front Psychiatry 2022; 13:1035986. [PMID: 36440432 PMCID: PMC9681793 DOI: 10.3389/fpsyt.2022.1035986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
We examined the effects of psychiatric comorbidity, sex, and ICU admission on serum ferritin concentration in 628 elderly patients (79.7 ± 8.5 years) with positive SARS-CoV-2 PCR test. Hospitalization was required in 96% of patients and 17% required ICU admission. Patients with COVID-19 and psychiatric comorbidities (n = 212) compared to patients without psychiatric comorbidities (n = 416) had significantly lower ferritin concentration (570.4 ± 900.1 vs. 744.1 ± 965, P = 0.029), a greater incidence of delirium (22.6 vs. 14.4%, P = 0.013) and higher mortality (35.3 vs. 27.6%, P = 0.015). Furthermore, we found significant effects for sex (P = 0.002) and ICU admission (P = 0.007). Among patients without comorbid psychiatric conditions, males had significantly higher ferritin compared to females (1,098.3 ± 78.4 vs. 651.5 ± 94.4, P < 0.001). ICU patients without comorbid psychiatric conditions had significantly higher serum ferritin compared to ICU patients with comorbid psychiatric conditions: (1,126.6 ± 110.7 vs. 668.6 ± 156.5, P < 0.001). Our results suggest that the presence of comorbid psychiatric conditions in elderly patients with COVID-19 is associated with higher rates of delirium and mortality and lower ferritin levels during severe illness. Whether high serum ferritin is protective during severe infection requires further investigation.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Collaborative Research Building (CRB), Scottsdale, AZ, United States
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Claudine J. Egol
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Victor N. Nettey
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Mohamed Aly
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Yihuai Qu
- Alix School of Medicine at Mayo Clinic, Phoenix, AZ, United States
| | - Aaron B. Skolnik
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Marie F. Grill
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Ayan Sen
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Terry D. Schneekloth
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
103
|
Xu X, Cui J, Wang H, Ma L, Zhang X, Guo W, Xue X, Wang Y, Qiu S, Tian X, Miao Y, Wu M, Yu Y, Xu Y, Wang J, Qiao Y. IGF2BP3 is an essential N6-methyladenosine biotarget for suppressing ferroptosis in lung adenocarcinoma cells. Mater Today Bio 2022; 17:100503. [DOI: 10.1016/j.mtbio.2022.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
|
104
|
Guo Y, Li C, Shen B, Chen X, Hu T, Wu D. Is intervertebral disc degeneration associated with reduction in serum ferritin? EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2950-2959. [PMID: 36008563 DOI: 10.1007/s00586-022-07361-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Ferritin autophagy is characterized by intracellular ferroptosis and selective ferritin degradation. However, the role of ferritin in the development of intervertebral disc degeneration (IDD) has not been elucidated. The study aimed to investigate the role of serum iron metabolism markers, especially serum ferritin (SF), in IDD. METHODS 217 patients who came to the spine surgery department of our hospital for low back pain were recruited, and blood samples were collected for routine examination after admission. The cumulative grade was also calculated by summing up the Pfirrmann grade of all lumbar discs. RESULTS Correlation analysis showed that cumulative grade was correlated with SF (r = - 0.185, p = 0.006), not with serum iron (SI), transferrin saturation (TS), unsaturated iron-binding capacity (UIBC) and total iron-binding capacity (TIBC) (all p > 0.05). In addition, SF levels in the low severity IDD were significantly higher than high severity IDD in cumulative grade (p = 0.003) and single disc grade. No statistically significant difference was found in the other four indicators. A statistically significant difference was observed between the high (cumulative grade > 17) and low score (cumulative grade ≤ 17) groups in terms of age. According to the ROC curve, the cut-off value of SF levels was 170.5. Patients with SF < 170.5 ng/mL had severe disc degeneration. The sensitivity and specificity were 0.635 and 0.602, respectively. CONCLUSION This study preliminarily showed that SF was negatively correlated with the degree of IDD and can be used to predict IDD severity.
Collapse
Affiliation(s)
- Youfeng Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chao Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Beiduo Shen
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xianzhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
105
|
Chen J, Zhang J, Chen T, Bao S, Li J, Wei H, Hu X, Liang Y, Liu F, Yan S. Xiaojianzhong decoction attenuates gastric mucosal injury by activating the p62/Keap1/Nrf2 signaling pathway to inhibit ferroptosis. Biomed Pharmacother 2022; 155:113631. [PMID: 36122518 DOI: 10.1016/j.biopha.2022.113631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 02/09/2023] Open
Abstract
Gastric mucosal injury is the initial stage of the occurrence and development of gastric diseases. Oxidative stress and ferroptosis caused by the imbalance of redox and iron dynamics in gastric mucosal epithelial cells are present throughout the occurrence and development of gastric mucosal injury. Therefore, the inhibition of oxidative stress and ferroptosis is a potential target for the treatment of the gastric mucosal injury. Xiaojianzhong decoction (XJZ), which consists of six Chinese herbal medicines and extracts, is used for the treatment of diseases related to gastrointestinal mucosal injury; however, its specific mechanism of action has yet to be clarified. In this study, we clarified the protective effect of XJZ on gastric mucosa and revealed its underlying mechanism. We established a gastric mucosal injury model using aspirin and administered XJZ. Furthermore, we systematically evaluated the mucosal injury and examined the expression of genes related to oxidative stress, ferroptosis, and inflammation. The study found that XJZ significantly counteracted aspirin-induced gastric mucosal injury and inhibited oxidative stress and ferroptosis in mice. Upon examining SQSTM1/p62(p62)/Kelch-like ECH-associated protein 1 (Keap1)/Nuclear Factor erythroid 2-Related Factor 2 (Nrf2), a well-known signaling pathway involved in the regulation of oxidative stress and ferroptosis, we found that its activation was significantly inhibited by aspirin treatment and that this signaling pathway was activated after XJZ intervention. Our study suggests that XJZ may inhibit aspirin induced oxidative stress and ferroptosis via the p62/Keap1/Nrf2 signaling pathway, thereby attenuating gastric mucosal injury.
Collapse
Affiliation(s)
- Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Jiaxiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Jingtao Li
- Department of General Surgery, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, PR China.
| | - Hailiang Wei
- Departments of Infectious Disease, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, PR China.
| | - Xin Hu
- State Forestry and Grassland Administration Engineering Research Center of Fu Tea, Xianyang 712044, Shaanxi, PR China.
| | - Yan Liang
- State Forestry and Grassland Administration Engineering Research Center of Fu Tea, Xianyang 712044, Shaanxi, PR China.
| | - Fanrong Liu
- Department of Gastroenterology, Yulin Hospital of Traditional Chinese Medicine in Shaanxi Province, Yulin 719000, PR China.
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| |
Collapse
|
106
|
SARS-CoV-2-induced hypomethylation of the ferritin heavy chain (FTH1) gene underlies serum hyperferritinemia in severe COVID-19 patients. Biochem Biophys Res Commun 2022; 631:138-145. [PMID: 36183555 PMCID: PMC9509293 DOI: 10.1016/j.bbrc.2022.09.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
High serum ferritin (hyperferritinemia), a reliable hallmark of severe COVID-19 often associates with a moderate decrease in serum iron (hypoferremia) and a moderate increase in serum hepcidin. This suggests that hyperferritinemia in severe COVID-19 is reflective of inflammation rather than iron overload. To test this possibility, the expression status of ferritin heavy chain (FTH1), transferrin receptor 1 (TFRC), hepcidin (HAMP), and ferroportin (SLC40A1) genes and promoter methylation status of FTH1 and TFRC genes were examined in blood samples obtained from COVID-19 patients showing no, mild or severe symptoms and in healthy-donor monocytes stimulated with SARS-CoV-2-derived peptides. Severe COVID-19 samples showed a significant increase in FTH1 expression and hypomethylation relative to mild or asymptomatic COVID-19 samples. S-peptide treated monocytes also showed a significant increase in FTH1 expression and hypomethylation relative to that in controls; treatment with ECD or NP did not change FTH1 expression nor its methylation status. In silico and in vitro analysis showed a significant increase in the expression of the TET3 demethylase in S peptide-treated monocytes. Findings presented here suggest that S peptide-driven hypomethylation of the FTH1 gene promoter underlies hyperferritinemia in severe COVID-19 disease.
Collapse
|
107
|
GÜNAK F, HOCANLI İ, KARAAĞAÇ L. Evaluation of Laboratory Results with Data from Bio-Speedy Respiratory Panel 2 in Nasopharyngeal Swab Specimens of COVID-19-Suspected Patients Having PCR(-) Results. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Objective: The distinction between COVID-19 and other respiratory infections can be difficult during the flu and winter seasons. The aim of this study is to detect bacterial/viral microorganisms in nasopharyngeal swab samples and to evaluate routine laboratory results of patients with PCR (-) but suspected covid 19.
Methods: Between 1 July 2021 and 31 December 2021, 78 patients who were hospitalized and followed up in the suspected Covid service were included in the study. The patients were divided into two groups as those with and without growth on the respiratory panel. Laboratory, demographic and radiological data were compared between groups.
Results: C-reactive protein (CRP) and ferritin levels were found to be statistically significantly higher in the group with growth on the respiratory panel compared to the group without growth (p= .05, p= .041, respectively). Reproduction was detected in nasopharyngeal swab samples taken in 56.4% of the patients. More than half of the patients were radiologically defined as CO-RADS 3.
Conclusion: It should not be forgotten that other respiratory viral and bacterial infections that mimic the COVID-19 clinic are also commonly observed during this period.
Collapse
|
108
|
Daou Y, Falabrègue M, Pourzand C, Peyssonnaux C, Edeas M. Host and microbiota derived extracellular vesicles: Crucial players in iron homeostasis. Front Med (Lausanne) 2022; 9:985141. [PMID: 36314015 PMCID: PMC9606470 DOI: 10.3389/fmed.2022.985141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Iron is a double-edged sword. It is vital for all that’s living, yet its deficiency or overload can be fatal. In humans, iron homeostasis is tightly regulated at both cellular and systemic levels. Extracellular vesicles (EVs), now known as major players in cellular communication, potentially play an important role in regulating iron metabolism. The gut microbiota was also recently reported to impact the iron metabolism process and indirectly participate in regulating iron homeostasis, yet there is no proof of whether or not microbiota-derived EVs interfere in this relationship. In this review, we discuss the implication of EVs on iron metabolism and homeostasis. We elaborate on the blooming role of gut microbiota in iron homeostasis while focusing on the possible EVs contribution. We conclude that EVs are extensively involved in the complex iron metabolism process; they carry ferritin and express transferrin receptors. Bone marrow-derived EVs even induce hepcidin expression in β-thalassemia. The gut microbiota, in turn, affects iron homeostasis on the level of iron absorption and possibly macrophage iron recycling, with still no proof of the interference of EVs. This review is the first step toward understanding the multiplex iron metabolism process. Targeting extracellular vesicles and gut microbiota-derived extracellular vesicles will be a huge challenge to treat many diseases related to iron metabolism alteration.
Collapse
Affiliation(s)
- Yasmeen Daou
- International Society of Microbiota, Tokyo, Japan
| | - Marion Falabrègue
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France,Laboratory of Excellence GR-Ex, Paris, France
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath, United Kingdom,Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Carole Peyssonnaux
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France,Laboratory of Excellence GR-Ex, Paris, France
| | - Marvin Edeas
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France,Laboratory of Excellence GR-Ex, Paris, France,*Correspondence: Marvin Edeas,
| |
Collapse
|
109
|
Pandur E, Szabó I, Hormay E, Pap R, Almási A, Sipos K, Farkas V, Karádi Z. Alterations of the expression levels of glucose, inflammation, and iron metabolism related miRNAs and their target genes in the hypothalamus of STZ-induced rat diabetes model. Diabetol Metab Syndr 2022; 14:147. [PMID: 36210435 PMCID: PMC9549668 DOI: 10.1186/s13098-022-00919-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The hypothalamus of the central nervous system is implicated in the development of diabetes due to its glucose-sensing function. Dysregulation of the hypothalamic glucose-sensing neurons leads to abnormal glucose metabolism. It has been described that fractalkine (FKN) is involved in the development of hypothalamic inflammation, which may be one of the underlying causes of a diabetic condition. Moreover, iron may play a role in the pathogenesis of diabetes via the regulation of hepcidin, the iron regulatory hormone synthesis. MicroRNAs (miRNAs) are short non-coding molecules working as key regulators of gene expression, usually by inhibiting translation. Hypothalamic miRNAs are supposed to have a role in the control of energy balance by acting as regulators of hypothalamic glucose metabolism via influencing translation. METHODS Using a miRNA array, we analysed the expression of diabetes, inflammation, and iron metabolism related miRNAs in the hypothalamus of a streptozotocin-induced rat type 1 diabetes model. Determination of the effect of miRNAs altered by STZ treatment on the target genes was carried out at protein level. RESULTS We found 18 miRNAs with altered expression levels in the hypothalamus of the STZ-treated animals, which act as the regulators of mRNAs involved in glucose metabolism, pro-inflammatory cytokine synthesis, and iron homeostasis suggesting a link between these processes in diabetes. The alterations in the expression level of these miRNAs could modify hypothalamic glucose sensing, tolerance, uptake, and phosphorylation by affecting the stability of hexokinase-2, insulin receptor, leptin receptor, glucokinase, GLUT4, insulin-like growth factor receptor 1, and phosphoenolpyruvate carboxykinase mRNA molecules. Additional miRNAs were found to be altered resulting in the elevation of FKN protein. The miRNA, mRNA, and protein analyses of the diabetic hypothalamus revealed that the iron import, export, and iron storage were all influenced by miRNAs suggesting the disturbance of hypothalamic iron homeostasis. CONCLUSION It can be supposed that glucose metabolism, inflammation, and iron homeostasis of the hypothalamus are linked via the altered expression of common miRNAs as well as the increased expression of FKN, which contribute to the imbalance of energy homeostasis, the synthesis of pro-inflammatory cytokines, and the iron accumulation of the hypothalamus. The results raise the possibility that FKN could be a potential target of new therapies targeting both inflammation and iron disturbances in diabetic conditions.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary.
| | - István Szabó
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Attila Almási
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Viktória Farkas
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 4., 7624, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary
| |
Collapse
|
110
|
Nikkilä A, Lohi O, Nieminen N, Csonka P. Trends in ferritin measurements in children and adolescents: A Finnish 9-year observational study. Acta Paediatr 2022; 111:1933-1940. [PMID: 35708115 PMCID: PMC9541652 DOI: 10.1111/apa.16454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 01/01/2023]
Abstract
AIM A lack of stored iron, indicated by low serum ferritin, has been associated with various clinical symptoms. There are no longitudinal data on the frequency of ferritin measurements in children and adolescents. METHODS A total of 2834 children aged <18 years with serum ferritin and other anaemia-related blood parameters taken during an outpatient visit between 2012 and 2019 were investigated. Patients with acute infections were excluded. Nationwide temporal and regional variations and correlations with public information searches through Google were analysed. RESULTS A significant increase in the frequency of ferritin measurements was seen starting in 2018, with a 47-fold rise in 2019 compared to 2012. A simultaneous escalation in Google Search activity was seen. Deficiency of stored iron was relatively common: 21.6% of children with normal haemoglobin and 14.9% of non-anaemic children with normal red cell indices exhibited ferritin levels below 15 μg/L. CONCLUSION Ferritin measurement has increased greatly among children and adolescents. Our results suggest that public interest and popular trends can significantly influence health care practices. This calls for further investigation into the causes and consequences of such a phenomenon. Prospective randomised intervention studies are needed to evaluate the utility of iron supplementation in patients with low iron storage levels.
Collapse
Affiliation(s)
- Atte Nikkilä
- Tampere Center for Child, Adolescent and Maternal Health ResearchTampere UniversityTampereFinland
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health ResearchTampere UniversityTampereFinland
| | | | - Péter Csonka
- Tampere Center for Child, Adolescent and Maternal Health ResearchTampere UniversityTampereFinland
- Terveystalo HealthcareTampereFinland
| |
Collapse
|
111
|
Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL, Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN, Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin self-assembly, structure, function, and biotechnological applications. Int J Biol Macromol 2022; 224:319-343. [DOI: 10.1016/j.ijbiomac.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
112
|
Xue C, Zhang H, Wang X, Du H, Lu L, Fei Y, Li Y, Zhang Y, Li M, Luo Z. Bio-inspired engineered ferritin-albumin nanocomplexes for targeted ferroptosis therapy. J Control Release 2022; 351:581-596. [PMID: 36181916 DOI: 10.1016/j.jconrel.2022.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/29/2022]
Abstract
Nanotechnology-enabled ferroptosis therapy is an emerging paradigm for tumor treatment, but amplifying ferroptotic damage in tumor cells in a safe and selective manner is still challenging, which severely hinders its clinical translation. In this study, we constructed a bio-inspired protein nanocomplex based on natural-occurring bovine serum albumin (BSA) and ferritin for efficient tumor elimination via cooperatively enhanced ferroptosis therapy. The long-circulating BSA molecules provided multiple anchoring points for the efficient loading of the GPX4-inhibiting ferroptosis inducer (1S, 3R) RAS-selective lethal 3 (RSL3), which was further complexed with ferritin via acidity-responsive glutaraldehyde linkers. The ferritin moieties may not only bind to transferrin receptor 1 overexpressed on tumor cell membrane for targeted endocytic uptake but also be degraded in lysosomes to induce iron overload, which could substantially promote the lipid peroxidation in tumor cells and cooperate with the glutathione peroxidase 4 (GPX4)-inhibiting capability of RSL3 to induce pronounced ferroptosis. The in vitro and in vivo results collectively demonstrated that the albumin-ferritin-based nanocomplex could present superior antitumor effects with no obvious adverse effects, which may open new avenues for the clinical translation of ferroptosis-dependent therapeutic modalities.
Collapse
Affiliation(s)
- Chencheng Xue
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Hui Zhang
- Breast Cancer Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400044, PR China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Haoyu Du
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Yanan Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Yuchen Zhang
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
113
|
Sarkar A, Sanyal S, Majumdar A, Tewari DN, Bhattacharjee U, Pal J, Chakrabarti AK, Dutta S. Development of lab score system for predicting COVID-19 patient severity: A retrospective analysis. PLoS One 2022; 17:e0273006. [PMID: 36084080 PMCID: PMC9462772 DOI: 10.1371/journal.pone.0273006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Aim To develop an accurate lab score based on in-hospital patients’ potent clinical and biological parameters for predicting COVID-19 patient severity during hospital admission. Methods To conduct this retrospective analysis, a derivation cohort was constructed by including all the available biological and clinical parameters of 355 COVID positive patients (recovered = 285, deceased = 70), collected in November 2020-September 2021. For identifying potent biomarkers and clinical parameters to determine hospital admitted patient severity or mortality, the receiver operating characteristics (ROC) curve and Fischer’s test analysis was performed. Relative risk regression was estimated to develop laboratory scores for each clinical and routine biological parameter. Lab score was further validated by ROC curve analysis of the validation cohort which was built with 50 COVID positive hospital patients, admitted during October 2021-January 2022. Results Sensitivity vs. 1-specificity ROC curve (>0.7 Area Under the Curve, 95% CI) and univariate analysis (p<0.0001) of the derivation cohort identified five routine biomarkers (neutrophil, lymphocytes, neutrophil: lymphocytes, WBC count, ferritin) and three clinical parameters (patient age, pre-existing comorbidities, admitted with pneumonia) for the novel lab score development. Depending on the relative risk (p values and 95% CI) these clinical parameters were scored and attributed to both the derivation cohort (n = 355) and the validation cohort (n = 50). ROC curve analysis estimated the Area Under the Curve (AUC) of the derivation and validation cohort which was 0.914 (0.883–0.945, 95% CI) and 0.873 (0.778–0.969, 95% CI) respectively. Conclusion The development of proper lab scores, based on patients’ clinical parameters and routine biomarkers, would help physicians to predict patient risk at the time of their hospital admission and may improve hospital-admitted COVID-19 patients’ survivability.
Collapse
Affiliation(s)
- Arnab Sarkar
- ICMR- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Surojit Sanyal
- ICMR- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Agniva Majumdar
- ICMR- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Devendra Nath Tewari
- ICMR- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Uttaran Bhattacharjee
- ICMR- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Juhi Pal
- ICMR- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Alok Kumar Chakrabarti
- ICMR- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
- * E-mail:
| | - Shanta Dutta
- ICMR- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
114
|
Nuclear Factor Kappa B Promotes Ferritin Heavy Chain Expression in Bombyx mori in Response to B. mori Nucleopolyhedrovirus Infection. Int J Mol Sci 2022; 23:ijms231810380. [PMID: 36142290 PMCID: PMC9499628 DOI: 10.3390/ijms231810380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ferritin heavy chain (FerHCH) is a major component of ferritin and plays an important role in maintaining iron homeostasis and redox equilibrium. Our previous studies have demonstrated that the Bombyx mori ferritin heavy chain homolog (BmFerHCH) could respond to B. mori nucleopolyhedrovirus (BmNPV) infection. However, the mechanism by which BmNPV regulates the expression of BmFerHCH remains unclear. In this study, BmFerHCH increased after BmNPV infection and BmNPV infection enhanced nuclear factor kappa B (NF-κB) activity in BmN cells. An NF-κB inhibitor (PDTC) reduced the expression of the virus-induced BmFerHCH in BmN cells, and overexpression of BmRelish (NF-κB) increased the expression of virus-induced BmFerHCH in BmN cells. Furthermore, BmNPV infection enhanced BmFerHCH promoter activity. The potential NF-κB cis-regulatory elements (CREs) in the BmFerHCH promoter were screened by using the JASPAR CORE database, and two effective NF-κB CREs were identified using a dual luciferase reporting system and electrophoretic mobility shift assay (EMSA). BmRelish (NF-κB) bound to NF-κB CREs and promoted the transcription of BmFerHCH. Taken together, BmNPV promotes activation of BmRelish (NF-κB), and activated BmRelish (NF-κB) binds to NF-κB CREs of BmFerHCH promoter to enhance BmFerHCH expression. Our study provides a foundation for future research on the function of BmFerHCH in BmNPV infection.
Collapse
|
115
|
Host–Pathogen Interactions of Marine Gram-Positive Bacteria. BIOLOGY 2022; 11:biology11091316. [PMID: 36138795 PMCID: PMC9495620 DOI: 10.3390/biology11091316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Complex interactions between marine Gram-positive pathogens and fish hosts in the marine environment can result in diseases of economically important finfish, which cause economic losses in the aquaculture industry. Understanding how these pathogens interact with the fish host and generate disease will contribute to efficient prophylactic measures and treatments. To our knowledge, there are no systematic reviews on marine Gram-positive pathogens. Therefore, here we reviewed the host–pathogen interactions of marine Gram-positive pathogens from the pathogen-centric and host-centric points of view. Abstract Marine Gram-positive bacterial pathogens, including Renibacterium salmoninarum, Mycobacterium marinum, Nocardia seriolae, Lactococcus garvieae, and Streptococcus spp. cause economic losses in marine fish aquaculture worldwide. Comprehensive information on these pathogens and their dynamic interactions with their respective fish–host systems are critical to developing effective prophylactic measures and treatments. While much is known about bacterial virulence and fish immune response, it is necessary to synthesize the knowledge in terms of host–pathogen interactions as a centerpiece to establish a crucial connection between the intricate details of marine Gram-positive pathogens and their fish hosts. Therefore, this review provides a holistic view and discusses the different stages of the host–pathogen interactions of marine Gram-positive pathogens. Gram-positive pathogens can invade fish tissues, evade the fish defenses, proliferate in the host system, and modulate the fish immune response. Marine Gram-positive pathogens have a unique set of virulence factors that facilitate adhesion (e.g., adhesins, hemagglutination activity, sortase, and capsules), invasion (e.g., toxins, hemolysins/cytolysins, the type VII secretion system, and immune-suppressive proteins), evasion (e.g., free radical quenching, actin-based motility, and the inhibition of phagolysosomal fusion), and proliferation and survival (e.g., heme utilization and siderophore-mediated iron acquisition systems) in the fish host. After infection, the fish host initiates specific innate and adaptive immune responses according to the extracellular or intracellular mechanism of infection. Although efforts have continued to be made in understanding the complex interplay at the host–pathogen interface, integrated omics-based investigations targeting host–pathogen–marine environment interactions hold promise for future research.
Collapse
|
116
|
Gomes AS, Passos LS, Rocha Aride PH, Chisté B, Gomes LC, Boldrini-França J. Gene expression changes in Epinephelus marginatus (Teleostei, Serranidae) liver reveals candidate molecular biomarker of iron ore contamination. CHEMOSPHERE 2022; 303:134899. [PMID: 35561782 DOI: 10.1016/j.chemosphere.2022.134899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Wastes from iron ore mining activities are potentially damaging to adjacent aquatic ecosystems. We aimed to determine biomarkers of environmental exposure to this xenobiotic in the dusky grouper Epinephelus marginatus by differential gene expression analysis. For this, fish were exposed to iron ore (15.2 mg/L) and gene expression in liver was assessed by RNA-Seq and compared to the control group. A total of 124 differentially expressed genes were identified, from which 52 were upregulated and 72 were downregulated in response to iron ore. From these, ferritin (medium subunit), cytochrome b reductase and epoxide hydrolase genes were selected for validation by RT-qPCR that confirmed the upregulation of epoxide hydrolase in fish exposed to iron ore.
Collapse
Affiliation(s)
- Aline Silva Gomes
- Universidade Vila Velha, Rua Comissário José Dantas Melo, 21, 29102-770, Vila Velha ES, Brazil
| | - Larissa Souza Passos
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Professor Lineu Prestes, 580, 05508-000, São Paulo SP, Brazil
| | | | - Bárbara Chisté
- Universidade Vila Velha, Rua Comissário José Dantas Melo, 21, 29102-770, Vila Velha ES, Brazil
| | - Levy Carvalho Gomes
- Universidade Vila Velha, Rua Comissário José Dantas Melo, 21, 29102-770, Vila Velha ES, Brazil
| | - Johara Boldrini-França
- Universidade Vila Velha, Rua Comissário José Dantas Melo, 21, 29102-770, Vila Velha ES, Brazil; School of Biochemistry, Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
117
|
Falcón-Cordón Y, Tvarijonaviciute A, Montoya-Alonso J, Muñoz-Prieto A, Caro-Vadillo A, Carretón E. Evaluation of acute phase proteins, adiponectin and endothelin-1 to determine vascular damage in dogs with heartworm disease (Dirofilaria immitis), before and after adulticide treatment. Vet Parasitol 2022; 309:109759. [DOI: 10.1016/j.vetpar.2022.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
|
118
|
The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants (Basel) 2022; 11:antiox11091668. [PMID: 36139742 PMCID: PMC9495695 DOI: 10.3390/antiox11091668] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, a recently discovered regulated cell death modality, is characterised by iron-dependent accumulation of lipid hydroperoxides, which can reach lethal levels but can be specifically reversed by ferroptosis inhibitors. Osteoarthritis (OA), the most common degenerative joint disease, is characterised by a complex pathogenesis involving mechanical overload, increased inflammatory mediator levels, metabolic alterations, and cell senescence and death. Since iron accumulation and oxidative stress are the universal pathological features of OA, the role played by ferroptosis in OA has been extensively explored. Increasing evidence has shown that iron dyshomeostasis and lipid peroxidation are closely associated with OA pathogenesis. Therefore, in this review, we summarize recent evidence by focusing on ferroptotic mechanisms and the role played by ferroptosis in OA pathogenesis from the perspectives of clinical findings, animal models, and cell research. By summarizing recent research advances that characterize the relationship between ferroptosis and OA, we highlight avenues for further research and potential therapeutic targets.
Collapse
|
119
|
Iron Metabolism and Ferroptosis in Physiological and Pathological Pregnancy. Int J Mol Sci 2022; 23:ijms23169395. [PMID: 36012659 PMCID: PMC9409111 DOI: 10.3390/ijms23169395] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
Iron is a vital element in nearly every living organism. During pregnancy, optimal iron concentration is essential for both maternal health and fetal development. As the barrier between the mother and fetus, placenta plays a pivotal role in mediating and regulating iron transport. Imbalances in iron metabolism correlate with severe adverse pregnancy outcomes. Like most other nutrients, iron exhibits a U-shaped risk curve. Apart from iron deficiency, iron overload is also dangerous since labile iron can generate reactive oxygen species, which leads to oxidative stress and activates ferroptosis. In this review, we summarized the molecular mechanism and regulation signals of placental iron trafficking under physiological conditions. In addition, we revealed the role of iron metabolism and ferroptosis in the view of preeclampsia and gestational diabetes mellitus, which may bring new insight to the pathogenesis and treatment of pregnancy-related diseases.
Collapse
|
120
|
Role of Iron and Iron Overload in the Pathogenesis of Invasive Fungal Infections in Patients with Hematological Malignancies. J Clin Med 2022; 11:jcm11154457. [PMID: 35956074 PMCID: PMC9369168 DOI: 10.3390/jcm11154457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Iron is an essential trace metal necessary for the reproduction and survival of fungal pathogens. The latter have developed various mechanisms to acquire iron from their mammalian hosts, with whom they participate in a continuous struggle for dominance over iron. Invasive fungal infections are an important problem in the treatment of patients with hematological malignancies, and they are associated with significant morbidity and mortality. The diagnosis of invasive clinical infections in these patients is complex, and the treatment, which must occur as early as possible, is difficult. There are several studies that have shown a possible link between iron overload and an increased susceptibility to infections. This link is also relevant for patients with hematological malignancies and for those treated with allogeneic hematopoietic stem cell transplantation. The role of iron and its metabolism in the virulence and pathogenesis of various invasive fungal infections is intriguing, and so far, there is some evidence linking invasive fungal infections to iron or iron overload. Clarifying the possible association of iron and iron overload with susceptibility to invasive fungal infections could be important for a better prevention and treatment of these infections in patients with hematological malignancies.
Collapse
|
121
|
Henning Y, Blind US, Larafa S, Matschke J, Fandrey J. Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis 2022; 13:662. [PMID: 35906211 PMCID: PMC9338085 DOI: 10.1038/s41419-022-05121-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023]
Abstract
Oxidative stress and hypoxia in the retinal pigment epithelium (RPE) have long been considered major risk factors in the pathophysiology of age-related macular degeneration (AMD), but systematic investigation of the interplay between these two risk factors was lacking. For this purpose, we treated a human RPE cell line (ARPE-19) with sodium iodate (SI), an oxidative stress agent, together with dimethyloxalylglycine (DMOG) which leads to stabilization of hypoxia-inducible factors (HIFs), key regulators of cellular adaptation to hypoxic conditions. We found that HIF stabilization aggravated oxidative stress-induced cell death by SI and iron-dependent ferroptosis was identified as the main cell death mechanism. Ferroptotic cell death depends on the Fenton reaction where H2O2 and iron react to generate hydroxyl radicals which trigger lipid peroxidation. Our findings clearly provide evidence for superoxide dismutase (SOD) driven H2O2 production fostering the Fenton reaction as indicated by triggered SOD activity upon DMOG + SI treatment as well as by reduced cell death levels upon SOD2 knockdown. In addition, iron transporters involved in non-transferrin-bound Fe2+ import as well as intracellular iron levels were also upregulated. Consequently, chelation of Fe2+ by 2'2-Bipyridyl completely rescued cells. Taken together, we show for the first time that HIF stabilization under oxidative stress conditions aggravates ferroptotic cell death in RPE cells. Thus, our study provides a novel link between hypoxia, oxidative stress and iron metabolism in AMD pathophysiology. Since iron accumulation and altered iron metabolism are characteristic features of AMD retinas and RPE cells, our cell culture model is suitable for high-throughput screening of new treatment approaches against AMD.
Collapse
Affiliation(s)
- Yoshiyuki Henning
- grid.410718.b0000 0001 0262 7331Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ursula Sarah Blind
- grid.410718.b0000 0001 0262 7331Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Safa Larafa
- grid.410718.b0000 0001 0262 7331Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johann Matschke
- grid.410718.b0000 0001 0262 7331Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- grid.410718.b0000 0001 0262 7331Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
122
|
Komuczki D, Stadermann A, Bentele M, Unsoeld A, Grillari J, Mueller MM, Paul A, Fischer S. High cysteine concentrations in cell culture media lead to oxidative stress and reduced bioprocess performance of recombinant CHO cells. Biotechnol J 2022; 17:e2200029. [PMID: 35876277 DOI: 10.1002/biot.202200029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Cysteine is considered an essential amino acid in the cultivation of Chinese hamster ovary (CHO) cells. An optimized cysteine supply during fed-batch cultivation supports the protein production capacity of recombinant CHO cell lines. However, we observed that CHO production cell lines seeded at low cell densities in chemically defined media enriched with, cysteine greater than 2.5 mM resulted in markedly reduced cell growth during passaging, hampering seed train performance and scale-up. To investigate the underlying mechanism, seeding cell densities and initial cysteine concentrations ranging from low to high cysteine concentrations were varied followed by an analysis of cell culture performance. Additionally, cell cycle analysis, intracellular quantification of reactive oxygen species (ROS) as well as transcriptomic analyses by next-generation sequencing were carried out. Our results demonstrate that CHO cells seeded at low cell densities at high initial cysteine concentrations encountered increased oxidative stress leading to a p21-mediated cell cycle arrest in the G1/S phase. The resulting oxidative stress caused redox imbalance in the endoplasmic reticulum and activation of the unfolded protein response as well as the major antioxidant nuclear factor-like 2 response pathways. We were able to identify potential signature genes related to oxidative stress and the inhibition of the pentose phosphate pathway. Finally, we present that seeding cells at a higher concentration counteract oxidative stress in cysteine-enriched cell culture media. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Daniel Komuczki
- Institute of Bioprocess Sciences and Engineering (IBSE), University of Natural Resources and Life Sciences, Muthgasse 18, AT-1190, Vienna, Austria.,Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Anna Stadermann
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Maximilian Bentele
- Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Andreas Unsoeld
- Cell Culture Media Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, AT-1190, Austria.,Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, AT-1200, Austria
| | - Markus M Mueller
- Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Albert Paul
- Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| |
Collapse
|
123
|
Cuthbert JJ, Ransome N, Clark AL. Re-defining iron deficiency in patients with heart failure. Expert Rev Cardiovasc Ther 2022; 20:667-681. [DOI: 10.1080/14779072.2022.2100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- JJ Cuthbert
- Department of Cardiorespiratory Medicine, Centre for Clinical Sciences, Hull York Medical School, University of Hull, Kingston-Upon-Hull, East Riding of Yorkshire, UK
- Department of Cardiology, Hull University Teaching Hospital Trust, Castle Hill Hospital, Castle Road, Cottingham, Kingston-Upon-Hull, East Riding of Yorkshire, UK
| | - N Ransome
- Department of Haematology, York and Scarborough Teaching Hospitals NHS Trust, York, UK
| | - AL Clark
- Department of Cardiology, Hull University Teaching Hospital Trust, Castle Hill Hospital, Castle Road, Cottingham, Kingston-Upon-Hull, East Riding of Yorkshire, UK
| |
Collapse
|
124
|
Zou K, Islam S, Sun Y, Gao Y, Nakamura T, Komano H, Tomita T, Michikawa M. Presenilin Deficiency Increases Susceptibility to Oxidative Damage in Fibroblasts. Front Aging Neurosci 2022; 14:902525. [PMID: 35783133 PMCID: PMC9243443 DOI: 10.3389/fnagi.2022.902525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a genetic and sporadic neurodegenerative disease characterized by extracellular amyloid-β-protein (Aβ) aggregates as amyloid plaques and neuronal loss in the brain parenchyma of patients. Familial AD (FAD) is found to be genetically linked to missense mutations either in presenilin (PS) or amyloid precursor protein (APP). Most of PS mutations increase Aβ42/Aβ40 ratio, which is thought to result in early amyloid deposition in brain. However, PS deficiency in the fore brain of adult mouse leads to neuronal loss in an Aβ independent manner and the underlying mechanism is largely unknown. In this study, we found that reactive oxygen species (ROS) are increased in PS deficient fibroblasts and that H2O2 and ferrous sulfate treatment produced more ROS in PS deficient fibroblasts than in wild-type fibroblasts. PS deficient fibroblasts showed significantly decreased cellular ferritin levels compared with wild-type fibroblasts, suggesting reduced iron sequestrating capability in PS deficient cells. Blockade of γ-secretase activity by a γ-secretase inhibitor, DAPT, decreased ferritin levels, indicating that γ-secretase activity is important for maintaining its levels. Moreover, overexpression PS1 mutants in wild-type fibroblasts decreased ferritin light chain levels and enhanced intracellular ROS levels. Our results suggest that dysfunction of PS may reduce intracellular ferritin levels and is involved in AD pathogenesis through increasing susceptibility to oxidative damage.
Collapse
Affiliation(s)
- Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- *Correspondence: Kun Zou,
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuan Gao
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroto Komano
- Advanced Prevention and Research Laboratory for Dementia, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo City, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- Makoto Michikawa,
| |
Collapse
|
125
|
Liang X, Luo X, Lin H, Han F, Qin JG, Chen L, Xu C, Li E. Growth, Health, and Gut Microbiota of Female Pacific White Shrimp, Litopenaeus vannamei Broodstock Fed Different Phospholipid Sources. Antioxidants (Basel) 2022; 11:antiox11061143. [PMID: 35740040 PMCID: PMC9219652 DOI: 10.3390/antiox11061143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Phospholipids have an important antioxidant effect on animals. The effects of different dietary phospholipid sources on the growth, antioxidant activity, immunity, and gut microbiota of female broodstock of Pacific white shrimp Litopenaeus vannamei were investigated. Four isoproteic and isolipid semi-purified diets containing 4% soybean lecithin (SL), egg yolk lecithin (EL), or krill oil (KO) and a control diet without phospholipid supplementation were fed to female broodstock of L. vannamei (34.7 ± 4.2 g) for 28 days. The growth performance, antioxidative capacity, and innate immunity of the female broodstock fed phospholipid supplemented diets were improved regardless of sources compared with the control shrimp. The effects on growth and antioxidant capacity in female shrimp fed the KO diet were highest. The innate immunity of female shrimp fed the EL and KO diets were significantly higher than shrimp fed the SL diet. Dietary phospholipid supplementation increased gut microbiota diversity and richness, and the Chao1 and ACE values in the KO group were significantly higher than in the control group. The richness of Proteobacteria, Photobacterium, and Vibrio decreased, whereas the richness of Firmicutes and Bacteroidetes increased in the shrimp fed the KO diet compared with the shrimp fed the SL and EL diets. The interactions of gut microbiota in shrimp fed the KO diet were the most complex, and the positive interaction was the largest among all the treatments. The functional genes of gut microbiota in shrimp fed the KO diet were significantly enriched in lipid metabolism and terpenoid/polyketide metabolism pathways. Spearman correlation analysis showed that Fusibacter had significantly positive correlations with antioxidant activity (total antioxidant capacity, superoxide dismutase, glutathione peroxidase), immune enzyme activity (phenoloxidase and lysozyme), and immune gene expression (C-type lectin 3, Caspase-1). All findings suggest that dietary phospholipids supplementation can improve the growth and health status of female L. vananmei broodstock. Krill oil is more beneficial in improving the antioxidant capacity and innate immunity than other dietary phospholipid sources. Furthermore, krill oil can help establish the intestinal immune barrier by increasing the richness of Fusibacter and promote the growth of female shrimp. Fusibacter may be involved in iron metabolism to improve the antioxidant capacity of female shrimp.
Collapse
Affiliation(s)
- Xiaolong Liang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Xiaolong Luo
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Hongxing Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Jian G. Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia;
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
- Correspondence: (C.X.); (E.L.)
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
- Correspondence: (C.X.); (E.L.)
| |
Collapse
|
126
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
127
|
Lee JX, Chieng WK, Abdul Jalal MI, Tan CE, Lau SCD. Role of Serum Ferritin in Predicting Outcomes of COVID-19 Infection Among Sickle Cell Disease Patients: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:919159. [PMID: 35712092 PMCID: PMC9196080 DOI: 10.3389/fmed.2022.919159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with sickle cell disease (SCD) are at higher risk of getting severe COVID-19 infection. This systematic review and meta-analysis aimed to determine the role of serum ferritin in predicting ICU admission and mortality among patients with SCD following COVID-19 infection. A systematic search was conducted in PubMed, Scopus, Web of Science, Embase, WHO COVID-19 database, ProQuest, and Cochrane Library for articles published between 1st December 2019 to 31st November 2021. Methodological quality was assessed using the Joanna Briggs Institute (JBI) critical appraisal checklists. Eleven articles (7 cohorts and 4 case series) were included in this review. Pooled mean serum ferritin level on admission was 1581.62 ng/mL while pooled proportion of ICU admission and mortality were 0.10 (95% CI 0.06; 0.16, prediction interval 0.04; 0.23, p = 0.29, I 2 = 17%) and 0.07 (95% CI 0.05; 0.11, prediction interval 0.04; 0.12, p = 0.68, I 2 = 0%) respectively. Meta-regression showed that serum ferritin did not predict for both ICU admission (regression coefficient = 0.0001, p = 0.3523) and mortality (regression coefficient = 0.0001, p = 0.4029). Our analyses showed that serum ferritin may not be a useful marker to predict the outcomes of COVID-19 infection among patients with SCD. More data are required to identify a reliable tool to identify patients with SCD who are at risk of getting severe COVID-19 infection. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=287792, PROSPERO Registration: CRD42021287792.
Collapse
Affiliation(s)
- Jun Xin Lee
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wei Keong Chieng
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Irfan Abdul Jalal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chai Eng Tan
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sie Chong Doris Lau
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
128
|
Grubwieser P, Hoffmann A, Hilbe R, Seifert M, Sonnweber T, Böck N, Theurl I, Weiss G, Nairz M. Airway Epithelial Cells Differentially Adapt Their Iron Metabolism to Infection With Klebsiella pneumoniae and Escherichia coli In Vitro. Front Cell Infect Microbiol 2022; 12:875543. [PMID: 35663465 PMCID: PMC9157649 DOI: 10.3389/fcimb.2022.875543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Background Pneumonia is often elicited by bacteria and can be associated with a severe clinical course, respiratory failure and the need for mechanical ventilation. In the alveolus, type-2-alveolar-epithelial-cells (AECII) contribute to innate immune functions. We hypothesized that AECII actively adapt cellular iron homeostasis to restrict this essential nutrient from invading pathogens - a defense strategy termed 'nutritional immunity', hitherto mainly demonstrated for myeloid cells. Methods We established an in-vitro infection model using the human AECII-like cell line A549. We infected cells with Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli), two gram-negative bacteria with different modes of infection and frequent causes of hospital-acquired pneumonia. We followed the entry and intracellular growth of these gram-negative bacteria and analyzed differential gene expression and protein levels of key inflammatory and iron metabolism molecules. Results Both, K. pneumoniae and E. coli are able to invade A549 cells, whereas only K. pneumoniae is capable of proliferating intracellularly. After peak bacterial burden, the number of intracellular pathogens declines, suggesting that epithelial cells initiate antimicrobial immune effector pathways to combat bacterial proliferation. The extracellular pathogen E. coli induces an iron retention phenotype in A549 cells, mainly characterized by the downregulation of the pivotal iron exporter ferroportin, the upregulation of the iron importer transferrin-receptor-1 and corresponding induction of the iron storage protein ferritin. In contrast, cells infected with the facultative intracellular bacterium K. pneumoniae exhibit an iron export phenotype indicated by ferroportin upregulation. This differential regulation of iron homeostasis and the pathogen-specific inflammatory reaction is likely mediated by oxidative stress. Conclusion AECII-derived A549 cells show pathogen-specific innate immune functions and adapt their iron handling in response to infection. The differential regulation of iron transporters depends on the preferential intra- or extracellular localization of the pathogen and likely aims at limiting bacterial iron availability.
Collapse
Affiliation(s)
- Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nina Böck
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
129
|
Ruscitti P, Di Cola I, Di Muzio C, Italiano N, Ursini F, Giacomelli R, Cipriani P. Expanding the spectrum of the hyperferritinemic syndrome, from pathogenic mechanisms to clinical observations, and therapeutic implications. Autoimmun Rev 2022; 21:103114. [PMID: 35595050 DOI: 10.1016/j.autrev.2022.103114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/15/2022] [Indexed: 01/19/2023]
Abstract
From the introduction of hyperferritinemic syndrome concept, a growing body of evidence has suggested the role of ferritin as a pathogenic mediator and a relevant clinical feature in the management of patients with inflammatory diseases. From a pathogenic point of view, ferritin may directly stimulate the aberrant immune response by triggering the production of pro-inflammatory mediators in inducing a vicious pathogenic loop and contributing to the occurrence of cytokine storm syndrome. The latter has been recently defined as a clinical picture characterised by elevated circulating cytokine levels, acute systemic inflammatory symptoms, and secondary organ dysfunction beyond that which could be attributed to a normal response to a pathogen It is noteworthy that the occurrence of hyperferritinemia may be correlated with the development of the cytokine storm syndrome in the context of an inflammatory disease. In addition to adult onset Still's disease, macrophage activation syndrome, catastrophic anti-phospholipids syndrome, and septic shock, recent evidence has suggested this association between ferritin and life-threatening evolution in patients with systemic lupus erythematosus, with anti-MDA5 antibodies in the context of poly-dermatomyositis, with severe COVID-19, and with multisystem inflammatory syndrome. The possible underlying common inflammatory mechanisms, associated with hyperferritinemia, may led to the similar clinical picture observed in these patients. Furthermore, similar therapeutic strategies could be suggested inhibiting pro-inflammatory cytokines and improving long-term outcomes in these disorders. Thus, it could be possible to expand the spectrum of the hyperferritinemic syndrome to those diseases burdened by a dreadful clinical picture correlated with hyperferritinemia and the occurrence of the cytokine storm syndrome. In addition, the assessment of ferritin may provide useful information to the physicians in clinical practice to manage these patients. Therefore, ferritin may be considered a relevant clinical feature to be used as biomarker in dissecting the unmet needs in the management of these disorders. Novel evidence may thus support an expansion of the spectrum of the hyperferritinemic syndrome to these diseases burdened by a life-threatening clinical picture correlated with hyperferritinemia and the occurrence of the cytokine storm syndrome.
Collapse
Affiliation(s)
- Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Ilenia Di Cola
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudia Di Muzio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Noemi Italiano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Ursini
- Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome Campus Biomedico, Rome, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
130
|
Wang Q, Zhu M, Li H, Chen P, Wang M, Gu L, Zhang X, Chen L. Hyperferritinemia Correlates to Metabolic Dysregulation and Steatosis in Chinese Biopsy-Proven Nonalcoholic Fatty Liver Disease Patients. Diabetes Metab Syndr Obes 2022; 15:1543-1552. [PMID: 35607608 PMCID: PMC9124058 DOI: 10.2147/dmso.s361187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Elevated serum ferritin (SF), also defined as hyperferritinemia, is commonly seen in patients with nonalcoholic fatty liver disease (NAFLD). However, the clinical significance of SF in NAFLD remains controversial. The aim of this study was to characterize the NAFLD patients with elevated SF and to explore the association of hyperferritinemia with the severity of NAFLD proved by liver biopsy in the Chinese population. PATIENTS AND METHODS A total of 136 NAFLD patients proved by liver biopsy were enrolled. The demographic, anthropometric, clinical historic, laboratory, and histological characteristics were compared between elevated and normal SF groups. The independent factors for elevated SF were determined using multivariate logistic regression analysis. RESULTS The median age and body mass index were 41.00 (33.00-57.75) years and 28.28 (26.28-31.34) kg/m2, respectively. Hyperferritinemia was detected in 57 (41.9%) patients. Patients in the elevated SF group presented with more severe lipo- and glucometabolic disorder, and higher aminotransferases compared to those in the normal SF group (p < 0.05). In terms of histopathology, elevated SF was associated with worse steatosis and a higher proportion of positive iron staining (p < 0.05). Multivariate logistic regression analysis identified homeostasis model assessment of insulin resistance (OR: 1.170, 95% CI: 1.036-1.322, p = 0.012), alanine aminotransferase (OR: 1.012, 95% CI: 1.005-1.019, p < 0.001), and positive Perl's staining (OR: 4.880, 95% CI: 2.072-11.494, p < 0.001) as independent risk factors of hyperferritinemia. CONCLUSION NAFLD patients with hyperferritinemia were characterized as more severe metabolic dysfunction and liver injury. More attention should be paid to the metabolism state of NAFLD patients with elevated SF. Hyperferritinemia was correlated to hepatic steatosis in Chinese NAFLD patients.
Collapse
Affiliation(s)
- Qingling Wang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, People’s Republic of China
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Mingyu Zhu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Hu Li
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People’s Republic of China
| | - Peizhan Chen
- Central Laboratory, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Mingjie Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Leilei Gu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xinxin Zhang
- Department of Infectious Disease, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Li Chen
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
131
|
Wang C, Zhang W, Xu W, Liu Z, Huang K. AMP-activated protein kinase α1 phosphorylates PHD2 to maintain systemic iron homeostasis. Clin Transl Med 2022; 12:e854. [PMID: 35538889 PMCID: PMC9091988 DOI: 10.1002/ctm2.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Iron is essential for all mammalian life, and either a deficiency or excess of iron can cause diseases. AMP-activated protein kinase (AMPK) is a critical regulator of metabolic homeostasis; however, it has not been established whether AMPK regulates iron metabolism. METHODS Iron, hepcidin and ferroportin levels were examined in mice with global and hepatocyte-specific knockout of AMPKα1 and AMPKα2. Primary AMPKα1 or AMPKα2 deleted hepatocytes were isolated and cultured in hypoxia condition to explore PHD2, HIF and hydroxylated HIF1α levels. We performed immunoprecipitation, in vitro AMPK kinase assay and site-direct mutant assay to detect phosphorylation sites of PHD2. We also obtained liver tissues from patients with anaemia of chronic disease undergoing surgery, AMPKα1 and hydroxylated HIF1α levels were measured by immunohistochemical analysis. RESULTS We found that mice with global deficiency of AMPKα1, but not AMPKα2, exhibited hypoferraemia as well as iron sequestration in the spleen and liver. Hepatocyte-specific, but not myeloid-specific, ablation of AMPKα1 also reduced serum iron levels in association with increased hepcidin and decreased ferroportin protein levels. Mechanistically, AMPKα1 directly phosphorylated prolyl hydroxylase domain-containing (PHD)2 at serines 61 and 136, which suppressed PHD2-dependent hydroxylation of hypoxia-inducible factor (HIF)1α and subsequent regulation of hepatic hepcidin-related iron signalling. Inhibition of PHD2 hydroxylation ameliorated abnormal iron metabolism in hepatic AMPKα1-deficient mice. Furthermore, we found hepatic AMPKα/PHD2/HIFα/ hepcidin axes were highly clinically relevant to anaemia of chronic disease. CONCLUSION In conclusion, these observations suggest that hepatic AMPKα1 has an essential role in maintaining iron homeostasis by PHD2-dependent regulation of hepcidin, thus providing a potentially promising approach for the treatment of iron disturbances in chronic diseases.
Collapse
Affiliation(s)
- Cheng Wang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular AgingTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of RheumatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wencheng Zhang
- Department of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Wenjing Xu
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhaoyu Liu
- Department of CardiologySun Yat‐sen Memorial HospitalSun Yat‐sen University, GuangzhouChina
| | - Kai Huang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular AgingTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
132
|
Ikeda Y, Funamoto M, Tsuchiya K. The role of iron in obesity and diabetes. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:1-7. [PMID: 35466128 DOI: 10.2152/jmi.69.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Iron is an essential trace metal for all life, but excess iron causes oxidative stress through catalyzing the toxic hydroxy-radical production via the Fenton reaction. The number of patients with obesity and diabetes has been increasing worldwide, and their onset and development are affected by diet. In both clinical and experimental studies, a high body iron content was associated with obesity and diabetes, and the reduction of body iron content to an appropriate level can ameliorate the status and development of obesity and diabetes. Macrophages play an essential role in the pathophysiology of obesity and diabetes, and in the metabolism and homeostasis of iron in the body. Recent studies demonstrated that macrophage polarization is related to adipocyte hypertrophy and insulin resistance through their capabilities of iron handling. Control of iron in macrophages is a potential therapeutic strategy for obesity and diabetes. J. Med. Invest. 69 : 1-7, February, 2022.
Collapse
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masafumi Funamoto
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
133
|
Raynor A, Peoc'h K, Boutten A. Measurement of glycosylated ferritin with Concanavalin A: Assay design, optimization and validation. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123184. [DOI: 10.1016/j.jchromb.2022.123184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
|
134
|
Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Dis 2022; 8:127. [PMID: 35318301 PMCID: PMC8941123 DOI: 10.1038/s41420-022-00931-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
Ferroptosis is a non-traditional form of regulated cell death, characterized by iron overload and lipid peroxidation. Exploration of ferroptosis in chronic kidney disease (CKD) has been extremely limited to date. In this study, we established a rat model of CKD by 5/6 nephrectomy, treated CKD rats with the ferroptosis inducer, cisplatin (CDDP), and the ferroptosis inhibitor, deferoxamine mesylate (DFO), and observed the resulting pathologic changes (injury markers and fibrosis) and ferroptotic biochemical indices. Kidney iron deposition, lipid peroxidation, mitochondrial defects, ferroptosis marker induction, and TUNEL staining positivity were detected in CKD group rats. Further, treatment with CDDP or DFO influenced renal injury and fibrosis by affecting ferroptosis, rather than apoptosis, and ferroptosis occurs in the remnant kidney due to disordered iron metabolism. In conclusion, our study shows for the first time that 5/6 nephrectomy induces ferroptosis in the remnant kidney and clarifies the underlying pathogenesis. Moreover, we demonstrate that ferroptosis is involved in CKD progression and represents a therapeutic target in chronic kidney injury and renal fibrosis.
Collapse
|
135
|
Singh N, Bhatla SC. Heme oxygenase-nitric oxide crosstalk-mediated iron homeostasis in plants under oxidative stress. Free Radic Biol Med 2022; 182:192-205. [PMID: 35247570 DOI: 10.1016/j.freeradbiomed.2022.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Plant growth under abiotic stress conditions significantly enhances intracellular generation of reactive oxygen species (ROS). Oxidative status of plant cells is directly affected by the modulation of iron homeostasis. Among mammals and plants, heme oxygenase-1 (HO-1) is a well-known antioxidant enzyme. It catalyzes oxygenation of heme, thereby producing Fe2+, CO and biliverdin as byproducts. The antioxidant potential of HO-1 is primarily due to its catalytic reaction byproducts. Biliverdin and bilirubin possess conjugated π-electrons which escalate the ability of these biomolecules to scavenge free radicals. CO also enhances the ROS scavenging ability of plants cells by upregulating catalase and peroxidase activity. Enhanced expression of HO-1 in plants under oxidative stress accompanies sequestration of iron in specialized iron storage proteins localized in plastids and mitochondria, namely ferritin for Fe3+ storage and frataxin for storage of Fe-S clusters, respectively. Nitric oxide (NO) crosstalks with HO-1 at multiple levels, more so in plants under oxidative stress, in order to maintain intracellular iron status. Formation of dinitrosyl-iron complexes (DNICs) significantly prevents Fenton reaction during oxidative stress. DNICs also release NO upon dissociation in target cells over long distance in plants. They also function as antioxidants against superoxide anions and lipidic free radicals. A number of NO-modulated transcription factors also facilitate iron homeostasis in plant cells. Plants facing oxidative stress exhibit modulation of lateral root formation by HO-1 through NO and auxin-dependent pathways. The present review provides an in-depth analysis of the structure-function relationship of HO-1 in plants and mammals, correlating them with their adaptive mechanisms of survival under stress.
Collapse
Affiliation(s)
- Neha Singh
- Department of Botany, Gargi College, University of Delhi, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
136
|
Jin S, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. RNA Interference Analysis Reveals the Positive Regulatory Role of Ferritin in Testis Development in the Oriental River Prawn, Macrobrachium nipponense. Front Physiol 2022; 13:805861. [PMID: 35250613 PMCID: PMC8896479 DOI: 10.3389/fphys.2022.805861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
Ferritin plays an essential role in organismic and cellular iron homeostasis in Macrobrachium nipponense. In this study, we aimed to investigate the role of ferritin in the sexual development of male M. nipponense. According to the qPCR analysis of different tissues and developmental stages, ferritin exhibited high expression levels in the testis and androgenic gland, from post-larval developmental stage 5 (PL5) to PL15, indicating that it may be involved in gonad differentiation and development, especially in male sexual development. In situ hybridization and qPCR analysis in various reproductive cycles of the testis indicated that ferritin may play an essential role in spermatogonia development in M. nipponense. RNAi analysis revealed that ferritin positively affected mRNA expression of the insulin-like androgenic gland (Mn-IAG) and the secretion of testosterone, and thus positively affected testis development in M. nipponense. This study highlighted the functions of ferritin in the sexual development of male M. nipponense and provided important information for the establishment of a technique to regulate the process of testis development in M. nipponense.
Collapse
Affiliation(s)
| | - Hongtuo Fu
- *Correspondence: Hongtuo Fu, , orcid.org/000-0003-2974-9464
| | | | | | | | | | | | | |
Collapse
|
137
|
Aloe CA, Leong TLT, Wimaleswaran H, Papagianis PC, McQualter JL, McDonald CF, Khor YH, Hoy RF, Ingle A, Bansal V, Goh NSL, Bozinovski S. Excess iron promotes emergence of foamy macrophages that overexpress ferritin in the lungs of silicosis patients. Respirology 2022; 27:427-436. [PMID: 35176813 PMCID: PMC9303595 DOI: 10.1111/resp.14230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 01/09/2023]
Abstract
Background and objective Inhalation of high concentrations of respirable crystalline silica (RCS) can lead to silicosis. RCS contains varying levels of iron, which can cause oxidative stress and stimulate ferritin production. This study evaluated iron‐related and inflammatory markers in control and silicosis patients. Methods A cohort of stone benchtop industry workers (n = 18) were radiologically classified by disease severity into simple or complicated silicosis. Peripheral blood and bronchoalveolar lavage (BAL) were collected to measure iron, ferritin, C‐reactive protein, serum amyloid A and serum silicon levels. Ferritin subunit expression in BAL and transbronchial biopsies was analysed by reverse transcription quantitative PCR. Lipid accumulation in BAL macrophages was assessed by Oil Red O staining. Results Serum iron levels were significantly elevated in patients with silicosis, with a strong positive association with serum ferritin levels. In contrast, markers of systemic inflammation were not increased in silicosis patients. Serum silicon levels were significantly elevated in complicated disease. BAL macrophages from silicosis patients were morphologically consistent with lipid‐laden foamy macrophages. Ferritin light chain (FTL) mRNA expression in BAL macrophages was also significantly elevated in simple silicosis patients and correlated with systemic ferritin. Conclusion Our findings suggest that elevated iron levels during the early phases of silicosis increase FTL expression in BAL macrophages, which drives elevated BAL and serum ferritin levels. Excess iron and ferritin were also associated with the emergence of a foamy BAL macrophage phenotype. Ferritin may represent an early disease marker for silicosis, where increased levels are independent of inflammation and may contribute to fibrotic lung remodelling. Silicosis is an aggressive and incurable lung disease. In this study, serum iron levels were increased in silicosis patients, and these levels were strongly associated with serum ferritin levels. Lipid‐laden bronchoalveolar lavage macrophages were identified as a major source of ferritin, whereas markers of inflammation were not increased. See relatedEditorial
Collapse
Affiliation(s)
| | - Tracy Li-Tsein Leong
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia.,Institute for Breathing and Sleep, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Hari Wimaleswaran
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia.,Institute for Breathing and Sleep, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Christine Faye McDonald
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia.,Institute for Breathing and Sleep, Melbourne, Victoria, Australia
| | - Yet Hong Khor
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia.,Institute for Breathing and Sleep, Melbourne, Victoria, Australia.,Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ryan Francis Hoy
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Department of Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia
| | - Aviraj Ingle
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Nicole Soo Leng Goh
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia.,Institute for Breathing and Sleep, Melbourne, Victoria, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
138
|
Criticality of Surface Characteristics of Intravenous Iron-Carbohydrate Nanoparticle Complexes: Implications for Pharmacokinetics and Pharmacodynamics. Int J Mol Sci 2022; 23:ijms23042140. [PMID: 35216261 PMCID: PMC8878488 DOI: 10.3390/ijms23042140] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Un-complexed polynuclear ferric oxyhydroxide cannot be administered safely or effectively to patients. When polynuclear iron cores are formed with carbohydrates of various structures, stable complexes with surface carbohydrates driven by multiple interacting sites and forces are formed. These complexes deliver iron in a usable form to the body while avoiding the serious adverse effects of un-complexed forms of iron, such as polynuclear ferric oxyhydroxide. The rate and extent of plasma clearance and tissue biodistribution is variable among the commercially available iron–carbohydrate complexes and is driven principally by the surface characteristics of the complexes which dictate macrophage opsonization. The surface chemistry differences between the iron–carbohydrate complexes results in significant differences in in vivo pharmacokinetic and pharmacodynamic profiles as well as adverse event profiles, demonstrating that the entire iron–carbohydrate complex furnishes the pharmacologic action for these complex products. Currently available physicochemical characterization methods have limitations in biorelevant matrices resulting in challenges in defining critical quality attributes for surface characteristics for this class of complex nanomedicines.
Collapse
|
139
|
Erber L, Liu S, Gong Y, Tran P, Chen Y. Quantitative Proteome and Transcriptome Dynamics Analysis Reveals Iron Deficiency Response Networks and Signature in Neuronal Cells. Molecules 2022; 27:484. [PMID: 35056799 PMCID: PMC8779535 DOI: 10.3390/molecules27020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/17/2023] Open
Abstract
Iron and oxygen deficiencies are common features in pathophysiological conditions, such as ischemia, neurological diseases, and cancer. Cellular adaptive responses to such deficiencies include repression of mitochondrial respiration, promotion of angiogenesis, and cell cycle control. We applied a systematic proteomics analysis to determine the global proteomic changes caused by acute hypoxia and chronic and acute iron deficiency (ID) in hippocampal neuronal cells. Our analysis identified over 8600 proteins, revealing similar and differential effects of each treatment on activation and inhibition of pathways regulating neuronal development. In addition, comparative analysis of ID-induced proteomics changes in cultured cells and transcriptomic changes in the rat hippocampus identified common altered pathways, indicating specific neuronal effects. Transcription factor enrichment and correlation analysis identified key transcription factors that were activated in both cultured cells and tissue by iron deficiency, including those implicated in iron regulation, such as HIF1, NFY, and NRF1. We further identified MEF2 as a novel transcription factor whose activity was induced by ID in both HT22 proteome and rat hippocampal transcriptome, thus linking iron deficiency to MEF2-dependent cellular signaling pathways in neuronal development. Taken together, our study results identified diverse signaling networks that were differentially regulated by hypoxia and ID in neuronal cells.
Collapse
Affiliation(s)
- Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; (L.E.); (Y.G.)
| | - Shirelle Liu
- Department of Pediatrics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA;
| | - Yao Gong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; (L.E.); (Y.G.)
| | - Phu Tran
- Department of Pediatrics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA;
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; (L.E.); (Y.G.)
| |
Collapse
|
140
|
Abdel-Moniem MM, Hassan AM, Said MM, Esmat AY. Iron supplementation ameliorates aloin-induced iron deficiency anemia in rats. Exp Mol Pathol 2022; 124:104740. [PMID: 34998864 DOI: 10.1016/j.yexmp.2021.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 11/04/2022]
Abstract
Aloin, an anthraquinone glycoside, is one of other C-glycosides found in the leaf exudate of Aloe plant. Aloin possesses several biologic activities, including antitumor activity in vitro and in vivo. However, aloin treatment has shown iron deficiency anemia and erythropoiesis in vivo. The present study was undertaken to verify if iron supplementation could alleviate these perturbations, compared to doxorubicin, an anthracycline analog. Oral iron supplementation (20.56 mg elemental Fe/kg bw) to aloin-treated rats normalized red blood corpuscles count, hemoglobin concentration, and serum levels of total iron binding capacity and saturated transferrin, as well as hepatic iron content, hepcidin level, and mRNA expression of ferritin heavy chain (Ferr-H) and transferrin receptor-1 (TfR-1) genes. Although, serum hyperferremia, and leukocytosis were maintained, yet the spleen iron overload was substantially modulated. However, combined aloin and iron treatment increased iron storage levels in the heart and bone marrow, compared to aloin treatment per se. On other hand, oral iron supplementation to rats treated with doxorubicin (15 mg/kg bw) lessened the increase in the spleen iron content concomitantly with hepatic hepcidin level, rebound hepatic iron content to normal level, and by contrast augmented serum levels of iron and transferrin saturation. Also, activated Ferr-H mRNA expression and repressed TfR-1 mRNA expression were recorded, compared to doxorubicin treatment per se. Histopathological examination of the major body iron stores in rats supplemented with iron along with aloin or doxorubicin showed an increase in extramedullary hematopoiesis. In conclusion, iron supplementation restores the disturbances in iron homeostasis and erythropoiesis induced by aloin treatment.
Collapse
Affiliation(s)
| | - Azza M Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud M Said
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Amr Y Esmat
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
141
|
Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, Shoenfeld Y. Ferritin - from iron, through inflammation and autoimmunity, to COVID-19. J Autoimmun 2022; 126:102778. [PMID: 34883281 PMCID: PMC8647584 DOI: 10.1016/j.jaut.2021.102778] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023]
Abstract
While it took decades to arrive to a conclusion that ferritin is more than an indicator of iron storage level, it took a short period of time through the COVID-19 pandemic to wonder what the reason behind high levels of ferritin in patients with severe COVID-19 might be. Unsurprisingly, acute phase reactant was not a satisfactory explanation. Moreover, the behavior of ferritin in patients with severe COVID-19 and the subsequent high mortality rates in patients with high ferritin levels necessitated further investigations to understand the role of ferritin in the diseases. Ferritin was initially described to accompany various acute infections, both viral and bacterial, indicating an acute response to inflammation. However, with the introduction of the hyperferritinemic syndrome connecting four severe pathological conditions such as adult-onset Still's disease, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and septic shock added another aspect of ferritin where it could have a pathogenetic role rather than an extremely elevated protein only. In fact, suggesting that COVID-19 is a new member in the spectrum of hyperferritinemic syndrome besides the four mentioned conditions could hopefully direct further search on the pathogenetic role of ferritin. Doubtlessly, improving our understanding of those aspects of ferritin would enormously contribute to better coping with severe diseases in terms of treatment and prevention of complications. The origin, history, importance, and the advances of searching the role of ferritin in various pathological and clinical processes are presented hereby in our article. In addition, the implications of ferritin in COVID-19 are addressed.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey,Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat- Gan, Israel,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel,Corresponding author. Internal medicine “B” department, Sheba Medical Center (Affiliated to Tel-Aviv University), Tel-Hashomer, 5265601, Israel
| | - Amal Alghory
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Kiyak
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Abdulkarim Alwani
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ravend Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mahmoud Alrais
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | | |
Collapse
|
142
|
Kim HM, Kwon KT, Cha HH, Seong WJ, Kim MJ. Prediction of Adverse Outcomes among Women in the Third Trimester of Pregnancy with Coronavirus Disease 2019. Infect Chemother 2022; 54:493-503. [PMID: 36196608 PMCID: PMC9533151 DOI: 10.3947/ic.2022.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to compare the clinical and laboratory characteristics of two groups of women (favorable and adverse outcome groups) in the third trimester of pregnancy with coronavirus disease 2019 (COVID-19) and to investigate the predictors of specific adverse outcomes. Materials and Methods We retrospectively reviewed the medical records of patients hospitalized with COVID-19 between November 2020 and October 2021 at Kyungpook National University Chilgok Hospital. Adverse outcomes were clinically defined using the Novel Coronavirus Pneumonia Emergency Response Epidemiology Team criteria. The group without adverse outcomes was defined as the “favorable outcome” group and the rest as the “adverse outcome” group. We compared the clinical characteristics between the two groups and examined the correlation between their laboratory results and adverse outcomes. Results Of the 70 pregnant women included, 37 were in their third trimester. No significant differences in clinical characteristics, except the length of hospitalization, were noted between the groups. In laboratory tests conducted immediately after hospitalization, C-reactive protein (CRP) (1.0 [0.3 - 1.4] vs. 2.3 [1.3 - 3.6], P = 0.001) and ferritin (25.0 [14.5 - 34.5] vs. 53.1 [36.0 - 98.0], P <0.03) levels were significantly different between the groups. Logistic regression analysis revealed that CRP (odds ratio [OR]: 2.26; 95% confidence interval [CI]: 1.09 - 5.51, P = 0.040) and ferritin (OR: 1.06; 95% CI: 1.01 - 1.15, P = 0.047) levels were predictors of adverse outcomes. Conclusion CRP and ferritin levels are associated with poor prognosis and can predict adverse outcomes in women with COVID-19 in the third trimester of pregnancy.
Collapse
Affiliation(s)
- Hyun Mi Kim
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ki Tae Kwon
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun-Hwa Cha
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Won Joon Seong
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mi Ju Kim
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
143
|
Quilapi AM, Vargas-Lagos C, Martínez D, Muñoz JL, Spies J, Esperguel I, Tapia J, Oyarzún-Salazar R, Vargas-Chacoff L. Brain immunity response of fish Eleginops maclovinus to infection with Francisella noatunensis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:695-705. [PMID: 34808359 DOI: 10.1016/j.fsi.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The brain's immune system is selective and hermetic in most species, including fish, favoring immune responses mediated by soluble immunomodulatory factors such as serotonin and the availability of nutrients against infectious processes. Francisella noatunensis coexist with fish such as Eleginops maclovinus, which raises questions about the susceptibility and immune response of the brain of E. maclovinus against Francisella. In this study, we inoculated fish with different doses of Francisella and took samples for 28 days. We detected bacteria in the brain of fish injected with a high concentration of Francisella at all time points. qPCR analysis of immune genes indicated a response mainly in the medium-dose and early expression of genes involved in iron metabolism. Finally, brain serotonin levels were higher than in uninfected fish in all conditions, suggesting possible immunomodulatory participation in an infectious process.
Collapse
Affiliation(s)
- Ana María Quilapi
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Universidad Santo Tomás, Osorno, Chile; Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile.
| | - Carolina Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Luis Muñoz
- Centro de Investigación y Desarrollo i ∼ mar, Universidad de los Lagos, Casilla 557, Puerto Montt, Chile
| | - Johana Spies
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Ivan Esperguel
- Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Tapia
- Institute of Chemistry and Natural Resources, Universidad de Talca, Chile
| | | | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
144
|
Moreira AC, Silva T, Mesquita G, Gomes AC, Bento CM, Neves JV, Rodrigues DF, Rodrigues PN, Almeida AA, Santambrogio P, Gomes MS. H-Ferritin Produced by Myeloid Cells Is Released to the Circulation and Plays a Major Role in Liver Iron Distribution during Infection. Int J Mol Sci 2021; 23:ijms23010269. [PMID: 35008695 PMCID: PMC8745395 DOI: 10.3390/ijms23010269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
During infections, the host redistributes iron in order to starve pathogens from this nutrient. Several proteins are involved in iron absorption, transport, and storage. Ferritin is the most important iron storage protein. It is composed of variable proportions of two peptides, the L- and H-ferritins (FTL and FTH). We previously showed that macrophages increase their expression of FTH1 when they are infected in vitro with Mycobacterium avium, without a significant increase in FTL. In this work, we investigated the role of macrophage FTH1 in M. avium infection in vivo. We found that mice deficient in FTH1 in myeloid cells are more resistant to M. avium infection, presenting lower bacterial loads and lower levels of proinflammatory cytokines than wild-type littermates, due to the lower levels of available iron in the tissues. Importantly, we also found that FTH1 produced by myeloid cells in response to infection may be found in circulation and that it plays a key role in iron redistribution. Specifically, in the absence of FTH1 in myeloid cells, increased expression of ferroportin is observed in liver granulomas and increased iron accumulation occurs in hepatocytes. These results highlight the importance of FTH1 expression in myeloid cells for iron redistribution during infection.
Collapse
Affiliation(s)
- Ana C. Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Gonçalo Mesquita
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, 4200-135 Porto, Portugal
| | - João V. Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela F. Rodrigues
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Pedro N. Rodrigues
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Agostinho A. Almeida
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Paolo Santambrogio
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (T.S.); (A.C.G.); (C.M.B.); (J.V.N.); (D.F.R.); (P.N.R.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
145
|
Ahmed AS, Alotaibi WS, Aldubayan MA, Alhowail AH, Al-Najjar AH, Chigurupati S, Elgharabawy RM. Factors Affecting the Incidence, Progression, and Severity of COVID-19 in Type 1 Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1676914. [PMID: 34840966 PMCID: PMC8611355 DOI: 10.1155/2021/1676914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES This study screened for factors affecting coronavirus disease 2019 (COVID-19) incidence in type 1 diabetes mellitus (T1DM) patients, appraised vitamin D's efficacy in preventing COVID-19, and assessed the effects of clinical characteristics, glycemic status, vitamin D, and hydroxychloroquine administration on COVID-19's progression and severity in T1DM patients. METHODS This retrospective research on 150 adults was conducted at Security Forces Hospital, Riyadh, KSA. Participants were allocated to three groups (50/group): control, T1DM, and T1DM with COVID-19. Participants' fasting blood glucose (FBG), glycated hemoglobin (HbA1c), complete blood count, vitamin D, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), ferritin, lactate dehydrogenase (LDH), prothrombin time, activated partial thromboplastin time, D-dimer, liver and kidney function, and hydroxychloroquine treatment were retrieved and analyzed. RESULTS The percentages of comorbidities and not taking hydroxychloroquine were significantly higher among T1DM patients with COVID-19 than patients with T1DM only. Mean vitamin D level was significantly lower in T1DM with COVID-19 patients than in the other two groups. Vitamin D showed a significant negative correlation with LDH, CRP, ESR, ferritin, and D-dimer, which was the most reliable predictor of COVID-19 severity in T1DM patients. CONCLUSION Comorbidities and vitamin D deficiency are risk factors for COVID-19 in patients with T1DM. Patients who do not take hydroxychloroquine and have higher FBG and HbA1c levels are vulnerable to COVID-19. Vitamin D may be useful for preventing COVID-19 in T1DM patients. Comorbidities, higher FBG and HbA1c levels, not taking hydroxychloroquine, and vitamin D inadequacy elevate COVID-19 progression and severity in patients with T1DM.
Collapse
Affiliation(s)
- Amira S. Ahmed
- Department of Pharmacology & Toxicology, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | | | - Maha A. Aldubayan
- Department of Pharmacology & Toxicology, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Ahmad H. Alhowail
- Department of Pharmacology & Toxicology, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug and Poison Information Specialist, Pharmacy Services, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Rehab M. Elgharabawy
- Department of Pharmacology & Toxicology, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
146
|
Ma S, Fu X, Liu L, Liu Y, Feng H, Jiang H, Liu X, Liu R, Liang Z, Li M, Tian Z, Hu B, Bai Y, Liang B, Liu X. Iron-Dependent Autophagic Cell Death Induced by Radiation in MDA-MB-231 Breast Cancer Cells. Front Cell Dev Biol 2021; 9:723801. [PMID: 34722507 PMCID: PMC8551752 DOI: 10.3389/fcell.2021.723801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
In radiation oncology, ionizing radiation is used to kill cancer cells, in other words, the induction of different types of cell death. To investigate this cellular death and the associated iron accumulation, the transfer, release, and participation of iron after radiation treatment was analyzed. We found that radiation-induced cell death varied in different breast cancer cells and autophagy was induced in MDA-MB-231 and BT549 cells (triple negative breast cancer cell line) rather than in MCF-7 and zr-75 cells. Iron chelator deferoxamine (DFO), the autophagy inhibitor 3MA, silencing of the autophagy-related genes ATG5, and Beclin 1 could decrease radiation induced cell death in MDA-MB-231 cells, while inhibitors of apoptosis such as Z-VAD-FMK, ferroptosis inhibitor ferrostatin-1 (Fer-1), and necroptosis inhibitor Necrostatin-1 showed no change. This suggests the occurrence of autophagic cell death. Furthermore, we found that iron accumulation and iron regulatory proteins, including transferrin (Tf), transferrin receptor (CD71), and Ferritin (FTH), increased after radiation treatment, and the silencing of transferrin decreased radiation-induced cell death. In addition, radiation increased lysosomal membrane permeabilization (LMP) and the release of lysosomal iron and cathepsins, while cathepsins silencing failed to change cell viability. Radiation-induced iron accumulation increased Reactive oxygen species (ROS) generation via the Fenton reaction and increased autophagy in a time-dependent manner. DFO, N-acetylcysteine (NAC), and overexpression of superoxide dismutase 2 (SOD2) decreased ROS generation, autophagy, and cell death. To summarize, for the first time, we found that radiation-induced autophagic cell death was iron-dependent in breast cancer MDA-MB-231 cells. These results provide new insights into the cell death process of cancers and might conduce to the development and application of novel therapeutic strategies for patients with apoptosis-resistant breast cancer.
Collapse
Affiliation(s)
- Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xinxin Fu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Lin Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yi Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Hao Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaomei Liu
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Rui Liu
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Zhenzhen Liang
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Mengke Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhujun Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Boqi Hu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bing Liang
- School of Nursing, Jilin University, Changchun, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
147
|
Faramarzi M, Shirmohammadi A, Khorramdel A, Sadighi M, Bargahi E. Effect of non-surgical periodontal therapy on serum ferritin levels in postmenopausal women with chronic periodontitis. J Dent Res Dent Clin Dent Prospects 2021; 15:178-182. [PMID: 34712408 PMCID: PMC8538142 DOI: 10.34172/joddd.2021.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background. Ferritin is a positive acute phase protein (APP) in inflammation and chronic infections, including chronic periodontitis. Two key factors that can regulate ferritin expression are iron and pro-inflammatory cytokines. Serum ferritin levels increase after menopause, affecting women’s health. This study aimed to evaluate serum ferritin levels in postmenopausal women upon undertaking non-surgical periodontal treatment.
Methods. In this cross-sectional study, blood samples of 38 postmenopausal women with chronic periodontitis were collected before any treatment. The serum ferritin levels and periodontal parameters, probing depth (PD), clinical attachment level (CAL), and gingival index (GI) were recorded at baseline and three months after non-surgical periodontal therapy. Wilcoxon test was used to compare serum ferritin levels before and after treatment. T-test was used for comparison of periodontal parameters, with a P value of ≤0.05 considered significant.
Results. A decrease was observed in the serum ferritin level (from 108.55 mcg/L to 98.28 mcg/L) after treatment compared to baseline (P < 0.001). Also, significant improvements in periodontal parameters were observed compared to the baseline (P < 0.001).
Conclusion. Based on the results, it can be concluded that non-surgical periodontal treatment significantly reduces serum ferritin levels in postmenopausal women with chronic periodontitis.
Collapse
Affiliation(s)
- Masoumeh Faramarzi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Science, Tabriz, Iran
| | - Adileh Shirmohammadi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Science, Tabriz, Iran
| | - Azin Khorramdel
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehrnoosh Sadighi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Science, Tabriz, Iran
| | | |
Collapse
|
148
|
Valenzuela-Muñoz V, Benavente BP, Casuso A, Leal Y, Valenzuela-Miranda D, Núñez-Acuña G, Sáez-Vera C, Gallardo-Escárate C. Transcriptome and morphological analysis in Caligus rogercresseyi uncover the effects of Atlantic salmon vaccination with IPath®. FISH & SHELLFISH IMMUNOLOGY 2021; 117:169-178. [PMID: 34389379 DOI: 10.1016/j.fsi.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
It is known that iron transporter proteins and their regulation can modulate the fish's immune system, suggesting these proteins as a potential candidate for fish vaccines. Previous studies have evidenced the effects of Atlantic salmon immunized with the chimeric iron-related protein named IPath® against bacterial and ectoparasitic infections. The present study aimed to explore the transcriptome modulation and the morphology of the sea louse Caligus rogercresseyi in response to Atlantic salmon injected with IPath®. Herein, Atlantic salmon were injected with IPath® and challenged to sea lice in controlled laboratory conditions. Then, female adults were collected after 25 days post-infection for molecular and morphological evaluation. Transcriptome analysis conducted in lice collected from immunized fish revealed high modulation of transcripts compared with the control groups. Notably, the low number of up/downregulated transcripts was mainly found in lice exposed to the IPath® fish group. Among the top-25 differentially expressed genes, Vitellogenin, Cytochrome oxidases, and proteases genes were strongly downregulated, suggesting that IPath® can alter lipid transport, hydrogen ion transmembrane transport, and proteolysis. The morphological analysis in lice collected from IPath® fish revealed abnormal embryogenesis and inflammatory processes of the genital segment. Furthermore, head kidney, spleen, and skin were also analyzed in immunized fish to evaluate the transcription expression of immune and iron homeostasis-related genes. The results showed downregulation of TLR22, MCHII, IL-1β, ALAs, HO, BLVr, GSHPx, and Ferritin genes in head kidney and skin tissues; meanwhile, those genes did not show significant differences in spleen tissue. Overall, our findings suggest that IPath® can be used to enhance the fish immune response, showing a promissory commercial application against lice infections.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| | - Bárbara P Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| | - Antonio Casuso
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| | - Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| | - Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| | - Constanza Sáez-Vera
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile.
| |
Collapse
|
149
|
Dynamics in Anemia Development and Dysregulation of Iron Homeostasis in Hospitalized Patients with COVID-19. Metabolites 2021; 11:metabo11100653. [PMID: 34677368 PMCID: PMC8540370 DOI: 10.3390/metabo11100653] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Anemia and disturbances of iron metabolism are frequently encountered in patients with COVID-19 and associated with an adverse clinical course. We retrospectively analyzed 645 consecutive COVID-19 patients hospitalized at the Innsbruck University Hospital. Pre-existing anemia was associated with increased risk for in-hospital death. We further found that the decline in hemoglobin levels during hospital stay is more pronounced in patients with signs of hyperinflammation upon admission, the latter being associated with a nearly two-fold higher risk for new onset anemia within one week. Anemia prevalence increased from 44.3% upon admission to 87.8% in patients who were still hospitalized after two weeks. A more distinct decrease in hemoglobin levels was observed in subjects with severe disease, and new-onset anemia was associated with a higher risk for ICU admission. Transferrin levels decreased within the first week of hospitalization in all patients, however, a continuous decline was observed in subjects who died. Hemoglobin, ferritin, and transferrin levels normalized in a median of 122 days after discharge from hospital. This study uncovers pre-existing anemia as well as low transferrin concentrations as risk factors for mortality in hospitalized COVID-19 patients, whereas new-onset anemia during hospitalization is a risk factor for ICU admission. Anemia and iron disturbances are mainly driven by COVID-19 associated inflammation, and cure from infection results in resolution of anemia and normalization of dysregulated iron homeostasis.
Collapse
|
150
|
A Novel Approach for the Synthesis of Human Heteropolymer Ferritins of Different H to L Subunit Ratios. J Mol Biol 2021; 433:167198. [PMID: 34391801 DOI: 10.1016/j.jmb.2021.167198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/18/2023]
Abstract
Mammalian ferritins are predominantly heteropolymeric species consisting of 24 structurally similar, but functionally different subunit types, named H and L, that co-assemble in different proportions. Despite their discovery more than 8 decades ago, recombinant human heteropolymer ferritins have never been synthesized, owing to the lack of a good expression system. Here, we describe for the first time a unique approach that uses a novel plasmid design that enables the synthesis of these complex ferritin nanostructures. Our study reveals an original system that can be easily tuned by altering the concentrations of two inducers, allowing the synthesis of a full spectrum of heteropolymer ferritins, from H-rich to L-rich ferritins and any combinations in-between (isoferritins). The H to L subunit composition of purified ferritin heteropolymers was analyzed by SDS-PAGE and capillary gel electrophoresis, and their iron handling properties characterized by light absorption spectroscopy. Our novel approach allows future investigations of the structural and functional differences of isoferritin populations, which remain largely obscure. This is particularly exciting since a change in the ferritin H- to L-subunit ratio could potentially lead to new iron core morphologies for various applications in bio-nanotechnologies.
Collapse
|