101
|
Prokosa MI. INDICATORS OF ENDOTHELIAL DYSFUNCTION, MARKERS OF INFLAMMATION AND LIPID METABOLISM IN PATIENTS WITH HYPERTENSION WITH THE ADMINISTRATION OF QUERCETIN. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1653-1657. [PMID: 35962675 DOI: 10.36740/wlek202207107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: To improve the effectiveness of treatment of patients with hypertension using metabolic therapy based on the evaluation of endothelial dysfunction indicators, markers of inflammation, and blood lipid spectrum. PATIENTS AND METHODS Materials and methods: A clinical study was performed with 72 patients (34 male and 38 female) with stage 2 arterial hypertension of 2-3 degrees, admitted to the cardiology department of the municipal non-profit enterprise "Lviv Emergency Clinical Hospital". The mean age of patients was 44.8±8.5 years. Patients were divided into 2 groups: Group I was taking quercetin in addition to basic therapy (Ramipril/Amlodipine in individually adjusted dose); Group II - had basic therapy following the clinical protocol. The level of nitric oxide, IL-1, IL-6, TNF-a, CRP, seromucoid, blood lipid spectrum was determined. RESULTS Results: There is a significant decrease in the NO and CRP levels. There is a decrease in the TNF-a level by 31.27±2.13 (p<0.01) after the treatment of patients with hypertension. The TNF-a level decreased by 22.2±1.13 (p<0.01) with the use of basic therapy. IL-1 decreased significantly in the two groups, but it was more pronounced in group I, by 40.68±1.67 (p<0.01) and 21.4±2.1 in group II (p<0.05). There is a positive change in the blood lipid spectrum, but the changes were more pronounced in the group of patients receiving metabolic therapy. CONCLUSION Conclusions: The use of quercetin (Corvitin, Quertin) in combination therapy with the combined antihypertensive drug containing ramipril/amlodipine (Egis-Hungary) significantly reduces the levels of nitric oxide, CRP, IL-1, and blood lipid spectrum, which reduces the incidence of complications and progression of hypertension.
Collapse
|
102
|
Çiftel M, Ateş N, Yılmaz O. Investigation of endothelial dysfunction and arterial stiffness in multisystem inflammatory syndrome in children. Eur J Pediatr 2022; 181:91-97. [PMID: 34212240 PMCID: PMC8249181 DOI: 10.1007/s00431-021-04136-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 infection can result in multisystem inflammatory syndrome in children (MIS-C). MIS-C can lead to myocardial dysfunction, heart failure, and multiorgan failure; the primary finding is hyperinflammation. Endothelial dysfunction has not been evaluated in patients with MIS-C. We investigated endothelial dysfunction and arterial stiffness parameters in patients with MIS-C. The study included 38 pediatric patients (20 males and 18 females aged 4-17 years, mean age 8.89 years) with MIS-C. Thirty-eight age- and sex-matched healthy individuals were enrolled as the control group. Systolic and diastolic ventricular measurements and systolic and diastolic measurements of ascending aorta diameter were performed by M-mode echocardiography. Endothelial dysfunction was evaluated using flow-mediated dilation by measuring the brachial artery diameter with a high-resolution probe. The MIS-C group had lower flow-mediated dilation than did the controls. The MIS-C group had decreased aortic strain and aortic distensibility values and correlations between decreased flow-mediated dilation and reduced aortic strain, aortic distensibility, and reduced ejection fraction.Conclusion: The results show that patients with MIS-C had endothelial dysfunction and arterial stiffness. Furthermore, the degree of endothelial dysfunction correlated with reduced ejection fractions.What is Known:•Endothelial dysfunction and arterial stiffness are unknown in patients with MIS-C.•The effect of endothelial dysfunction and arterial stiffness on decreased cardiac function is unknown.What is New:•MIS-C patients have endothelial dysfunction and arterial stiffness.•There is a link between left ventricular dysfunction and reduced endothelial dysfunction in patients with MIS-C.
Collapse
Affiliation(s)
- Murat Çiftel
- Department of Pediatric Cardiology, Sanlıurfa Training and Research Hospital, Mah. Yenice Yolu No: 1, Yenice, Eyyübiye/Sanliurfa Turkey
| | - Nurgül Ateş
- Harran University, Şanlıurfa-Mardin Road Over 18.Km, Sanliurfa, Turkey
| | - Osman Yılmaz
- Department of Pediatric Cardiology, Etlik Training and Research Hospital, Ankara, Etlik, Turkey
| |
Collapse
|
103
|
Heubel AD, Viana AA, Linares SN, do Amaral VT, Schafauser NS, de Oliveira GYO, Ramírez PC, Martinelli B, da Silva Alexandre T, Borghi‐Silva A, Ciolac EG, Mendes RG. Determinants of endothelial dysfunction in noncritically ill hospitalized COVID-19 patients: A cross-sectional study. Obesity (Silver Spring) 2022; 30:165-171. [PMID: 34554646 PMCID: PMC8661847 DOI: 10.1002/oby.23311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this study was to identify determinants of endothelial dysfunction in patients hospitalized with acute COVID-19. METHODS A total of 109 hospitalized COVID-19 patients in noncritical status were cross-sectionally studied. Clinical data (age, sex, comorbidities, and medications) and BMI were assessed. Laboratory tests included serum hemoglobin, leukocytes, lymphocytes, platelets, C-reactive protein, ferritin, D-dimer, and creatinine. Physical status was evaluated using a handgrip dynamometer. Endothelial function was assessed noninvasively using the flow-mediated dilation (FMD) method. RESULTS The sample average age was 51 years, 51% of patients were male, and the most frequent comorbidity was obesity (62%). Univariate analysis showed association of lower FMD with higher BMI, hypertension, use of oral antihypertensive, higher blood levels of creatinine, and larger baseline artery diameter. After adjusting for confounders, the multivariate analysis showed BMI (95% CI: -0.26 to -0.11; p < 0.001) as the major factor associated with FMD. Other factors associated with FMD were baseline artery diameter (95% CI: -1.77 to -0.29; p = 0.007) and blood levels of creatinine (95% CI: -1.99 to -0.16; p = 0.022). CONCLUSIONS Increased BMI was the major factor associated with endothelial dysfunction in noncritically hospitalized COVID-19 patients. This may explain one of the pathways in which obesity may increase the risk for severe COVID-19.
Collapse
Affiliation(s)
- Alessandro Domingues Heubel
- Cardiopulmonary Physiotherapy LaboratoryDepartment of Physical TherapyFederal University of São CarlosSão CarlosSão PauloBrazil
| | - Ariane Aparecida Viana
- Exercise and Chronic Disease Research LaboratoryDepartment of Physical EducationSchool of SciencesSão Paulo State UniversityBauruSão PauloBrazil
| | - Stephanie Nogueira Linares
- Cardiopulmonary Physiotherapy LaboratoryDepartment of Physical TherapyFederal University of São CarlosSão CarlosSão PauloBrazil
| | - Vanessa Teixeira do Amaral
- Exercise and Chronic Disease Research LaboratoryDepartment of Physical EducationSchool of SciencesSão Paulo State UniversityBauruSão PauloBrazil
| | - Nathany Souza Schafauser
- Cardiopulmonary Physiotherapy LaboratoryDepartment of Physical TherapyFederal University of São CarlosSão CarlosSão PauloBrazil
| | - Gustavo Yudi Orikassa de Oliveira
- Exercise and Chronic Disease Research LaboratoryDepartment of Physical EducationSchool of SciencesSão Paulo State UniversityBauruSão PauloBrazil
| | - Paula Camila Ramírez
- Department of Physical TherapyUniversidad Industrial de SantanderBucaramangaSantanderColombia
- Department of GerontologyFederal University of São CarlosSão CarlosSão PauloBrazil
| | - Bruno Martinelli
- Department of Physical TherapySacred Heart University CenterBauruSão PauloBrazil
| | | | - Audrey Borghi‐Silva
- Cardiopulmonary Physiotherapy LaboratoryDepartment of Physical TherapyFederal University of São CarlosSão CarlosSão PauloBrazil
| | - Emmanuel Gomes Ciolac
- Exercise and Chronic Disease Research LaboratoryDepartment of Physical EducationSchool of SciencesSão Paulo State UniversityBauruSão PauloBrazil
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physiotherapy LaboratoryDepartment of Physical TherapyFederal University of São CarlosSão CarlosSão PauloBrazil
| |
Collapse
|
104
|
Magnocavallo M, Vetta G, Della Rocca DG, Gianni C, Mohanty S, Bassiouny M, Di Lullo L, Del Prete A, Cirone D, Lavalle C, Chimenti C, Al-Ahmad A, Burkhardt JD, Gallinghouse GJ, Sanchez JE, Horton RP, Di Biase L, Natale A. Prevalence, Management, and Outcome of Atrial Fibrillation and Other Supraventricular Arrhythmias in COVID-19 Patients. Card Electrophysiol Clin 2022; 14:1-9. [PMID: 35221076 PMCID: PMC8783208 DOI: 10.1016/j.ccep.2021.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michele Magnocavallo
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA; Department of Cardiovascular/Respiratory Diseases, Nephrology, Anesthesiology, and Geriatric Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giampaolo Vetta
- Department of Cardiovascular/Respiratory Diseases, Nephrology, Anesthesiology, and Geriatric Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Domenico G Della Rocca
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA.
| | - Carola Gianni
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA
| | - Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA
| | - Mohamed Bassiouny
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA
| | - Luca Di Lullo
- Department of Nephrology and Dialysis, L. Parodi - Delfino Hospital, Colleferro, Roma, Italy
| | | | | | - Carlo Lavalle
- Department of Cardiovascular/Respiratory Diseases, Nephrology, Anesthesiology, and Geriatric Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Cristina Chimenti
- Department of Cardiovascular/Respiratory Diseases, Nephrology, Anesthesiology, and Geriatric Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Amin Al-Ahmad
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA
| | - J David Burkhardt
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA
| | - G Joseph Gallinghouse
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA
| | - Javier E Sanchez
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA
| | - Rodney P Horton
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA
| | - Luigi Di Biase
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA; Albert Einstein College of Medicine at Montefiore Hospital, New York, NY, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, 3000 N. IH-35, Suite 720, Austin, TX 78705, USA; Interventional Electrophysiology, Scripps Clinic, La Jolla, CA, USA; Department of Cardiology, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
105
|
Walia R, Arunachalam V, Chauhan U, Khapre M, Arora P. Endothelial dysfunction assessed by brachial artery flow-mediated dilatation predicts severe COVID-19-related disease. J Family Med Prim Care 2022; 11:319-324. [PMID: 35309652 PMCID: PMC8930105 DOI: 10.4103/jfmpc.jfmpc_281_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Endothelial dysfunction, inflammation, and hypercoagulability are hallmarks of severe COVID-19 related disease. Endothelial function can be measured non-invasively by flow-mediated dilatation in the brachial artery. We planned a study to measure it as a marker of the severity of COVID-19 disease. Objective: To evaluate the association of clinically recognizable endothelial dysfunction in COVID-19 disease and its usefulness as a marker of severe COVID-19-related disease. Methods: 20 COVID-19 patients being admitted to our unit were analyzed for endothelial dysfunction and correlated with disease severity as per computed tomography (CT) chest score. Patients with diabetes, atherosclerotic coronary artery disease, dyslipidemia, chronic renal disease, and infections other than COVID-19 were excluded. Endothelial dysfunction was measured by flow-mediated dilatation in the brachial artery. Results: The mean age was 46.4 ± 16.5 years; 70% were males. The mean CT severity score was 22 ± 8; 60% required supplemental oxygen and steroids. The incidence of endothelial dysfunction was more in patients with a computed tomography severity score of >19.5 or oxygen saturation of <93% at room air as compared to mild cases (P = 0.003). Endothelial dysfunction was more evident >7 days after onset of disease as compared to early (<7 days) disease (P = 0.016). There was negative correlation between % flow-mediated dilatation in brachial artery and severity of lung involvement and prolonged symptomatic phase. Conclusions: Endothelial dysfunction as measured by impaired brachial artery flow mediated dilatation correlates with disease severity.
Collapse
|
106
|
Mbonde AA, O’Carroll CB, Grill MF, Zhang N, Butterfield R, Demaerschalk BM. Stroke Features, Risk Factors and Pathophysiology in SARS-CoV-2 infected Patients. Mayo Clin Proc Innov Qual Outcomes 2022; 6:156-165. [PMID: 35079695 PMCID: PMC8776423 DOI: 10.1016/j.mayocpiqo.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
107
|
The potential role of COVID-19 in the induction of DNA damage. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108411. [PMID: 35690420 PMCID: PMC8767986 DOI: 10.1016/j.mrrev.2022.108411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus disease-2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is challenging global health and economic systems. In some individuals, COVID-19 can cause a wide array of symptoms, affecting several organs, such as the lungs, heart, bowels, kidneys and brain, causing multiorgan failure, sepsis and death. These effects are related in part to direct viral infection of these organs, immunological deregulation, a hypercoagulatory state and the potential for development of cytokine storm syndrome. Since the appearance of COVID-19 is recent, the long-term effects on the health of recovered patients remain unknown. In this review, we focused on current evidence of the mechanisms of DNA damage mediated by coronaviruses. Data supports that these viruses can induce DNA damage, genomic instability, and cell cycle deregulation during their replication in mammalian cells. Since the induction of DNA damage and aberrant DNA repair mechanisms are related to the development of chronic diseases such as cancer, diabetes, neurodegenerative disorders, and atherosclerosis, it will be important to address similar effects and outcomes in recovered COVID-19 patients.
Collapse
|
108
|
Shi K, Liu Y, Zhang Q, Ran CP, Hou J, Zhang Y, Wang XB. Severe Type of COVID-19: Pathogenesis, Warning Indicators and Treatment. Chin J Integr Med 2021; 28:3-11. [PMID: 34962616 PMCID: PMC8713541 DOI: 10.1007/s11655-021-3313-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, is a major public health issue. The epidemic is unlikely to be contained until the global launch of safe and effective vaccines that could prevent serious illnesses and provide herd immunity. Although most patients have mild flu-like symptoms, some develop severe illnesses accompanied by multiple organ dysfunction. The identification of pathophysiology and early warning biomarkers of a severe type of COVID-19 contribute to the treatment and prevention of serious complications. Here, we review the pathophysiology, early warning indicators, and effective treatment of Chinese and Western Medicine for patients with a severe type of COVID-19.
Collapse
Affiliation(s)
- Ke Shi
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Yao Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qun Zhang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Chong-Ping Ran
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jie Hou
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Yi Zhang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Xian-Bo Wang
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China.
| |
Collapse
|
109
|
Bahadori M, Azizi MH, Dabiri S, Bahadori N. Effects of Human Nucleolus Upon Guest Viral-Life, Focusing in COVID-19 Infection: A Mini- Review. IRANIAN JOURNAL OF PATHOLOGY 2021; 17:1-7. [PMID: 35096082 PMCID: PMC8794558 DOI: 10.30699/ijp.2021.540305.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/25/2021] [Indexed: 11/06/2022]
Abstract
The nucleolus is a subcellular membrane-less structure of eukaryotic cells. In 1965, in a world's southern summer summit in Uruguay, the role of the nucleolus as the site of ribosome synthesis, biogenesis, and processing of tRNA was conclusively established. Today, accumulating evidence confirm the multiple functions of the nucleolus, including tRNA precursor processing, cell stress sensing, as well as being influential in gene silencing, senescence, lifespan, DNA damage response (DDR), and cell cycle regulation. Therefore, nucleolopathy is observed in various human diseases. Modern advances have provided fundamental insights concerning how and why the nucleolus is targeted by different pathogenic organisms. Viruses are major organisms that disrupt the normal function of the nucleus and produce nucleoli proteins for facilitating the replication of viruses causing viral infections. In this review, we focus on the possible role of nucleoli upon coronavirus infections, particularly in coronavirus disease 2019.
Collapse
Affiliation(s)
- Moslem Bahadori
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahriar Dabiri
- Department of Pathology, Pathology and Stem Cells Research Center, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
110
|
COVID-19, the Pandemic of the Century and Its Impact on Cardiovascular Diseases. CARDIOLOGY DISCOVERY 2021; 1:233-258. [PMID: 34888547 PMCID: PMC8638821 DOI: 10.1097/cd9.0000000000000038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/19/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely ranks among the deadliest diseases in human history. As with other coronaviruses, SARS-CoV-2 infection damages not only the lungs but also the heart and many other organs that express angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2. COVID-19 has upended lives worldwide. Dietary behaviors have been altered such that they favor metabolic and cardiovascular complications, while patients have avoided hospital visits because of limited resources and the fear of infection, thereby increasing out-hospital mortality due to delayed diagnosis and treatment. Clinical observations show that sex, age, and race all influence the risk for SARS-CoV-2 infection, as do hypertension, obesity, and pre-existing cardiovascular conditions. Many hospitalized COVID-19 patients suffer cardiac injury, acute coronary syndromes, or cardiac arrhythmia. SARS-CoV-2 infection may lead to cardiomyocyte apoptosis and necrosis, endothelial cell damage and dysfunction, oxidative stress and reactive oxygen species production, vasoconstriction, fibrotic and thrombotic protein expression, vascular permeability and microvascular dysfunction, heart inflammatory cell accumulation and activation, and a cytokine storm. Current data indicate that COVID-19 patients with cardiovascular diseases should not discontinue many existing cardiovascular therapies such as ACE inhibitors, angiotensin receptor blockers, steroids, aspirin, statins, and PCSK9 inhibitors. This review aims to furnish a framework relating to COVID-19 and cardiovascular pathophysiology.
Collapse
|
111
|
The Effects of Vitamin C on the Multiple Pathophysiological Stages of COVID-19. Life (Basel) 2021; 11:life11121341. [PMID: 34947872 PMCID: PMC8708699 DOI: 10.3390/life11121341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Currently available anti-viral drugs may be useful in reducing the viral load but are not providing the necessary physiological effects to reduce the SARS-CoV-2 complications efficiently. Treatments that provide better clinical outcomes are urgently needed. Vitamin C (ascorbic acid, AA) is an essential nutrient with many biological roles that have been proven to play an important part in immune function; it serves as an antioxidant, an anti-viral, and exerts anti-thrombotic effects among many other physiological benefits. Research has proven that AA at pharmacological doses can be beneficial to patients with acute respiratory distress syndrome (ARDS) and other respiratory illnesses, including sepsis. In addition, High-Dose Intravenous Vitamin C (HDIVC) has proven to be effective in patients with different viral diseases, such as influenza, chikungunya, Zika, and dengue. Moreover, HDIVC has been demonstrated to be very safe. Regarding COVID-19, vitamin C can suppress the cytokine storm, reduce thrombotic complications, and diminish alveolar and vascular damage, among other benefits. Due to these reasons, the use of HDIVC should be seriously considered in complicated COVID-19 patients. In this article, we will emphasize vitamin C’s multiple roles in the most prominent pathophysiological processes presented by the COVID-19 disease.
Collapse
|
112
|
Prasad M, Leon M, Lerman LO, Lerman A. Viral Endothelial Dysfunction: A Unifying Mechanism for COVID-19. Mayo Clin Proc 2021; 96:3099-3108. [PMID: 34863398 PMCID: PMC8373818 DOI: 10.1016/j.mayocp.2021.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/12/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus with significant global impact, morbidity, and mortality. The SARS-CoV-2 virus may result in widespread organ manifestations including acute respiratory distress syndrome, acute renal failure, thromboembolism, and myocarditis. Virus-induced endothelial injury may cause endothelial activation, increased permeability, inflammation, and immune response and cytokine storm. Endothelial dysfunction is a systemic disorder that is a precursor of atherosclerotic vascular disease that is associated with cardiovascular risk factors and is highly prevalent in patients with atherosclerotic cardiovascular and peripheral disease. Several studies have associated various viral infections including SARS-CoV-2 infection with inflammation, endothelial dysfunction, and subsequent innate immune response and cytokine storm. Noninvasive monitoring of endothelial function and identification of high-risk patients who may require specific therapies may have the potential to improve morbidity and mortality associated with subsequent inflammation, cytokine storm, and multiorgan involvement.
Collapse
Affiliation(s)
- Megha Prasad
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, Columbia University, New York City, NY; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Martin Leon
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, Columbia University, New York City, NY
| | - Lilach O Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
113
|
Ernzen K, Trask AJ, Peeples ME, Garg V, Zhao MT. Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Rev Rep 2021; 17:2107-2119. [PMID: 34365591 PMCID: PMC8349465 DOI: 10.1007/s12015-021-10229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
The virus responsible for coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected over 190 million people to date, causing a global pandemic. SARS-CoV-2 relies on binding of its spike glycoprotein to angiotensin-converting enzyme 2 (ACE2) for infection. In addition to fever, cough, and shortness of breath, severe cases of SARS-CoV-2 infection may result in the rapid overproduction of pro-inflammatory cytokines. This overactive immune response is known as a cytokine storm, which leads to several serious clinical manifestations such as acute respiratory distress syndrome and myocardial injury. Cardiovascular disorders such as acute coronary syndrome (ACS) and heart failure not only enhance disease progression at the onset of infection, but also arise in hospitalized patients with COVID-19. Tissue-specific differentiated cells and organoids derived from human pluripotent stem cells (hPSCs) serve as an excellent model to address how SARS-CoV-2 damages the lungs and the heart. In this review, we summarize the molecular basis of SARS-CoV-2 infection and the current clinical perspectives of the bidirectional relationship between the cardiovascular system and viral progression. Furthermore, we also address the utility of hPSCs as a dynamic model for SARS-CoV-2 research and clinical translation.
Collapse
Affiliation(s)
- Kyle Ernzen
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark E Peeples
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Center for Vaccine and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
- MCDB Graduate Program, The Ohio State University, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
114
|
Kifle ZD, Woldeyohanis AE, Demeke CA. A review on protective roles and potential mechanisms of metformin in diabetic patients diagnosed with COVID-19. Metabol Open 2021; 12:100137. [PMID: 34664036 PMCID: PMC8516148 DOI: 10.1016/j.metop.2021.100137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19), is currently the leading threat to public health and a huge challenge to the healthcare systems across the globe and caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Obesity, a state of chronic inflammation, and diabetes mellitus are risk factors for severe SARS-CoV-2. Metformin is one of the most commonly used antidiabetic medications that displayed immunomodulatory activity through AMP-activated protein kinase. Metformin has sex-specific immunomodulatory and cytokine-reducing activities. Therefore, this review aimed to summarize the protective roles of Metformin and its possible molecular mechanisms for use in COVID-19 patients. To include studies, publications related to Metformin and its possible molecular mechanisms for COVID-19 were searched from the databases such as Web of Science, PubMed, Medline, Elsevier, Google Scholar, and SCOPUS, via English key terms. Maintaining proper blood glucose levels using oral antidiabetic drugs like Metformin reduced the detrimental effects of COVID-19 by different possible mechanisms such as Metformin-mediated anti-inflammatory and immunomodulatory activities; effect on viral entry and ACE2 stability; inhibition of virus infection; alters virus survival and endosomal pH; mTOR inhibition; and influence on gut microbiota. Fascinatingly, in diabetic patients with COVID-19, treatment with Metformin was associated with a noticeable reduction in mortality rates and disease severity among infected patients. Metformin was comprehensively investigated for its anti-inflammatory, antiviral capabilities, immunomodulatory, and antioxidant, which would elucidate its capability to confer vascular and cardiopulmonary protection in COVID-19.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Alem Endeshaw Woldeyohanis
- Department of Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Chilot Abiyu Demeke
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
115
|
Sharifi Y, Payab M, Mohammadi-Vajari E, Aghili SMM, Sharifi F, Mehrdad N, Kashani E, Shadman Z, Larijani B, Ebrahimpur M. Association between cardiometabolic risk factors and COVID-19 susceptibility, severity and mortality: a review. J Diabetes Metab Disord 2021; 20:1743-1765. [PMID: 34222055 PMCID: PMC8233632 DOI: 10.1007/s40200-021-00822-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
The novel coronavirus, which began spreading from China Wuhan and gradually spreaded to most countries, led to the announcement by the World Health Organization on March 11, 2020, as a new pandemic. The most important point presented by the World Health Organization about this disease is to better understand the risk factors that exacerbate the course of the disease and worsen its prognosis. Due to the high majority of cardio metabolic risk factors like obesity, hypertension, diabetes, and dyslipidemia among the population over 60 years old and higher, these cardio metabolic risk factors along with the age of these people could worsen the prognosis of the coronavirus disease of 2019 (COVID-19) and its mortality. In this study, we aimed to review the articles from the beginning of the pandemic on the impression of cardio metabolic risk factors on COVID-19 and the effectiveness of COVID-19 on how to manage these diseases. All the factors studied in this article, including hypertension, diabetes mellitus, dyslipidemia, and obesity exacerbate the course of Covid-19 disease by different mechanisms, and the inflammatory process caused by coronavirus can also create a vicious cycle in controlling these diseases for patients.
Collapse
Affiliation(s)
- Yasaman Sharifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Yaas Diabetes and Metabolic Diseases Research Center, Indiana University School of Medicine, Indianapolis, IN 46202 US
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Mohammadi-Vajari
- Student of Medicine, School of Medicine, Gilan University of Medical Sciences, Rasht, Iran
| | - Seyed Morsal Mosallami Aghili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mehrdad
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Kashani
- Department of Obstetrics and Gynecology, Golestan University of Medical Sciences, Golestan, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpur
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
116
|
Sahebnasagh A, Nabavi SM, Kashani HRK, Abdollahian S, Habtemariam S, Rezabakhsh A. Anti-VEGF agents: As appealing targets in the setting of COVID-19 treatment in critically ill patients. Int Immunopharmacol 2021; 101:108257. [PMID: 34673299 PMCID: PMC8519896 DOI: 10.1016/j.intimp.2021.108257] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 01/04/2023]
Abstract
Recently, the medications used for the severe form of the coronavirus disease-19 (COVID-19) therapy are of particular interest. In this sense, it has been supposed that anti-VEGF compounds would be good candidates in the face of "cytokine storm" and intussuscepted angiogenesis due to having an appreciable anti-inflammatory effect. Therefore, they can be subjected to therapeutic protocols to manage acute respiratory distress syndrome (ARDS). Since the compelling evidence emphasized that VEGFs contribute to the inflammatory process and play a mainstay role in disease pathogenesis, in this review, we aimed to highlight the VEGF's plausible participation in the cytokine storm exacerbation in COVID-19. Next, the recent clinical advances regarding the anti-VEGF medications, including humanized monoclonal antibody, immunosuppressant, a tyrosine kinase inhibitor, and a cytokine inhibitor, have been addressed in the setting of COVID-19 treatment in critically ill patients. Together, retrieving the increased level of VEGF subsets, as well as antagonizing VEGF related receptors, could be helpful for the treatment of COVID-19, especially in those suffering from ARDS.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Safieh Abdollahian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
117
|
SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166260. [PMID: 34461258 PMCID: PMC8390448 DOI: 10.1016/j.bbadis.2021.166260] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation. Methods SARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses. Results Angiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients.
Collapse
|
118
|
Fabre M, Calvo P, Ruiz-Martinez S, Peran M, Oros D, Medel-Martinez A, Strunk M, Benito Ruesca R, Schoorlemmer J, Paules C. Frequent Placental SARS-CoV-2 in Patients with COVID-19-Associated Hypertensive Disorders of Pregnancy. Fetal Diagn Ther 2021; 48:801-811. [PMID: 34794139 PMCID: PMC8678236 DOI: 10.1159/000520179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
Abstract
Introduction Studies described an increased frequency of hypertensive disorders of pregnancy (HDP) after a COVID-19 episode. There is limited evidence about SARS-CoV-2 viral load in placenta. This study aimed to investigate the relationship between SARS-CoV-2 viral load in the placenta and clinical development of HDP after COVID-19 throughout different periods of gestation. Methods This is a case-control study in women with and without gestational hypertensive disorders after SARS-CoV-2 infection diagnosed by RT-PCR during pregnancy. Patients were matched by gestational age at the moment of COVID-19 diagnosis. We performed an analysis of SARS-CoV-2 RNA levels in placenta. Results A total of 28 women were enrolled. Sixteen patients were diagnosed with COVID-19 during the third trimester and the remaining 12 patients in the other trimesters. Ten placentas (35.7%) were positive for SARS-CoV-2, 9 of them (9/14, 64.3%) belonged to the HDP group versus 1 (1/14, 7.2%) in the control group (p = 0.009). Those cases with the highest loads of viral RNA developed severe preeclampsia (PE). Conclusion Among women diagnosed with COVID-19 during pregnancy, the presence of SARS-CoV-2 in the placenta was more frequent among women suffering from PE or gestational hypertension. Furthermore, the most severe cases of HDP were associated with high placental viral load, not necessarily associated with a positive nasopharyngeal RT-PCR at delivery. Our data suggest that SARS-CoV-2 infection during pregnancy could trigger gestational hypertensive disorders through persistent placental infection and resulting placental damage.
Collapse
Affiliation(s)
- Marta Fabre
- Instituto de Investigación Sanitario de Aragón (IIS Aragon) Biochemistry Department, Hospital Clínico Universitario Lozano Blesa Zaragoza, Zaragoza, Spain, .,Placental Pathophysiology & Fetal Programming Research Group, B46_20R & GIIS-028 Del IISA, Instituto de Investigación Sanitario de Aragón (IIS Aragon), Zaragoza, Spain,
| | - Pilar Calvo
- Placental Pathophysiology & Fetal Programming Research Group, B46_20R & GIIS-028 Del IISA, Instituto de Investigación Sanitario de Aragón (IIS Aragon), Zaragoza, Spain.,Instituto de Investigación Sanitario de Aragón (IIS Aragon), Obstetrics Department, Hospital Clínico Universitario Lozano Blesa Zaragoza, Zaragoza, Spain
| | - Sara Ruiz-Martinez
- Placental Pathophysiology & Fetal Programming Research Group, B46_20R & GIIS-028 Del IISA, Instituto de Investigación Sanitario de Aragón (IIS Aragon), Zaragoza, Spain.,Instituto de Investigación Sanitario de Aragón (IIS Aragon), Obstetrics Department, Hospital Clínico Universitario Lozano Blesa Zaragoza, Zaragoza, Spain.,Red de Salud Materno Infantil y Del Desarrollo (SAMID), RETICS, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de La Investigación y Fondo Europeo de Desarrollo Regional (FEDER) Ref: RD16/0022/0013, Zaragoza, Spain
| | - Maria Peran
- Instituto de Investigación Sanitario de Aragón (IIS Aragon) Biochemistry Department, Hospital Clínico Universitario Lozano Blesa Zaragoza, Zaragoza, Spain.,Placental Pathophysiology & Fetal Programming Research Group, B46_20R & GIIS-028 Del IISA, Instituto de Investigación Sanitario de Aragón (IIS Aragon), Zaragoza, Spain
| | - Daniel Oros
- Placental Pathophysiology & Fetal Programming Research Group, B46_20R & GIIS-028 Del IISA, Instituto de Investigación Sanitario de Aragón (IIS Aragon), Zaragoza, Spain.,Instituto de Investigación Sanitario de Aragón (IIS Aragon), Obstetrics Department, Hospital Clínico Universitario Lozano Blesa Zaragoza, Zaragoza, Spain.,Red de Salud Materno Infantil y Del Desarrollo (SAMID), RETICS, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de La Investigación y Fondo Europeo de Desarrollo Regional (FEDER) Ref: RD16/0022/0013, Zaragoza, Spain
| | - Ana Medel-Martinez
- Laboratorio Satélite, Instituto Aragonés de Ciencias de La Salud (IACS), Centro de Investigación Biomédica de Aragón (CIBA), Zaragoza, Spain
| | - Mark Strunk
- Laboratorio Satélite, Instituto Aragonés de Ciencias de La Salud (IACS), Centro de Investigación Biomédica de Aragón (CIBA), Zaragoza, Spain.,Sequencing and Functional Genomics, Instituto Aragonés de Ciencias de La Salud (IACS), Centro de Investigación Biomédica de Aragón (CIBA), Zaragoza, Spain
| | - Rafael Benito Ruesca
- Microbiology Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain, Universidad de Zaragoza, IIS Aragon, Zaragoza, Spain
| | - Jon Schoorlemmer
- Placental Pathophysiology & Fetal Programming Research Group, B46_20R & GIIS-028 Del IISA, Instituto de Investigación Sanitario de Aragón (IIS Aragon), Zaragoza, Spain.,Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain.,ARAID Foundation, Zaragoza, Spain
| | - Cristina Paules
- Placental Pathophysiology & Fetal Programming Research Group, B46_20R & GIIS-028 Del IISA, Instituto de Investigación Sanitario de Aragón (IIS Aragon), Zaragoza, Spain.,Instituto de Investigación Sanitario de Aragón (IIS Aragon), Obstetrics Department, Hospital Clínico Universitario Lozano Blesa Zaragoza, Zaragoza, Spain.,Red de Salud Materno Infantil y Del Desarrollo (SAMID), RETICS, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de La Investigación y Fondo Europeo de Desarrollo Regional (FEDER) Ref: RD16/0022/0013, Zaragoza, Spain
| |
Collapse
|
119
|
Karki P, Birukova AA. Microtubules as Major Regulators of Endothelial Function: Implication for Lung Injury. Front Physiol 2021; 12:758313. [PMID: 34777018 PMCID: PMC8582326 DOI: 10.3389/fphys.2021.758313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Endothelial dysfunction has been attributed as one of the major complications in COVID-19 patients, a global pandemic that has already caused over 4 million deaths worldwide. The dysfunction of endothelial barrier is characterized by an increase in endothelial permeability and inflammatory responses, and has even broader implications in the pathogenesis of acute respiratory syndromes such as ARDS, sepsis and chronic illnesses represented by pulmonary arterial hypertension and interstitial lung disease. The structural integrity of endothelial barrier is maintained by cytoskeleton elements, cell-substrate focal adhesion and adhesive cell junctions. Agonist-mediated changes in endothelial permeability are directly associated with reorganization of actomyosin cytoskeleton leading to cell contraction and opening of intercellular gaps or enhancement of cortical actin cytoskeleton associated with strengthening of endothelial barrier. The role of actin cytoskeleton remodeling in endothelial barrier regulation has taken the central stage, but the impact of microtubules in this process remains less explored and under-appreciated. This review will summarize the current knowledge on the crosstalk between microtubules dynamics and actin cytoskeleton remodeling, describe the signaling mechanisms mediating this crosstalk, discuss epigenetic regulation of microtubules stability and its nexus with endothelial barrier maintenance, and overview a role of microtubules in targeted delivery of signaling molecules regulating endothelial permeability and inflammation.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
120
|
Abstract
Emerging evidence suggests that endothelial activation plays a central role in the pathogenesis of acute respiratory distress syndrome (ARDS) and multiorgan failure in patients with coronavirus disease 2019 (COVID-19). However, the molecular mechanisms underlying endothelial activation in COVID-19 patients remain unclear. In this study, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins that potently activate human endothelial cells were screened to elucidate the molecular mechanisms involved in endothelial activation. It was found that nucleocapsid protein (NP) of SARS-CoV-2 significantly activated human endothelial cells through Toll-like receptor 2 (TLR2)/NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Remarkably, though the protein sequences of N proteins from coronaviruses are highly conserved, only NP from SARS-CoV-2 induced endothelial activation. The NPs from other coronaviruses such as SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), HUB1-CoV, and influenza virus H1N1 did not activate endothelial cells. These findings are consistent with the results from clinical investigations showing broad endotheliitis and organ injury in severe COVID-19 patients. In conclusion, the study provides insights on SARS-CoV-2-induced vasculopathy and coagulopathy and suggests that simvastatin, an FDA-approved lipid-lowering drug, may help prevent the pathogenesis and improve the outcome of COVID-19 patients. IMPORTANCE Coronavirus disease 2019 (COVID-19), caused by the betacoronavirus SARS-CoV-2, is a worldwide challenge for health care systems. The leading cause of mortality in patients with COVID-19 is hypoxic respiratory failure from acute respiratory distress syndrome (ARDS). To date, pulmonary endothelial cells (ECs) have been largely overlooked as a therapeutic target in COVID-19, yet emerging evidence suggests that these cells contribute to the initiation and propagation of ARDS by altering vessel barrier integrity, promoting a procoagulative state, inducing vascular inflammation and mediating inflammatory cell infiltration. Therefore, a better mechanistic understanding of the vasculature is of utmost importance. In this study, we screened the SARS-CoV-2 viral proteins that potently activate human endothelial cells and found that nucleocapsid protein (NP) significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Our results provide insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients.
Collapse
|
121
|
Deek SA. BPC 157 as Potential Treatment for COVID-19. Med Hypotheses 2021; 158:110736. [PMID: 34798584 PMCID: PMC8575535 DOI: 10.1016/j.mehy.2021.110736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
The emergence of coronavirus disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. COVID-19 is largely seen as a thrombotic and vascular disease targeting endothelial cells (ECs) throughout the body that can provoke the breakdown of central vascular functions. This explains the complications and multi-organ failure seen in COVID-19 patients including acute respiratory distress syndrome, cardiovascular complications, liver damage, and neurological damage. Acknowledging the comorbidities and potential organ injuries throughout the course of COVID-19 is therefore crucial in the clinical management of patients. Here we discuss BPC 157, based primarily on animal model data, as a novel agent that can improve the clinical management of COVID-19. BPC 157 is a peptide that has demonstrated anti-inflammatory, cytoprotective, and endothelial-protective effects in different organ systems in different species. BPC 157 activated endothelial nitric oxide synthase (eNOS) is associated with nitric oxide (NO) release, tissue repair and angiomodulatory properties which can lead to improved vascular integrity and immune response, reduced proinflammatory profile, and reduced critical levels of the disease. As a result, discussion of its use as a potential prophylactic and complementary treatment is critical. All examined treatments, although potentiality effective against COVID-19, need either appropriate drug development or clinical trials in humans to be suitable for clinical use.
Collapse
Affiliation(s)
- Sarah A Deek
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 78712 Austin, TX, USA.
| |
Collapse
|
122
|
Mesquida J, Caballer A, Cortese L, Vila C, Karadeniz U, Pagliazzi M, Zanoletti M, Pacheco AP, Castro P, García-de-Acilu M, Mesquita RC, Busch DR, Durduran T. Peripheral microcirculatory alterations are associated with the severity of acute respiratory distress syndrome in COVID-19 patients admitted to intermediate respiratory and intensive care units. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:381. [PMID: 34749792 PMCID: PMC8575160 DOI: 10.1186/s13054-021-03803-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Background COVID-19 is primarily a respiratory disease; however, there is also evidence that it causes endothelial damage in the microvasculature of several organs. The aim of the present study is to characterize in vivo the microvascular reactivity in peripheral skeletal muscle of severe COVID-19 patients. Methods This is a prospective observational study carried out in Spain, Mexico and Brazil. Healthy subjects and severe COVID-19 patients admitted to the intermediate respiratory (IRCU) and intensive care units (ICU) due to hypoxemia were studied. Local tissue/blood oxygen saturation (StO2) and local hemoglobin concentration (THC) were non-invasively measured on the forearm by near-infrared spectroscopy (NIRS). A vascular occlusion test (VOT), a three-minute induced ischemia, was performed in order to obtain dynamic StO2 parameters: deoxygenation rate (DeO2), reoxygenation rate (ReO2), and hyperemic response (HAUC). In COVID-19 patients, the severity of ARDS was evaluated by the ratio between peripheral arterial oxygen saturation (SpO2) and the fraction of inspired oxygen (FiO2) (SF ratio). Results Healthy controls (32) and COVID-19 patients (73) were studied. Baseline StO2 and THC did not differ between the two groups. Dynamic VOT-derived parameters were significantly impaired in COVID-19 patients showing lower metabolic rate (DeO2) and diminished endothelial reactivity. At enrollment, most COVID-19 patients were receiving invasive mechanical ventilation (MV) (53%) or high-flow nasal cannula support (32%). Patients on MV were also receiving sedative agents (100%) and vasopressors (29%). Baseline StO2 and DeO2 negatively correlated with SF ratio, while ReO2 showed a positive correlation with SF ratio. There were significant differences in baseline StO2 and ReO2 among the different ARDS groups according to SF ratio, but not among different respiratory support therapies. Conclusion Patients with severe COVID-19 show systemic microcirculatory alterations suggestive of endothelial dysfunction, and these alterations are associated with the severity of ARDS. Further evaluation is needed to determine whether these observations have prognostic implications. These results represent interim findings of the ongoing HEMOCOVID-19 trial. Trial registration ClinicalTrials.gov NCT04689477. Retrospectively registered 30 December 2020. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03803-2.
Collapse
Affiliation(s)
- Jaume Mesquida
- Àrea de Crítics, Parc Taulí Hospital Universitari, Parc Taulí, 1, 08208, Sabadell, Spain.
| | - A Caballer
- Àrea de Crítics, Parc Taulí Hospital Universitari, Parc Taulí, 1, 08208, Sabadell, Spain
| | - L Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - C Vila
- Servei de Medicina Intensiva, Parc Salut Mar Hospital, Barcelona, Spain
| | - U Karadeniz
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - M Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - M Zanoletti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | | | - P Castro
- Medical Intensive Care Unit, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - M García-de-Acilu
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - R C Mesquita
- Institute of Physics, University of Campinas, Campinas, Brazil
| | - D R Busch
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - T Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | |
Collapse
|
123
|
Carbon dioxide inhibits COVID-19-type proinflammatory responses through extracellular signal-regulated kinases 1 and 2, novel carbon dioxide sensors. Cell Mol Life Sci 2021; 78:8229-8242. [PMID: 34741187 PMCID: PMC8571007 DOI: 10.1007/s00018-021-04005-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signalling pathways are crucial for developmental processes, oncogenesis, and inflammation, including the production of proinflammatory cytokines caused by reactive oxygen species and upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are no drugs that can effectively prevent excessive inflammatory responses in endothelial cells in the lungs, heart, brain, and kidneys, which are considered the main causes of severe coronavirus disease 2019 (COVID-19). In this work, we demonstrate that human MAPKs, i.e. extracellular signal-regulated kinases 1 and 2 (ERK1/2), are CO2 sensors and CO2 is an efficient anti-inflammatory compound that exerts its effects through inactivating ERK1/2 in cultured endothelial cells when the CO2 concentration is elevated. CO2 is a potent inhibitor of cellular proinflammatory responses caused by H2O2 or the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. ERK1/2 activated by the combined action of RBD and cytokines crucial for the development of severe COVID-19, i.e. interferon-gamma (IFNγ) and tumour necrosis factor-α (TNFα), are more effectively inactivated by CO2 than by dexamethasone or acetylsalicylic acid in human bronchial epithelial cells. Previously, many preclinical and clinical studies showed that the transient application of 5–8% CO2 is safe and effective in the treatment of many diseases. Therefore, our research indicates that CO2 may be used for the treatment of COVID-19 as well as the modification of hundreds of cellular pathways.
Collapse
|
124
|
Puhm F, Flamand L, Boilard E. Platelet extracellular vesicles in COVID-19: Potential markers and makers. J Leukoc Biol 2021; 111:63-74. [PMID: 34730839 PMCID: PMC8667644 DOI: 10.1002/jlb.3mir0221-100r] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Platelets and platelet extracellular vesicles (pEV) are at the crossroads of coagulation and immunity. Extracellular vesicles are messengers that not only transmit signals between cells, but also provide information about the status of their cell of origin. Thus, pEVs have potential as both biomarkers of platelet activation and contributors to pathology. Coronavirus Disease‐19 (COVID‐19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is a complex disease affecting multiple organs and is characterized by a high degree of inflammation and risk of thrombosis in some patients. In this review, we introduce pEVs as valuable biomarkers in disease with a special focus on their potential as predictors of and contributors to COVID‐19.
Collapse
Affiliation(s)
- Florian Puhm
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| | - Louis Flamand
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| |
Collapse
|
125
|
Espinoza-Espinoza DAK, Dulanto-Vargas JA, Cáceres-LaTorre OA, Lamas-Castillo FE, Flores-Mir C, Cervantes-Ganoza LA, López-Gurreonero C, Ladera-Castañeda MI, Cayo-Rojas CF. Association Between Periodontal Disease and the Risk of COVID-19 Complications and Mortality: A Systematic Review. J Int Soc Prev Community Dent 2021; 11:626-638. [PMID: 35036371 PMCID: PMC8713491 DOI: 10.4103/jispcd.jispcd_189_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
AIM The COVID-19 pandemic has strained the world's healthcare systems. Studies have identified how the COVID-19 infections are linked to several co-morbidities such as hypertension, diabetes, cardiovascular disease, renal and pulmonary disease. It is known that periodontal disease (PD) shares the same risk factors. Moreover, both diseases are characterized by an exaggerated immune response. The aim of the study was to investigate the available evidence of a potential association between PD and the risk of COVID-19 complications and mortality. MATERIALS AND METHODS MEDLINE/PubMed, EMBASE, Scopus, and ProQuest were searched. Studies that assess the association between PD and the risk of COVID-19 complications and mortality were eligible for inclusion. Two independent reviewers performed the selection of articles and data extraction. The New Castle Ottawa Scale was used to assess the quality of the selected studies, and the GRADE system was used to evaluate the level of confidence to support the conclusions. RESULTS Only two studies met the eligibility criteria. One study had a low risk of bias, whereas the other had a high risk of bias. CONCLUSION The level of confidence in the available evidence is very low. A close association between periodontitis and the risk of COVID-19 complications and mortality can neither be supported nor refuted.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Flores-Mir
- Department of Orthodontics, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Marysela Irene Ladera-Castañeda
- Academic Program of Stomatology, Universidad Privada San Juan Bautista, Lima e Ica 15066, Peru
- Universidad Nacional Federico Villarreal, Postgraduate School, “Grupo de Investigación Salud y Bienestar Global” and Faculty of Dentistry, Lima 15084, Peru
| | - César Félix Cayo-Rojas
- Academic Program of Stomatology, Universidad Privada San Juan Bautista, Lima e Ica 15066, Peru
| |
Collapse
|
126
|
Biomarkers of endothelial dysfunction and outcomes in coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis. Microvasc Res 2021; 138:104224. [PMID: 34273359 PMCID: PMC8279939 DOI: 10.1016/j.mvr.2021.104224] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Several studies have reported that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can directly infect endothelial cells, and endothelial dysfunction is often found in severe cases of coronavirus disease 2019 (COVID-19). To better understand the prognostic values of endothelial dysfunction in COVID-19-associated coagulopathy, we conducted a systematic review and meta-analysis to assess biomarkers of endothelial cells in patients with COVID-19. METHODS A literature search was conducted on online databases for observational studies evaluating biomarkers of endothelial dysfunction and composite poor outcomes in COVID-19 patients. RESULTS A total of 1187 patients from 17 studies were included in this analysis. The estimated pooled means for von Willebrand Factor (VWF) antigen levels in COVID-19 patients was higher compared to healthy control (306.42 [95% confidence interval (CI) 291.37-321.48], p < 0.001; I2:86%), with the highest VWF antigen levels was found in deceased COVID-19 patients (448.57 [95% CI 407.20-489.93], p < 0.001; I2:0%). Meta-analysis showed that higher plasma levels of VWF antigen, tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor-1 antigen (PAI-1) antigen, and soluble thrombomodulin (sTM) were associated with composite poor outcome in COVID-19 patients ([standardized mean difference (SMD) 0.74 [0.33-1.16], p < 0.001; I2:80.4%], [SMD 0.55 [0.19-0.92], p = 0.003; I2:6.4%], [SMD 0.33 [0.04-0.62], p = 0.025; I2:7.9%], and [SMD 0.55 [0.10-0.99], p = 0.015; I2:23.6%], respectively). CONCLUSION The estimated pooled means show increased levels of VWF antigen in COVID-19 patients. Several biomarkers of endothelial dysfunction, including VFW antigen, t-PA, PAI-1, and sTM, are significantly associated with increased composite poor outcomes in patients with COVID-19. PROSPERO REGISTRATION NUMBER CRD42021228821.
Collapse
|
127
|
Iglesias MJ, Kruse LD, Sanchez-Rivera L, Enge L, Dusart P, Hong MG, Uhlén M, Renné T, Schwenk JM, Bergstrom G, Odeberg J, Butler LM. Identification of Endothelial Proteins in Plasma Associated With Cardiovascular Risk Factors. Arterioscler Thromb Vasc Biol 2021; 41:2990-3004. [PMID: 34706560 PMCID: PMC8608011 DOI: 10.1161/atvbaha.121.316779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: Endothelial cell (EC) dysfunction is a well-established response to cardiovascular disease risk factors, such as smoking and obesity. Risk factor exposure can modify EC signaling and behavior, leading to arterial and venous disease development. Here, we aimed to identify biomarker panels for the assessment of EC dysfunction, which could be useful for risk stratification or to monitor treatment response. Approach and Results: We used affinity proteomics to identify EC proteins circulating in plasma that were associated with cardiovascular disease risk factor exposure. Two hundred sixteen proteins, which we previously predicted to be EC-enriched across vascular beds, were measured in plasma samples (N=1005) from the population-based SCAPIS (Swedish Cardiopulmonary Bioimage Study) pilot. Thirty-eight of these proteins were associated with body mass index, total cholesterol, low-density lipoprotein, smoking, hypertension, or diabetes. Sex-specific analysis revealed that associations predominantly observed in female- or male-only samples were most frequently with the risk factors body mass index, or total cholesterol and smoking, respectively. We show a relationship between individual cardiovascular disease risk, calculated with the Framingham risk score, and the corresponding biomarker profiles. Conclusions: EC proteins in plasma could reflect vascular health status.
Collapse
Affiliation(s)
- Maria J Iglesias
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø (M.J.I., J.O.)
| | - Larissa D Kruse
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Laura Sanchez-Rivera
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Linnea Enge
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Philip Dusart
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Mun-Gwan Hong
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, Germany (T.R.).,Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland (T.R.).,Centre for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany (T.R.)
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Göran Bergstrom
- Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden (G.B.)
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø (M.J.I., J.O.).,Department of Clinical Medicine, The Arctic University of Norway, Tromsø (J.O., L.M.B.).,Coagulation Unit, Department of Hematology (J.O.), Karolinska University Hospital, Stockholm, Sweden
| | - Lynn M Butler
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.).,Department of Clinical Medicine, The Arctic University of Norway, Tromsø (J.O., L.M.B.).,Clinical Chemistry, Karolinska University Laboratory (L.M.B.), Karolinska University Hospital, Stockholm, Sweden.,Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.M.B.)
| |
Collapse
|
128
|
Ai J, Hong W, Wu M, Wei X. Pulmonary vascular system: A vulnerable target for COVID-19. MedComm (Beijing) 2021; 2:531-547. [PMID: 34909758 PMCID: PMC8662299 DOI: 10.1002/mco2.94] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
The number of coronavirus disease 2019 (COVID‐19) cases has been increasing significantly, and the disease has evolved into a global pandemic, posing an unprecedented challenge to the healthcare community. Angiotensin‐converting enzyme 2, the binding and entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in hosts, is also expressed on pulmonary vascular endothelium; thus, pulmonary vasculature is a potential target in COVID‐19. Indeed, pulmonary vascular thickening is observed by early clinical imaging, implying a tropism of SARS‐CoV‐2 for pulmonary vasculature. Recent studies reported that COVID‐19 is associated with vascular endothelial damage and dysfunction along with inflammation, coagulopathy, and microthrombosis; all of these pathologic changes are the hallmarks of pulmonary vascular diseases. Notwithstanding the not fully elucidated effects of COVID‐19 on pulmonary vasculature, the vascular endotheliopathy that occurs after infection is attributed to direct infection and indirect damage mainly caused by renin‐angiotensin‐aldosterone system imbalance, coagulation cascade, oxidative stress, immune dysregulation, and intussusceptive angiogenesis. Degradation of endothelial glycocalyx exposes endothelial cell (EC) surface receptors to the vascular lumen, which renders pulmonary ECs more susceptible to SARS‐CoV‐2 infection. The present article reviews the potential pulmonary vascular pathophysiology and clinical presentations in COVID‐19 to provide a basis for clinicians and scientists, providing insights into the development of therapeutic strategies targeting pulmonary vasculature.
Collapse
Affiliation(s)
- Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan PR China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan PR China
| | - Min Wu
- Department of Biomedical Sciences School of Medicine and Health Sciences University of North Dakota Grand Forks North Dakota USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan PR China
| |
Collapse
|
129
|
Ntatsoulis K, Karampitsakos T, Tsitoura E, Stylianaki EA, Matralis AN, Tzouvelekis A, Antoniou K, Aidinis V. Commonalities Between ARDS, Pulmonary Fibrosis and COVID-19: The Potential of Autotaxin as a Therapeutic Target. Front Immunol 2021; 12:687397. [PMID: 34671341 PMCID: PMC8522582 DOI: 10.3389/fimmu.2021.687397] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Severe COVID-19 is characterized by acute respiratory distress syndrome (ARDS)-like hyperinflammation and endothelial dysfunction, that can lead to respiratory and multi organ failure and death. Interstitial lung diseases (ILD) and pulmonary fibrosis confer an increased risk for severe disease, while a subset of COVID-19-related ARDS surviving patients will develop a fibroproliferative response that can persist post hospitalization. Autotaxin (ATX) is a secreted lysophospholipase D, largely responsible for the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling lysophospholipid with multiple effects in pulmonary and immune cells. In this review, we discuss the similarities of COVID-19, ARDS and ILDs, and suggest ATX as a possible pathologic link and a potential common therapeutic target.
Collapse
Affiliation(s)
- Konstantinos Ntatsoulis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Theodoros Karampitsakos
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Eliza Tsitoura
- Laboratory of Molecular & Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Elli-Anna Stylianaki
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Alexios N. Matralis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Katerina Antoniou
- Laboratory of Molecular & Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Vassilis Aidinis
- Institute of Bio-Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
130
|
BONEVA BP, DIMOVA MP, NIKOLOV NK, STOYANOVA BI, ILCHEV BN. Arterial thrombosis: the obscure threat in COVID-19 pandemic victims. ITALIAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY 2021. [DOI: 10.23736/s1824-4777.21.01509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
131
|
Shabaka A, Gruss E, Landaluce‐Triska E, Gallego‐Valcarce E, Cases‐Corona C, Ocaña J, Tato‐Ribera A, Lopez‐Revuelta K, Furaz‐Czerpak KR, Fernández‐Juárez G. Late thrombotic complications after SARS-CoV-2 infection in hemodialysis patients. Hemodial Int 2021; 25:507-514. [PMID: 34060217 PMCID: PMC8239758 DOI: 10.1111/hdi.12935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION There is an increased risk of thrombotic complications in patients with COVID-19. Hemodialysis patients are already at an increased risk for thromboembolic events such as stroke and pulmonary embolism. The aim of our study was to determine the incidence of late thrombotic complications (deep vein thrombosis, pulmonary embolism, stroke, new-onset vascular access thrombosis) in maintenance hemodialysis patients after recovery from COVID-19. METHODS We performed a retrospective cohort study of 200 prevalent hemodialysis patients in our center at the start of the pandemic. We excluded incident patients after the cohort entry date and those who required hemodialysis for acute kidney injury, and excluded patients with less than 1 month follow-up due to kidney transplantation or death from non-thrombotic causes. FINDINGS One-hundred and eighty five prevalent hemodialysis patients finally met the inclusion criteria; 37 patients (17.6%) had SARS-CoV-2 infection, out of which 10 (27%) died during the acute phase of disease without evidence of thrombotic events. There was an increased risk of thrombotic events in COVID-19 survivors compared to the non-infected cohort (18.5% vs. 1.9%, p = 0.002) after a median follow-up of 7 months. Multivariate regression analysis showed that COVID-19 infection increased risk for late thrombotic events adjusted for age, sex, hypertension, diabetes, antithrombotic treatment, and previous thrombotic events (Odds Ratio (OR) 26.4, 95% confidence interval 2.5-280.6, p = 0.01). Clinical and laboratory markers did not predict thrombotic events. CONCLUSIONS There is an increased risk of late thrombotic complications in hemodialysis patients after infection with COVID-19. Further studies should evaluate the benefit of prolonged prophylactic anticoagulation in hemodialysis patients after recovery from COVID-19.
Collapse
Affiliation(s)
- Amir Shabaka
- Nephrology DepartmentHospital Universitario Fundación AlcorcónMadridSpain
| | - Enrique Gruss
- Nephrology DepartmentHospital Universitario Fundación AlcorcónMadridSpain
| | | | | | - Clara Cases‐Corona
- Nephrology DepartmentHospital Universitario Fundación AlcorcónMadridSpain
| | - Javier Ocaña
- Nephrology DepartmentHospital Universitario Fundación AlcorcónMadridSpain
| | - Ana Tato‐Ribera
- Nephrology DepartmentHospital Universitario Fundación AlcorcónMadridSpain
| | | | | | | |
Collapse
|
132
|
Neurologische Manifestationen des Post-COVID-Syndroms. CARDIOVASC 2021. [PMCID: PMC8528560 DOI: 10.1007/s15027-021-3568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
133
|
Duecker RP, Adam EH, Wirtz S, Gronau L, Khodamoradi Y, Eberhardt FJ, Donath H, Gutmann D, Vehreschild MJGT, Zacharowski K, Kreyenberg H, Chiocchetti AG, Zielen S, Schubert R. The MiR-320 Family Is Strongly Downregulated in Patients with COVID-19 Induced Severe Respiratory Failure. Int J Mol Sci 2021; 22:ijms221910351. [PMID: 34638691 PMCID: PMC8508658 DOI: 10.3390/ijms221910351] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
A high incidence of thromboembolic events associated with high mortality has been reported in severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections with respiratory failure. The present study characterized post-transcriptional gene regulation by global microRNA (miRNA) expression in relation to activated coagulation and inflammation in 21 critically ill SARS-CoV-2 patients. The cohort consisted of patients with moderate respiratory failure (n = 11) and severe respiratory failure (n = 10) at an acute stage (day 0-3) and in the later course of the disease (>7 days). All patients needed supplemental oxygen and severe patients were defined by the requirement of positive pressure ventilation (intubation). Levels of D-dimers, activated partial thromboplastin time (aPTT), C-reactive protein (CRP), and interleukin (IL)-6 were significantly higher in patients with severe compared with moderate respiratory failure. Concurrently, next generation sequencing (NGS) analysis demonstrated increased dysregulation of miRNA expression with progression of disease severity connected to extreme downregulation of miR-320a, miR-320b and miR-320c. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed involvement in the Hippo signaling pathway, the transforming growth factor (TGF)-β signaling pathway and in the regulation of adherens junctions. The expression of all miR-320 family members was significantly correlated with CRP, IL-6, and D-dimer levels. In conclusion, our analysis underlines the importance of thromboembolic processes in patients with respiratory failure and emphasizes miRNA-320s as potential biomarkers for severe progressive SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ruth P. Duecker
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (S.W.); (L.G.); (H.D.); (D.G.); (S.Z.); (R.S.)
- Correspondence:
| | - Elisabeth H. Adam
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy 2, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (E.H.A.); (K.Z.)
| | - Sarah Wirtz
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (S.W.); (L.G.); (H.D.); (D.G.); (S.Z.); (R.S.)
| | - Lucia Gronau
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (S.W.); (L.G.); (H.D.); (D.G.); (S.Z.); (R.S.)
- Department of Food Technology, University of Applied Sciences Fulda, 36037 Fulda, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (Y.K.); (F.J.E.); (M.J.G.T.V.)
| | - Fabian J. Eberhardt
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (Y.K.); (F.J.E.); (M.J.G.T.V.)
| | - Helena Donath
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (S.W.); (L.G.); (H.D.); (D.G.); (S.Z.); (R.S.)
| | - Desiree Gutmann
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (S.W.); (L.G.); (H.D.); (D.G.); (S.Z.); (R.S.)
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (Y.K.); (F.J.E.); (M.J.G.T.V.)
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy 2, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (E.H.A.); (K.Z.)
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescence, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany;
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany;
| | - Stefan Zielen
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (S.W.); (L.G.); (H.D.); (D.G.); (S.Z.); (R.S.)
| | - Ralf Schubert
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (S.W.); (L.G.); (H.D.); (D.G.); (S.Z.); (R.S.)
| |
Collapse
|
134
|
Kluck GEG, Yoo JA, Sakarya EH, Trigatti BL. Good Cholesterol Gone Bad? HDL and COVID-19. Int J Mol Sci 2021; 22:10182. [PMID: 34638523 PMCID: PMC8507803 DOI: 10.3390/ijms221910182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The transmissible respiratory disease COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide since its first reported outbreak in December of 2019 in Wuhan, China. Since then, multiple studies have shown an inverse correlation between the levels of high-density lipoprotein (HDL) particles and the severity of COVID-19, with low HDL levels being associated with an increased risk of severe outcomes. Some studies revealed that HDL binds to SARS-CoV-2 particles via the virus's spike protein and, under certain conditions, such as low HDL particle concentrations, it facilitates SARS-CoV-2 binding to angiotensin-converting enzyme 2 (ACE2) and infection of host cells. Other studies, however, reported that HDL suppressed SARS-CoV-2 infection. In both cases, the ability of HDL to enhance or suppress virus infection appears to be dependent on the expression of the HDL receptor, namely, the Scavenger Receptor Class B type 1 (SR-B1), in the target cells. SR-B1 and HDL represent crucial mediators of cholesterol metabolism. Herein, we review the complex role of HDL and SR-B1 in SARS-CoV-2-induced disease. We also review recent advances in our understanding of HDL structure, properties, and function during SARS-CoV-2 infection and the resulting COVID-19 disease.
Collapse
Affiliation(s)
| | | | | | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute and Department of Biochemistry and Biomedical Sciences, McMaster University and Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada; (G.E.G.K.); (J.-A.Y.); (E.H.S.)
| |
Collapse
|
135
|
Haimei MA. Concern About the Adverse Effects of Thrombocytopenia and Thrombosis After Adenovirus-Vectored COVID-19 Vaccination. Clin Appl Thromb Hemost 2021; 27:10760296211040110. [PMID: 34541935 PMCID: PMC8642058 DOI: 10.1177/10760296211040110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Since the outbreak of Covid-19 in December, 2019, scientists worldwide have been
committed to developing COVID-19 vaccines. Only when most people have immunity
to SARS-CoV-2, COVID-19 can reduce even wholly overcome. So far, nine kinds of
COVID-19 vaccines have passed the phase III clinical trials and have approved
for use. At the same time, adverse reactions after COVID-19 vaccination have
also reported. This paper focuses on the adverse effects of thrombosis and
thrombocytopenia caused by the COVID-19 vaccine, especially the
adenovirus-vector vaccine from AstraZeneca and Pfizer, and discusses its
mechanism and possible countermeasures.
Collapse
Affiliation(s)
- M A Haimei
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
136
|
Yang MS, Oh BK, Yang D, Oh EY, Kim Y, Kang KW, Lim CW, Koh GY, Lee SM, Kim B. Ultra- and micro-structural changes of respiratory tracts in SARS-CoV-2 infected Syrian hamsters. Vet Res 2021; 52:121. [PMID: 34530902 PMCID: PMC8444536 DOI: 10.1186/s13567-021-00988-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic is causing a global crisis. It is still unresolved. Although many therapies and vaccines are being studied, they are still in their infancy. As this pandemic continues, rapid and accurate research for the development of therapies and vaccines is needed. Therefore, it is necessary to understand characteristics of diseases caused by SARS-CoV-2 through animal models. Syrian hamsters are known to be susceptible to SARS-CoV-2. They were intranasally inoculated with SARS-CoV-2. At 2, 4, 8, 12, and 16 days post-infection (dpi), these hamsters were euthanized, and tissues were collected for ultrastructural and microstructural examinations. Microscopic lesions were prominent in the upper and lower respiratory tracts from 2 and 4 dpi groups, respectively. The respiratory epithelium in the trachea, bronchiole, and alveolar showed pathological changes. Inflammatory cells including neutrophils, lymphocytes, macrophages, and eosinophils were infiltrated in/around tracheal lamina propria, pulmonary vessels, alveoli, and bronchiole. In pulmonary lesions, alveolar wall was thickened with infiltrated inflammatory cells, mainly neutrophils and macrophages. In the trachea, epithelial damages started from 2 dpi and recovered from 8 dpi, consistent with microscopic results, High levels of SARS-CoV-2 nucleoprotein were detected at 2 dpi and 4 dpi. In the lung, lesions were most severe at 8 dpi. Meanwhile, high levels of SARS-CoV-2 were detected at 4 dpi. Electron microscopic examinations revealed cellular changes in the trachea epithelium and alveolar epithelium such as vacuolation, sparse micro-organelle, and poor cellular margin. In the trachea epithelium, the number of cytoplasmic organelles was diminished, and small vesicles were prominent from 2 dpi. Some of these electron-lucent vesicles were filled with virion particles. From 8 dpi, the trachea epithelium started to recover. Because of shrunken nucleus and swollen cytoplasm, the N/C ratio of type 2 pneumocyte decreased at 8 and 12 dpi. From 8 dpi, lamellar bodies on type 2 pneumocyte cytoplasm were increasingly observed. Their number then decreased from 16 dpi. However, there was no significant change in type 1 pneumocyte. Viral vesicles were only observed in the cytoplasm of type 2 pneumocyte. In conclusion, ultra- and micro-structural changes presented in this study may provide useful information for SARS-CoV-2 studies in various fields.
Collapse
Affiliation(s)
- Myeon-Sik Yang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Byung Kwan Oh
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Daram Yang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Eun Young Oh
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, South Korea
| | - Yeonhwa Kim
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, South Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan, 54596, South Korea
| | - Chae Woong Lim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Sang-Myeong Lee
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, South Korea.
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
137
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|
138
|
Increased Autotaxin Levels in Severe COVID-19, Correlating with IL-6 Levels, Endothelial Dysfunction Biomarkers, and Impaired Functions of Dendritic Cells. Int J Mol Sci 2021; 22:ijms221810006. [PMID: 34576169 PMCID: PMC8469279 DOI: 10.3390/ijms221810006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19. Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels, as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19. Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its pharmacological targeting might represent an additional therapeutic option, both during and after hospitalization.
Collapse
|
139
|
Endothelial Cell Activation by SARS-CoV-2 Spike S1 Protein: A Crosstalk between Endothelium and Innate Immune Cells. Biomedicines 2021; 9:biomedicines9091220. [PMID: 34572407 PMCID: PMC8470710 DOI: 10.3390/biomedicines9091220] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background. Emerging evidences suggest that in severe COVID-19, multi-organ failure is associated with a hyperinflammatory state (the so-called “cytokine storm”) in combination with the development of a prothrombotic state. The central role of endothelial dysfunction in the pathogenesis of the disease is to date accepted, but the precise mechanisms underlying the associated coagulopathy remain unclear. Whether the alterations in vascular homeostasis directly depend upon the SARS-CoV-2 infection of endothelial cells or, rather, occur secondarily to the activation of the inflammatory response is still a matter of debate. Here, we address the effect of the SARS-CoV-2 spike S1 protein on the activation of human lung microvascular endothelial cells (HLMVEC). In particular, the existence of an endothelium-macrophage crosstalk in the response to the spike protein has been explored. Methods and Results. The effect of the spike protein is addressed in human lung microvascular endothelial cells (HLMVEC), either directly or after incubation with a conditioned medium (CM) of human monocyte-derived macrophages (MDM) previously activated by the spike S1 protein (CM-MDM). Both MDM and HLMVEC are activated in response to the S1 protein, with an increased expression of pro-inflammatory mediators. However, when HLMVEC are exposed to CM-MDM, an enhanced cell activation occurs in terms of the expression of adhesion molecules, pro-coagulant markers, and chemokines. Under this experimental condition, ICAM-1 and VCAM-1, the chemokines CXCL8/IL-8, CCL2/MCP1, and CXCL10/IP-10 as well as the protein tissue factor (TF) are markedly induced. Instead, a decrease of thrombomodulin (THBD) is observed. Conclusion. Our data suggest that pro-inflammatory mediators released by spike-activated macrophages amplify the activation of endothelial cells, likely contributing to the impairment of vascular integrity and to the development of a pro-coagulative endothelium.
Collapse
|
140
|
Safont B, Tarraso J, Rodriguez-Borja E, Fernández-Fabrellas E, Sancho-Chust JN, Molina V, Lopez-Ramirez C, Lope-Martinez A, Cabanes L, Andreu AL, Herrera S, Lahosa C, Ros JA, Rodriguez-Hermosa JL, Soriano JB, Moret-Tatay I, Carbonell-Asins JA, Mulet A, Signes-Costa J. Lung Function, Radiological Findings and Biomarkers of Fibrogenesis in a Cohort of COVID-19 Patients Six Months After Hospital Discharge. Arch Bronconeumol 2021; 58:142-149. [PMID: 34497426 PMCID: PMC8414844 DOI: 10.1016/j.arbres.2021.08.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 02/09/2023]
Abstract
Introduction Impairment in pulmonary function tests and radiological abnormalities are a major concern in COVID-19 survivors. Our aim is to evaluate functional respiratory parameters, changes in chest CT, and correlation with peripheral blood biomarkers involved in lung fibrosis at two and six months after SARS-CoV-2 pneumonia. Methods COVID-FIBROTIC (clinicaltrials.gov NCT04409275) is a multicenter prospective observational cohort study aimed to evaluate discharged patients. Pulmonary function tests, circulating serum biomarkers, chest radiography and chest CT were performed at outpatient visits. Results In total, 313, aged 61.12 ± 12.26 years, out of 481 included patients were available. The proportion of patients with DLCO < 80% was 54.6% and 47% at 60 and 180 days. Associated factors with diffusion impairment at 6 months were female sex (OR: 2.97, 95%CI 1.74–5.06, p = 0.001), age (OR: 1.03, 95% CI: 1.01–1.05, p = 0.005), and peak RALE score (OR: 1.22, 95% CI 1.06–1.40, p = 0.005). Patients with altered lung diffusion showed higher levels of MMP-7 (11.54 ± 8.96 vs 6.71 ± 4.25, p = 0.001), and periostin (1.11 ± 0.07 vs 0.84 ± 0.40, p = 0.001). 226 patients underwent CT scan, of whom 149 (66%) had radiological sequelae of COVID-19. In severe patients, 68.35% had ground glass opacities and 38.46% had parenchymal bands. Early fibrotic changes were associated with higher levels of MMP7 (13.20 ± 9.20 vs 7.92 ± 6.32, p = 0.001), MMP1 (10.40 ± 8.21 vs 6.97 ± 8.89, p = 0.023), and periostin (1.36 ± 0.93 vs 0.87 ± 0.39, p = 0.001). Conclusion Almost half of patients with moderate or severe COVID-19 pneumonia had impaired pulmonary diffusion six months after discharge. Severe patients showed fibrotic lesions in CT scan and elevated serum biomarkers involved in pulmonary fibrosis.
Collapse
Key Words
- 6-MWT, 6 minute-walk test
- ARDS, acute respiratory distress syndrome
- BMI, body mass index
- COPD, chronic obstructive pulmonary disease
- COVID-19 sequelae
- COVID-19, coronavirus disease 2019
- CT, computed tomography
- Chest CT
- DLCO, diffusing capacity for carbon monoxide
- Fibrotic changes
- GGO, ground-glass opacity
- HFNC, high flow nasal cannula oxygen
- ILD, interstitial lung disease
- IMV, mechanical ventilation
- Interstitial lung disease
- Lung diffusion
- MMP, matrix metalloproteinases
- NIV, non-invasive ventilation
- RALE, radiographic assessment of lung edema
- RT-PCR, reverse transcriptase-polymerase chain reaction
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- Serum biomarkers
- VEGF, vascular endothelial growth factor
- mMRC, modified British Medical Research Council
- sEGFR, soluble epidermal growth factor receptor
Collapse
Affiliation(s)
- Belen Safont
- Pulmonary Department, Hospital Clinico, INCLIVA, Valencia, Spain
| | - Julia Tarraso
- Pulmonary Department, Hospital Clinico, INCLIVA, Valencia, Spain
| | - Enrique Rodriguez-Borja
- Laboratory of Biochemistry and Molecular Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | | | | | - Virginia Molina
- Pulmonary Department, Hospital Vinalopo de Elche, Alicante, Spain
| | | | - Amaia Lope-Martinez
- Laboratory of Biochemistry and Molecular Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | - Luis Cabanes
- Pulmonary Department, Hospital La Ribera, Alzira, Valencia, Spain
| | | | - Susana Herrera
- Pulmonary Department, Hospital Dr Peset, Valencia, Spain
| | - Carolina Lahosa
- Pulmonary Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Jose Antonio Ros
- Pulmonary Department, Hospital Virgen de la Arraixaca, Murcia, Spain
| | - Juan Luis Rodriguez-Hermosa
- Pulmonary Department, Hospital Clinico San Carlos, Medical Department, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Joan B Soriano
- COVID-19 Clinical Management Team, World Health Organization, Geneva, Switzerland.,Hospital La Princesa, Madrid, Spain
| | - Ines Moret-Tatay
- Inflammatory Bowel Disease Research Group/Multiplex Analysis Unit, IIS Hospital la Fe, Valencia, Spain
| | | | - Alba Mulet
- Pulmonary Department, Hospital Clinico, INCLIVA, Valencia, Spain
| | | |
Collapse
|
141
|
Baris AM, Fraile-Bethencourt E, Anand S. Nucleic Acid Sensing in the Tumor Vasculature. Cancers (Basel) 2021; 13:4452. [PMID: 34503262 PMCID: PMC8431390 DOI: 10.3390/cancers13174452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Endothelial cells form a powerful interface between tissues and immune cells. In fact, one of the underappreciated roles of endothelial cells is to orchestrate immune attention to specific sites. Tumor endothelial cells have a unique ability to dampen immune responses and thereby maintain an immunosuppressive microenvironment. Recent approaches to trigger immune responses in cancers have focused on activating nucleic acid sensors, such as cGAS-STING, in combination with immunotherapies. In this review, we present a case for targeting nucleic acid-sensing pathways within the tumor vasculature to invigorate tumor-immune responses. We introduce two specific nucleic acid sensors-the DNA sensor TREX1 and the RNA sensor RIG-I-and discuss their functional roles in the vasculature. Finally, we present perspectives on how these nucleic acid sensors in the tumor endothelium can be targeted in an antiangiogenic and immune activation context. We believe understanding the role of nucleic acid-sensing in the tumor vasculature can enhance our ability to design more effective therapies targeting the tumor microenvironment by co-opting both vascular and immune cell types.
Collapse
Affiliation(s)
- Adrian M. Baris
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
142
|
Cajanding R. Oxygen use and saturation targets in patients with COVID-19: Are we giving too much or aiming too low? Nurs Crit Care 2021; 27:282-285. [PMID: 34476873 PMCID: PMC8661992 DOI: 10.1111/nicc.12709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 01/15/2023]
Affiliation(s)
- Ruff Cajanding
- Adult Critical Care Unit, St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
143
|
Cascino TM, Desai AA, Kanthi Y. At a crossroads: coronavirus disease 2019 recovery and the risk of pulmonary vascular disease. Curr Opin Pulm Med 2021; 27:342-349. [PMID: 34127622 PMCID: PMC8373709 DOI: 10.1097/mcp.0000000000000792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The coronavirus disease 2019 (COVID-19) pandemic has led to almost 3,000,000 deaths across 139 million people infected worldwide. Involvement of the pulmonary vasculature is considered a major driving force for morbidity and mortality. We set out to summarize current knowledge on the acute manifestations of pulmonary vascular disease (PVD) resulting from COVID-19 and prioritize long-term complications that may result in pulmonary hypertension (PH). RECENT FINDINGS Acute COVID-19 infection can result in widespread involvement of the pulmonary vasculature, myocardial injury, evidence of persistent lung disease, and venous thromboembolism. Post COVID-19 survivors frequently report ongoing symptoms and may be at risk for the spectrum of PH, including group 1 pulmonary arterial hypertension, group 2 PH due to left heart disease, group 3 PH due to lung disease and/or hypoxia, and group 4 chronic thromboembolic PH. SUMMARY The impact of COVID-19 on the pulmonary vasculature is central to determining disease severity. Although the long-term PVD manifestations of COVID-19 are currently uncertain, optimizing the care of risk factors for PH and monitoring for the development of PVD will be critical to reducing long-term morbidity and improving the health of survivors.
Collapse
Affiliation(s)
- Thomas M Cascino
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Yogendra Kanthi
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
144
|
Namiranian P, Razavi SZE, Karimi M, Ayati MH. Avascular Necrosis in Patients Recovering from COVID-19. Am J Med Sci 2021; 362:331-332. [PMID: 34033806 PMCID: PMC8142023 DOI: 10.1016/j.amjms.2021.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/04/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Parva Namiranian
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyede Zahra Emami Razavi
- Physical Medicine and Rehabilitation Department, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ayati
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
145
|
Besaratinia A. COVID-19: a pandemic converged with global tobacco epidemic and widespread vaping-state of the evidence. Carcinogenesis 2021; 42:1009-1022. [PMID: 34223886 PMCID: PMC8344766 DOI: 10.1093/carcin/bgab061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review highlights the convergence of three global health challenges at a crossroad where the pandemic of coronavirus disease 2019 (COVID-19) meets the tobacco epidemic and vaping. It begins with an overview of the current knowledge on the biology, pathophysiology and epidemiology of COVID-19. It then presents the state of smoking and vaping during the pandemic by summarizing the published data on prevalence, use patterns, product availability/accessibility, sales records and motivation to quit before and after the start of the pandemic. It highlights the state of evidence on the association of tobacco product use with COVID-19 infection and transmission rates, symptom severity and clinical outcomes. Also discussed are proposed biological mechanisms and behavioral factors that may modulate COVID-19 risk in tobacco product users. Furthermore, competing hypotheses on the protective effect of nicotine against COVID-19 as well as the claimed ‘smokers’ paradox’ are discussed. Considerations and challenges of COVID-19 vaccination in tobacco product users are underscored. Collectively, the present data show an ‘incomplete’ but rapidly shaping picture on the association of tobacco product use and COVID-19 infection, disease course and clinical outcomes. Evidence is also growing on the mechanisms by which tobacco product use may contribute to COVID-19 pathophysiology. Although we await definitive conclusions on the relative risk of COVID-19 infection in tobacco product users, compelling data confirm that many comorbidities associated with/caused by smoking predispose to COVID-19 infection, severe disease and poor prognosis. Additionally, it is becoming increasing clear that should smokers get the disease, they are more likely to have serious health consequences.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, USA
| |
Collapse
|
146
|
Blot M, de Maistre E, Bourredjem A, Quenot JP, Nguyen M, Bouhemad B, Charles PE, Binquet C, Piroth L. Specific Features of the Coagulopathy Signature in Severe COVID-19 Pneumonia. Front Med (Lausanne) 2021; 8:675191. [PMID: 34422854 PMCID: PMC8371474 DOI: 10.3389/fmed.2021.675191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: COVID-19 displays distinct characteristics that suggest a unique pathogenesis. The objective of this study was to compare biomarkers of coagulopathy and outcomes in COVID-19 and non-COVID-19 patients with severe pneumonia. Methods: Thirty-six non-COVID-19 and 27 COVID-19 non-immunocompromised patients with severe pneumonia were prospectively enrolled, most requiring intensive care. Clinical and biological characteristics (including plasma biomarkers of coagulopathy) were compared. Results: At similar baseline severity, COVID-19 patients required mechanical ventilation (MV) for significantly longer than non-COVID-19 patients (p = 0.0049) and more frequently developed venous thrombotic complications (p = 0.031). COVID-19 patients had significantly higher plasma concentrations of soluble VCAM1 (sVCAM1) (5,739 ± 3,293 vs. 3,700 ± 2,124 ng/ml; p = 0.009), but lower levels of D-dimers, vWF-A2, sICAM1, sTREM1, VEGF, and P-selectin, compared to non-COVID-19 patients. Principal component analysis identified two main patterns, with a clear distinction between non-COVID-19 and COVID-19 patients. Multivariable regression analysis confirmed that sVCAM1 rising levels were independently associated with a longer duration of MV. Finally, we identified close correlations between sVCAM1 and some features of COVID-19 immune dysregulation (ie. CXCL10, GM-CSF, and IL-10). Conclusion: We identified specific features of the coagulopathy signature in severe COVID-19 patients, with higher plasma sVCAM1 levels, that were independently associated with the longer duration of mechanical ventilation. Clinical Trial Registration:ClinicalTrials.gov, identifier: NCT03505281.
Collapse
Affiliation(s)
- Mathieu Blot
- Infectious Diseases Department, Dijon Bourgogne University Hospital, Dijon, France.,Lipness team, INSERM Research Center LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France
| | - Emmanuel de Maistre
- Laboratory of Hemostasis, Dijon Bourgogne University Hospital, Dijon, France
| | | | - Jean-Pierre Quenot
- Lipness team, INSERM Research Center LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.,INSERM, CIC1432, Clinical Epidemiology unit, Dijon, France.,Dijon Bourgogne University Hospital, Clinical Investigation Center, Clinical Epidemiology/Clinical trials unit, Dijon, France.,Department of Intensive Care, Dijon Bourgogne University Hospital, Dijon, France
| | - Maxime Nguyen
- Lipness team, INSERM Research Center LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.,Anesthesiology and Critical Care Department, Dijon Bourgogne University Hospital, Dijon, France
| | - Belaid Bouhemad
- Lipness team, INSERM Research Center LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.,Anesthesiology and Critical Care Department, Dijon Bourgogne University Hospital, Dijon, France
| | - Pierre-Emmanuel Charles
- Lipness team, INSERM Research Center LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.,Department of Intensive Care, Dijon Bourgogne University Hospital, Dijon, France
| | - Christine Binquet
- Lipness team, INSERM Research Center LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.,INSERM, CIC1432, Clinical Epidemiology unit, Dijon, France
| | - Lionel Piroth
- Infectious Diseases Department, Dijon Bourgogne University Hospital, Dijon, France.,INSERM, CIC1432, Clinical Epidemiology unit, Dijon, France
| |
Collapse
|
147
|
Barssoum K, Victor V, Salem A, Kumar A, Mubasher M, Hassib M, Magdi M, Renjithlal S, Abdelazeem M, Shariff M, Idemudia O, Ibrahim M, Mohamed A, Thakkar S, Patel H, Diab M, Szeles A, Ibrahim F, Jha R, Chowdhury M, Akula N, Kalra A, Nanda NC. Echocardiography, lung ultrasound, and cardiac magnetic resonance findings in COVID-19: A systematic review. Echocardiography 2021; 38:1365-1404. [PMID: 34236091 PMCID: PMC8444724 DOI: 10.1111/echo.15152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The manifestations of COVID-19 as outlined by imaging modalities such as echocardiography, lung ultrasound (LUS), and cardiac magnetic resonance (CMR) imaging are not fully described. METHODS We conducted a systematic review of the current literature and included studies that described cardiovascular manifestations of COVID-19 using echocardiography, CMR, and pulmonary manifestations using LUS. We queried PubMed, EMBASE, and Web of Science for relevant articles. Original studies and case series were included. RESULTS This review describes the most common abnormalities encountered on echocardiography, LUS, and CMR in patients infected with COVID-19.
Collapse
Affiliation(s)
- Kirolos Barssoum
- Department of Internal MedicineRochester Regional HealthUnity HospitalRochesterNew YorkUSA
| | - Varun Victor
- Department of Internal MedicineCanton Medical Education FoundationCantonOhioUSA
| | - Ahmad Salem
- Department of Internal MedicineRochester Regional HealthUnity HospitalRochesterNew YorkUSA
| | - Ashish Kumar
- Section of Cardiovascular ResearchHeartVascular and Thoracic DepartmentCleveland Clinic Akron GeneralAkronOhioUSA
- Department of Internal MedicineCleveland Clinic Akron GeneralAkronOhioUSA
| | - Mahmood Mubasher
- Department of Internal MedicineRochester Regional HealthUnity HospitalRochesterNew YorkUSA
| | | | - Mohamed Magdi
- Department of Internal MedicineRochester Regional HealthUnity HospitalRochesterNew YorkUSA
| | - Sarathlal Renjithlal
- Department of Internal MedicineRochester Regional HealthUnity HospitalRochesterNew YorkUSA
| | - Mohamed Abdelazeem
- Department of Internal MedicineSt. Elizabeth Medical CenterBrightonMassachusettsUSA
| | | | - Osarenren Idemudia
- Department of Internal MedicineRochester Regional HealthUnity HospitalRochesterNew YorkUSA
| | - Mounir Ibrahim
- Department of Internal MedicineHackensack Meridian Health Palisades Medical CenterNorth BergenNew JerseyUSA
| | - Amr Mohamed
- Department of Internal MedicineRochester General HospitalRochesterNew YorkUSA
| | | | - Harsh Patel
- Department of Internal MedicineLouis A Weiss Memorial HospitalChicagoIllinoisUSA
| | - Mohamed Diab
- Department of Internal MedicineRochester Regional HealthUnity HospitalRochesterNew YorkUSA
| | - Andras Szeles
- Department of Internal MedicineRochester Regional HealthUnity HospitalRochesterNew YorkUSA
| | - Fadi Ibrahim
- American University of AntiguaAntigua and Barbuda
| | - Roshan Jha
- Department of Internal MedicineHackensack Meridian Health Palisades Medical CenterNorth BergenNew JerseyUSA
| | - Medhat Chowdhury
- Department of Internal MedicineRochester General HospitalRochesterNew YorkUSA
| | - Navya Akula
- Department of Internal MedicineRochester Regional HealthUnity HospitalRochesterNew YorkUSA
| | - Ankur Kalra
- Section of Cardiovascular ResearchHeartVascular and Thoracic DepartmentCleveland Clinic Akron GeneralAkronOhioUSA
- Department of Cardiovascular MedicineHeart, Vascular, and Thoracic InstituteCleveland ClinicClevelandOhioUSA
| | - Navin C. Nanda
- Division of Cardiovascular DiseaseDepartment of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
148
|
Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the Dots: Interplay of Pathogenic Mechanisms between COVID-19 Disease and Mucormycosis. J Fungi (Basel) 2021; 7:616. [PMID: 34436155 PMCID: PMC8400165 DOI: 10.3390/jof7080616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19)-associated mucormycosis (CAM) is an emerging threat globally, especially in India. More than 40,000 CAM cases have been reported in India. The emergence of CAM cases in India has been attributed to environmental, host, and iatrogenic factors. Mucorales spore burden has been reported globally; however, their presence is higher in tropical countries such as India, contributing to the emergence of CAM. Before the COVID-19 pandemic, patients with diabetes mellitus, haematological malignancies, solid organ transplants, corticosteroid therapy and neutropenia were more prone to mucormycosis, whereas in COVID-19 patients, virus-induced endothelial dysfunction, hyperglycaemia, and immune dysfunction following corticosteroid use increase the risk of acquiring mucormycosis. The interaction of Mucorales spores with the epithelial cells, followed by endothelial invasion, is a crucial step in the pathogenesis of mucormycosis. Endothelial damage and increased endothelial receptor expression induced by COVID-19 infection may predispose patients to CAM. COVID-19 infection may directly induce hyperglycaemia by damaging beta cells of the pancreas or by corticosteroid therapy, which may contribute to CAM pathogenesis. Iron acquisition from the host, especially in diabetic ketoacidosis (DKA) or deferoxamine therapy, is an important virulence trait of Mucorales. Similarly, the hyperferritinaemia caused by COVID-19 may act as a source of iron for Mucorales growth and invasion. In addition, corticosteroid treatment reduces or abolishes the innate immune functions of phagocytic cells contributing to the pathogenesis of CAM. This review aims to discuss primarily the host and iatrogenic factors shared between COVID-19 and mucormycosis that could explain the emergence of CAM.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Medical Microbiology, Department of Public Health, International Higher School of Medicine, Issyk-Kul Regional Campus, Cholpon-Ata 722125, Kyrgyzstan;
| | - Anna Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Raees Ahmad Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Shivaprakash Mandya Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| |
Collapse
|
149
|
Camell CD, Yousefzadeh MJ, Zhu Y, Prata LGPL, Huggins MA, Pierson M, Zhang L, O'Kelly RD, Pirtskhalava T, Xun P, Ejima K, Xue A, Tripathi U, Espindola-Netto JM, Giorgadze N, Atkinson EJ, Inman CL, Johnson KO, Cholensky SH, Carlson TW, LeBrasseur NK, Khosla S, O'Sullivan MG, Allison DB, Jameson SC, Meves A, Li M, Prakash YS, Chiarella SE, Hamilton SE, Tchkonia T, Niedernhofer LJ, Kirkland JL, Robbins PD. Senolytics reduce coronavirus-related mortality in old mice. Science 2021; 373:eabe4832. [PMID: 34103349 PMCID: PMC8607935 DOI: 10.1126/science.abe4832] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/28/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2-related mouse β-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.
Collapse
Affiliation(s)
- Christina D Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew A Huggins
- Department of Laboratory Medicine and Pathology and Center of Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Mark Pierson
- Department of Laboratory Medicine and Pathology and Center of Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan D O'Kelly
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN, USA
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth J Atkinson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Christina L Inman
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kurt O Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Stephanie H Cholensky
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Timothy W Carlson
- Masonic Cancer Center Comparative Pathology Shared Resource, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Gerard O'Sullivan
- Masonic Cancer Center Comparative Pathology Shared Resource, University of Minnesota, St. Paul, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN, USA
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology and Center of Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Ming Li
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sergio E Chiarella
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sara E Hamilton
- Department of Laboratory Medicine and Pathology and Center of Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
150
|
Veluswamy P, Wacker M, Stavridis D, Reichel T, Schmidt H, Scherner M, Wippermann J, Michels G. The SARS-CoV-2/Receptor Axis in Heart and Blood Vessels: A Crisp Update on COVID-19 Disease with Cardiovascular Complications. Viruses 2021; 13:1346. [PMID: 34372552 PMCID: PMC8310117 DOI: 10.3390/v13071346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.
Collapse
Affiliation(s)
- Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Dimitrios Stavridis
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Thomas Reichel
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Hendrik Schmidt
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Guido Michels
- Department of Acute and Emergency Care, Sankt Antonius-Hospital Eschweiler, 52249 Eschweiler, Germany;
| |
Collapse
|