101
|
Harte C, Gorman AL, McCluskey S, Carty M, Bowie AG, Scott CJ, Meade KG, Lavelle EC. Alum Activates the Bovine NLRP3 Inflammasome. Front Immunol 2017; 8:1494. [PMID: 29209310 PMCID: PMC5701618 DOI: 10.3389/fimmu.2017.01494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/24/2017] [Indexed: 11/21/2022] Open
Abstract
There has been a move away from vaccines composed of whole or inactivated antigens toward subunit-based vaccines, which although safe, provide less immunological protection. As a result, the use of adjuvants to enhance and direct adaptive immune responses has become the focus of much targeted bovine vaccine research. However, the mechanisms by which adjuvants work to enhance immunological protection in many cases remains unclear, although this knowledge is critical to the rational design of effective next generation vaccines. This study aimed to investigate the mechanisms by which alum, a commonly used adjuvant in bovine vaccines, enhances IL-1β secretion in bovine peripheral blood mononuclear cells (PBMCs). Unlike the case with human PBMCs, alum promoted IL-1β secretion in a subset of bovine PBMCs without priming with a toll-like receptor agonist. This suggests that PBMCs from some cattle are primed to produce this potent inflammatory cytokine and western blotting confirmed the presence of preexisting pro-IL-1β in PBMCs from a subset of 8-month-old cattle. To address the mechanism underlying alum-induced IL-1β secretion, specific inhibitors identified that alum mediates lysosomal disruption which subsequently activates the assembly of an NLRP3, ASC, caspase-1, and potentially caspase-8 containing complex. These components form an inflammasome, which mediates alum-induced IL-1β secretion in bovine PBMCs. Given the demonstrated role of the NLRP3 inflammasome in regulating adaptive immunity in murine systems, these results will inform further targeted research into the potential of inflammasome activation for rational vaccine design in cattle.
Collapse
Affiliation(s)
- Ciaran Harte
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Ireland
| | - Aoife L Gorman
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - S McCluskey
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Michael Carty
- Viral Immune Evasion Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Andrew G Bowie
- Viral Immune Evasion Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - C J Scott
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Kieran G Meade
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|
102
|
Zhang Y, Huang Z, Li H. Insights into innate immune signalling in controlling cardiac remodelling. Cardiovasc Res 2017; 113:1538-1550. [PMID: 29088374 DOI: 10.1093/cvr/cvx130] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/29/2017] [Indexed: 01/03/2025] Open
Abstract
Canonical innate immune signalling involves complex cascades: multiple germline-encoded pattern recognition receptors rapidly recognize pathogen-associated or damage-associated molecular patterns to induce the production of cytokines, which bind to their corresponding receptors to orchestrate subsequent host defense phases. Inflammation is a healthy response to pathogenic signals, which are typically rapid and specific, and they terminate once the threat has passed. However, excessive activation or suppression of innate immune or inflammatory responses can lead to considerable human suffering, such as cardiac remodelling. Interestingly, recent studies have revealed that innate immune molecules in the parenchymal cells of the heart influence cardiac homeostasis not only by directly regulating innate immune responses but also through reprogrammed signalling pathways, which are independent of conventional innate immune signalling. Elucidating 'innate immune signalling reprogramming' events will help us better understand the functions of innate immune molecules and, moreover, the pathogenesis of cardiac diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
| | - Zan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
| |
Collapse
|
103
|
ALV-J infection induces chicken monocyte death accompanied with the production of IL-1β and IL-18. Oncotarget 2017; 8:99889-99900. [PMID: 29245947 PMCID: PMC5725138 DOI: 10.18632/oncotarget.21906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022] Open
Abstract
Immunosuppression induced by avian leukosis virus subgroup J (ALV-J) causes serious reproduction problems and secondary infections in chickens. Given that monocytes are important precursors of immune cells including macrophages and dendritic cells, we investigated the fate of chicken monocytes after ALV-J infection. Our results indicated that most monocytes infected with ALV-J including field or laboratory strains could not successfully differentiate into macrophages due to cells death. And cells death was dependent upon viral titer and accompanied with increased IL-1β and IL-18 mRNA levels. In addition, ALV-J infection up-regulated caspase-1 and caspase-3 activity in monocytes. Collectively, we found that ALV-J could cause cell death in chicken monocytes, especially pyroptosis, which may be a significant reason for ALV-J induced immunosuppression.
Collapse
|
104
|
Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F, Zuber S, O'Duill F, Schmid-Burgk JL, Hoss F, Buhmann R, Wittmann G, Latz E, Subklewe M, Hornung V. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell 2017; 171:1110-1124.e18. [PMID: 29033128 DOI: 10.1016/j.cell.2017.09.039] [Citation(s) in RCA: 442] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/11/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Detection of cytosolic DNA constitutes a central event in the context of numerous infectious and sterile inflammatory conditions. Recent studies have uncovered a bipartite mode of cytosolic DNA recognition, in which the cGAS-STING axis triggers antiviral immunity, whereas AIM2 triggers inflammasome activation. Here, we show that AIM2 is dispensable for DNA-mediated inflammasome activation in human myeloid cells. Instead, detection of cytosolic DNA by the cGAS-STING axis induces a cell death program initiating potassium efflux upstream of NLRP3. Forward genetics identified regulators of lysosomal trafficking to modulate this cell death program, and subsequent studies revealed that activated STING traffics to the lysosome, where it triggers membrane permeabilization and thus lysosomal cell death (LCD). Importantly, the cGAS-STING-NLRP3 pathway constitutes the default inflammasome response during viral and bacterial infections in human myeloid cells. We conclude that targeting the cGAS-STING-LCD-NLRP3 pathway will ameliorate pathology in inflammatory conditions that are associated with cytosolic DNA sensing.
Collapse
Affiliation(s)
- Moritz M Gaidt
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas S Ebert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Dhruv Chauhan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Katharina Ramshorn
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Francesca Pinci
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sarah Zuber
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Fionan O'Duill
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jonathan L Schmid-Burgk
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Florian Hoss
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Raymund Buhmann
- Department of Transfusion Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Georg Wittmann
- Department of Transfusion Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Marion Subklewe
- Laboratory for Translational Cancer Immunology, Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
105
|
DNA Sensing across the Tree of Life. Trends Immunol 2017; 38:719-732. [DOI: 10.1016/j.it.2017.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
|
106
|
Quek H, Luff J, Cheung K, Kozlov S, Gatei M, Lee CS, Bellingham MC, Noakes PG, Lim YC, Barnett NL, Dingwall S, Wolvetang E, Mashimo T, Roberts TL, Lavin MF. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum Mol Genet 2017; 26:109-123. [PMID: 28007901 DOI: 10.1093/hmg/ddw371] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 11/14/2022] Open
Abstract
Ataxia-telangiectasia (A-T), an autosomal recessive disease caused by mutations in the ATM gene is characterised by cerebellar atrophy and progressive neurodegeneration which has been poorly recapitulated in Atm mutant mice. Consequently, pathways leading to neurodegeneration in A-T are poorly understood. We describe here the generation of an Atm knockout rat model that does not display cerebellar atrophy but instead paralysis and spinal cord atrophy, reminiscent of that seen in older patients and milder forms of the disorder. Loss of Atm in neurons and glia leads to accumulation of cytosolic DNA, increased cytokine production and constitutive activation of microglia consistent with a neuroinflammatory phenotype. Rats lacking ATM had significant loss of motor neurons and microgliosis in the spinal cord, consistent with onset of paralysis. Since short term treatment with steroids has been shown to improve the neurological signs in A-T patients we determined if that was also the case for Atm-deficient rats. Betamethasone treatment extended the lifespan of Atm knockout rats, prevented microglial activation and significantly decreased neuroinflammatory changes and motor neuron loss. These results point to unrepaired damage to DNA leading to significant levels of cytosolic DNA in Atm-deficient neurons and microglia and as a consequence activation of the cGAS-STING pathway and cytokine production. This in turn would increase the inflammatory microenvironment leading to dysfunction and death of neurons. Thus the rat model represents a suitable one for studying neurodegeneration in A-T and adds support for the use of anti-inflammatory drugs for the treatment of neurodegeneration in A-T patients.
Collapse
Affiliation(s)
- Hazel Quek
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - John Luff
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - KaGeen Cheung
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Sergei Kozlov
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - Magtouf Gatei
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - C Soon Lee
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Nigel L Barnett
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,Queensland Eye Institute, South Brisbane, Qld, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Qld, Australia
| | - Steven Dingwall
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld, Australia
| | - Tomoji Mashimo
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tara L Roberts
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Martin F Lavin
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| |
Collapse
|
107
|
Ghosh S, Wallerath C, Covarrubias S, Hornung V, Carpenter S, Fitzgerald KA. The PYHIN Protein p205 Regulates the Inflammasome by Controlling Asc Expression. THE JOURNAL OF IMMUNOLOGY 2017; 199:3249-3260. [PMID: 28931603 DOI: 10.4049/jimmunol.1700823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
Abstract
Members of the IFN-inducible PYHIN protein family, such as absent in melanoma-2 and IFN-γ-inducible protein (IFI)16, bind dsDNA and form caspase-1-activating inflammasomes that are important in immunity to cytosolic bacteria, DNA viruses, or HIV. IFI16 has also been shown to regulate transcription of type I IFNs during HSV infection. The role of other members of the PYHIN protein family in the regulation of immune responses is much less clear. In this study, we identified an immune-regulatory function for a member of the murine PYHIN protein family, p205 (also called Ifi205). Examination of immune responses induced by dsDNA and other microbial ligands in bone marrow-derived macrophages lacking p205 revealed that inflammasome activation by dsDNA, as well as ligands that engage the NLRP3 inflammasome, was severely compromised in these cells. Further analysis revealed that p205-knockdown cells showed reduced expression of apoptosis-associated speck-like molecule containing CARD domain (Asc) at the protein and RNA levels. p205 knockdown resulted in reduced binding of actively transcribing RNA polymerase II to the endogenous Asc gene, resulting in decreased transcription and processing of Asc pre-mRNA. Deletion of p205 in B16 melanoma cells using CRISPR/Cas9 showed a similar loss of Asc expression. Ectopic expression of p205 induced expression of an Asc promoter-luciferase reporter gene. Together, these findings suggest that p205 controls expression of Asc mRNA to regulate inflammasome responses. These findings expand on our understanding of immune-regulatory roles for the PYHIN protein family.
Collapse
Affiliation(s)
- Sreya Ghosh
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Christina Wallerath
- Gene Center, Ludwig Maximilian University of Munich, Munich 81377, Germany.,Department of Biochemistry, Ludwig Maximilian University of Munich, Munich 81377, Germany; and
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Veit Hornung
- Gene Center, Ludwig Maximilian University of Munich, Munich 81377, Germany.,Department of Biochemistry, Ludwig Maximilian University of Munich, Munich 81377, Germany; and
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
108
|
Wang B, Yin Q. AIM2 inflammasome activation and regulation: A structural perspective. J Struct Biol 2017; 200:279-282. [PMID: 28813641 DOI: 10.1016/j.jsb.2017.08.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 11/26/2022]
Abstract
Absent in melanoma 2 (AIM2) inflammasome is a multi-protein platform that recognizes aberrant cytoplasmic dsDNA and induces cytokine maturation, release and pyroptosis. It is composed of AIM2, apoptosis-associated speck-like protein containing a CARD (ASC), and caspase-1. Recent X-ray crystallographic and high resolution cryo-electron microscopic (cryo-EM) studies have revealed a series of structures in AIM2 inflammasome activation and regulation. One prominent feature common in multiple steps is the assembly of high-order structures, especially helical filaments nucleated by upstream molecules, rather than stoichiometric complexes. In this review, we track the AIM2 inflammasome activation process step by step, using high-resolution structures to illustrate the overall architecture of AIM2 inflammasome and its assembly and regulatory mechanisms.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Qian Yin
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
109
|
AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA. mBio 2017; 8:mBio.00944-17. [PMID: 28679751 PMCID: PMC5573678 DOI: 10.1128/mbio.00944-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs) that stimulate the induction of interferons (IFNs) and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING). Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA.IMPORTANCE Autoimmune diseases like Aicardi-Goutières syndrome and lupus erythematosus arise when cells of the immune system become activated and attack host cells and tissues. We found that DNA generated by endogenous retroviruses and retroelements in inbred mice and mouse cells is recognized by several host proteins found in macrophages that are members of the ALR family and that these proteins both suppress and activate the pathways leading to the generation of cytokines and IFNs. We also show that there is great genetic diversity between different inbred mouse strains in the ALR genes, which might contribute to differential susceptibility to autoimmunity. Understanding how immune cells become activated is important to the control of disease.
Collapse
|
110
|
Vajjhala PR, Ve T, Bentham A, Stacey KJ, Kobe B. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Mol Immunol 2017; 86:23-37. [PMID: 28249680 DOI: 10.1016/j.molimm.2017.02.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 12/25/2022]
Abstract
The innate immune system is the first line of defense against infection and responses are initiated by pattern recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs). PRRs also detect endogenous danger-associated molecular patterns (DAMPs) that are released by damaged or dying cells. The major PRRs include the Toll-like receptor (TLR) family members, the nucleotide binding and oligomerization domain, leucine-rich repeat containing (NLR) family, the PYHIN (ALR) family, the RIG-1-like receptors (RLRs), C-type lectin receptors (CLRs) and the oligoadenylate synthase (OAS)-like receptors and the related protein cyclic GMP-AMP synthase (cGAS). The different PRRs activate specific signaling pathways to collectively elicit responses including the induction of cytokine expression, processing of pro-inflammatory cytokines and cell-death responses. These responses control a pathogenic infection, initiate tissue repair and stimulate the adaptive immune system. A central theme of many innate immune signaling pathways is the clustering of activated PRRs followed by sequential recruitment and oligomerization of adaptors and downstream effector enzymes, to form higher-order arrangements that amplify the response and provide a scaffold for proximity-induced activation of the effector enzymes. Underlying the formation of these complexes are co-operative assembly mechanisms, whereby association of preceding components increases the affinity for downstream components. This ensures a rapid immune response to a low-level stimulus. Structural and biochemical studies have given key insights into the assembly of these complexes. Here we review the current understanding of assembly of immune signaling complexes, including inflammasomes initiated by NLR and PYHIN receptors, the myddosomes initiated by TLRs, and the MAVS CARD filament initiated by RIG-1. We highlight the co-operative assembly mechanisms during assembly of each of these complexes.
Collapse
Affiliation(s)
- Parimala R Vajjhala
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Adam Bentham
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
111
|
Comparative genomics reveals contraction in olfactory receptor genes in bats. Sci Rep 2017; 7:259. [PMID: 28325942 PMCID: PMC5427940 DOI: 10.1038/s41598-017-00132-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/09/2017] [Indexed: 12/31/2022] Open
Abstract
Gene loss and gain during genome evolution are thought to play important roles in adaptive phenotypic diversification. Among mammals, bats possess the smallest genomes and have evolved the unique abilities of powered flight and laryngeal echolocation. To investigate whether gene family evolution has contributed to the genome downsizing and phenotypic diversification in this group, we performed comparative evolutionary analyses of complete proteome data for eight bat species, including echolocating and non-echolocating forms, together with the proteomes of 12 other laurasiatherian mammals. Our analyses revealed extensive gene loss in the most recent ancestor of bats, and also of carnivores (both >1,000 genes), although this gene contraction did not appear to correlate with the reduction in genome size in bats. Comparisons of highly dynamic families suggested that expansion and contraction affected genes with similar functions (immunity, response to stimulus) in all laurasiatherian lineages. However, the magnitude and direction of these changes varied greatly among groups. In particular, our results showed contraction of the Olfactory Receptor (OR) gene repertoire in the last common ancestor of all bats, as well as that of the echolocating species studied. In contrast, non-echolocating fruit bats showed evidence of expansion in ORs, supporting a "trade-off" between sensory modalities.
Collapse
|
112
|
Vogel H, Jähnert M, Stadion M, Matzke D, Scherneck S, Schürmann A. A vast genomic deletion in the C56BL/6 genome affects different genes within the Ifi200 cluster on chromosome 1 and mediates obesity and insulin resistance. BMC Genomics 2017; 18:172. [PMID: 28201990 PMCID: PMC5312539 DOI: 10.1186/s12864-017-3552-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/03/2017] [Indexed: 04/09/2023] Open
Abstract
Background Obesity, the excessive accumulation of body fat, is a highly heritable and genetically heterogeneous disorder. The complex, polygenic basis for the disease consisting of a network of different gene variants is still not completely known. Results In the current study we generated a BAC library of the obese-prone NZO strain to clarify the genomic alteration within the gene cluster Ifi200 on chr.1 including Ifi202b, an obesity gene that is in contrast to NZO not expressed in the lean B6 mouse. With the PacBio sequencing data of NZO BAC clones we identified a deletion spanning approximately 261.8 kb in the B6 reference genome. The deletion affects different members of the Ifi200 gene family which also includes the original first exon and 5′-regulatory parts of the Ifi202b gene and suggests to be the relevant cause of its expression deficiency in B6. In addition, the generation and characterization of congenic mice carrying the critical fragment on the B6 background demonstrate its crucial role for obesity and insulin resistance. Conclusions Our data reveal the reconstruction of a complex genomic region on mouse chr.1 resulting from deletions and duplications of Ifi200 genes and suggest to be relevant for the development of obesity. The results further demonstrate the complexity of the disease and highlight the importance for studying rare genetic variants as they can be causal for large effects.
Collapse
Affiliation(s)
- Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany
| | - Daniela Matzke
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany
| | - Stephan Scherneck
- Institute of Pharmacology and Toxicology, University of Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany. .,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany.
| |
Collapse
|
113
|
Santhakumar D, Rubbenstroth D, Martinez-Sobrido L, Munir M. Avian Interferons and Their Antiviral Effectors. Front Immunol 2017; 8:49. [PMID: 28197148 PMCID: PMC5281639 DOI: 10.3389/fimmu.2017.00049] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.
Collapse
Affiliation(s)
| | - Dennis Rubbenstroth
- Institute for Virology, Faculty of Medicine, University Medical Center, University of Freiburg , Freiburg , Germany
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | | |
Collapse
|
114
|
Li Y, Li Y, Cao X, Jin X, Jin T. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cell Mol Immunol 2017; 14:80-89. [PMID: 27721456 PMCID: PMC5214946 DOI: 10.1038/cmi.2016.50] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 12/28/2022] Open
Abstract
Pattern recognition receptors (PRRs) and their signaling pathways have essential roles in recognizing various components of pathogens as well as damaged cells and triggering inflammatory responses that eliminate invading microorganisms and damaged cells. The zebrafish relies heavily on these primary defense mechanisms against pathogens. Here, we review the major PRR signaling pathways in the zebrafish innate immune system and compare these signaling pathways in zebrafish and humans to reveal their evolutionary relationship and better understand their innate immune defense mechanisms.
Collapse
Affiliation(s)
- Yajuan Li
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuelong Li
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaocong Cao
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiangyu Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
115
|
Gray EE, Winship D, Snyder JM, Child SJ, Geballe AP, Stetson DB. The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA. Immunity 2016; 45:255-66. [PMID: 27496731 DOI: 10.1016/j.immuni.2016.06.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/22/2016] [Accepted: 05/05/2016] [Indexed: 11/27/2022]
Abstract
Detection of intracellular DNA triggers activation of the STING-dependent interferon-stimulatory DNA (ISD) pathway, which is essential for antiviral responses. Multiple DNA sensors have been proposed to activate this pathway, including AIM2-like receptors (ALRs). Whether the ALRs are essential for activation of this pathway remains unknown. To rigorously explore the function of ALRs, we generated mice lacking all 13 ALR genes. We found that ALRs are dispensable for the type I interferon (IFN) response to transfected DNA ligands, DNA virus infection, and lentivirus infection. We also found that ALRs do not contribute to autoimmune disease in the Trex1(-/-) mouse model of Aicardi-Goutières Syndrome. Finally, CRISPR-mediated disruption of the human AIM2-like receptor IFI16 in primary fibroblasts revealed that IFI16 is not essential for the IFN response to human cytomegalovirus infection. Our findings indicate that ALRs are dispensable for the ISD response and suggest that alternative functions for these receptors should be explored.
Collapse
Affiliation(s)
- Elizabeth E Gray
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Damion Winship
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Stephanie J Child
- Departments of Microbiology and Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adam P Geballe
- Departments of Microbiology and Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
116
|
Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol 2016; 213:617-29. [PMID: 27325789 PMCID: PMC4915194 DOI: 10.1083/jcb.201602089] [Citation(s) in RCA: 542] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/27/2016] [Indexed: 02/08/2023] Open
Abstract
Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
117
|
Hároníková L, Coufal J, Kejnovská I, Jagelská EB, Fojta M, Dvořáková P, Muller P, Vojtesek B, Brázda V. IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation. PLoS One 2016; 11:e0157156. [PMID: 27280708 PMCID: PMC4900677 DOI: 10.1371/journal.pone.0157156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/25/2016] [Indexed: 02/03/2023] Open
Abstract
Interferon-inducible protein 16 (IFI16) is a member of the HIN-200 protein family, containing two HIN domains and one PYRIN domain. IFI16 acts as a sensor of viral and bacterial DNA and is important for innate immune responses. IFI16 binds DNA and binding has been described to be DNA length-dependent, but a preference for supercoiled DNA has also been demonstrated. Here we report a specific preference of IFI16 for binding to quadruplex DNA compared to other DNA structures. IFI16 binds to quadruplex DNA with significantly higher affinity than to the same sequence in double stranded DNA. By circular dichroism (CD) spectroscopy we also demonstrated the ability of IFI16 to stabilize quadruplex structures with quadruplex-forming oligonucleotides derived from human telomere (HTEL) sequences and the MYC promotor. A novel H/D exchange mass spectrometry approach was developed to assess protein interactions with quadruplex DNA. Quadruplex DNA changed the IFI16 deuteration profile in parts of the PYRIN domain (aa 0–80) and in structurally identical parts of both HIN domains (aa 271–302 and aa 586–617) compared to single stranded or double stranded DNAs, supporting the preferential affinity of IFI16 for structured DNA. Our results reveal the importance of quadruplex DNA structure in IFI16 binding and improve our understanding of how IFI16 senses DNA. IFI16 selectivity for quadruplex structure provides a mechanistic framework for IFI16 in immunity and cellular processes including DNA damage responses and cell proliferation.
Collapse
Affiliation(s)
- Lucia Hároníková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Iva Kejnovská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Eva B. Jagelská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Petra Dvořáková
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Petr Muller
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
118
|
Dawson HD, Smith AD, Chen C, Urban JF. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome. Vet Microbiol 2016; 202:2-15. [PMID: 27321134 DOI: 10.1016/j.vetmic.2016.05.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/26/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been published. Herein we provide an expanded in silico analysis using an improved assembly of the porcine transcriptome that provides an in depth analysis of genes that are related to inflammasomes, responses to Toll-like receptor ligands, and M1 macrophage polarization and Escherichia coli as a model organism. Comparisons of the expansion or contraction of orthologous gene families indicated more similar rates and classes of genes in humans and pigs than in mice; however several novel porcine or artiodactyl-specific paralogs or pseudogenes were identified. Conservation of homology and structural motifs of orthologs revealed that the overall similarity to human proteins was significantly higher for pigs compared to mouse. Despite these similarities, two out of four canonical inflammasome pathways, Absent in melanoma 2 (AIM2) and NLR family and CARD domain containing 4 (NLRC4), were found to be missing in pigs. Pig M1 Mφ polarization in response to interferon-γ (IFN-γ) and lipopolysaccharide (LPS) was assessed, via the transcriptome, using next generation sequencing. Our analysis revealed predominantly human-like responses however some, mouse-like responses were observed, as well as induction of numerous pig or artiodactyl-specific genes. This work supports using swine to model both human immunological and inflammatory responses to infection. However, caution must be exercised as pigs differ from humans in several fundamental pathways.
Collapse
Affiliation(s)
- Harry D Dawson
- Rm 224, Bld 307C, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA; U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA.
| | - Allen D Smith
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Celine Chen
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
119
|
Vitak N, Hume DA, Chappell KJ, Sester DP, Stacey KJ. Induction of interferon and cell death in response to cytosolic DNA in chicken macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:145-152. [PMID: 26828392 DOI: 10.1016/j.dci.2016.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Responses to cytosolic DNA can protect against both infectious organisms and the mutagenic effect of DNA integration. Recognition of invading DNA is likely to be fundamental to eukaryotic cellular life, but has been described only in mammals. Introduction of DNA into chicken macrophages induced type I interferon mRNA via a pathway conserved with mammals, requiring the receptor cGAS and the signalling protein STING. A second pathway of cytosolic DNA recognition in mammalian macrophages, initiated by absent in melanoma 2 (AIM2), results in rapid inflammasome-mediated pyroptotic cell death. AIM2 is restricted to mammals. Nevertheless, chicken macrophages underwent lytic cell death within 15 min of DNA transfection. The mouse AIM2-mediated response requires double stranded DNA, but chicken cell death was maintained with denatured DNA. This appears to be a novel form of rapid necrotic cell death, which we propose is an ancient response rendered redundant in mammalian macrophages by the appearance of the AIM2 inflammasome. The retention of these cytosolic DNA responses through evolution, with both conserved and non-conserved mechanisms, suggests a fundamental importance in cellular defence.
Collapse
Affiliation(s)
- Nazarii Vitak
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia
| | - David P Sester
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia.
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
120
|
Abstract
Endogenous viruses are occasionally co-opted by their hosts to combat other viruses. The discovery of the widespread recruitment of endogenous viruses as regulatory elements for immune genes points to a systematic evolutionary process in their co-option for host immunity.
Collapse
Affiliation(s)
- Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Amr Aswad
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
121
|
Regulation of inflammasomes by ubiquitination. Cell Mol Immunol 2016; 13:722-728. [PMID: 27063466 DOI: 10.1038/cmi.2016.15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are multi-protein complexes that regulate the innate immune response by facilitating the release of inflammatory cytokines in response to pathogen exposure or cellular damage. Pro-inflammatory inflammasome signaling is vital to host defense and helps initiate the process of tissue repair following an insult to the host, but can be injurious, when excessive or chronic. As such, inflammasome activity is tightly regulated. Here we discuss one critical mechanism of inflammasome regulation, ubiquitination, that functions as a universal modulator of protein stability and trafficking. Recent studies have provided important insights into the regulation of inflammasome activation by protein ubiquitination. We review the molecular regulation of inflammasome function, specifically, as it relates to ubiquitination, and discuss the implications for the development of therapeutics to specifically target aberrant inflammasome signaling.
Collapse
|
122
|
Man SM, Karki R, Kanneganti TD. DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota. Pathog Dis 2016; 74:ftw028. [PMID: 27056948 DOI: 10.1093/femspd/ftw028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
DNA sensors are formidable immune guardians of the host. At least 14 cytoplasmic DNA sensors have been identified in recent years, each with specialized roles in driving inflammation and/or cell death. Of these, AIM2 is a sensor of dsDNA, and forms an inflammasome complex to activate the cysteine protease caspase-1, mediates the release of the proinflammatory cytokines IL-1β and IL-18, and induces pyroptosis. The inflammasome sensor NLRP3 can also respond to DNA in the forms of oxidized mitochondrial DNA and the DNA derivative RNA:DNA hybrids produced by bacteria, whereas the putative inflammasome sensor IFI16 responds to viral DNA in the nucleus. Although inflammasomes provoke inflammation for anti-microbial host defense, they must also maintain homeostasis with commensal microbiota. Here, we outline recent advances highlighting the complex relationship between DNA-sensing inflammasomes, bacterial host defense and the gut microbiota.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | |
Collapse
|
123
|
Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Sci Rep 2016; 6:21722. [PMID: 26906452 PMCID: PMC4764838 DOI: 10.1038/srep21722] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Recent genomic analysis of two bat species (Pteropus alecto and Myotis davidii) revealed the absence of the PYHIN gene family. This family is recognized as important immune sensors of intracellular self and foreign DNA and activators of the inflammasome and/or interferon pathways. Further assessment of a wider range of bat genomes was necessary to determine if this is a universal pattern for this large mammalian group. Here we expanded genomic analysis of this gene family to include ten bat species. We confirmed the complete loss of this gene family, with only a truncated AIM2 remaining in one species (Pteronotus parnellii). Divergence of the PYHIN gene loci between the bat lineages infers different loss-of-function histories during bat evolution. While all other major groups of placental mammals have at least one gene member, only bats have lost the entire family. This removal of inflammasome DNA sensors may indicate an important adaptation that is flight-induced and related, at least in part, to pathogen-host co-existence.
Collapse
|
124
|
Correcting the NLRP3 inflammasome deficiency in macrophages from autoimmune NZB mice with exon skipping antisense oligonucleotides. Immunol Cell Biol 2016; 94:520-4. [PMID: 26833024 DOI: 10.1038/icb.2016.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022]
Abstract
Inflammasomes are molecular complexes activated by infection and cellular stress, leading to caspase-1 activation and subsequent interleukin-1β (IL-1β) processing and cell death. The autoimmune NZB mouse strain does not express NLRP3, a key inflammasome initiator mediating responses to a wide variety of stimuli including endogenous danger signals, environmental irritants and a range of bacterial, fungal and viral pathogens. We have previously identified an intronic point mutation in the Nlrp3 gene from NZB mice that generates a splice acceptor site. This leads to inclusion of a pseudoexon that introduces an early termination codon and is proposed to be the cause of NLRP3 inflammasome deficiency in NZB cells. Here we have used exon skipping antisense oligonucleotides (AONs) to prevent aberrant splicing of Nlrp3 in NZB macrophages, and this restored both NLRP3 protein expression and NLRP3 inflammasome activity. Thus, the single point mutation leading to aberrant splicing is the sole cause of NLRP3 inflammasome deficiency in NZB macrophages. The NZB mouse provides a model for addressing a splicing defect in macrophages and could be used to further investigate AON design and delivery of AONs to macrophages in vivo.
Collapse
|
125
|
Abstract
Inflammasome biology is one of the most exciting and rapidly growing areas in immunology. Over the past 10 years, inflammasomes have been recognized for their roles in the host defense against invading pathogens and in the development of cancer, auto-inflammatory, metabolic, and neurodegenerative diseases. Assembly of an inflammasome complex requires cytosolic sensing of pathogen-associated molecular patterns or danger-associated molecular patterns by a nucleotide-binding domain and leucine-rich repeat receptor (NLR) or absent in melanoma 2 (AIM2)-like receptors (ALR). NLRs and ALRs engage caspase-1, in most cases requiring the adapter protein apoptosis-associated speck-like protein containing a CARD (ASC), to catalyze proteolytic cleavage of pro-interleukin-1β (pro-IL-1β) and pro-IL-18 and drive pyroptosis. Recent studies indicate that caspase-8, caspase-11, IL-1R-associated kinases (IRAK), and receptor-interacting protein (RIP) kinases contribute to inflammasome functions. In addition, post-translational modifications, including ubiquitination, deubiquitination, phosphorylation, and degradation control almost every aspect of inflammasome activities. Genetic studies indicate that mutations in NLRP1, NLRP3, NLRC4, and AIM2 are linked with the development of auto-inflammatory diseases, enterocolitis, and cancer. Overall, these findings transform our understanding of the basic biology and clinical relevance of inflammasomes. In this review, we provide an overview of the latest development of inflammasome research and discuss how inflammasome activities govern health and disease.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
126
|
Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 2016; 265:130-42. [PMID: 25879289 DOI: 10.1111/imr.12287] [Citation(s) in RCA: 788] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory caspases play a central role in innate immunity by responding to cytosolic signals and initiating a twofold response. First, caspase-1 induces the activation and secretion of the two prominent pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18. Second, either caspase-1 or caspase-11 can trigger a form of lytic, programmed cell death called pyroptosis. Pyroptosis operates to remove the replication niche of intracellular pathogens, making them susceptible to phagocytosis and killing by a secondary phagocyte. However, aberrant, systemic activation of pyroptosis in vivo may contribute to sepsis. Emphasizing the efficiency of inflammasome detection of microbial infections, many pathogens have evolved to avoid or subvert pyroptosis. This review focuses on molecular and morphological characteristics of pyroptosis and the individual inflammasomes and their contribution to defense against infection in mice and humans.
Collapse
Affiliation(s)
- Ine Jorgensen
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
127
|
Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 2015; 46:269-80. [PMID: 26626159 DOI: 10.1002/eji.201545839] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/13/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
Abstract
Recognition of DNA by the cell is an important immunological signature that marks the initiation of an innate immune response. AIM2 is a cytoplasmic sensor that recognizes dsDNA of microbial or host origin. Upon binding to DNA, AIM2 assembles a multiprotein complex called the inflammasome, which drives pyroptosis and proteolytic cleavage of the proinflammatory cytokines pro-IL-1β and pro-IL-18. Release of microbial DNA into the cytoplasm during infection by Francisella, Listeria, Mycobacterium, mouse cytomegalovirus, vaccinia virus, Aspergillus, and Plasmodium species leads to activation of the AIM2 inflammasome. In contrast, inappropriate recognition of cytoplasmic self-DNA by AIM2 contributes to the development of psoriasis, dermatitis, arthritis, and other autoimmune and inflammatory diseases. Inflammasome-independent functions of AIM2 have also been described, including the regulation of the intestinal stem cell proliferation and the gut microbiota ecology in the control of colorectal cancer. In this review we provide an overview of the latest research on AIM2 inflammasome and its role in infection, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
128
|
Hu S, Peng L, Kwak YT, Tekippe EM, Pasare C, Malter JS, Hooper LV, Zaki MH. The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense. Cell Rep 2015; 13:1922-36. [PMID: 26655906 DOI: 10.1016/j.celrep.2015.10.040] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/29/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Microbial pattern molecules in the intestine play immunoregulatory roles via diverse pattern recognition receptors. However, the role of the cytosolic DNA sensor AIM2 in the maintenance of intestinal homeostasis is unknown. Here, we show that Aim2(-/-) mice are highly susceptible to dextran sodium sulfate-induced colitis that is associated with microbial dysbiosis as represented by higher colonic burden of commensal Escherichia coli. Colonization of germ-free mice with Aim2(-/-) mouse microbiota leads to higher colitis susceptibility. In-depth investigation of AIM2-mediated host defense responses reveals that caspase-1 activation and IL-1β and IL-18 production are compromised in Aim2(-/-) mouse colons, consistent with defective inflammasome function. Moreover, IL-18 infusion reduces E. coli burden as well as colitis susceptibility in Aim2(-/-) mice. Altered microbiota in inflammasome-defective mice correlate with reduced expression of several antimicrobial peptides in intestinal epithelial cells. Together, these findings implicate DNA sensing by AIM2 as a regulatory mechanism for maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Shuiqing Hu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Youn-Tae Kwak
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin McElvania Tekippe
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center, Dallas, TX 75390, USA
| | | | - James S Malter
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Md Hasan Zaki
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
129
|
Sester DP, Stacey KJ. Response to Comment on “Deficient NLRP3 and AIM2 Inflammasome Function in Autoimmune NZB Mice”. THE JOURNAL OF IMMUNOLOGY 2015; 195:4552-3. [DOI: 10.4049/jimmunol.1501930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
130
|
Bianchetti L, Tarabay Y, Lecompte O, Stote R, Poch O, Dejaegere A, Viville S. Tex19 and Sectm1 concordant molecular phylogenies support co-evolution of both eutherian-specific genes. BMC Evol Biol 2015; 15:222. [PMID: 26459560 PMCID: PMC4603632 DOI: 10.1186/s12862-015-0506-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/01/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Transposable elements (TE) have attracted much attention since they shape the genome and contribute to species evolution. Organisms have evolved mechanisms to control TE activity. Testis expressed 19 (Tex19) represses TE expression in mouse testis and placenta. In the human and mouse genomes, Tex19 and Secreted and transmembrane 1 (Sectm1) are neighbors but are not homologs. Sectm1 is involved in immunity and its molecular phylogeny is unknown. METHODS Using multiple alignments of complete protein sequences (MACS), we inferred Tex19 and Sectm1 molecular phylogenies. Protein conserved regions were identified and folds were predicted. Finally, expression patterns were studied across tissues and species using RNA-seq public data and RT-PCR. RESULTS We present 2 high quality alignments of 58 Tex19 and 58 Sectm1 protein sequences from 48 organisms. First, both genes are eutherian-specific, i.e., exclusively present in mammals except monotremes (platypus) and marsupials. Second, Tex19 and Sectm1 have both duplicated in Sciurognathi and Bovidae while they have remained as single copy genes in all further placental mammals. Phylogenetic concordance between both genes was significant (p-value < 0.05) and supported co-evolution and functional relationship. At the protein level, Tex19 exhibits 3 conserved regions and 4 invariant cysteines. In particular, a CXXC motif is present in the N-terminal conserved region. Sectm1 exhibits 2 invariant cysteines and an Ig-like domain. Strikingly, Tex19 C-terminal conserved region was lost in Haplorrhini primates while a Sectm1 C-terminal extra domain was acquired. Finally, we have determined that Tex19 and Sectm1 expression levels anti-correlate across the testis of several primates (ρ = -0.72) which supports anti-regulation. CONCLUSIONS Tex19 and Sectm1 co-evolution and anti-regulated expressions support a strong functional relationship between both genes. Since Tex19 operates a control on TE and Sectm1 plays a role in immunity, Tex19 might suppress an immune response directed against cells that show TE activity in eutherian reproductive tissues.
Collapse
Affiliation(s)
- Laurent Bianchetti
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Genetics institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Strasbourg University, 1 rue Laurent Fries, 67404, Illkirch, France.
| | - Yara Tarabay
- Primordial Germ Cells' Ontogeny and Pluripotency Laboratory, Functional Genomics and Cancer Department, Genetics Institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France. .,Present address: Institut de génétique humaine (IGH), 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Odile Lecompte
- Bioinformatics and Integrated Genomics Laboratory (LBGI), ICube, CNRS UMR 7357/Université de Strasbourg, 11 rue Humann, 67085, Strasbourg, France.
| | - Roland Stote
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Genetics institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Strasbourg University, 1 rue Laurent Fries, 67404, Illkirch, France.
| | - Olivier Poch
- Bioinformatics and Integrated Genomics Laboratory (LBGI), ICube, CNRS UMR 7357/Université de Strasbourg, 11 rue Humann, 67085, Strasbourg, France.
| | - Annick Dejaegere
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Genetics institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Strasbourg University, 1 rue Laurent Fries, 67404, Illkirch, France.
| | - Stéphane Viville
- Primordial Germ Cells' Ontogeny and Pluripotency Laboratory, Functional Genomics and Cancer Department, Genetics Institute of Molecular and Cellular Biology (IGBMC), INSERM U964/CNRS UMR 1704/Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France. .,Centre Hospitalier Universitaire, 67000, Strasbourg, France.
| |
Collapse
|
131
|
The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. Pharmacol Ther 2015; 154:36-56. [PMID: 26145166 DOI: 10.1016/j.pharmthera.2015.06.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
Abstract
The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature."
Collapse
|
132
|
Sester DP, Sagulenko V, Thygesen SJ, Cridland JA, Loi YS, Cridland SO, Masters SL, Genske U, Hornung V, Andoniou CE, Sweet MJ, Degli-Esposti MA, Schroder K, Stacey KJ. Deficient NLRP3 and AIM2 Inflammasome Function in Autoimmune NZB Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:1233-41. [PMID: 26116505 DOI: 10.4049/jimmunol.1402859] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/01/2015] [Indexed: 01/06/2023]
Abstract
Inflammasomes are protein complexes that promote caspase activation, resulting in processing of IL-1β and cell death, in response to infection and cellular stresses. Inflammasomes have been anticipated to contribute to autoimmunity. The New Zealand Black (NZB) mouse develops anti-erythrocyte Abs and is a model of autoimmune hemolytic anemia. These mice also develop anti-nuclear Abs typical of lupus. In this article, we show that NZB macrophages have deficient inflammasome responses to a DNA virus and fungal infection. Absent in melanoma 2 (AIM2) inflammasome responses are compromised in NZB by high expression of the AIM 2 antagonist protein p202, and consequently NZB cells had low IL-1β output in response to both transfected DNA and mouse CMV infection. Surprisingly, we also found that a second inflammasome system, mediated by the NLR family, pyrin domain containing 3 (NLRP3) initiating protein, was completely lacking in NZB cells. This was due to a point mutation in an intron of the Nlrp3 gene in NZB mice, which generates a novel splice acceptor site. This leads to incorporation of a pseudoexon with a premature stop codon. The lack of full-length NLRP3 protein results in NZB being effectively null for Nlrp3, with no production of bioactive IL-1β in response to NLRP3 stimuli, including infection with Candida albicans. Thus, this autoimmune strain harbors two inflammasome deficiencies, mediated through quite distinct mechanisms. We hypothesize that the inflammasome deficiencies in NZB alter the interaction of the host with both microflora and pathogens, promoting prolonged production of cytokines that contribute to development of autoantibodies.
Collapse
Affiliation(s)
- David P Sester
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia;
| | - Vitaliya Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Sara J Thygesen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Jasmyn A Cridland
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Yen Siew Loi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Simon O Cridland
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
| | - Ulrich Genske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Veit Hornung
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127, Bonn, Germany
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley 6009, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands 6009, Western Australia, Australia; and
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley 6009, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands 6009, Western Australia, Australia; and
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| |
Collapse
|
133
|
Microbial DNA recognition by cGAS-STING and other sensors in dendritic cells in inflammatory bowel diseases. Inflamm Bowel Dis 2015; 21:901-11. [PMID: 25581829 DOI: 10.1097/mib.0000000000000299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recognition of microbial nucleic acid initiates host immune defenses against pathogens. Impaired recognition of nucleic acid is involved in the pathogenesis of inflammatory bowel diseases. In contrast to the relatively well-established mechanism of microbial RNA sensing and associated signaling cascades, very little is known on how microbial DNA activates intracellular DNA sensors and controls the function of antigen-presenting cells (especially dendritic cells) to shape mucosal immune responses in intestine. In this review, we will introduce mucosal dendritic cell population, describe various putative DNA sensors, emphasize on newly identified cGAS-cGAMP-STING complex, and discuss how the detection of foreign DNA by mucosal dendritic cells activates innate and adaptive immune responses in intestine. Finally, we will identify certain inflammatory bowel disease-susceptibility genes that associate with impaired microbial DNA recognition in human.
Collapse
|
134
|
Stavrou S, Blouch K, Kotla S, Bass A, Ross SR. Nucleic acid recognition orchestrates the anti-viral response to retroviruses. Cell Host Microbe 2015; 17:478-88. [PMID: 25816774 DOI: 10.1016/j.chom.2015.02.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
Intrinsic restriction factors and viral nucleic acid sensors are important for the anti-viral response. Here, we show how upstream sensing of retroviral reverse transcripts integrates with the downstream effector APOBEC3, an IFN-induced cytidine deaminase that introduces lethal mutations during retroviral reverse transcription. Using a murine leukemia virus (MLV) variant with an unstable capsid that induces a strong IFNβ antiviral response, we identify three sensors, IFI203, DDX41, and cGAS, required for MLV nucleic acid recognition. These sensors then signal using the adaptor STING, leading to increased production of IFNβ and other targets downstream of the transcription factor IRF3. Using knockout and mutant mice, we show that APOBEC3 limits the levels of reverse transcripts that trigger cytosolic sensing, and that nucleic acid sensing in vivo increases expression of IFN-regulated restriction factors like APOBEC3 that in turn reduce viral load. These studies underscore the importance of the multiple layers of protection afforded by host factors.
Collapse
Affiliation(s)
- Spyridon Stavrou
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin Blouch
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Swathi Kotla
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonia Bass
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan R Ross
- Department of Microbiology, Institute for Immunology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
135
|
Zhao H, Gonzalezgugel E, Cheng L, Richbourgh B, Nie L, Liu C. The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation. Genes Dis 2015; 2:46-56. [PMID: 25815367 PMCID: PMC4372153 DOI: 10.1016/j.gendis.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p204 is a member of the interferon-inducible p200 family proteins in mice. The p200 family has been reported to be multifunctional regulators of cell proliferation, differentiation, apoptosis and senescence. Interferon-inducible protein 16 (IFI16) is regarded as the human ortholog of p204 in several studies. This is possibly due to the similarity of their structures. However the consistency of their functions is still elusive. Currently, an emerging focus has been placed upon the role of the p200 proteins as sensors for microbial DNA in innate immune responses and provides new insights into infections as well as autoimmune diseases. This review specially focuses on IFI16 and p204, the member of p200 family in human and murine respectively, and their pathophysiological roles in innate immune responses, cell differentiation and proliferation.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Elena Gonzalezgugel
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lei Cheng
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Brendon Richbourgh
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States
| | - Lin Nie
- Department of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States ; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|
136
|
Bawadekar M, De Andrea M, Lo Cigno I, Baldanzi G, Caneparo V, Graziani A, Landolfo S, Gariglio M. The Extracellular IFI16 Protein Propagates Inflammation in Endothelial Cells Via p38 MAPK and NF-κB p65 Activation. J Interferon Cytokine Res 2015; 35:441-53. [PMID: 25715050 DOI: 10.1089/jir.2014.0168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear interferon-inducible-16 (IFI16) protein acts as DNA sensor in inflammasome signaling and as viral restriction factor. Following Herpesvirus infection or UV-B treatment, IFI16 delocalizes from the nucleus to the cytoplasm and is eventually released into the extracellular milieu. Recently, our group has demonstrated the occurrence of IFI16 in sera of systemic-autoimmune patients that hampers biological activity of endothelia through high-affinity membrane binding. As a continuation, we studied the activity of endotoxin-free recombinant IFI16 (rIFI16) protein on primary endothelial cells. rIFI16 caused dose/time-dependent upregulation of IL-6, IL-8, CCL2, CCL5, CCL20, ICAM1, VCAM1, and TLR4, while secretion of IL-6 and IL-8 was amplified with lipopolysaccharide synergy. Overall, cytokine secretion was completely inhibited in MyD88-silenced cells and partially by TLR4-neutralizing antibodies. By screening downstream signaling pathways, we found that IFI16 activates p38, p44/42 MAP kinases, and NF-kB. In particular, activation of p38 is an early event required for subsequent p44/42 MAP kinases activity and cytokine induction indicating a key role of this kinase in IFI16 signaling. Altogether, our data conclude that extracellular IFI16 protein alone or by synergy with lipopolysaccharide acts like Damage-associated molecular patterns propagating "Danger Signal" through MyD88-dependent TLR-pathway.
Collapse
Affiliation(s)
- Mandar Bawadekar
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy .,2 Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) , Novara, Italy .,3 Division of Rheumatology, Department of Medicine, University of Wisconsin-Madison , Wisconsin
| | - Marco De Andrea
- 4 Department of Public Health and Pediatric Sciences, University of Turin , Medical School, Turin, Italy
| | - Irene Lo Cigno
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy .,2 Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) , Novara, Italy
| | - Gianluca Baldanzi
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy
| | - Valeria Caneparo
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy .,2 Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) , Novara, Italy
| | - Andrea Graziani
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy
| | - Santo Landolfo
- 4 Department of Public Health and Pediatric Sciences, University of Turin , Medical School, Turin, Italy
| | - Marisa Gariglio
- 1 Department of Translational Medicine, University of Eastern Piedmont , Novara, Italy .,2 Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) , Novara, Italy
| |
Collapse
|
137
|
Diner BA, Li T, Greco TM, Crow MS, Fuesler JA, Wang J, Cristea IM. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol 2015; 11:787. [PMID: 25665578 PMCID: PMC4358659 DOI: 10.15252/msb.20145808] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The human PYHIN proteins, AIM2, IFI16, IFIX, and MNDA, are critical regulators of immune response, transcription, apoptosis, and cell cycle. However, their protein interactions and underlying mechanisms remain largely uncharacterized. Here, we provide the interaction network for all PYHIN proteins and define a function in sensing of viral DNA for the previously uncharacterized IFIX protein. By designing a cell-based inducible system and integrating microscopy, immunoaffinity capture, quantitative mass spectrometry, and bioinformatics, we identify over 300 PYHIN interactions reflective of diverse functions, including DNA damage response, transcription regulation, intracellular signaling, and antiviral response. In view of the IFIX interaction with antiviral factors, including nuclear PML bodies, we further characterize IFIX and demonstrate its function in restricting herpesvirus replication. We discover that IFIX detects viral DNA in both the nucleus and cytoplasm, binding foreign DNA via its HIN domain in a sequence-non-specific manner. Furthermore, IFIX contributes to the induction of interferon response. Our results highlight the value of integrative proteomics in deducing protein function and establish IFIX as an antiviral DNA sensor important for mounting immune responses.
Collapse
Affiliation(s)
- Benjamin A Diner
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Tuo Li
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Marni S Crow
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - John A Fuesler
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Jennifer Wang
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| |
Collapse
|
138
|
Cox DJ, Field RH, Williams DG, Baran M, Bowie AG, Cunningham C, Dunne A. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 2015; 63:812-25. [PMID: 25627810 PMCID: PMC4657478 DOI: 10.1002/glia.22786] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/27/2022]
Abstract
The detection of nucleic acids by the innate immune system is an essential host response during viral infection. In recent years, a number of immune sensors capable of recognizing cytosolic DNA have been identified and include the PYHIN family members AIM2, IFI16, and p204 as well as the enzyme, cGAS. Activation of these receptors leads to the induction of antiviral genes including Type‐1 interferons and chemokines such as CCL5. We have carried out extensive expression profiling of these DNA sensors and other members of the PYHIN family in highly purified primary astrocytes and microglia and have demonstrated that both cell types express the majority of these proteins at the mRNA level. In microglia, several family members are highly upregulated in response to IFN‐β treatment while both cell types induce robust proinflammatory and antiviral cytokine production (e.g., IL‐6, CCL5, IFN‐β) in the presence of immune stimulatory DNA and RNA. The production of IL‐6 is partially dependent on the interferon receptor as is IFN‐β itself. Furthermore, we have found that p204 and AIM2 are upregulated in a Type I IFN dependent fashion in vivo, in a murine model of chronic neurodegeneration. Given the propensity of inflammatory responses to cause neuronal damage, increased expression and activation of these receptors, not only during viral infection but also during sterile inflammatory responses, has the potential to exacerbate existing neuroinflammation leading to further damage and impaired neurogenesis. GLIA 2015;63:812–825
Collapse
Affiliation(s)
- Donal J Cox
- Molecular Immunology Group, School, of Biochemistry and Immunology and Immunology Research Centre, Trinity College Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
139
|
Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res 2015; 8:15-27. [PMID: 25653548 PMCID: PMC4303395 DOI: 10.2147/jir.s51250] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The inflammasome is a molecular platform formed by activation of an innate immune pattern recognition receptor seed, such as NLRP3. Once activated, NLRP3 recruits the adapter ASC (apoptosis-related speck-like protein containing a caspase recruitment domain), which in turn recruits procaspase-1. Procaspase-1 autocatalyzes its cleavage and activation, resulting in maturation of the precursor forms of interleukin (IL)-1β and IL-18 into active proinflammatory cytokines and initiation of pyroptotic cell death. The NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of diseases, including genetically inherited autoinflammatory conditions as well as chronic diseases in which NLRP3 is abnormally activated. The NLRP3 inflammasome has been linked to diseases such as Alzheimer’s disease, atherosclerosis, metabolic syndrome, and age-related macular degeneration. In this review, we describe the NLRP3 inflammasome complex and its activation in disease, and detail the current therapies that modulate either the NLRP3 inflammasome complex itself or the two cytokines it is responsible for activating, ie, IL-1β and IL-18.
Collapse
Affiliation(s)
- Ema Ozaki
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland ; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
140
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 PMCID: PMC4394686 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
141
|
Vitak N, Johnson KN, Sester DP, Stacey KJ. A novel pathway of cell death in response to cytosolic DNA in Drosophila cells. J Innate Immun 2014; 7:212-22. [PMID: 25472853 DOI: 10.1159/000368276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 01/12/2023] Open
Abstract
Defence against invading DNA occurs in both mammals and bacteria. Recognition of stray DNA can initiate responses to infection, but may also protect against potentially mutagenic integration of transposons or retrotransposons into the genome. Double-stranded DNA detected in the cytosol of mammalian macrophages can elicit inflammatory cytokines and cell death following assembly of the AIM2 inflammasome. Amongst eukaryotes, responses to cytosolic DNA have so far only been detected in mammals, and AIM2 is mammalian restricted. In protecting genome integrity, we reasoned that pathways recognising invading DNA should be fundamental to cellular life, and that cell death would be an appropriate response to an overwhelming foreign DNA burden. We found that Drosophila S2 cells were killed by transfection of DNA from a range of natural sources. Unlike with mammalian cells, responses were not prevented by DNA denaturation. There was an element of sequence specificity, as synthetic single-stranded homopolymers were not toxic, whilst mixed-base synthetic DNA caused significant cell death. Death occurred with rapid loss of membrane integrity, and without the characteristic features of apoptosis. We have defined a novel defence against invading DNA in Drosophila. An active necrotic pathway has not previously been described in insects.
Collapse
Affiliation(s)
- Nazarii Vitak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld., Australia
| | | | | | | |
Collapse
|
142
|
Mislocalization of the interferon inducible protein IFI16 by environmental insults: implications in autoimmunity. Cytokine Growth Factor Rev 2014; 26:213-9. [PMID: 25466628 DOI: 10.1016/j.cytogfr.2014.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/22/2014] [Indexed: 12/30/2022]
Abstract
The nuclear DNA sensor IFI16, a member of PYHIN family of proteins, was previously studied for its role in cell cycle regulation, tumor suppression, apoptosis and DNA damage signaling. Autoantibodies against IFI16 are prevalent in the sera of patients with systemic autoimmunity, thus depicting physiological significance as an autoantigen. At present, the nuclear IFI16 protein has been thoroughly investigated for its role as an innate immune sensor involved in inflammasome signaling and viral restriction. While the sub-cellular localization of IFI16 during such events has been known, very little knowledge about its presence and significance in the extracellular space is available. Recently our group has discovered the presence of circulating IFI16 in the sera from systemic autoimmune patients indicating that in this setting it may be mislocalized form its nuclear site and secreted in the extracellular milieu. In this review, we will discuss the leakage of endogenous IFI16 that has been experimentally proved using in vivo and in vitro models. Also we will comment on the significance of mislocalized inflammasome components in the extracellular space and how it can be responsible for chronic inflammation.
Collapse
|
143
|
Connolly DJ, Bowie AG. The emerging role of human PYHIN proteins in innate immunity: implications for health and disease. Biochem Pharmacol 2014; 92:405-14. [PMID: 25199457 DOI: 10.1016/j.bcp.2014.08.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
The innate immune response depends on the ability of immune cells to detect pathogens through germline-encoded pattern recognition receptors (PRRs). Recently discovered PRRs include some members of the Pyrin and HIN domain (PYHIN) family, which are encoded on an interferon-inducible gene cluster located on chromosome 1q23. There are five human PYHIN proteins; Absent in melanoma 2 (AIM2), IFN-γ inducible protein 16 (IFI16), Myeloid cell nuclear differentiation antigen (MNDA), Pyrin and HIN domain family member 1 (PYHIN1) and the recently identified Pyrin domain only protein 3 (POP3). Early studies reported roles for these proteins in cell cycle control, tumour suppression and transcriptional regulation. AIM2 and IFI16 have now been shown to be immune sensors of non-self DNA, such as that produced by viruses in infected cells. AIM2 binds DNA to activate the inflammasome, while IFI16 detection of DNA can lead to the up-regulation of type I interferons or inflammasome activation. Recent studies have shown how IFI16 senses DNA viruses, and also how viruses evade detection by IFI16, while structural studies have greatly advanced our understanding of how AIM2 and IFI16 bind DNA to activate these immune responses. Furthermore, following the identification of POP3, interplay between members of this gene cluster has been established, with POP3 acting as a negative regulator of the AIM2 and IFI16 inflammasomes. In this review we discuss the current understanding of how PYHIN proteins function in innate immunity, their role in disease and the therapeutic possibilities that arise as a result.
Collapse
Affiliation(s)
- Dympna J Connolly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
144
|
The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep 2014; 8:570-82. [PMID: 25043180 DOI: 10.1016/j.celrep.2014.06.028] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/01/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
The macrophage NLRC4 inflammasome drives potent innate immune responses against Salmonella by eliciting caspase-1-dependent proinflammatory cytokine production (e.g., interleukin-1β [IL-1β]) and pyroptotic cell death. However, the potential contribution of other cell types to inflammasome-mediated host defense against Salmonella was unclear. Here, we demonstrate that neutrophils, typically viewed as cellular targets of IL-1β, themselves activate the NLRC4 inflammasome during acute Salmonella infection and are a major cell compartment for IL-1β production during acute peritoneal challenge in vivo. Importantly, unlike macrophages, neutrophils do not undergo pyroptosis upon NLRC4 inflammasome activation. The resistance of neutrophils to pyroptotic death is unique among inflammasome-signaling cells so far described and allows neutrophils to sustain IL-1β production at a site of infection without compromising the crucial inflammasome-independent antimicrobial effector functions that would be lost if neutrophils rapidly lysed upon caspase-1 activation. Inflammasome pathway modification in neutrophils thus maximizes host proinflammatory and antimicrobial responses during pathogen challenge.
Collapse
|
145
|
Abstract
My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins.
Collapse
Affiliation(s)
- Peter Lengyel
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
146
|
Jakobsen MR, Paludan SR. IFI16: At the interphase between innate DNA sensing and genome regulation. Cytokine Growth Factor Rev 2014; 25:649-55. [PMID: 25027602 DOI: 10.1016/j.cytogfr.2014.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/18/2022]
Abstract
DNA carries the genetic code, and is also a potent stimulator of innate immune responses. IFI16 is a member of the family of PYHIN proteins and is composed of a PYRIN domain involved in homotypic protein-protein interactions and two HIN domains mediating DNA binding. PYHIN proteins have been described to possess functions as innate pattern recognition receptors or transcriptional regulators. Interestingly, it is now emerging that IFI16, which exhibits both nuclear and cytosolic location, possesses both of these functions. In this review we discuss the current literature on IFI16 and propose key questions now facing this field of research. We propose that IFI16 plays a central role in the close interaction between the innate immune system and cellular regulation of the genome.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
147
|
Landolfo S, Andrea MD, Gariglio M. Restriction factors against human CMV. Future Virol 2014. [DOI: 10.2217/fvl.14.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular proteins called 'restriction factors' (RFs) form an important component of the innate immune response to viral replication. However, viruses have learned how to antagonize RFs through mechanisms that are specific for each virus. Here, we summarize the general hallmarks of RFs before going on to discuss the specific strategies recruited by some key RFs that strive to hold human CMV (HCMV) infection back, as well as the counter-restriction mechanisms employed by the virus to overcome this innate defense. Such RFs include the cellular constituents of nuclear domain 10 (ND10), and IFI16, a nuclear member of the PYHIN protein family. Viral regulatory proteins, such as IE1 or pp71, try to oppose the ND10-induced blockade of virus replication by either modifying or disrupting this RF. IFI16, on the other hand, inhibits virus DNA synthesis by downregulating the transcription of viral gene UL54; the intruding virus attempts to antagonize IFI16 by mislocalizing it from the nucleus to the cytoplasm via the action of viral protein UL97. Finally, we consider how Viperin, a RF initially thought to inhibit HCMV maturation late during infection, has actually been demonstrated to enhance virus maturation by increasing lipid metabolism and enhancing virus envelopment.
Collapse
Affiliation(s)
- Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health & Pediatric Sciences, Medical School, University of Turin, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health & Pediatric Sciences, Medical School, University of Turin, Italy
- Virology Unit, Department of Translational Medicine, Medical School of Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Medical School of Novara, Italy
| |
Collapse
|
148
|
Khare S, Ratsimandresy RA, de Almeida L, Cuda CM, Rellick SL, Misharin AV, Wallin MC, Gangopadhyay A, Forte E, Gottwein E, Perlman H, Reed JC, Greaves DR, Dorfleutner A, Stehlik C. The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 2014; 15:343-53. [PMID: 24531343 PMCID: PMC4123781 DOI: 10.1038/ni.2829] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/14/2014] [Indexed: 12/16/2022]
Abstract
The innate immune system responds to infection and tissue damage by activating cytosolic sensory complexes called 'inflammasomes'. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the inflammasome adaptor ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but the regulation of ALR inflammasomes is poorly understood. Here we identified the PYRIN domain (PYD)-only protein POP3, which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced activation of ALR inflammasomes in vivo. Data obtained with a mouse model with macrophage-specific POP3 expression emphasize the importance of the regulation of ALR inflammasomes in monocytes and macrophages.
Collapse
Affiliation(s)
- Sonal Khare
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rojo A. Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lúcia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carla M. Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephanie L. Rellick
- Program in Cancer Cell Biology, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Alexander V. Misharin
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Melissa C. Wallin
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anu Gangopadhyay
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eleonora Forte
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eva Gottwein
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John C. Reed
- Apoptosis and Cell Death Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA and Pharma Research and Early Development, F. Hoffmann-La Roche AG, 4070 Basel, CH
| | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
149
|
Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology 2013; 218:1312-21. [PMID: 23962476 DOI: 10.1016/j.imbio.2013.07.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 12/22/2022]
Abstract
The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA.
Collapse
Affiliation(s)
- Leonie Unterholzner
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, DD1 5EH, UK.
| |
Collapse
|
150
|
Abstract
Although it has been appreciated for some years that cytosolic DNA is immune stimulatory, it is only in the past five years that the molecular basis of DNA sensing by the innate immune system has begun to be revealed. In particular it has been described how DNA induces type I interferon, central in antiviral responses and a mediator of autoimmunity. To date more than ten cytosolic receptors of DNA have been proposed, but STING is a key adaptor protein for most DNA-sensing pathways, and we are now beginning to understand the signaling mechanisms for STING. In this review we describe the recent progress in understanding signaling mechanisms activated by DNA and the relevance of DNA sensing to pathogen responses and autoimmunity. We highlight new insights gained into how and why the immune system responds to both pathogen and self DNA and define important questions that now need to be addressed in the field of innate immune activation by DNA.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, University of Aarhus, Aarhus 8000, Denmark.
| | | |
Collapse
|