101
|
Abstract
CRISPR-Cas adaptive immune systems in bacteria and archaea utilize short CRISPR RNAs (crRNAs) to guide sequence-specific recognition and clearance of foreign genetic material. Multiple crRNAs are stored together in a compact format called a CRISPR array that is transcribed and processed into the individual crRNAs. While the exact processing mechanisms vary widely, some CRISPR-Cas systems, including those encoding the Cas9 nuclease, rely on a trans-activating crRNA (tracrRNA). The tracrRNA was discovered in 2011 and was quickly co-opted to create single-guide RNAs as core components of CRISPR-Cas9 technologies. Since then, further studies have uncovered processes extending beyond the traditional role of tracrRNA in crRNA biogenesis, revealed Cas nucleases besides Cas9 that are dependent on tracrRNAs, and established new applications based on tracrRNA engineering. In this review, we describe the biology of the tracrRNA and how its ongoing characterization has garnered new insights into prokaryotic immune defense and enabled key technological advances.
Collapse
Affiliation(s)
- Chunyu Liao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany;
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany;
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
102
|
He RZ, Jiang J, Hu X, Lei M, Li J, Luo W, Duan L, Hu Z, Mo YY, Luo DX, Peng WX. Stabilization of UCA1 by N6-methyladenosine RNA methylation modification promotes colorectal cancer progression. Cancer Cell Int 2021; 21:616. [PMID: 34809621 PMCID: PMC8609784 DOI: 10.1186/s12935-021-02288-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background UCA1 is frequently upregulated in a variety of cancers, including CRC, and it can play an oncogenic role by various mechanisms. However, how UCA1 is regulated in cancer is largely unknown. In this study, we aimed to determine whether RNA methylation at N6-methyladenosine (m6A) can impact UCA1 expression in colorectal cancer (CRC). Methods qRT-PCR was performed to detect the level of UCA1 and IGF2BP2 in CRC samples. CRISPR/Cas9 was employed to knockout (KO) UCA1, METTL3 and WTAP in DLD-1 and HCT-116 cells, while rescue experiments were carried out to re-express METTL3 and WTAP in KO cells. Immunoprecipitation using m6A antibody was performed to determine the m6A modification of UCA1. In vivo pulldown assays using S1m tagging combined with site-direct mutagenesis was carried out to confirm the recognition of m6A-modified UCA1 by IGF2BP2. Cell viability was measured by MTT and colony formation assays. The expression of UCA1 and IGF2BP2 in TCGA CRC database was obtained from GEPIA (http://gepia.cancer-pku.cn). Results Our results revealed that IGF2BP2 serves as a reader for m6A modified UCA1 and that adenosine at 1038 of UCA1 is critical to the recognition by IGF2BP2. Importantly, we showed that m6A writers, METTL3 and WTAP positively regulate UCA1 expression. Mechanically, IGF2BP2 increases the stability of m6A-modified UCA1. Clinically, IGF2BP2 is upregulated in CRC tissues compared with normal tissues. Conclusion These results suggest that m6A modification is an important factor contributing to upregulation of UCA1 in CRC tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02288-x.
Collapse
Affiliation(s)
- Rong-Zhang He
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jing Jiang
- Center of Medical Laboratory, The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, China
| | - Xinglin Hu
- Department of Dermatology, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, 423000, China
| | - Ming Lei
- Department of Clinical Laboratory, The First People's Hospital of Changde City, Changde, 415003, China
| | - Jia Li
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Weihao Luo
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Lili Duan
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Zheng Hu
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Di-Xian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Guangdong, 518000, China.
| | - Wan-Xin Peng
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA. .,National Clinical Research Center for Child Health, National Children's Regional Medical Center, the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
103
|
Shojaei Baghini S, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell. Front Bioeng Biotechnol 2021; 9:775309. [PMID: 34869290 PMCID: PMC8640246 DOI: 10.3389/fbioe.2021.775309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
During recent years, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technologies have been noticed as a rapidly evolving tool to deliver a possibility for modifying target sequence expression and function. The CRISPR/Cas9 tool is currently being used to treat a myriad of human disorders, ranging from genetic diseases and infections to cancers. Preliminary reports have shown that CRISPR technology could result in valued consequences for the treatment of Duchenne muscular dystrophy (DMD), cystic fibrosis (CF), β-thalassemia, Huntington's diseases (HD), etc. Nonetheless, high rates of off-target effects may hinder its application in clinics. Thereby, recent studies have focused on the finding of the novel strategies to ameliorate these off-target effects and thereby lead to a high rate of fidelity and accuracy in human, animals, prokaryotes, and also plants. Meanwhile, there is clear evidence indicating that the design of the specific sgRNA with high efficiency is of paramount importance. Correspondingly, elucidation of the principal parameters that contributed to determining the sgRNA efficiencies is a prerequisite. Herein, we will deliver an overview regarding the therapeutic application of CRISPR technology to treat human disorders. More importantly, we will discuss the potent influential parameters (e.g., sgRNA structure and feature) implicated in affecting the sgRNA efficacy in CRISPR/Cas9 technology, with special concentration on human and animal studies.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, Moscow, Russia
- Medical Faculty, Russian State Social University, Moscow, Russia
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
104
|
Kostyushev D, Kostyusheva A, Ponomareva N, Brezgin S, Chulanov V. CRISPR/Cas and Hepatitis B Therapy: Technological Advances and Practical Barriers. Nucleic Acid Ther 2021; 32:14-28. [PMID: 34797701 DOI: 10.1089/nat.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After almost a decade of using CRISPR/Cas9 systems to edit target genes, CRISPR/Cas9 and related technologies are rapidly moving to clinical trials. Hepatitis B virus (HBV), which causes severe liver disease, cannot be cleared by modern antivirals, but represents an ideal target for CRISPR/Cas9 systems. Early studies demonstrated very high antiviral potency of CRISPR/Cas9 and supported its use for developing a cure against chronic HBV infection. This review discusses the key issues that must be solved to make CRISPR/Cas9 an anti-HBV therapy.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Natalia Ponomareva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
105
|
Ma S, Lv J, Feng Z, Rong Z, Lin Y. Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. J Gene Med 2021; 23:e3377. [PMID: 34270141 DOI: 10.1002/jgm.3377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a state-of-the-art tool for versatile genome editing that has advanced basic research dramatically, with great potential for clinic applications. The system consists of two key molecules: a CRISPR-associated (Cas) effector nuclease and a single guide RNA. The simplicity of the system has enabled the development of a wide spectrum of derivative methods. Almost any laboratory can utilize these methods, although new users may initially be confused when faced with the potentially overwhelming abundance of choices. Cas nucleases and their engineering have been systematically reviewed previously. In the present review, we discuss single guide RNA engineering and design strategies that facilitate more efficient, more specific and safer gene editing.
Collapse
Affiliation(s)
- Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zinan Feng
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| |
Collapse
|
106
|
Hassan MM, Zhang Y, Yuan G, De K, Chen JG, Muchero W, Tuskan GA, Qi Y, Yang X. Construct design for CRISPR/Cas-based genome editing in plants. TRENDS IN PLANT SCIENCE 2021; 26:1133-1152. [PMID: 34340931 DOI: 10.1016/j.tplants.2021.06.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 05/06/2023]
Abstract
CRISPR construct design is a key step in the practice of genome editing, which includes identification of appropriate Cas proteins, design and selection of guide RNAs (gRNAs), and selection of regulatory elements to express gRNAs and Cas proteins. Here, we review the choices of CRISPR-based genome editors suited for different needs in plant genome editing applications. We consider the technical aspects of gRNA design and the associated computational tools. We also discuss strategies for the design of multiplex CRISPR constructs for high-throughput manipulation of complex biological processes or polygenic traits. We provide recommendations for different elements of CRISPR constructs and discuss the remaining challenges of CRISPR construct optimization in plant genome editing.
Collapse
Affiliation(s)
- Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kuntal De
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
107
|
Hana S, Peterson M, McLaughlin H, Marshall E, Fabian AJ, McKissick O, Koszka K, Marsh G, Craft M, Xu S, Sorets A, Torregrosa T, Sun C, Henderson CE, Lo SC. Highly efficient neuronal gene knockout in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice. Gene Ther 2021; 28:646-658. [PMID: 33558692 PMCID: PMC8599009 DOI: 10.1038/s41434-021-00224-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/29/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
CRISPR-Cas systems have emerged as a powerful tool to generate genetic models for studying normal and diseased central nervous system (CNS). Targeted gene disruption at specific loci has been demonstrated successfully in non-dividing neurons. Despite its simplicity, high specificity and low cost, the efficiency of CRISPR-mediated knockout in vivo can be substantially impacted by many parameters. Here, we used CRISPR-Cas9 to disrupt the neuronal-specific gene, NeuN, and optimized key parameters to achieve effective gene knockout broadly in the CNS in postnatal mice. Three cell lines and two primary neuron cultures were used to validate the disruption of NeuN by single-guide RNAs (sgRNA) harboring distinct spacers and scaffold sequences. This triage identified an optimal sgRNA design with the highest NeuN disruption in in vitro and in vivo systems. To enhance CRISPR efficiency, AAV-PHP.B, a vector with superior neuronal transduction, was used to deliver this sgRNA in Cas9 mice via neonatal intracerebroventricular (ICV) injection. This approach resulted in 99.4% biallelic indels rate in the transduced cells, leading to greater than 70% reduction of total NeuN proteins in the cortex, hippocampus and spinal cord. This work contributes to the optimization of CRISPR-mediated knockout and will be beneficial for fundamental and preclinical research.
Collapse
|
108
|
Negishi K, Mikami M, Toki S, Endo M. Enhanced FnCas12a-Mediated Targeted Mutagenesis Using crRNA With Altered Target Length in Rice. Front Genome Ed 2021; 2:608563. [PMID: 34713233 PMCID: PMC8525410 DOI: 10.3389/fgeed.2020.608563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022] Open
Abstract
The CRISPR/Cas12a (Cpf1) system utilizes a thymidine-rich protospacer adjacent motif (PAM) and generates DNA ends with a 5′ overhang. These properties differ from those of CRISPR/Cas9, making Cas12a an attractive alternative in the CRISPR toolbox. However, genome editing efficiencies of Cas12a orthologs are generally lower than those of SpCas9 and depend on their target sequences. Here, we report that the efficiency of FnCas12a-mediated targeted mutagenesis varies depending on the length of the crRNA guide sequence. Generally, the crRNA of FnCas12a contains a 24-nt guide sequence; however, some target sites showed higher mutation frequency when using crRNA with an 18-nt or 30-nt guide sequence. We also show that a short crRNA containing an 18-nt guide sequence could induce large deletions compared with middle- (24-nt guide sequence) and long- (30-nt guide sequence) crRNAs. We demonstrate that alteration of crRNA guide sequence length does not change the rate of off-target mutation of FnCas12a. Our results indicate that efficiency and deletion size of FnCas12a-mediated targeted mutagenesis in rice can be fine-tuned using crRNAs with appropriate guide sequences.
Collapse
Affiliation(s)
- Katsuya Negishi
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masafumi Mikami
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan.,Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan.,Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan.,Probabilistic Modeling Team, Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
109
|
Liang L, Li Z, Li Q, Wang X, Su S, Nie H. Expansion of CRISPR Targeting Sites Using an Integrated Gene-Editing System in Apis mellifera. INSECTS 2021; 12:insects12100954. [PMID: 34680723 PMCID: PMC8540347 DOI: 10.3390/insects12100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary CRISPR/Cas9, a versatile gene manipulation tool, has been harnessed for targeted genome engineering in honeybees. However, until now, only SpCas9 that enables NGG recognition has been shown to manipulate the genome in A. mellifera, limiting the editable range to the NGG-included loci. In the current study, to evaluate the potential expansion when utilising Cpf1, SpCas9 and SaCas9, we predicted the distribution and number of targeting sites throughout the whole honeybee genome with a bioinformatic approach. The results of bioinformatics analysis suggest that the number of accessible targeting sites in A. mellifera could be significantly increased via the integrated CRISPR system. In addition, we measured the cleavage activity of these new CRISPR enzymes in A. mellifera, and it was found that both SaCas9 and Cpf1 can induce genome alternation in A. mellifera, albeit with relatively lower mutagenesis rates for Cpf1 and unstable editing for SaCas9. To our knowledge, our study provides the first evidence that SaCas9 and Cpf1 can efficiently mediate genome sequence mutation, thereby expanding the targetable spectrum in A. mellifera. The integrated CRISPR system will probably boost both fundamental studies and applied researches in A. mellifera and perhaps other insects. Abstract CRISPR/Cas9, a predominant gene-editing tool, has been utilised to dissect the gene function in Apis mellifera. However, only the genomic region containing NGG PAM could be recognised and edited in A. mellifera, seriously hampering the application of CRISPR technology in honeybees. In this study, we carried out the bioinformatics analysis for genome-wide targeting sites of NGG, TTN, and NNGRRT to determine the potential expansion of the SpCas9, SaCas9, Cpf1, and it was found that the targetable spectrum of the CRISPR editing system could be markedly extended via the integrated gene manipulation system. Meanwhile, the single guide RNA (sgRNA)/crRNA of different novel gene editing systems and the corresponding CRISPR proteins were co-injected into honeybee embryos, and their feasibility was tested in A. mellifera. The sequencing data revealed that both SaCas9 and Cpf1 are capable of mediating mutation in A. mellifera, albeit with relatively lower mutagenesis rates for Cpf1 and unstable editing for SaCas9. To our knowledge, our results provide the first demonstration that SaCas9 and Cpf1 can function to induce genome sequence alternation, which extended the editing scope to the targets with TTN and NNGRRT and enabled CRISPR-based genome research in a broader range in A. mellifera.
Collapse
Affiliation(s)
- Liqiang Liang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
| | - Zhenghanqing Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
| | - Qiufang Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
| | - Xiuxiu Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
- Correspondence: (S.S.); (H.N.); Tel.: +86-181-0503-9938 (S.S.); +86-157-0590-2721 (H.N.)
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Z.L.); (Q.L.); (X.W.)
- Correspondence: (S.S.); (H.N.); Tel.: +86-181-0503-9938 (S.S.); +86-157-0590-2721 (H.N.)
| |
Collapse
|
110
|
Liu Y, Yang G, Huang S, Li X, Wang X, Li G, Chi T, Chen Y, Huang X, Wang X. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res 2021; 31:1134-1136. [PMID: 34103663 PMCID: PMC8486859 DOI: 10.1038/s41422-021-00520-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
111
|
Sun B, Chen H, Gao X. Versatile modification of the CRISPR/Cas9 ribonucleoprotein system to facilitate in vivo application. J Control Release 2021; 337:698-717. [PMID: 34364918 DOI: 10.1016/j.jconrel.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
The development of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems has created a tremendous wave that is sweeping the world of genome editing. The ribonucleoprotein (RNP) method has evolved to be the most advantageous form for in vivo application. Modification of the CRISPR/Cas9 RNP method to adapt delivery through a variety of carriers can either directly improve the stability and specificity of the gene-editing tool in vivo or indirectly endow the system with high gene-editing efficiency that induces few off-target mutations through different delivery methods. The exploration of in vivo applications mediated by various delivery methods lays the foundation for genome research and variety improvements, which is especially promising for better in vivo research in the field of translational biomedicine. In this review, we illustrate the modifiable structures of the Cas9 nuclease and single guide RNA (sgRNA), summarize the latest research progress and discuss the feasibility and advantages of various methods. The highlighted results will enhance our knowledge, stimulate extensive research and application of Cas9 and provide alternatives for the development of rational delivery carriers in multiple fields.
Collapse
Affiliation(s)
- Bixi Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China
| | - Hening Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China
| | - Xiaoshu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| |
Collapse
|
112
|
Moreb EA, Lynch MD. Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity. Nat Commun 2021; 12:5034. [PMID: 34413309 PMCID: PMC8377084 DOI: 10.1038/s41467-021-25339-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
CRISPR-Cas9 is a powerful DNA editing tool. A gRNA directs Cas9 to cleave any DNA sequence with a PAM. However, some gRNA sequences mediate cleavage at higher efficiencies than others. To understand this, numerous studies have screened large gRNA libraries and developed algorithms to predict gRNA sequence dependent activity. These algorithms do not predict other datasets as well as their training dataset and do not predict well between species. Here, to better understand these discrepancies, we retrospectively examine sequence features that impact gRNA activity in 44 published data sets. We find strong evidence that gRNA sequence dependent activity is largely influenced by the ability of the Cas9/gRNA complex to find the target site rather than activity at the target site and that this drives sequence dependent differences in gRNA activity between different species. This understanding will help guide future work to understand Cas9 activity as well as efforts to identify optimal gRNAs and improve Cas9 variants.
Collapse
Affiliation(s)
- E A Moreb
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - M D Lynch
- Department of Biomedical Engineering, Duke University, Durham, USA.
| |
Collapse
|
113
|
Poovaiah C, Phillips L, Geddes B, Reeves C, Sorieul M, Thorlby G. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don). BMC PLANT BIOLOGY 2021; 21:363. [PMID: 34376154 PMCID: PMC8353756 DOI: 10.1186/s12870-021-03143-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND To meet increasing demand for forest-based products and protect natural forests from further deforestation requires increased productivity from planted forests. Genetic improvement of conifers by traditional breeding is time consuming due to the long juvenile phase and genome complexity. Genetic modification (GM) offers the opportunity to make transformational changes in shorter time frames but is challenged by current genetically modified organism (GMO) regulations. Genome editing, which can be used to generate site-specific mutations, offers the opportunity to rapidly implement targeted improvements and is globally regulated in a less restrictive way than GM technologies. RESULTS We have demonstrated CRISPR/Cas9 genome editing in P. radiata targeting a single-copy cell wall gene GUX1 in somatic embryogenic tissue and produced plantlets from the edited tissue. We generated biallelic INDELs with an efficiency of 15 % using a single gRNA. 12 % of the transgenic embryogenic tissue was edited when two gRNAs were used and deletions of up to 1.3 kb were identified. However, the regenerated plants did not contain large deletions but had single nucleotide insertions at one of the target sites. We assessed the use of CRISPR/Cas9 ribonucleoproteins (RNPs) for their ability to accomplish DNA-free genome editing in P. radiata. We chose a hybrid approach, with RNPs co-delivered with a plasmid-based selectable marker. A two-gRNA strategy was used which produced an editing efficiency of 33 %, and generated INDELs, including large deletions. Using the RNP approach, deletions found in embryogenic tissue were also present in the plantlets. But, all plants produced using the RNP strategy were monoallelic. CONCLUSIONS We have demonstrated the generation of biallelic and monoallelic INDELs in the coniferous tree P. radiata with the CRISPR/Cas9 system using plasmid expressed Cas9 gRNA and RNPs respectively. This opens the opportunity to apply genome editing in conifers to rapidly modify key traits of interest.
Collapse
|
114
|
Van Zeebroeck L, Arroyo Hornero R, Côrte-Real BF, Hamad I, Meissner TB, Kleinewietfeld M. Fast and Efficient Genome Editing of Human FOXP3 + Regulatory T Cells. Front Immunol 2021; 12:655122. [PMID: 34408743 PMCID: PMC8365355 DOI: 10.3389/fimmu.2021.655122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
FOXP3+ regulatory T cells (Tregs) are central for maintaining peripheral tolerance and immune homeostasis. Because of their immunosuppressive characteristics, Tregs are a potential therapeutic target in various diseases such as autoimmunity, transplantation and infectious diseases like COVID-19. Numerous studies are currently exploring the potential of adoptive Treg therapy in different disease settings and novel genome editing techniques like CRISPR/Cas will likely widen possibilities to strengthen its efficacy. However, robust and expeditious protocols for genome editing of human Tregs are limited. Here, we describe a rapid and effective protocol for reaching high genome editing efficiencies in human Tregs without compromising cell integrity, suitable for potential therapeutic applications. By deletion of IL2RA encoding for IL-2 receptor α-chain (CD25) in Tregs, we demonstrated the applicability of the method for downstream functional assays and highlighted the importance for CD25 for in vitro suppressive function of human Tregs. Moreover, deletion of IL6RA (CD126) in human Tregs elicits cytokine unresponsiveness and thus may prevent IL-6-mediated instability of Tregs, making it an attractive target to potentially boost functionality in settings of adoptive Treg therapies to contain overreaching inflammation or autoimmunity. Thus, our rapid and efficient protocol for genome editing in human Tregs may advance possibilities for Treg-based cellular therapies.
Collapse
Affiliation(s)
- Lauren Van Zeebroeck
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Rebeca Arroyo Hornero
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Beatriz F. Côrte-Real
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Torsten B. Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Markus Kleinewietfeld
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
115
|
Raffan S, Sparks C, Huttly A, Hyde L, Martignago D, Mead A, Hanley SJ, Wilkinson PA, Barker G, Edwards KJ, Curtis TY, Usher S, Kosik O, Halford NG. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1602-1613. [PMID: 33638281 PMCID: PMC8384593 DOI: 10.1111/pbi.13573] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Free asparagine is the precursor for acrylamide, which forms during the baking, toasting and high-temperature processing of foods made from wheat. In this study, CRISPR/Cas9 was used to knock out the asparagine synthetase gene, TaASN2, of wheat (Triticum aestivum) cv. Cadenza. A 4-gRNA polycistronic gene was introduced into wheat embryos by particle bombardment and plants were regenerated. T1 plants derived from 11 of 14 T0 plants were shown to carry edits. Most edits were deletions (up to 173 base pairs), but there were also some single base pair insertions and substitutions. Editing continued beyond the T1 generation. Free asparagine concentrations in the grain of plants carrying edits in all six TaASN2 alleles (both alleles in each genome) were substantially reduced compared with wildtype, with one plant showing a more than 90 % reduction in the T2 seeds. A plant containing edits only in the A genome alleles showed a smaller reduction in free asparagine concentration in the grain, but the concentration was still lower than in wildtype. Free asparagine concentration in the edited plants was also reduced as a proportion of the free amino acid pool. Free asparagine concentration in the T3 seeds remained substantially lower in the edited lines than wildtype, although it was higher than in the T2 seeds, possibly due to stress. In contrast, the concentrations of free glutamine, glutamate and aspartate were all higher in the edited lines than wildtype. Low asparagine seeds showed poor germination but this could be overcome by exogenous application of asparagine.
Collapse
Affiliation(s)
- Sarah Raffan
- Department of Plant SciencesRothamsted ResearchHarpendenUK
| | | | - Alison Huttly
- Department of Plant SciencesRothamsted ResearchHarpendenUK
| | - Lucy Hyde
- Department of Plant SciencesRothamsted ResearchHarpendenUK
- Present address:
School of Biological SciencesLife Sciences BuildingUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Damiano Martignago
- Department of Plant SciencesRothamsted ResearchHarpendenUK
- Present address:
Department of BiosciencesUniversity of MilanVia Celoria 26Milano20133Italy
| | - Andrew Mead
- Department of Computational and Analytical SciencesRothamsted ResearchHarpendenUK
| | - Steven J. Hanley
- Department of Computational and Analytical SciencesRothamsted ResearchHarpendenUK
| | - Paul A. Wilkinson
- Functional GenomicsSchool of Biological SciencesUniversity of BristolBristolUK
| | - Gary Barker
- Functional GenomicsSchool of Biological SciencesUniversity of BristolBristolUK
| | - Keith J. Edwards
- Functional GenomicsSchool of Biological SciencesUniversity of BristolBristolUK
| | - Tanya Y. Curtis
- Curtis Analytics LimitedRothamsted Research CampusHarpendenUK
| | - Sarah Usher
- Curtis Analytics LimitedRothamsted Research CampusHarpendenUK
| | - Ondrej Kosik
- Curtis Analytics LimitedRothamsted Research CampusHarpendenUK
| | | |
Collapse
|
116
|
Herrera-Carrillo E, Gao Z, Berkhout B. CRISPR therapy towards an HIV cure. Brief Funct Genomics 2021; 19:201-208. [PMID: 31711197 DOI: 10.1093/bfgp/elz021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Tools based on RNA interference (RNAi) and the recently developed clustered regularly short palindromic repeats (CRISPR) system enable the selective modification of gene expression, which also makes them attractive therapeutic reagents for combating HIV infection and other infectious diseases. Several parallels can be drawn between the RNAi and CRISPR-Cas9 platforms. An ideal RNAi or CRISPR-Cas9 therapeutic strategy for treating infectious or genetic diseases should exhibit potency, high specificity and safety. However, therapeutic applications of RNAi and CRISPR-Cas9 have been challenged by several major limitations, some of which can be overcome by optimal design of the therapy or the design of improved reagents. In this review, we will discuss some advantages and limitations of anti-HIV strategies based on RNAi and CRISPR-Cas9 with a focus on the efficiency, specificity, off-target effects and delivery methods.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Zongliang Gao
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
117
|
Hahn F, Sanjurjo Loures L, Sparks CA, Kanyuka K, Nekrasov V. Efficient CRISPR/Cas-Mediated Targeted Mutagenesis in Spring and Winter Wheat Varieties. PLANTS (BASEL, SWITZERLAND) 2021; 10:1481. [PMID: 34371684 PMCID: PMC8309376 DOI: 10.3390/plants10071481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
CRISPR/Cas technology has recently become the molecular tool of choice for gene function studies in plants as well as crop improvement. Wheat is a globally important staple crop with a well annotated genome and there is plenty of scope for improving its agriculturally important traits using genome editing technologies, such as CRISPR/Cas. As part of this study we targeted three different genes in hexaploid wheat Triticum aestivum: TaBAK1-2 in the spring cultivar Cadenza as well as Ta-eIF4E and Ta-eIF(iso)4E in winter cultivars Cezanne, Goncourt and Prevert. Primary transgenic lines carrying CRISPR/Cas-induced indels were successfully generated for all targeted genes. While BAK1 is an important regulator of plant immunity and development, Ta-eIF4E and Ta-eIF(iso)4E act as susceptibility (S) factors required for plant viruses from the Potyviridae family to complete their life cycle. We anticipate the resultant homozygous tabak1-2 mutant lines will facilitate studies on the involvement of BAK1 in immune responses in wheat, while ta-eif4e and ta-eif(iso)4e mutant lines have the potential to become a source of resistance to wheat spindle streak mosaic virus (WSSMV) and wheat yellow mosaic virus (WYMV), both of which are important pathogens of wheat. As winter wheat varieties are generally less amenable to genetic transformation, the successful experimental methodology for transformation and genome editing in winter wheat presented in this study will be of interest to the research community working with this crop.
Collapse
Affiliation(s)
- Florian Hahn
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (F.H.); (L.S.L.); (C.A.S.)
| | - Laura Sanjurjo Loures
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (F.H.); (L.S.L.); (C.A.S.)
| | - Caroline A. Sparks
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (F.H.); (L.S.L.); (C.A.S.)
| | - Kostya Kanyuka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK;
| | - Vladimir Nekrasov
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (F.H.); (L.S.L.); (C.A.S.)
| |
Collapse
|
118
|
Boontawon T, Nakazawa T, Xu H, Kawauchi M, Sakamoto M, Honda Y. Gene targeting using pre-assembled Cas9 ribonucleoprotein and split-marker recombination in Pleurotus ostreatus. FEMS Microbiol Lett 2021; 368:6307511. [PMID: 34156066 DOI: 10.1093/femsle/fnab080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/20/2021] [Indexed: 12/23/2022] Open
Abstract
Until recently, classical breeding has been used to generate improved commercial mushroom strains; however, classical breeding remains to be laborious and time-consuming. In this study, we performed gene mutagenesis using Cas9 ribonucleoprotein (Cas9 RNP) as a plasmid-free genome editing in Pleurotus ostreatus, which is one of the most economically important cultivated mushrooms. The pre-assembled Cas9/sgRNA targeting pyrG was introduced into protoplasts of a wild-type monokaryotic P. ostreatus strain PC9, which resulted in a generation of strains exhibiting resistance to 5-fluoroorotic acid. Small insertions/deletions at the target site were identified using genomic PCR followed by sequencing. The results showed Cas9 RNP-assisted gene mutagenesis could be applied for the molecular breeding in P. ostreatus and in other edible mushroom strains. Furthermore, gene disruption via split-marker recombination using the Cas9 RNP system was also successfully demonstrated in wild-type P. ostreatus PC9. This method could overcome the disadvantages of NHEJ-deficiency in conventional studies with gene targeting, and also difficulty in gene targeting in various non-model agaricomycetes.
Collapse
Affiliation(s)
- Tatpong Boontawon
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haibo Xu
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
119
|
Diehl V, Wegner M, Grumati P, Husnjak K, Schaubeck S, Gubas A, Shah V, Polat I, Langschied F, Prieto-Garcia C, Müller K, Kalousi A, Ebersberger I, Brandts C, Dikic I, Kaulich M. Minimized combinatorial CRISPR screens identify genetic interactions in autophagy. Nucleic Acids Res 2021; 49:5684-5704. [PMID: 33956155 PMCID: PMC8191801 DOI: 10.1093/nar/gkab309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Paolo Grumati
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simone Schaubeck
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Varun Jayeshkumar Shah
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ibrahim H Polat
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| | - Felix Langschied
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Cristian Prieto-Garcia
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Konstantin Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alkmini Kalousi
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Christian H Brandts
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| |
Collapse
|
120
|
Carrijo J, Illa-Berenguer E, LaFayette P, Torres N, Aragão FJL, Parrott W, Vianna GR. Two efficient CRISPR/Cas9 systems for gene editing in soybean. Transgenic Res 2021; 30:239-249. [PMID: 33797713 DOI: 10.1007/s11248-021-00246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Genome editing using CRISPR/Cas9 has been highlighted as a powerful tool for crop improvement. Nevertheless, its efficiency can be improved, especially for crops with a complex genome, such as soybean. In this work, using the CRISPR/Cas9 technology we evaluated two CRISPR systems, a one-component vs. a two-component strategy. In a simplified system, the single transcriptional unit (STU), SpCas9 and sgRNA are driven by only one promoter, and in the conventional system, the two-component transcriptional unit (TCTU), SpCas9, is under the control of a pol II promoter and the sgRNAs are under the control of a pol III promoter. A multiplex system with three targets was designed targeting two different genes, GmIPK1 and GmIPK2, coding for enzymes from the phytic acid synthesis pathway. Both systems were tested using the hairy root soybean methodology. Results showed gene-specific edition. For the GmIPK1 gene, edition was observed in both configurations, with a deletion of 1 to 749 base pairs; however, the TCTU showed higher indel frequencies. For GmIPK2 major exclusions were observed in both systems, but the editing efficiency was low for STU. Both systems (STU or TCTU) have been shown to be capable of promoting effective gene editing in soybean. The TCTU configuration proved to be preferable, since it was more efficient. The STU system was less efficient, but the size of the CRISPR/Cas cassette was smaller.
Collapse
Affiliation(s)
- Jéssica Carrijo
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Eudald Illa-Berenguer
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Peter LaFayette
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Nathalia Torres
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Francisco J L Aragão
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Wayne Parrott
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Giovanni R Vianna
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av W5 Norte Final 716, Brasília, DF, 70770-917, Brazil.
- Department of Molecular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
121
|
Feng X, López Del Amo V, Mameli E, Lee M, Bishop AL, Perrimon N, Gantz VM. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes. Nat Commun 2021; 12:2960. [PMID: 34017003 PMCID: PMC8137705 DOI: 10.1038/s41467-021-23239-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Culex mosquitoes are a global vector for multiple human and animal diseases, including West Nile virus, lymphatic filariasis, and avian malaria, posing a constant threat to public health, livestock, companion animals, and endangered birds. While rising insecticide resistance has threatened the control of Culex mosquitoes, advances in CRISPR genome-editing tools have fostered the development of alternative genetic strategies such as gene drive systems to fight disease vectors. However, though gene-drive technology has quickly progressed in other mosquitoes, advances have been lacking in Culex. Here, we develop a Culex-specific Cas9/gRNA expression toolkit and use site-directed homology-based transgenesis to generate and validate a Culex quinquefasciatus Cas9-expressing line. We show that gRNA scaffold variants improve transgenesis efficiency in both Culex quinquefasciatus and Drosophila melanogaster and boost gene-drive performance in the fruit fly. These findings support future technology development to control Culex mosquitoes and provide valuable insight for improving these tools in other species.
Collapse
Affiliation(s)
- Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Víctor López Del Amo
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, School of Medicine, Boston, MA, USA
| | - Megan Lee
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Alena L Bishop
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- HHMI, Harvard Medical School, Boston, MA, USA
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
122
|
Cai MZ, Chen PT. Novel combined Cre-Cas system for improved chromosome editing in Bacillus subtilis. J Biosci Bioeng 2021; 132:113-119. [PMID: 33994114 DOI: 10.1016/j.jbiosc.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
To improve the stability and expand applications of genome editing in Bacillus subtilis, we propose a new concept of the Cre-Cas system, which combines Cre-lox72 and CRISPR-Cas9 into an effective and convenient method. Single homologous recombination is used to introduce the integration vector into the chromosome via appropriate guide DNA to inactivate and/or insert genes of interest. The Cre recombinase then removes the region of a selection marker that is no longer needed, and the Escherichia coli replicon between the lox66 and lox71 sites are recombined to a single lox72 site. The CRISPR-Cas9 system can then be applied to remove the inserted foreign gene by targeted cutting. After Cas9 cutting, B. subtilis self-repairs the broken region to its original state without the aid of additional DNA templates. To validate this system, we used T7 and keratinase expression cassettes; self-repair efficiency was evaluated based on the loss or maintenance of the antibiotic resistance gene, as analyzed on selective media. Our results demonstrated that the insertion position in the chromosome is a more critical factor than the insertion length of the gene for efficient self-repair in the B. subtilis genome. This concept can provide the applicability of chromosomal editing in B. subtilis.
Collapse
Affiliation(s)
- Ming-Zhi Cai
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., 710 Tainan City, Taiwan
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., 710 Tainan City, Taiwan.
| |
Collapse
|
123
|
Thavarajah W, Hertz LM, Bushhouse DZ, Archuleta CM, Lucks JB. RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics. Annu Rev Chem Biomol Eng 2021; 12:263-286. [PMID: 33900805 PMCID: PMC9714562 DOI: 10.1146/annurev-chembioeng-101420-014055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura M Hertz
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - David Z Bushhouse
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Chloé M Archuleta
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA.,Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
124
|
Murugan K, Suresh SK, Seetharam AS, Severin AJ, Sashital DG. Systematic in vitro specificity profiling reveals nicking defects in natural and engineered CRISPR-Cas9 variants. Nucleic Acids Res 2021; 49:4037-4053. [PMID: 33744974 PMCID: PMC8053117 DOI: 10.1093/nar/gkab163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cas9 is an RNA-guided endonuclease in the bacterial CRISPR-Cas immune system and a popular tool for genome editing. The commonly used Streptococcus pyogenes Cas9 (SpCas9) is relatively non-specific and prone to off-target genome editing. Other Cas9 orthologs and engineered variants of SpCas9 have been reported to be more specific. However, previous studies have focused on specificity of double-strand break (DSB) or indel formation, potentially overlooking alternative cleavage activities of these Cas9 variants. In this study, we employed in vitro cleavage assays of target libraries coupled with high-throughput sequencing to systematically compare cleavage activities and specificities of two natural Cas9 variants (SpCas9 and Staphylococcus aureus Cas9) and three engineered SpCas9 variants (SpCas9 HF1, HypaCas9 and HiFi Cas9). We observed that all Cas9s tested could cleave target sequences with up to five mismatches. However, the rate of cleavage of both on-target and off-target sequences varied based on target sequence and Cas9 variant. In addition, SaCas9 and engineered SpCas9 variants nick targets with multiple mismatches but have a defect in generating a DSB, while SpCas9 creates DSBs at these targets. Overall, these differences in cleavage rates and DSB formation may contribute to varied specificities observed in genome editing studies.
Collapse
Affiliation(s)
- Karthik Murugan
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, IA 50011, USA
| | - Shravanti K Suresh
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA 50011, USA
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA 50011, USA
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
125
|
He C, Han S, Chang Y, Wu M, Zhao Y, Chen C, Chu X. CRISPR screen in cancer: status quo and future perspectives. Am J Cancer Res 2021; 11:1031-1050. [PMID: 33948344 PMCID: PMC8085856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) system offers a powerful platform for genome manipulation, including protein-coding genes, noncoding RNAs and regulatory elements. The development of CRISPR screen enables high-throughput interrogation of gene functions in diverse tumor biologies, such as tumor growth, metastasis, synthetic lethal interactions, therapeutic resistance and immunotherapy response, which are mostly performed in vitro or in transplant models. Recently, direct in vivo CRISPR screens have been developed to identify drivers of tumorigenesis in native microenvironment. Key parameters of CRISPR screen are constantly being optimized to achieve higher targeting efficiency and lower off-target effect. Here, we review the recent advances of CRISPR screen in cancer studies both in vitro and in vivo, with a particular focus on identifying cancer immunotherapy targets, and propose optimizing strategies and future perspectives for CRISPR screen.
Collapse
Affiliation(s)
- Chenglong He
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
| | - Yue Chang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Meijuan Wu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Yulu Zhao
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical UniversityNanjing 210002, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical UniversityNanjing 210002, China
| |
Collapse
|
126
|
Mutational analyses of novel rat models with targeted modifications in inflammatory bowel disease susceptibility genes. Mamm Genome 2021; 32:173-182. [PMID: 33843019 PMCID: PMC8128796 DOI: 10.1007/s00335-021-09868-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
Mutations and single base pair polymorphisms in various genes have been associated with increased susceptibility to inflammatory bowel disease (IBD). We have created a series of rat strains carrying targeted genetic alterations within three IBD susceptibility genes: Nod2, Atg16l1, and Il23r, using CRISPR/Cas9 genome editing technology. Knock-out alleles and alleles with known human susceptibility polymorphisms were generated on three different genetic backgrounds: Fischer, Lewis and Sprague Dawley. The availability of these rat models will contribute to our understanding of the basic biological roles of these three genes as well as provide new potential IBD animal models.
Collapse
|
127
|
Stuttmann J, Barthel K, Martin P, Ordon J, Erickson JL, Herr R, Ferik F, Kretschmer C, Berner T, Keilwagen J, Marillonnet S, Bonas U. Highly efficient multiplex editing: one-shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:8-22. [PMID: 33577114 DOI: 10.1111/tpj.15197] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron-optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene-free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2 , respectively). We developed novel counter-selection markers for N. benthamiana, most importantly Sl-FAST2, comparable to the well-established Arabidopsis seed fluorescence marker, and FCY-UPP, based on the production of toxic 5-fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY-UPP for selection of non-transgenic T1 , we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher-order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.
Collapse
Affiliation(s)
- Johannes Stuttmann
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Karen Barthel
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Patrick Martin
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Jana Ordon
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Jessica L Erickson
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Rosalie Herr
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Filiz Ferik
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Carola Kretschmer
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Thomas Berner
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Ulla Bonas
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| |
Collapse
|
128
|
Zhang Y, Wang Q, Wang J, Tang X. Chemical Modification and Transformation Strategies of Guide RNAs in CRISPR-Cas9 Gene Editing Systems. Chempluschem 2021; 86:587-600. [PMID: 33830675 DOI: 10.1002/cplu.202000785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/13/2021] [Indexed: 12/19/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated protein 9) is a most powerful tool and has been widely used in gene editing and gene regulation since its discovery. However, wild-type CRISPR-Cas9 suffers from off-target effects and low editing efficiency. To overcome these limitations, engineered Cas9 proteins have been extensively investigated. In addition to Cas9 protein engineering, chemically synthesized guide RNAs have been developed to improve the efficiency and specificity of genome editing as well as spatiotemporal controllability, which broadens the biological applications of CRISPR-Cas9 gene editing system and increases their potentials as therapeutics. In this review, we summarize the latest research advances in remodeling guide RNAs through length optimization, chemical modifications, and conditional control, as well as their powerful applications in gene editing tools and promising therapeutic agents.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| |
Collapse
|
129
|
Rahman MM, Tollefsbol TO. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Methods 2021; 187:77-91. [PMID: 32315755 PMCID: PMC7572534 DOI: 10.1016/j.ymeth.2020.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer therapeutics is an ever-evolving field due to incessant demands for effective and precise treatment options. Over the last few decades, cancer treatment strategies have shifted somewhat from surgery to targeted precision medicine. CRISPR-dCas9 is an emerging version of precision cancer therapy that has been adapted from the prokaryotic CRISPR-Cas system. Once ligated to epigenetic effectors (EE), CRISPR-dCas9 can function as an epigenetic editing tool and CRISPR-dCas9-EE complexes could be exploited to alter cancerous epigenetic features associated with different cancer hallmarks. In this article, we discuss the rationale of epigenetic editing as a therapeutic strategy against cancer. We also outline how sgRNA-dCas9 was derived from the CRISPR-Cas system. In addition, the current status of sgRNA-dCas9 use (in vivo and in vitro) in cancer is updated with a molecular illustration of CRISPR-dCas9-mediated epigenetic and transcriptional modulation. As sgRNA-dCas9 is still at the developmental phase, challenges are inherent to its use. We evaluate major challenges in targeting cancer with sgRNA-dCas9 such as off-target effects, lack of sgRNA designing rubrics, target site selection dilemmas and deficient sgRNA-dCas9 delivery systems. Finally, we appraise the sgRNA-dCas9 as a prospective cancer therapeutic by summarizing ongoing improvements of sgRNA-dCas9 methodology.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
130
|
Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat Genet 2021; 53:322-331. [PMID: 33649593 PMCID: PMC8011839 DOI: 10.1038/s41588-021-00778-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The expression of inhibitory immune checkpoint molecules such as PD-L1 is frequently observed in human cancers and can lead to the suppression of T cell-mediated immune responses. Here, we apply ECCITE-seq, a technology which combines pooled CRISPR screens with single-cell mRNA and surface protein measurements, to explore the molecular networks that regulate PD-L1 expression. We also develop a computational framework, mixscape, that substantially improves the signal-to-noise ratio in single-cell perturbation screens by identifying and removing confounding sources of variation. Applying these tools, we identify and validate regulators of PD-L1, and leverage our multi-modal data to identify both transcriptional and post-transcriptional modes of regulation. Specifically, we discover that the kelch-like protein KEAP1 and the transcriptional activator NRF2, mediate levels of PD-L1 upregulation after IFNγ stimulation. Our results identify a novel mechanism for the regulation of immune checkpoints and present a powerful analytical framework for the analysis of multi-modal single-cell perturbation screens.
Collapse
|
131
|
Li J, Zhang S, Zhang R, Gao J, Qi Y, Song G, Li W, Li Y, Li G. Efficient multiplex genome editing by CRISPR/Cas9 in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:427-429. [PMID: 33150679 PMCID: PMC7955872 DOI: 10.1111/pbi.13508] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/09/2020] [Accepted: 10/31/2020] [Indexed: 05/06/2023]
Affiliation(s)
- Jihu Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of AgricultureKey Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Laboratory for Wheat and MaizeJinanShandongChina
| | - Shujuan Zhang
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of AgricultureKey Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Laboratory for Wheat and MaizeJinanShandongChina
| | - Rongzhi Zhang
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of AgricultureKey Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Laboratory for Wheat and MaizeJinanShandongChina
| | - Jie Gao
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of AgricultureKey Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Laboratory for Wheat and MaizeJinanShandongChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMDUSA
| | - Guoqi Song
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of AgricultureKey Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Laboratory for Wheat and MaizeJinanShandongChina
| | - Wei Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of AgricultureKey Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Laboratory for Wheat and MaizeJinanShandongChina
| | - Yulian Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of AgricultureKey Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Laboratory for Wheat and MaizeJinanShandongChina
| | - Genying Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of AgricultureKey Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Laboratory for Wheat and MaizeJinanShandongChina
| |
Collapse
|
132
|
Lule-Chávez AN, Carballar-Lejarazú R, Cabrera-Ponce JL, Lanz-Mendoza H, Ibarra JE. Genetic transformation of mosquitoes by microparticle bombardment. INSECT MOLECULAR BIOLOGY 2021; 30:30-41. [PMID: 33009687 DOI: 10.1111/imb.12670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes constitute the major living beings causing human deaths in the world. They are vectors of malaria, yellow fever, dengue, zika, filariases, chikungunya, among other diseases. New strategies to control/eradicate mosquito populations are based on newly developed genetic manipulation techniques. However, genetic transformation of mosquitoes is a major technical bottleneck due to low efficiency, the need of sophisticated equipment, and highly trained personnel. The present report shows the transgenerational genetic transformation of Aedes aegypti, using the particle inflow gun (PIG), by integrating the ecfp gene in the AAEL000582 mosquito gene with the CRISPR-Cas9 technique, achieving a mean efficiency of 44.5% of bombarded individuals (G0) that showed ECFP expression in their tissues, and a mean of 28.5% transformation efficiency measured on G1 individuals. The same transformation technique was used to integrate the egfp/scorpine genes cloned in the Minos transposon pMinHygeGFP into the Anopheles albimanus genome, achieving a mean efficiency of 43.25% of bombarded individuals (G0) that showed EGFP expression in their tissues. Once the technique was standardized, transformation of Ae. aegypti neonate larvae and An. albimanus eggs was achieved when exposed to gold microparticle bombardment. Integration of genes and heterologous protein expression were confirmed by PCR, sequencing, fluorescent microscopy, mass spectrometry, Western blot and dot blot analyses. Transgenerational inheritance of the transgenes was observed only on Ae. aegypti, as all transformed An. albimanus individuals died at the pupal stage of the G0 generation.
Collapse
Affiliation(s)
- A N Lule-Chávez
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Unidad Irapuato, Irapuato, Mexico
| | - R Carballar-Lejarazú
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Unidad Irapuato, Irapuato, Mexico
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - J L Cabrera-Ponce
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Unidad Irapuato, Irapuato, Mexico
| | - H Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - J E Ibarra
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
133
|
Kim HK, Yu G, Park J, Min S, Lee S, Yoon S, Kim HH. Predicting the efficiency of prime editing guide RNAs in human cells. Nat Biotechnol 2021; 39:198-206. [PMID: 32958957 DOI: 10.1038/s41587-020-0677-y] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
Prime editing enables the introduction of virtually any small-sized genetic change without requiring donor DNA or double-strand breaks. However, evaluation of prime editing efficiency requires time-consuming experiments, and the factors that affect efficiency have not been extensively investigated. In this study, we performed high-throughput evaluation of prime editor 2 (PE2) activities in human cells using 54,836 pairs of prime editing guide RNAs (pegRNAs) and their target sequences. The resulting data sets allowed us to identify factors affecting PE2 efficiency and to develop three computational models to predict pegRNA efficiency. For a given target sequence, the computational models predict efficiencies of pegRNAs with different lengths of primer binding sites and reverse transcriptase templates for edits of various types and positions. Testing the accuracy of the predictions using test data sets that were not used for training, we found Spearman's correlations between 0.47 and 0.81. Our computational models and information about factors affecting PE2 efficiency will facilitate practical application of prime editing.
Collapse
Affiliation(s)
- Hui Kwon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Goosang Yu
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinman Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seonwoo Min
- Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sungtae Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungroh Yoon
- Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate Program of NanoScience and Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
134
|
Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat Biomed Eng 2021; 5:144-156. [PMID: 33398131 DOI: 10.1038/s41551-020-00656-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Therapeutic genome editing requires effective and targeted delivery methods. The delivery of Cas9 mRNA using adeno-associated viruses has led to potent in vivo therapeutic efficacy, but can cause sustained Cas9 expression, anti-Cas9 immune responses and off-target edits. Lentiviral vectors have been engineered to deliver nucleases that are expressed transiently, but in vivo evidence of their biomedical efficacy is lacking. Here, we show that the lentiviral codelivery of Streptococcus pyogenes Cas9 mRNA and expression cassettes that encode a guide RNA that targets vascular endothelial growth factor A (Vegfa) is efficacious in a mouse model of wet age-related macular degeneration induced by Vegfa. A single subretinal injection of engineered lentiviruses knocked out 44% of Vegfa in retinal pigment epithelium and reduced the area of choroidal neovascularization by 63% without inducing off-target edits or anti-Cas9 immune responses. Engineered lentiviruses for the transient expression of nucleases may form the basis of new treatments for retinal neovascular diseases.
Collapse
|
135
|
Wei C, Chen T, Zhang Y, Wang Y, Shi D, Jiang Z, Li K, Xiao L, Shen J. A Novel White-to-Blue Colony Formation Assay to Select for Optimized sgRNAs. Mol Biotechnol 2021; 63:1-12. [PMID: 33047235 DOI: 10.1007/s12033-020-00280-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9-mediated genome editing technology consists of a single-guide RNA (sgRNA), and the Cas9 endonuclease has the potential to treat genetic diseases in most tissues and organisms. In this system, the Cas9 protein can be directed to target genomic DNA sequences as "molecular scissors" with the guidance of sgRNAs. However, the target-specific activities of different sgRNAs are highly variable; thus, it is crucial to search for a simple, quick and economical method to screen for optimized sgRNAs with high target specificity. We have adopted and verified a newly developed white-to-blue colony formation assay to quickly screen for sgRNAs optimized for the EphA2 gene, which is highly expressed in hormone-resistant prostate cancer (PC-3) cells. This assay promises to screen for optimized sgRNAs more simply, rapidly, and efficiently. Our results suggest that the white-to-blue colony formation assay might be a useful screening strategy to quickly select for optimized sgRNAs.
Collapse
Affiliation(s)
- Chaogang Wei
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Tong Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Yueyue Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Yanfeng Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Dai Shi
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Kai Li
- Center of Laboratory, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Li Xiao
- Center of Laboratory, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China.
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
136
|
Zittersteijn HA, Gonçalves MA, Hoeben RC. A primer to gene therapy: Progress, prospects, and problems. J Inherit Metab Dis 2021; 44:54-71. [PMID: 32510617 PMCID: PMC7891367 DOI: 10.1002/jimd.12270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Genetic therapies based on gene addition have witnessed a variety of clinical successes and the first therapeutic products have been approved for clinical use. Moreover, innovative gene editing techniques are starting to offer new opportunities in which the mutations that underlie genetic diseases can be directly corrected in afflicted somatic cells. The toolboxes underpinning these DNA modifying technologies are expanding with great pace. Concerning the ongoing efforts for their implementation, viral vector-based gene delivery systems have acquired center-stage, providing new hopes for patients with inherited and acquired disorders. Specifically, the application of genetic therapies using viral vectors for the treatment of inborn metabolic disorders is growing and clinical applications are starting to appear. While the field has matured from the technology perspective and has yielded efficacious products, it is the perception of many stakeholders that from the regulatory side further developments are urgently needed. In this review, we summarize the features of state-of-the-art viral vector systems and the corresponding gene-centered therapies they seek to deliver. Moreover, a brief summary is also given on emerging gene editing approaches built on CRISPR-Cas9 nucleases and, more recently, nickases, including base editors and prime editors. Finally, we will point at some regulatory aspects that may deserve further attention for translating these technological developments into actual advanced therapy medicinal products (ATMPs).
Collapse
Affiliation(s)
- Hidde A. Zittersteijn
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
137
|
Herman X, Far J, Courtoy A, Bouhon L, Quinton L, De Pauw E, Chaumont F, Navarre C. Inactivation of N-Acetylglucosaminyltransferase I and α1,3-Fucosyltransferase Genes in Nicotiana tabacum BY-2 Cells Results in Glycoproteins With Highly Homogeneous, High-Mannose N-Glycans. FRONTIERS IN PLANT SCIENCE 2021; 12:634023. [PMID: 33584780 PMCID: PMC7873608 DOI: 10.3389/fpls.2021.634023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 05/21/2023]
Abstract
Nicotiana tabacum Bright Yellow-2 (BY-2) suspension cells are among the most commonly used plant cell lines for producing biopharmaceutical glycoproteins. Recombinant glycoproteins are usually produced with a mix of high-mannose and complex N-glycans. However, N-glycan heterogeneity is a concern for the production of therapeutic or vaccine glycoproteins because it can alter protein activity and might lead to batch-to-batch variability. In this report, a BY-2 cell line producing glycoproteins devoid of complex N-glycans was obtained using CRISPR/Cas9 edition of two N-acetylglucosaminyltransferase I (GnTI) genes, whose activity is a prerequisite for the formation of all complex N-glycans. The suppression of complex N-glycans in the GnTI-knocked out (KO) cell lines was assessed by Western blotting. Lack of β1,2-xylose residues confirmed the abolition of GnTI activity. Unexpectedly, α1,3-fucose residues were still detected albeit dramatically reduced as compared with wild-type cells. To suppress the remaining α1,3-fucose residues, a second genome editing targeted both GnTI and α1,3-fucosyltransferase (FucT) genes. No β1,2-xylose nor α1,3-fucose residues were detected on the glycoproteins produced by the GnTI/FucT-KO cell lines. Absence of complex N-glycans on secreted glycoproteins of GnTI-KO and GnTI/FucT-KO cell lines was confirmed by mass spectrometry. Both cell lines produced high-mannose N-glycans, mainly Man5 (80 and 86%, respectively) and Man4 (16 and 11%, respectively). The high degree of N-glycan homogeneity and the high-mannose N-glycosylation profile of these BY-2 cell lines is an asset for their use as expression platforms.
Collapse
Affiliation(s)
- Xavier Herman
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory-MolSys, GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Adeline Courtoy
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Laurent Bouhon
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory-MolSys, GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory-MolSys, GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
- *Correspondence: François Chaumont,
| | - Catherine Navarre
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
138
|
Heigwer F, Boutros M. Cloud-Based Design of Short Guide RNA (sgRNA) Libraries for CRISPR Experiments. Methods Mol Biol 2021; 2162:3-22. [PMID: 32926374 DOI: 10.1007/978-1-0716-0687-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
CRISPR/Cas-based genome editing in any biological application requires the evaluation of suitable genomic target sites to design efficient reagents. Considerations for the design of short guide (sg) RNAs include the assessment of possible off-target activities, the prediction of on-target efficacies and mutational outcome. Manual design of sgRNAs taking into account these parameters, however, remains a difficult task. Thus, computational tools to design sgRNA reagents from small scale to genome-wide libraries have been developed that assist during all steps of the design process. Here, we will describe practical guidance for the sgRNA design process using the web-based tool E-CRISP used in the design of individual sgRNAs. E-CRISP ( www.e-crisp.org ) has been the first web-based sgRNA design tool and uniquely features simple, yet efficient, scoring schemes in combination with fast evaluation and simple usage. We will also discuss the installation of a dockerized version of CRISPR Library Designer (CLD) that can be deployed locally or in the cloud to support the end-to-end design of sgRNA libraries for more than 50 different organisms. CLD was built upon E-CRISP to further increase the scope of sgRNA design to more experimental modalities (CRISPRa/i, Cas12a, all possible protospacer adjacency motifs) offering the same flexibility as E-CRISP, plus the scalability through local and cloud installation. Together, these tools facilities the design of small and large-scale CRISPR/Cas experiments.
Collapse
Affiliation(s)
- Florian Heigwer
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
139
|
Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells. Sci Rep 2020; 10:22393. [PMID: 33372184 PMCID: PMC7769964 DOI: 10.1038/s41598-020-79724-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
The CRISPR/Cas9 system is a versatile tool for functional genomics and forward genetic screens in mammalian cells. However, it has been challenging to deliver the CRISPR components to sensitive cell types, such as primary human hematopoietic stem and progenitor cells (HSPCs), partly due to lentiviral transduction of Cas9 being extremely inefficient in these cells. Here, to overcome these hurdles, we developed a combinatorial system using stable lentiviral delivery of single guide RNA (sgRNA) followed by transient transfection of Cas9 mRNA by electroporation in human cord blood-derived CD34+ HSPCs. We further applied an optimized sgRNA structure, that significantly improved editing efficiency in this context, and we obtained knockout levels reaching 90% for the cell surface proteins CD45 and CD44 in sgRNA transduced HSPCs. Our combinatorial CRISPR/Cas9 delivery approach had no negative influence on CD34 expression or colony forming capacity in vitro compared to non-treated HSPCs. Furthermore, gene edited HSPCs showed intact in vivo reconstitution capacity following transplantation to immunodeficient mice. Taken together, we developed a paradigm for combinatorial CRISPR/Cas9 delivery that enables efficient and traceable gene editing in primary human HSPCs, and is compatible with high functionality both in vitro and in vivo.
Collapse
|
140
|
Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, Naeem H, Ullah MO, Yameen M, Mukhtiar MS, Zafar F. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci 2020; 263:118525. [PMID: 33031826 PMCID: PMC7533657 DOI: 10.1016/j.lfs.2020.118525] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most leading causes of death and a major public health problem, universally. According to accumulated data, annually, approximately 8.5 million people died because of the lethality of cancer. Recently, a novel RNA domain-containing endonuclease-based genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) have been proved as a powerful technique in the treatment of cancer cells due to its multifunctional properties including high specificity, accuracy, time reducing and cost-effective strategies with minimum off-target effects. The present review investigates the overview of recent studies on the newly developed genome-editing strategy, CRISPR/Cas9, as an excellent pre-clinical therapeutic option in the reduction and identification of new tumor target genes in the solid tumors. Based on accumulated data, we revealed that CRISPR/Cas9 significantly inhibited the robust tumor cell growth (breast, lung, liver, colorectal, and prostate) by targeting the oncogenes, tumor-suppressive genes, genes associated to therapies by inhibitors, genes associated to chemotherapies drug resistance, and suggested that CRISPR/Cas9 could be a potential therapeutic target in inhibiting the tumor cell growth by suppressing the cell-proliferation, metastasis, invasion and inducing the apoptosis during the treatment of malignancies in the near future. The present review also discussed the current challenges and barriers, and proposed future recommendations for a better understanding.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Mumtaz
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Fras Farooq
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shahid Bilal
- Department of Agronomy, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Musfira Firdous
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Huma Naeem
- Department of Computer Science, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Obaid Ullah
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Yameen
- Department of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Shahid Mukhtiar
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fatima Zafar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
141
|
Vasquez CA, Cowan QT, Komor AC. Base Editing in Human Cells to Produce Single-Nucleotide-Variant Clonal Cell Lines. ACTA ACUST UNITED AC 2020; 133:e129. [PMID: 33151638 DOI: 10.1002/cpmb.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Base-editing technologies enable the introduction of point mutations at targeted genomic sites in mammalian cells, with higher efficiency and precision than traditional genome-editing methods that use DNA double-strand breaks, such as zinc finger nucleases (ZFNs), transcription-activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) system. This allows the generation of single-nucleotide-variant isogenic cell lines (i.e., cell lines whose genomic sequences differ from each other only at a single, edited nucleotide) in a more time- and resource-effective manner. These single-nucleotide-variant clonal cell lines represent a powerful tool with which to assess the functional role of genetic variants in a native cellular context. Base editing can therefore facilitate genotype-to-phenotype studies in a controlled laboratory setting, with applications in both basic research and clinical applications. Here, we provide optimized protocols (including experimental design, methods, and analyses) to design base-editing constructs, transfect adherent cells, quantify base-editing efficiencies in bulk, and generate single-nucleotide-variant clonal cell lines. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Design and production of plasmids for base-editing experiments Basic Protocol 2: Transfection of adherent cells and harvesting of genomic DNA Basic Protocol 3: Genotyping of harvested cells using Sanger sequencing Alternate Protocol 1: Next-generation sequencing to quantify base editing Basic Protocol 4: Single-cell isolation of base-edited cells using FACS Alternate Protocol 2: Single-cell isolation of base-edited cells using dilution plating Basic Protocol 5: Clonal expansion to generate isogenic cell lines and genotyping of clones.
Collapse
Affiliation(s)
- Carlos A Vasquez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Quinn T Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| |
Collapse
|
142
|
Su L, Shi C, Huang X, Wang Y, Li G. Application of CRISPR/Cas9 Nuclease in Amphioxus Genome Editing. Genes (Basel) 2020; 11:genes11111311. [PMID: 33167309 PMCID: PMC7694359 DOI: 10.3390/genes11111311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
The cephalochordate amphioxus is a promising animal model for studying the origin of vertebrates due to its key phylogenetic position among chordates. Although transcription activator-like effector nucleases (TALENs) have been adopted in amphioxus genome editing, its labor-intensive construction of TALEN proteins limits its usage in many laboratories. Here we reported an application of the CRISPR/Cas9 system, a more amenable genome editing method, in this group of animals. Our data showed that while co-injection of Cas9 mRNAs and sgRNAs into amphioxus unfertilized eggs caused no detectable mutations at targeted loci, injections of Cas9 mRNAs and sgRNAs at the two-cell stage, or of Cas9 protein and sgRNAs before fertilization, can execute efficient disruptions of targeted genes. Among the nine tested sgRNAs (targeting five genes) co-injected with Cas9 protein, seven introduced mutations with efficiency ranging from 18.4% to 90% and four caused specific phenotypes in the injected embryos. We also demonstrated that monomerization of sgRNAs via thermal treatment or modifying the sgRNA structure could increase mutation efficacies. Our study will not only promote application of genome editing method in amphioxus research, but also provide valuable experiences for other organisms in which the CRISPR/Cas9 system has not been successfully applied.
Collapse
|
143
|
Kim N, Kim HK, Lee S, Seo JH, Choi JW, Park J, Min S, Yoon S, Cho SR, Kim HH. Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat Biotechnol 2020; 38:1328-1336. [PMID: 32514125 DOI: 10.1038/s41587-020-0537-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
Several Streptococcus pyogenes Cas9 (SpCas9) variants have been developed to improve an enzyme's specificity or to alter or broaden its protospacer-adjacent motif (PAM) compatibility, but selecting the optimal variant for a given target sequence and application remains difficult. To build computational models to predict the sequence-specific activity of 13 SpCas9 variants, we first assessed their cleavage efficiency at 26,891 target sequences. We found that, of the 256 possible four-nucleotide NNNN sequences, 156 can be used as a PAM by at least one of the SpCas9 variants. For the high-fidelity variants, overall activity could be ranked as SpCas9 ≥ Sniper-Cas9 > eSpCas9(1.1) > SpCas9-HF1 > HypaCas9 ≈ xCas9 >> evoCas9, whereas their overall specificities could be ranked as evoCas9 >> HypaCas9 ≥ SpCas9-HF1 ≈ eSpCas9(1.1) > xCas9 > Sniper-Cas9 > SpCas9. Using these data, we developed 16 deep-learning-based computational models that accurately predict the activity of these variants at any target sequence.
Collapse
Affiliation(s)
- Nahye Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hui Kwon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Sungtae Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwa Seo
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Woo Choi
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinman Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seonwoo Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sungroh Yoon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sung-Rae Cho
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of NanoScience and Technology, Yonsei University, Seoul, Republic of Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
- Graduate Program of NanoScience and Technology, Yonsei University, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
144
|
Zhan H, Li A, Cai Z, Huang W, Liu Y. Improving transgene expression and CRISPR-Cas9 efficiency with molecular engineering-based molecules. Clin Transl Med 2020; 10:e194. [PMID: 33135339 PMCID: PMC7533053 DOI: 10.1002/ctm2.194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023] Open
Abstract
As a novel and robust gene‐editing tool, the Clustered Regularly Interspaced Short Palindromic Repeats CRISPR‐associated protein 9 (CRISPR‐Cas9) system has revolutionized gene therapy. Plasmid vector delivery is the most commonly used method for integrating the CRISPR‐Cas9 system into cells. However, such foreign cytosolic DNAs trigger an innate immune response (IIR) within cells, which can hinder gene editing by inhibiting transgene expression. Although some small molecules have been shown to avoid the action of IIR on plasmids, they only work on a single target and may also affect cell viability. A genetic approach that works at a comprehensive level for manipulating IIR is still lacking. Here, we designed and constructed several artificial nucleic acid molecules (ANAMs), which are combinations of aptamers binding to two key players of IIR (β‐catenin and NF‐κB). ANAMs strongly inhibited the IIR in cells, thus improving transgene expression. We also used ANAMs to improve the gene‐editing efficiency of the CRISPR‐Cas9 system and its derivatives, thus enhancing the apoptosis of cancer cells induced by CRISPR‐Cas9. ANAMs can be valuable tools for improving transgene expression and gene editing in mammalian cells.
Collapse
Affiliation(s)
- Hengji Zhan
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Aolin Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhiming Cai
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Weiren Huang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuchen Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
145
|
Huang X, Wang Y, Xu J, Wang N. Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations. PLANT MOLECULAR BIOLOGY 2020; 104:297-307. [PMID: 32748081 DOI: 10.1007/s11103-020-01043-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/28/2020] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE We have developed multiplex genome editing toolkits for citrus that significantly improve citrus genome editing efficacy. CRISPR/Cas systems have been engineered for genome editing in many organisms, including plants. However, the gene editing efficiency in citrus via CRISPR technology remains too low to be implemented for genetic improvement in practice. Moreover, it is very difficult to obtain homozygous or biallelic knockout mutants in citrus. Here, we have developed multiplex genome editing toolkits for citrus including PEG-mediated protoplast transformation, a GFP reporter system that allows the rapid assessment of CRISPR constructs, citrus U6 promoters with improved efficacy, and tRNA-mediated or Csy4-mediated multiplex genome editing. Using the toolkits, we successfully conducted genome modification of embryogenic protoplast cells and epicotyl tissues. We have achieved a biallelic mutation rate of 44.4% and a homozygous mutation rate of 11.1%, representing a significant improvement in citrus genome editing efficacy. In addition, our study lays the foundation for nontransgenic genome editing of citrus.
Collapse
Affiliation(s)
- Xiaoen Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, USA
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, USA
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
146
|
Bente H, Mittelsten Scheid O, Donà M. Versatile in vitro assay to recognize Cas9-induced mutations. PLANT DIRECT 2020; 4:e00269. [PMID: 33015536 PMCID: PMC7522499 DOI: 10.1002/pld3.269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The discovery of CRISPR/Cas9 has revolutionized molecular biology, and its impact on plant biotechnology and plant breeding cannot be over-estimated. In many plant species, its application for mutagenesis is now a routine procedure--if suitable target sites, sufficient expression of the Cas9 protein, and functioning sgRNAs are combined. sgRNAs differ in their efficiency, depending on parameters that are only poorly understood. Several software tools and experience from growing databases are supporting the design of sgRNAs, but some seemingly perfect sgRNAs turn out to be inefficient or fail entirely, and most data bases stem from work with mammalian cells. Different in vitro assays testing sgRNAs in reconstituted Cas9 complexes are available and useful to reduce the risk of failure, especially in plants when CRISPR/Cas9 application requires modifications within the germ line and laborious transformation protocols. Low sgRNA efficiency and long generation times in plants can also contribute to the workload and costs of screening for the wanted genome edits. Here, we present a protocol in which a simple, initial in vitro test for suitable sgRNAs is modified to accelerate genotyping of Cas9-induced mutations. We demonstrate applicability of our protocol for mutagenesis and mutation screen for specific genes in Arabidopsis, but the principle should be universally suitable to provide a simple, low-cost, and rapid method to identify edited genes also in other plants and other organisms.
Collapse
Affiliation(s)
- Heinrich Bente
- Gregor Mendel Institute of Molecular Plant Biology Austrian Academy of Sciences Vienna BioCenter (VBC) Vienna Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology Austrian Academy of Sciences Vienna BioCenter (VBC) Vienna Austria
| | - Mattia Donà
- Gregor Mendel Institute of Molecular Plant Biology Austrian Academy of Sciences Vienna BioCenter (VBC) Vienna Austria
| |
Collapse
|
147
|
Zhou P, Chan BKC, Wan YK, Yuen CTL, Choi GCG, Li X, Tong CSW, Zhong SSW, Sun J, Bao Y, Mak SYL, Chow MZY, Khaw JV, Leung SY, Zheng Z, Cheung LWT, Tan K, Wong KH, Chan HYE, Wong ASL. A Three-Way Combinatorial CRISPR Screen for Analyzing Interactions among Druggable Targets. Cell Rep 2020; 32:108020. [PMID: 32783942 DOI: 10.1016/j.celrep.2020.108020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
We present a CRISPR-based multi-gene knockout screening system and toolkits for extensible assembly of barcoded high-order combinatorial guide RNA libraries en masse. We apply this system for systematically identifying not only pairwise but also three-way synergistic therapeutic target combinations and successfully validate double- and triple-combination regimens for suppression of cancer cell growth and protection against Parkinson's disease-associated toxicity. This system overcomes the practical challenges of experimenting on a large number of high-order genetic and drug combinations and can be applied to uncover the rare synergistic interactions between druggable targets.
Collapse
Affiliation(s)
- Peng Zhou
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Becky K C Chan
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yuk Kei Wan
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chaya T L Yuen
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Gigi C G Choi
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xinran Li
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Cindy S W Tong
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sophia S W Zhong
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jieran Sun
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yufan Bao
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Silvia Y L Mak
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | - Maggie Z Y Chow
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | - Jien Vei Khaw
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Suet Yi Leung
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China; Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Lydia W T Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Institute of Translational Medicine, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - H Y Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alan S L Wong
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
148
|
Bryant JM, Baumgarten S, Dingli F, Loew D, Sinha A, Claës A, Preiser PR, Dedon PC, Scherf A. Exploring the virulence gene interactome with CRISPR/dCas9 in the human malaria parasite. Mol Syst Biol 2020; 16:e9569. [PMID: 32816370 PMCID: PMC7440042 DOI: 10.15252/msb.20209569] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Mutually exclusive expression of the var multigene family is key to immune evasion and pathogenesis in Plasmodium falciparum, but few factors have been shown to play a direct role. We adapted a CRISPR-based proteomics approach to identify novel factors associated with var genes in their natural chromatin context. Catalytically inactive Cas9 ("dCas9") was targeted to var gene regulatory elements, immunoprecipitated, and analyzed with mass spectrometry. Known and novel factors were enriched including structural proteins, DNA helicases, and chromatin remodelers. Functional characterization of PfISWI, an evolutionarily divergent putative chromatin remodeler enriched at the var gene promoter, revealed a role in transcriptional activation. Proteomics of PfISWI identified several proteins enriched at the var gene promoter such as acetyl-CoA synthetase, a putative MORC protein, and an ApiAP2 transcription factor. These findings validate the CRISPR/dCas9 proteomics method and define a new var gene-associated chromatin complex. This study establishes a tool for targeted chromatin purification of unaltered genomic loci and identifies novel chromatin-associated factors potentially involved in transcriptional control and/or chromatin organization of virulence genes in the human malaria parasite.
Collapse
Affiliation(s)
- Jessica M Bryant
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| | - Sebastian Baumgarten
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| | - Florent Dingli
- Institut CuriePSL Research UniversityCentre de RechercheMass Spectrometry and Proteomics FacilityParisFrance
| | - Damarys Loew
- Institut CuriePSL Research UniversityCentre de RechercheMass Spectrometry and Proteomics FacilityParisFrance
| | - Ameya Sinha
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Aurélie Claës
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| | - Peter R Preiser
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Artur Scherf
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| |
Collapse
|
149
|
Tng PYL, Carabajal Paladino L, Verkuijl SAN, Purcell J, Merits A, Leftwich PT, Fragkoudis R, Noad R, Alphey L. Cas13b-dependent and Cas13b-independent RNA knockdown of viral sequences in mosquito cells following guide RNA expression. Commun Biol 2020; 3:413. [PMID: 32737398 PMCID: PMC7395101 DOI: 10.1038/s42003-020-01142-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
Aedes aegypti and Aedes albopictus mosquitoes are vectors of the RNA viruses chikungunya (CHIKV) and dengue that currently have no specific therapeutic treatments. The development of new methods to generate virus-refractory mosquitoes would be beneficial. Cas13b is an enzyme that uses RNA guides to target and cleave RNA molecules and has been reported to suppress RNA viruses in mammalian and plant cells. We investigated the potential use of the Prevotella sp. P5-125 Cas13b system to provide viral refractoriness in mosquito cells, using a virus-derived reporter and a CHIKV split replication system. Cas13b in combination with suitable guide RNAs could induce strong suppression of virus-derived reporter RNAs in insect cells. Surprisingly, the RNA guides alone (without Cas13b) also gave substantial suppression. Our study provides support for the potential use of Cas13b in mosquitoes, but also caution in interpreting CRISPR/Cas data as we show that guide RNAs can have Cas-independent effects.
Collapse
Affiliation(s)
- Priscilla Ying Lei Tng
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
| | | | - Sebald Alexander Nkosana Verkuijl
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Jessica Purcell
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Philip Thomas Leftwich
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Rennos Fragkoudis
- Arbovirus Pathogenesis, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Rob Noad
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
| |
Collapse
|
150
|
Lester PJ, Bulgarella M, Baty JW, Dearden PK, Guhlin J, Kean JM. The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps. Sci Rep 2020; 10:12398. [PMID: 32709966 PMCID: PMC7382497 DOI: 10.1038/s41598-020-69259-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR gene drives have potential for widespread and cost-efficient pest control, but are highly controversial. We examined a potential gene drive targeting spermatogenesis to control the invasive common wasp (Vespula vulgaris) in New Zealand. Vespula wasps are haplodiploid. Their life cycle makes gene drive production challenging, as nests are initiated by single fertilized queens in spring followed by several cohorts of sterile female workers and the production of reproductives in autumn. We show that different spermatogenesis genes have different levels of variation between introduced and native ranges, enabling a potential 'precision drive' that could target the reduced genetic diversity and genotypes within the invaded range. In vitro testing showed guide-RNA target specificity and efficacy that was dependent on the gene target within Vespula, but no cross-reactivity in other Hymenoptera. Mathematical modelling incorporating the genetic and life history traits of Vespula wasps identified characteristics for a male sterility drive to achieve population control. There was a trade-off between drive infiltration and impact: a drive causing complete male sterility would not spread, while partial sterility could be effective in limiting population size if the homing rate is high. Our results indicate that gene drives may offer viable suppression for wasps and other haplodiploid pests.
Collapse
Affiliation(s)
- Philip J Lester
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - James W Baty
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Joseph Guhlin
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - John M Kean
- AgResearch Limited, Hamilton, 3240, New Zealand
| |
Collapse
|