101
|
Kim YJ, Lee TJ, Jeong GJ, Song J, Yu T, Lee DS, Bhang SH. Development of pH-Responsive Polymer Coating as an Alternative to Enzyme-Based Stem Cell Dissociation for Cell Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:491. [PMID: 33498583 PMCID: PMC7864336 DOI: 10.3390/ma14030491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 01/20/2023]
Abstract
Cell therapy usually accompanies cell detachment as an essential process in cell culture and cell collection for transplantation. However, conventional methods based on enzymatic cell detachment can cause cellular damage including cell death and senescence during the routine cell detaching step due to an inappropriate handing. The aim of the current study is to apply the pH-responsive degradation property of poly (amino ester) to the surface of a cell culture dish to provide a simple and easy alternative method for cell detachment that can substitute the conventional enzyme treatment. In this study, poly (amino ester) was modified (cell detachable polymer, CDP) to show appropriate pH-responsive degradation under mild acidic conditions (0.05% (w/v) CDP, pH 6.0) to detach stem cells (human adipose tissue-derived stem cells (hADSCs)) perfectly within a short period (less than 10 min). Compared to conventional enzymatic cell detachment, hADSCs cultured on and detached from a CDP-coated cell culture dish showed similar cellular properties. We further performed in vivo experiments on a mouse hindlimb ischemia model (1.0 × 106 cells per limb). The in vivo results indicated that hADSCs retrieved from normal cell culture dishes and CDP-coated cell culture dishes showed analogous therapeutic angiogenesis. In conclusion, CDP could be applied to a pH-responsive cell detachment system as a simple and easy nonenzymatic method for stem cell culture and various cell therapies.
Collapse
Affiliation(s)
- Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.K.); (T.-J.L.); (J.S.); (D.S.L.)
| | - Tae-Jin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.K.); (T.-J.L.); (J.S.); (D.S.L.)
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Gun-Jae Jeong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jihun Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.K.); (T.-J.L.); (J.S.); (D.S.L.)
| | - Taekyung Yu
- Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea;
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.K.); (T.-J.L.); (J.S.); (D.S.L.)
- Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.K.); (T.-J.L.); (J.S.); (D.S.L.)
| |
Collapse
|
102
|
Abstract
The normal wound healing process and the foreign body reaction to wound management materials.
Collapse
Affiliation(s)
- Jeon Il Kang
- Department of Bioengineering and Nano-bioengineering
- Incheon National University
- Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-bioengineering
- Incheon National University
- Korea
- Division of Bioengineering
- College of Life Sciences and Bioengineering
| |
Collapse
|
103
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
104
|
Kim J, Kong JS, Han W, Kim BS, Cho DW. 3D Cell Printing of Tissue/Organ-Mimicking Constructs for Therapeutic and Drug Testing Applications. Int J Mol Sci 2020; 21:E7757. [PMID: 33092184 PMCID: PMC7589604 DOI: 10.3390/ijms21207757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
The development of artificial tissue/organs with the functional maturity of their native equivalents is one of the long-awaited panaceas for the medical and pharmaceutical industries. Advanced 3D cell-printing technology and various functional bioinks are promising technologies in the field of tissue engineering that have enabled the fabrication of complex 3D living tissue/organs. Various requirements for these tissues, including a complex and large-volume structure, tissue-specific microenvironments, and functional vasculatures, have been addressed to develop engineered tissue/organs with native relevance. Functional tissue/organ constructs have been developed that satisfy such criteria and may facilitate both in vivo replenishment of damaged tissue and the development of reliable in vitro testing platforms for drug development. This review describes key developments in technologies and materials for engineering 3D cell-printed constructs for therapeutic and drug testing applications.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Jeong Sik Kong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Wonil Han
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Byoung Soo Kim
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
105
|
Liu E, Zhu D, Gonzalez Diaz E, Tong X, Yang F. Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration. Tissue Eng Part A 2020; 27:929-939. [PMID: 32940136 DOI: 10.1089/ten.tea.2020.0158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hydrogels have been widely used for cell delivery to enhance cell-based therapies for cartilage tissue regeneration. To better support cartilage deposition, it is imperative to determine hydrogel formulation with physical and biochemical cues that are optimized for different cell populations. Previous attempts to identify optimized hydrogels rely mostly on testing hydrogel formulations with discrete properties, which are time-consuming and require large amounts of cells and materials. Gradient hydrogels encompass a range of continuous changes in niche properties, therefore offering a promising solution for screening a wide range of cell-niche interactions using less materials and time. However, harnessing gradient hydrogels to assess how matrix stiffness modulates cartilage formation by different cell types in vivo have never been investigated before. The goal of this study is to fabricate gradient hydrogels for screening the effects of varying hydrogel stiffness on cartilage formation by mesenchymal stem cells (MSCs) and chondrocytes, respectively, the two most commonly used cell populations for cartilage regeneration. We fabricated stiffness gradient hydrogels with tunable dimensions that support homogeneous cell encapsulation. Using gradient hydrogels with tunable stiffness range, we found MSCs and chondrocytes exhibit opposite trend in cartilage deposition in response to stiffness changes in vitro. Specifically, MSCs require soft hydrogels with Young's modulus less than 5 kPa to support faster cartilage deposition, as shown by type II collagen and sulfated glycosaminoglycan staining. In contrast, chondrocytes produce cartilage more effectively in stiffer matrix (>20 kPa). We chose optimal ranges of stiffness for each cell population for further testing in vivo using a mouse subcutaneous model. Our results further validated that soft matrix (Young's modulus <5 kPa) is better in supporting MSC-based cartilage deposition in three-dimensional, whereas stiffer matrix (Young's modulus >20 kPa) is more desirable for supporting chondrocyte-based cartilage deposition. Our results show the importance of optimizing niche cues in a cell-type-specific manner and validate the potential of using gradient hydrogels for optimizing niche cues to support cartilage regeneration in vitro and in vivo. Impact statement The present study validates the utility of gradient hydrogels for determining optimal hydrogel stiffness for supporting cartilage regeneration using both chondrocytes and stem cells. We demonstrate that such gradient hydrogels can be used for fast optimizing matrix stiffness for specific cell type to support optimal cartilage regeneration. To our knowledge, this is the first demonstration of applying gradient hydrogels for assessing optimal niche cues that support tissue regeneration in vivo and may be used for assessing optimal niche cues for different cell types to regeneration of different tissues.
Collapse
Affiliation(s)
- Elisa Liu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Danqing Zhu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Eva Gonzalez Diaz
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
106
|
Putame G, Gabetti S, Carbonaro D, Meglio FD, Romano V, Sacco AM, Belviso I, Serino G, Bignardi C, Morbiducci U, Castaldo C, Massai D. Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs. Med Eng Phys 2020; 84:1-9. [DOI: 10.1016/j.medengphy.2020.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
|
107
|
Javaid M, Haleem A. 3D printing applications towards the required challenge of stem cells printing. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2020.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
108
|
Datta S, Jana S, Das A, Chakraborty A, Chowdhury AR, Datta P. Bioprinting of radiopaque constructs for tissue engineering and understanding degradation behavior by use of Micro-CT. Bioact Mater 2020; 5:569-576. [PMID: 32373763 PMCID: PMC7195521 DOI: 10.1016/j.bioactmat.2020.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/05/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Bioprinting has emerged as a potential technique to fabricate tissue engineering constructs and in vitro models directly using living cells as a raw material for fabrication, conforming to the heterogeneity and architectural complexity of the tissues. In several of tissue engineering and in vitro disease modelling or surgical planning applications, it is desirable to have radiopaque constructs for monitoring and evaluation. In the present work, enhanced radiopaque constructs are generated by substituting Calcium ions with Barium ions for crosslinking of alginate hydrogels. The constructs are characterized for their structural integrity and followed by cell culture studies to evaluate their biocompatibility. This was followed by the radiopacity evaluation. The radiological images obtained by micro-CT technique was further applied to investigate the degradation behavior of the scaffolds. In conclusion, it is observed that barium crosslinking can provide a convenient means to obtain radiopaque constructs with potential for multi-faceted applications.
Collapse
Affiliation(s)
- Sudipto Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| | - Shuvodeep Jana
- Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| | - Arindam Chakraborty
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| | - Amit Roy Chowdhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, WB, India
| |
Collapse
|
109
|
Ciciriello AJ, Smith DR, Munsell MK, Boyd SJ, Shea LD, Dumont CM. Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation. ACS Biomater Sci Eng 2020; 6:5771-5784. [DOI: 10.1021/acsbiomaterials.0c00844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andrew J. Ciciriello
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida 33136, United States
| | - Dominique R. Smith
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| | - Mary K. Munsell
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| | - Sydney J. Boyd
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Courtney M. Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida 33136, United States
| |
Collapse
|
110
|
Maki CB, Beck A, Wallis CBCC, Choo J, Ramos T, Tong R, Borjesson DL, Izadyar F. Intra-articular Administration of Allogeneic Adipose Derived MSCs Reduces Pain and Lameness in Dogs With Hip Osteoarthritis: A Double Blinded, Randomized, Placebo Controlled Pilot Study. Front Vet Sci 2020; 7:570. [PMID: 33110913 PMCID: PMC7489271 DOI: 10.3389/fvets.2020.00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
This study was conducted to investigate the therapeutic effect of allogeneic adipose-derived MSCs on dogs with hip osteoarthritis (OA). Twenty dogs with bilateral osteoarthritis of the coxofemoral (hip) joint, diagnosed by a veterinarian through physical examination and radiographs were randomly allocated into four groups. Group 1 served as a placebo control and were injected with 0.9% sodium chloride (saline) (n = 4). Group 2 were injected with a single dose of 5 million MSCs (n = 5). Group 3 received a single dose of 25 million MSCs (n = 6) and Group 4 received a single dose of 50 million MSCs (n = 5). Intra-articular administration of allogeneic MSCs into multiple joints did not result in any serious adverse events. The average lameness score of the dogs in the placebo control group (−0.31) did not show improvement after 90 days of intra-articular saline administration. However, the average lameness score of the all MSC-treated dogs was improved 2.11 grade at this time point (P < 0.001). Overall, sixty five percent (65%) of the dogs that received various doses of MSCs showed improvement in lameness scores 90 days after intra-articular MSC administration. Our results showed that intra-articular administration of allogeneic adipose derived MSCs was well-tolerated and improved lameness scores and reduced pain in dogs associated with hip OA. All doses of MSCs were effective. Subsequent studies with more animals per group are needed to make a conclusion about the dose response. The improved lameness effect was present up to 90 days post-injection. Serum interleukin 10 was increased in a majority of the dogs that received MSCs and that also had improved lameness.
Collapse
Affiliation(s)
- Chad B Maki
- VetCell Therapeutics USA, Santa Ana, CA, United States
| | - Anthony Beck
- Doctors Beck and Stone Clinic, Discovery Bay, Hong Kong
| | | | - Justin Choo
- Doctors Beck and Stone Clinic, Discovery Bay, Hong Kong
| | - Thomas Ramos
- VetCell Therapeutics USA, Santa Ana, CA, United States
| | | | - Dori L Borjesson
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, Veterinary Institute for Regenerative Cures, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
111
|
Tutuianu R, Rosca AM, Albu Kaya MG, Pruna V, Neagu TP, Lascar I, Simionescu M, Titorencu I. Mesenchymal stromal cell-derived factors promote the colonization of collagen 3D scaffolds with human skin cells. J Cell Mol Med 2020; 24:9692-9704. [PMID: 32666712 PMCID: PMC7520263 DOI: 10.1111/jcmm.15507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022] Open
Abstract
The development of stem cell technology in combination with advances in biomaterials has opened new ways of producing engineered tissue substitutes. In this study, we investigated whether the therapeutic potential of an acellular porous scaffold made of type I collagen can be improved by the addition of a powerful trophic agent in the form of mesenchymal stromal cells conditioned medium (MSC-CM) in order to be used as an acellular scaffold for skin wound healing treatment. Our experiments showed that MSC-CM sustained the adherence of keratinocytes and fibroblasts as well as the proliferation of keratinocytes. Moreover, MSC-CM had chemoattractant properties for keratinocytes and endothelial cells, attributable to the content of trophic and pro-angiogenic factors. Also, for the dermal fibroblasts cultured on collagen scaffold in the presence of MSC-CM versus serum control, the ratio between collagen III and I mRNAs increased by 2-fold. Furthermore, the gene expression for α-smooth muscle actin, tissue inhibitor of metalloproteinase-1 and 2 and matrix metalloproteinase-14 was significantly increased by approximately 2-fold. In conclusion, factors existing in MSC-CM improve the colonization of collagen 3D scaffolds, by sustaining the adherence and proliferation of keratinocytes and by inducing a pro-healing phenotype in fibroblasts.
Collapse
Affiliation(s)
- Raluca Tutuianu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Ana-Maria Rosca
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | | | - Vasile Pruna
- INCDTP-Division Leather and Footwear Research Institute, Bucharest, Romania
| | | | - Ioan Lascar
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Irina Titorencu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
112
|
Gonzalez BA, Perez-Nevarez M, Mirza A, Perez MG, Lin YM, Hsu CPD, Caobi A, Raymond A, Gomez Hernandez ME, Fernandez-Lima F, George F, Ramaswamy S. Physiologically Relevant Fluid-Induced Oscillatory Shear Stress Stimulation of Mesenchymal Stem Cells Enhances the Engineered Valve Matrix Phenotype. Front Cardiovasc Med 2020; 7:69. [PMID: 32509802 PMCID: PMC7248568 DOI: 10.3389/fcvm.2020.00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/07/2020] [Indexed: 11/20/2022] Open
Abstract
Support of somatic growth is a fundamental requirement of tissue-engineered valves. However, efforts thus far have been unable to maintain this support long term. A key event that will determine the valve's long-term success is the extent to which healthy host tissue remodeling can occur on the valve soon after implantation. The construct's phenotypic-status plays a critical role in accelerating tissue remodeling and engineered valve integration with the host via chemotaxis. In the current study, human bone-marrow-derived mesenchymal stem cells were utilized to seed synthetic, biodegradable scaffolds for a period of 8 days in rotisserie culture. Subsequently, cell-seeded scaffolds were exposed to physiologically relevant oscillatory shear stresses (overall mean, time-averaged shear stress, ~7.9 dynes/cm2; overall mean, oscillatory shear index, ~0.18) for an additional 2 weeks. The constructs were found to exhibit relatively augmented endothelial cell expression (CD31; compared to static controls) but concomitantly served to restrict the level of the activated smooth muscle phenotype (α-SMA) and also produced very low stem cell secretion levels of fibronectin (p < 0.05 compared to static and rotisserie controls). These findings suggest that fluid-induced oscillatory shear stresses alone are important in regulating a healthy valve phenotype of the engineered tissue matrix. Moreover, as solid stresses could lead to increased α-SMA levels, they should be excluded from conditioning during the culture process owing to their associated potential risks with pathological tissue remodeling. In conclusion, engineered valve tissues derived from mesenchymal stem cells revealed both a relatively robust valvular phenotype after exposure to physiologically relevant scales of oscillatory shear stress and may thereby serve to accelerate healthy valve tissue remodeling in the host post-implantation.
Collapse
Affiliation(s)
- Brittany A Gonzalez
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Manuel Perez-Nevarez
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Asad Mirza
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Marcos Gonzalez Perez
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Yih-Mei Lin
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Chia-Pei Denise Hsu
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Allen Caobi
- Department of Immunology and Nano-Medicine, Florida International University, Miami, FL, United States
| | - Andrea Raymond
- Department of Immunology and Nano-Medicine, Florida International University, Miami, FL, United States
| | - Mario E Gomez Hernandez
- Advanced Mass Spectrometry Facility, Florida International University, Miami, FL, United States.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Francisco Fernandez-Lima
- Advanced Mass Spectrometry Facility, Florida International University, Miami, FL, United States.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Florence George
- Department of Mathematics and Statistics, Florida International University, Miami, FL, United States
| | - Sharan Ramaswamy
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
113
|
The Use of Electrospun Organic and Carbon Nanofibers in Bone Regeneration. NANOMATERIALS 2020; 10:nano10030562. [PMID: 32244931 PMCID: PMC7153397 DOI: 10.3390/nano10030562] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
There has been an increasing amount of research on regenerative medicine for the treatment of bone defects. Scaffolds are needed for the formation of new bone, and various scaffolding materials have been evaluated for bone regeneration. Materials with pores that allow cells to differentiate into osteocytes are preferred in scaffolds for bone regeneration, and porous materials and fibers are well suited for this application. Electrospinning is an effective method for producing a nanosized fiber by applying a high voltage to the needle tip containing a polymer solution. The use of electrospun nanofibers is being studied in the medical field, and its use as a scaffold for bone regeneration therapy has become a topic of growing interest. In this review, we will introduce the potential use of electrospun nanofiber as a scaffold for bone regenerative medicine with a focus on carbon nanofibers produced by the electrospinning method.
Collapse
|
114
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
115
|
Aoki K, Saito N. Biodegradable Polymers as Drug Delivery Systems for Bone Regeneration. Pharmaceutics 2020; 12:E95. [PMID: 31991668 PMCID: PMC7076380 DOI: 10.3390/pharmaceutics12020095] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Regenerative medicine has been widely researched for the treatment of bone defects. In the field of bone regenerative medicine, signaling molecules and the use of scaffolds are of particular importance as drug delivery systems (DDS) or carriers for cell differentiation, and various materials have been explored for their potential use. Although calcium phosphates such as hydroxyapatite and tricalcium phosphate are clinically used as synthetic scaffold material for bone regeneration, biodegradable materials have attracted much attention in recent years for their clinical application as scaffolds due their ability to facilitate rapid localized absorption and replacement with autologous bone. In this review, we introduce the types, features, and performance characteristics of biodegradable polymer scaffolds in their role as DDS for bone regeneration therapy.
Collapse
Affiliation(s)
- Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan;
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
116
|
Aoki K, Ogihara N, Tanaka M, Haniu H, Saito N. Carbon nanotube-based biomaterials for orthopaedic applications. J Mater Chem B 2020; 8:9227-9238. [DOI: 10.1039/d0tb01440k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon nanotubes can enhance the functionality of orthopedic applications.
Collapse
Affiliation(s)
- Kaoru Aoki
- Physical Therapy Division
- School of Health Sciences
- Shinshu University
- Nagano 390-8621
- Japan
| | - Nobuhide Ogihara
- Department of Orthopaedic Surgery
- Ina Central Hospital
- Nagano 396-8555
- Japan
| | - Manabu Tanaka
- Department of Orthopaedic Surgery
- Okaya City Hospital
- Nagano 394-8512
- Japan
| | - Hisao Haniu
- Department of Biomedical Engineering
- Graduate School of Medicine
- Science and Technology
- Shinshu University
- Nagano 390-8621
| | - Naoto Saito
- Institute for Biomedical Sciences
- Interdisciplinary Cluster for Cutting Edge Research
- Shinshu University
- Matsumoto
- Nagano 390-8621
| |
Collapse
|
117
|
Tan HL, Choo A. Opportunities for Antibody Discovery Using Human Pluripotent Stem Cells: Conservation of Oncofetal Targets. Int J Mol Sci 2019; 20:E5752. [PMID: 31731794 PMCID: PMC6888136 DOI: 10.3390/ijms20225752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). The application of pluripotent stem cells is divided into four main areas, namely: (i) regenerative therapy, (ii) the study and understanding of developmental biology, (iii) drug screening and toxicology and (iv) disease modeling. In this review, we describe a new opportunity for PSCs, the discovery of new biomarkers and generating antibodies against these biomarkers. PSCs are good sources of immunogen for raising monoclonal antibodies (mAbs) because of the conservation of oncofetal antigens between PSCs and cancer cells. Hence mAbs generated using PSCs can potentially be applied in two different fields. First, these mAbs can be used in regenerative cell therapy to characterize the PSCs. In addition, the mAbs can be used to separate or eliminate contaminating or residual undifferentiated PSCs from the differentiated cell product. This step is critical as undifferentiated PSCs can form teratomas in vivo. The mAbs generated against PSCs can also be used in the field of oncology. Here, novel targets can be identified and the mAbs developed as targeted therapy to kill the cancer cells. Conversely, as new and novel oncofetal biomarkers are discovered on PSCs, cancer mAbs that are already approved by the FDA can be repurposed for regenerative medicine, thus expediting the route to the clinics.
Collapse
Affiliation(s)
- Heng Liang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138668, Singapore;
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138668, Singapore;
- Department of Biochemical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
118
|
Iaquinta MR, Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Adult Stem Cells for Bone Regeneration and Repair. Front Cell Dev Biol 2019; 7:268. [PMID: 31799249 PMCID: PMC6863062 DOI: 10.3389/fcell.2019.00268] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The regeneration of bone fractures, resulting from trauma, osteoporosis or tumors, is a major problem in our super-aging society. Bone regeneration is one of the main topics of concern in regenerative medicine. In recent years, stem cells have been employed in regenerative medicine with interesting results due to their self-renewal and differentiation capacity. Moreover, stem cells are able to secrete bioactive molecules and regulate the behavior of other cells in different host tissues. Bone regeneration process may improve effectively and rapidly when stem cells are used. To this purpose, stem cells are often employed with biomaterials/scaffolds and growth factors to accelerate bone healing at the fracture site. Briefly, this review will describe bone structure and the osteogenic differentiation of stem cells. In addition, the role of mesenchymal stem cells for bone repair/regrowth in the tissue engineering field and their recent progress in clinical applications will be discussed.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
119
|
Human Umbilical Cord-Derived Mesenchymal Stem Cell Therapy Ameliorates Nonalcoholic Fatty Liver Disease in Obese Type 2 Diabetic Mice. Stem Cells Int 2019; 2019:8628027. [PMID: 31781248 PMCID: PMC6875176 DOI: 10.1155/2019/8628027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly common among patients with type 2 diabetes mellitus (T2DM). The two conditions can act synergistically to produce adverse outcomes. However, the therapeutic options for patients with NAFLD and T2DM are currently limited. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) have shown therapeutic potential for diabetes and hepatic disorders such as liver cirrhosis and fulminant hepatic failure. The present study is aimed at investigating the effect of human UC-MSCs on a mouse model of NAFLD and T2DM, characterized by obesity-induced hyperglycaemia, dyslipidaemia, hepatic steatosis, and liver dysfunction. Thirty-week-old male C57BL/6 db/db mice were infused with human UC-MSCs or phosphate-buffered saline (PBS) via the tail vein once a week for six weeks. Age-matched male C57BL/6 wild-type db/+ mice were used as controls. Body weight and random blood glucose were measured every week. One week after the sixth infusion, intraperitoneal glucose tolerance tests and insulin tolerance tests were performed and the blood and liver were harvested for biochemical and histopathological examinations. Quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), immunofluorescence staining, and western blot were performed to monitor the expression of the lipid metabolism- and regulatory pathway-related genes. UC-MSC infusions significantly ameliorated hyperglycaemia, attenuated the elevation of hepatic transaminases, and decreased lipid contents, including triglyceride, total cholesterol, and low-density lipoprotein cholesterol. Moreover, histological lesions in the liver diminished markedly, as evidenced by reduced lipid accumulation and attenuated hepatic steatosis. Mechanistically, UC-MSCs were found to regulate lipid metabolism by increasing the expression of fatty acid oxidation-related genes and inhibiting the expression of lipogenesis-related genes, which were associated with the upregulation of the HNF4α-CES2 pathway. Our results demonstrate that human UC-MSCs can ameliorate NAFLD and reverse metabolic syndrome in db/db mice. Thus, UC-MSCs may serve as a novel therapeutic agent for T2DM patients with NAFLD.
Collapse
|
120
|
Khorraminejad-Shirazi M, Dorvash M, Estedlal A, Hoveidaei AH, Mazloomrezaei M, Mosaddeghi P. Aging: A cell source limiting factor in tissue engineering. World J Stem Cells 2019; 11:787-802. [PMID: 31692986 PMCID: PMC6828594 DOI: 10.4252/wjsc.v11.i10.787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/03/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering has yet to reach its ideal goal, i.e. creating profitable off-the-shelf tissues and organs, designing scaffolds and three-dimensional tissue architectures that can maintain the blood supply, proper biomaterial selection, and identifying the most efficient cell source for use in cell therapy and tissue engineering. These are still the major challenges in this field. Regarding the identification of the most appropriate cell source, aging as a factor that affects both somatic and stem cells and limits their function and applications is a preventable and, at least to some extents, a reversible phenomenon. Here, we reviewed different stem cell types, namely embryonic stem cells, adult stem cells, induced pluripotent stem cells, and genetically modified stem cells, as well as their sources, i.e. autologous, allogeneic, and xenogeneic sources. Afterward, we approached aging by discussing the functional decline of aged stem cells and different intrinsic and extrinsic factors that are involved in stem cell aging including replicative senescence and Hayflick limit, autophagy, epigenetic changes, miRNAs, mTOR and AMPK pathways, and the role of mitochondria in stem cell senescence. Finally, various interventions for rejuvenation and geroprotection of stem cells are discussed. These interventions can be applied in cell therapy and tissue engineering methods to conquer aging as a limiting factor, both in original cell source and in the in vitro proliferated cells.
Collapse
Affiliation(s)
- Mohammadhossein Khorraminejad-Shirazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mohammadreza Dorvash
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Alireza Estedlal
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Amir Human Hoveidaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mohsen Mazloomrezaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Pouria Mosaddeghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| |
Collapse
|
121
|
Matamoros-Veloza A, Hossain KMZ, Scammell BE, Ahmed I, Hall R, Kapur N. Formulating injectable pastes of porous calcium phosphate glass microspheres for bone regeneration applications. J Mech Behav Biomed Mater 2019; 102:103489. [PMID: 31622859 DOI: 10.1016/j.jmbbm.2019.103489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Current trends in regenerative medicine treatments for bone repair applications focus on cell-based therapies. These aim to deliver the treatment via a minimally invasive injection to reduce patient trauma and to improve efficacy. This paper describes the injectability of porous calcium phosphate glass microspheres to be used for bone repair based on their formulation, rheology and flow behavior. The use of excipients (xanthan gum, methyl cellulose and carboxyl methyl cellulose) were investigated to improve flow performance. Based on our results, the flow characteristics of the glass microsphere pastes vary according to particle size, surface area, and solid to liquid ratio, as well as the concentration of viscosity modifiers used. The optimal flow characteristics of calcium phosphate glass microsphere pastes was found to contain 40 mg/mL of xanthan gum which increased viscosity whilst providing elastic properties (∼29,000 Pa) at shear rates that mirror the injection process and the resting period post injection, preventing the glass microspheres from both damage and dispersion. It was established that a base formulation must contain 1 g of glass microspheres (60-125 μm in size) per 1 mL of cell culture media, or 0.48 g of glass microspheres of sizes between 125 and 200 μm. Furthermore, the glass microsphere formulations with xanthan gum were readily injectable via a syringe-needle system (3-20 mL, 18G and 14G needles), and have the potential to be utilized as a cell (or other biologics) delivery vehicle for bone regeneration applications.
Collapse
Affiliation(s)
| | - Kazi M Zakir Hossain
- Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, NG7 2RD, UK; Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Brigitte E Scammell
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham, UK
| | - Ifty Ahmed
- Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, NG7 2RD, UK
| | - Richard Hall
- School of Mechanical Engineering, University of Leeds, LS2 9JT, UK
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
122
|
Methods to generate tissue-derived constructs for regenerative medicine applications. Methods 2019; 171:3-10. [PMID: 31606388 DOI: 10.1016/j.ymeth.2019.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/13/2019] [Accepted: 09/22/2019] [Indexed: 01/08/2023] Open
Abstract
The shortage of donor organs for transplantation remains a continued problem for patients with irreversible end-stage organ failure. Tissue engineering and regenerative medicine aims to develop therapies to provide viable solutions for these patients. Use of decellularized tissue scaffolds has emerged as an attractive approach to generate tissue constructs that mimic native tissue architecture and vascular networks. The process of decellularization which involves the removal of resident cellular components from donor tissues has been successfully translated to the clinic for applications in patients. However, transplantation of bioengineered solid organs using this approach remains a challenge as the process requires repopulating target cells to achieve functioning organs. This article presents a comprehensive overview of the methods used to achieve decellularization, the types of decellularizing agents, and the potential cell sources that could be used to achieve tissue function. Understanding the mechanism of action of the decellularizing agent and the processing methods will provide the optimal results for applications.
Collapse
|
123
|
Rasch A, Naujokat H, Wang F, Seekamp A, Fuchs S, Klüter T. Evaluation of bone allograft processing methods: Impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality. PLoS One 2019; 14:e0218404. [PMID: 31220118 PMCID: PMC6586299 DOI: 10.1371/journal.pone.0218404] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
In an ever-aging society the demand for bone-defect filling grafts continues to gain in importance. While autologous grafting still prevails as the gold standard, allografts and xenografts present viable alternatives with promising results. Physiochemical properties of a graft strongly depend on the processing method such as the decellularization protocol. In addition, the physiochemical characteristics are critical factors for a successful integration of the graft after the implantation and might influence mesenchymal stem cell function in therapeutic approaches combining grafts and autologous mesenchymal stem cells (MSCs). Several decellularization methods have been proposed, however it still remains unclear which method results in favorable physiochemical properties or might be preferred in stem cell applications. In the first part of this study we compared two decellularization approaches resulting in chemically processed allografts (CPAs) or sonication-based processed allografts (SPAs). Each decellularization approach was compared for its decellularization efficacy and its influence on the grafts' surface texture and composition. In the second part of this study biocompatibility of grafts was assessed by testing the effect of extraction medium on MSC viability and comparing them to commercially available allografts and xenografts. Additionally, grafts' performance in terms of MSC functionality was assessed by reseeding with MSCs pre-differentiated in osteogenic medium and determining cell adhesion, proliferation, as well as alkaline phosphatase (ALP) activity and the degree of mineralization. In summary, results indicate a more effective decellularization for the SPA approach in comparison to the CPA approach. Even though SPA extracts induced a decrease in MSC viability, MSC performance after reseeding was comparable to commercially available grafts based on DNA quantification, alkaline phosphatase activity and quantification of mineralization. Commercial Tutoplast allografts showed overall the best effects on MSC functionality as indicated by extraction biocompatibility testing as well as by comparing proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Alexander Rasch
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Fanlu Wang
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- * E-mail:
| | - Tim Klüter
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
124
|
Coronado RE, Somaraki-Cormier M, Ong JL, Halff GA. Hepatocyte-like cells derived from human amniotic epithelial, bone marrow, and adipose stromal cells display enhanced functionality when cultured on decellularized liver substrate. Stem Cell Res 2019; 38:101471. [PMID: 31163390 DOI: 10.1016/j.scr.2019.101471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/30/2019] [Accepted: 05/25/2019] [Indexed: 01/02/2023] Open
Abstract
Transplantation of primary hepatocytes has been used in treatments for various liver pathologies and end-stage liver disease. However, shortage of donor tissue and the inability of hepatocyte proliferation in vitro have lead to alternative methods such as stem cell-derived hepatocyte-like cells (HLCs). Mesenchymal stromal/stem cells, and amniotic epithelial cells were isolated from human bone marrow (BM-MSCs), lipoaspirates (ASCs), and amniotic tissue (AECs) respectively. All cells were differentiated into HLCs on plates coated with Type I collagen or Porcine Liver Extracellular Matrix (PLECM-AA) matrix. Flow cytometry of BM-MSCs and ASCs, and AECs showed high expression of MSC-specific and embryonic stem cell markers respectively. All cell types differentiated into osteocytes, chondrocytes, and adipocytes. All cell type-derived HLCs presented the typical cuboidal primary hepatocyte morphology on PLECM-AA and fewer vacuoles (AECs) compared to HLCs cultured on type I collagen. Gene analysis of all cell type-derived HLCs cultured on PLECM-AA revealed higher upregulation of genes involved in drug transportation and metabolism compared to HLCs cultured on type I collagen. Although, HLCs cultured on PLECM-AA displayed some hepatocyte-related function and bioactivity, overall gene expression was lower compared to that of primary hepatocytes suggesting that caution should be taken when considering using HLCs to replace total hepatocyte functionality.
Collapse
Affiliation(s)
- Ramon E Coronado
- Lester Smith Medical Research Institute, San Antonio, TX 78229, USA.
| | | | - Joo L Ong
- Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Glenn A Halff
- Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
125
|
Berndt S, Turzi A, Pittet-Cuénod B, Modarressi A. Autologous Platelet-Rich Plasma (CuteCell PRP) Safely Boosts In Vitro Human Fibroblast Expansion. Tissue Eng Part A 2019; 25:1550-1563. [PMID: 30896295 DOI: 10.1089/ten.tea.2018.0335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nowadays autologous fibroblast application for skin repair presents an important clinical interest. In most cases, in vitro skin cell culture is mandatory. However, cell expansion using xenogeneic or allogenic culture media presents some disadvantages, such as the risk of infection transmission or slow cell expansion. In this study, we investigated an autologous culture system to expand human skin fibroblast cells in vitro with the patient's own platelet-rich plasma (PRP). Human dermal fibroblasts were isolated from patients undergoing abdominoplasty, and blood was collected to prepare nonactivated PRP using the CuteCell™ PRP medical device. Cultures were followed up to 7 days using a medium supplemented with either fetal bovine serum (FBS) or PRP. Fibroblasts cultured in medium supplemented with PRP showed dose-dependently significantly higher proliferation rates (up to 7.7 times with 20% of PRP) and initiated a faster migration in the in vitro wound healing assay compared with FBS, while chromosomal stability was maintained. At high concentrations, PRP changed fibroblast morphology, inducing cytoskeleton rearrangement and an increase of alpha-smooth muscle actin and vimentin expression. Our findings show that autologous PRP is an efficient and cost-effective supplement for fibroblast culture, and should be considered as a safe alternative to xenogeneic/allogenic blood derivatives for in vitro cell expansion. Impact Statement Autologous dermal fibroblast graft is an important therapy in skin defect repair, but in vitro skin cell culture is mandatory in most cases. However, cell expansion using xenogeneic/allogenic culture media presents some disadvantages, such as the risk of infection transmission. We demonstrated that an autologous culture system with the patient's own platelet-rich plasma is an efficient, cost-effective, and safe supplement for fibroblast culture. As it respects the good manufacturing practices and regulatory agencies standards, it should be considered as a potent alternative and substitute to xenogeneic or allogenic blood derivatives for the validation of future clinical protocols using in vitro cell expansion.
Collapse
Affiliation(s)
- Sarah Berndt
- Department of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland.,Regen Lab SA, Le Mont-sur-Lausanne, Switzerland
| | | | - Brigitte Pittet-Cuénod
- Department of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Ali Modarressi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
126
|
Neri S. Genetic Stability of Mesenchymal Stromal Cells for Regenerative Medicine Applications: A Fundamental Biosafety Aspect. Int J Mol Sci 2019; 20:ijms20102406. [PMID: 31096604 PMCID: PMC6566307 DOI: 10.3390/ijms20102406] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) show widespread application for a variety of clinical conditions; therefore, their use necessitates continuous monitoring of their safety. The risk assessment of mesenchymal stem cell-based therapies cannot be separated from an accurate and deep knowledge of their biological properties and in vitro and in vivo behavior. One of the most relevant safety issues is represented by the genetic stability of MSCs, that can be altered during in vitro manipulation, frequently required before clinical application. MSC genetic stability has the potential to influence the transformation and the therapeutic effect of these cells. At present, karyotype evaluation represents the definitely prevailing assessment of MSC stability, but DNA alterations of smaller size should not be underestimated. This review will focus on current scientific knowledge about the genetic stability of mesenchymal stem cells. The techniques used and possible improvements together with regulatory aspects will also be discussed.
Collapse
Affiliation(s)
- Simona Neri
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
127
|
Najar M, Bouhtit F, Melki R, Afif H, Hamal A, Fahmi H, Merimi M, Lagneaux L. Mesenchymal Stromal Cell-Based Therapy: New Perspectives and Challenges. J Clin Med 2019; 8:626. [PMID: 31071990 PMCID: PMC6572531 DOI: 10.3390/jcm8050626] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Stem cells have been the focus of intense research opening up new possibilities for the treatment of various diseases. Mesenchymal stromal cells (MSCs) are multipotent cells with relevant immunomodulatory properties and are thus considered as a promising new strategy for immune disease management. To enhance their efficiency, several issues related to both MSC biology and functions are needed to be identified and, most importantly, well clarified. The sources from which MSCs are isolated are diverse and might affect their properties. Both clinicians and scientists need to handle a phenotypic-characterized population of MSCs, particularly regarding their immunological profile. Moreover, it is now recognized that the tissue-reparative effects of MSCs are based on their immunomodulatory functions that are activated following a priming/licensing step. Thus, finding the best ways to pre-conditionate MSCs before their injection will strengthen their activity potential. Finally, soluble elements derived from MSC-secretome, including extracellular vesicles (EVs), have been proposed as a cell-free alternative tool for therapeutic medicine. Collectively, these features have to be considered and developed to ensure the efficiency and safety of MSC-based therapy. By participating to this Special Issue "Mesenchymal Stem/Stromal Cells in Immunity and Disease", your valuable contribution will certainly enrich the content and discussion related to the thematic of MSCs.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada.
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
| | - Fatima Bouhtit
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Bruxelles, Belgium.
| | - Rahma Melki
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
| | - Hassan Afif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada.
| | - Abdellah Hamal
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada.
| | - Makram Merimi
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco.
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Bruxelles, Belgium.
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Bruxelles, Belgium.
| |
Collapse
|