101
|
Muresan XM, Narzt MS, Woodby B, Ferrara F, Gruber F, Valacchi G. Involvement of cutaneous SR-B1 in skin lipid homeostasis. Arch Biochem Biophys 2019; 666:1-7. [DOI: 10.1016/j.abb.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
|
102
|
Uche LE, Gooris GS, Beddoes CM, Bouwstra JA. New insight into phase behavior and permeability of skin lipid models based on sphingosine and phytosphingosine ceramides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1317-1328. [PMID: 30991016 DOI: 10.1016/j.bbamem.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 11/27/2022]
Abstract
The intercellular lipid matrix of the stratum corneum (SC), which consist mainly of ceramides (CERs), free fatty acids and cholesterol, is fundamental to the skin barrier function. These lipids assemble into two lamellar phases, known as the long and short periodicity phases (LPP and SPP respectively). The LPP is unique in the SC and is considered important for the skin barrier function. Alterations in CER composition, as well as impaired skin barrier function, are commonly observed in diseased skin, yet the understanding of this relationship remains insufficient. In this study, we have investigated the influence of non-hydroxy and α-hydroxy sphingosine-based CERs and their phytosphingosine counterparts on the permeability and lipid organization of model membranes, which were adjusted in composition to enhance formation of the LPP. The permeability was compared by diffusion studies using ethyl-p-aminobenzoate as a model drug, and the lipid organization was characterized by X-ray diffraction and infrared spectroscopy. Both the sphingosine- and phytosphingosine-based CER models formed the LPP, while the latter exhibited a longer LPP repeat distance. The ethyl-p-aminobenzoate flux across the sphingosine-based CER models was higher when compared to the phytosphingosine counterparts, contrary to the fact that the α-hydroxy phytosphingosine-based CER model had the lowest chain packing density. The unanticipated low permeability of the α-hydroxy phytosphingosine-based model is probably associated with a stronger headgroup hydrogen bonding network. Our findings indicate that the increased level of sphingosine-based CERs at the expense of phytosphingosine-based CERs, as observed in the diseased skin, may contribute to the barrier function impairment.
Collapse
Affiliation(s)
- L E Uche
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - G S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - C M Beddoes
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - J A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands.
| |
Collapse
|
103
|
Li J, Li Q, Geng S. All‑trans retinoic acid alters the expression of the tight junction proteins Claudin‑1 and ‑4 and epidermal barrier function‑associated genes in the epidermis. Int J Mol Med 2019; 43:1789-1805. [PMID: 30816426 PMCID: PMC6414175 DOI: 10.3892/ijmm.2019.4098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/12/2019] [Indexed: 01/19/2023] Open
Abstract
All‑trans retinoic acid (ATRA) regulates skin cell proliferation and differentiation. ATRA is widely used in the treatment of skin diseases, but results in irritation, dryness and peeling, possibly due to an impaired skin barrier, although the exact mechanisms are unclear. The present study established an ATRA‑associated dermatitis mouse model (n=32) in order to examine the molecular mechanisms of skin barrier impairment by ATRA. Changes in epidermal morphology and structure were observed using histological examination and transmission electron microscopy (TEM). Gene expression was analyzed by microarray chip assay. Histology and TEM demonstrated pronounced epidermal hyperproliferation and parakeratosis upon ATRA application. The stratum corneum layer displayed abnormal lipid droplets and cell‑cell junctions, suggesting alterations in lipid metabolism and dysfunctional cell junctions. Gene expression profiling revealed that factors associated with epidermal barrier function were differentially expressed by ATRA, including those associated with tight junctions (TJs), cornified envelopes, lipids, proteases, protease inhibitors and transcription factors. In the mouse epidermis, Claudin‑1 and ‑4 are proteins involved in TJs and have key roles in epidermal barrier function. ATRA reduced the expression and altered the localization of Claudin‑1 in HaCaT immortalized keratinocytes and the mouse epidermis, which likely leads to the disruption of the epidermal barrier. By contrast, Claudin‑4 was upregulated in HaCaT cells and the mouse epidermis following treatment with ATRA. In conclusion, ATRA exerts a dual effect on epidermal barrier genes: It downregulates the expression of Claudin‑1 and upregulates the expression of Claudin‑4. Claudin‑4 upregulation may be a compensatory response for the disrupted barrier function caused by Claudin‑1 downregulation.
Collapse
Affiliation(s)
- Jing Li
- Department of Dermatology, Northwest Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Qianying Li
- Department of Dermatology, Northwest Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| |
Collapse
|
104
|
Liu C, Guo H, DaSilva NA, Li D, Zhang K, Wan Y, Gao XH, Chen HD, Seeram NP, Ma H. Pomegranate ( Punica granatum) Phenolics Ameliorate Hydrogen Peroxide-Induced Oxidative Stress and Cytotoxicity in Human Keratinocytes. J Funct Foods 2019; 54:559-567. [PMID: 34079588 DOI: 10.1016/j.jff.2019.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pomegranate phenolics have been reported to exert skin beneficial effects but their mechanisms of action remain unclear. Herein, we investigated a standardized commercial pomegranate extract (PE; Pomella®) and its phenolics including punicalagin (PA), ellagic acid (EA), and urolithin A (UA) for their protective effects against hydrogen peroxide (H2O2)-induced oxidative stress and cytotoxicity in human keratinocyte HaCaT cells. PE, PA, and EA reduced the production of H2O2-induced ROS in HaCaT cells by 1.03-, 1.37-, and 2.67-fold, respectively. PE, PA, and UA increased the viability of H2O2-stimulated HaCaT cells by 89.9, 94.9, and 90.0%, respectively. PE, PA, and UA reduced apoptotic cell populations by 3.39, 7.11, and 8.26%, respectively. In addition, PE, PA and UA decreased H2O2-stimulated caspase-3 level by 2.31-, 2.06-, and 2.68-fold, respectively. The ameliorative effects of this PE and its phenolics against the H2O2-induced oxidative stress and cytotoxicity in keratinocytes support their utilization as natural cosmeceuticals for skin health.
.
Collapse
Affiliation(s)
- Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hao Guo
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.,Department of Dermatology, Key Laboratory of Immunodermatology, No.1 Hospital of China Medical University, Shenyang 110001, China.,Department of Biology, Providence College, Providence, RI 02918, USA
| | - Nicholas A DaSilva
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, Guangdong, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, Guangdong, China
| | - Yinsheng Wan
- Department of Biology, Providence College, Providence, RI 02918, USA
| | - Xing-Hua Gao
- Department of Dermatology, Key Laboratory of Immunodermatology, No.1 Hospital of China Medical University, Shenyang 110001, China
| | - Hong-Duo Chen
- Department of Dermatology, Key Laboratory of Immunodermatology, No.1 Hospital of China Medical University, Shenyang 110001, China
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, Guangdong, China.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
105
|
IFN- γ Reduces Epidermal Barrier Function by Affecting Fatty Acid Composition of Ceramide in a Mouse Atopic Dermatitis Model. J Immunol Res 2019; 2019:3030268. [PMID: 30838224 PMCID: PMC6374817 DOI: 10.1155/2019/3030268] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
IFN-γ is detected in chronic lesions of atopic dermatitis (AD); however, its specific role remains to be elucidated. An impaired stratum corneum barrier function is a hallmark of AD, and it is associated with a reduction in ceramides with long-chain fatty acids (FAs) in the stratum corneum. FA elongases, ELOVL1 and ELOVL4, are essential for the synthesis of these ceramides, together with ceramide synthase 3 (CerS3). We have previously shown that IFN-γ, but not other cytokines, induced the downregulation of these enzymes in cultured keratinocytes. Our aim was to investigate the in vivo role of IFN-γ in the lesional skin of AD by analyzing mouse dermatitis models. The local mRNA expression of IFN-γ increased in mite fecal antigen-induced AD-like dermatitis in NC/Nga mice but not in imiquimod-induced psoriasis-like dermatitis in BALB/c mice. The mRNA expression of ELOVL1 and ELOVL4 significantly decreased in AD-like dermatitis, whereas ELOVL1 increased in psoriasis-like dermatitis. The expression of CerS3 increased slightly in AD-like dermatitis, but it increased by 4.6-fold in psoriasis-like dermatitis. Consistently, the relative amount of ceramides with long-chain FAs decreased in AD-like dermatitis but not in psoriasis-like dermatitis. These results suggest that IFN-γ in the lesional skin may reduce ceramides with long-chain FAs by decreasing the expression of ELOVL. Thus, IFN-γ may contribute to the chronicity of AD by impairing barrier function.
Collapse
|
106
|
Reynier M, Allart S, Goudounèche D, Moga A, Serre G, Simon M, Leprince C. The Actin-Based Motor Myosin Vb Is Crucial to Maintain Epidermal Barrier Integrity. J Invest Dermatol 2019; 139:1430-1438. [PMID: 30660668 DOI: 10.1016/j.jid.2018.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023]
Abstract
Myosin Vb (Myo5b) is an unconventional myosin involved in the actin-dependent transport and tethering of intracellular organelles. In the epidermis, granular keratinocytes accumulate cytoplasmic lamellar bodies (LBs), secretory vesicles released at the junction with the stratum corneum that participate actively in the maintenance of the epidermal barrier. We have previously demonstrated that LB biogenesis is controlled by the Rab11a guanosine triphosphate hydrolase, known for its ability to recruit the Myo5b motor. In order to better characterize the molecular pathway that controls LB trafficking, we analyzed the role of F-actin and Myo5b in the epidermis. We demonstrated that LB distribution in granular keratinocytes was dependent on a dynamic F-actin cytoskeleton. Myo5b was shown to be highly expressed in granular keratinocytes and associated with corneodesmosin-loaded LB. In reconstructed human epidermis, Myo5b silencing led to epidermal barrier defects associated with structural alterations of the stratum corneum and a reduced pool of LB showing signs of disordered maturation. Myo5b depletion also disturbed the expression and distribution of both LB cargoes and junctional components, such as claudin-1, which demonstrates its action on both LB trafficking and junctional complex composition. Together, our data reveal the essential role of Myo5b in maintaining the epidermal barrier integrity.
Collapse
Affiliation(s)
- Marie Reynier
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, U1056, Institut National de la Santé et de la Recherche Médicale, University of Toulouse, Toulouse, France
| | - Sophie Allart
- Centre de Physiopathologie de Toulouse Purpan, U1043, Institut National de la Santé et de la Recherche Médicale, TRI Genotoul, Toulouse, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, University of Toulouse, Toulouse, France
| | | | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, U1056, Institut National de la Santé et de la Recherche Médicale, University of Toulouse, Toulouse, France
| | - Michel Simon
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, U1056, Institut National de la Santé et de la Recherche Médicale, University of Toulouse, Toulouse, France
| | - Corinne Leprince
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, U1056, Institut National de la Santé et de la Recherche Médicale, University of Toulouse, Toulouse, France.
| |
Collapse
|
107
|
Cohen JD, Flatt KM, Schroeder NE, Sundaram MV. Epithelial Shaping by Diverse Apical Extracellular Matrices Requires the Nidogen Domain Protein DEX-1 in Caenorhabditis elegans. Genetics 2019; 211:185-200. [PMID: 30409789 PMCID: PMC6325709 DOI: 10.1534/genetics.118.301752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
The body's external surfaces and the insides of biological tubes, like the vascular system, are lined by a lipid-, glycoprotein-, and glycosaminoglycan-rich apical extracellular matrix (aECM). aECMs are the body's first line of defense against infectious agents and promote tissue integrity and morphogenesis, but are poorly described relative to basement membranes and stromal ECMs. While some aECM components, such as zona pellucida (ZP) domain proteins, have been identified, little is known regarding the overall composition of the aECM or the mechanisms by which different aECM components work together to shape epithelial tissues. In Caenorhabditis elegans, external epithelia develop in the context of an ill-defined ZP-containing aECM that precedes secretion of the collagenous cuticle. C. elegans has 43 genes that encode at least 65 unique ZP proteins, and we show that some of these comprise distinct precuticle aECMs in the embryo. Previously, the nidogen- and EGF-domain protein DEX-1 was shown to anchor dendrites to the C. elegans nose tip in concert with the ZP protein DYF-7 Here, we identified a new, strong loss-of-function allele of dex-1, cs201dex-1 mutants die as L1 larvae and have a variety of tissue distortion phenotypes, including excretory defects, pharyngeal ingression, alae defects, and a short and fat body shape, that strongly resemble those of genes encoding ZP proteins. DEX-1 localizes to ZP-containing aECMs in the tissues that show defects in dex-1 mutants. Our studies suggest that DEX-1 is a component of multiple distinct embryonic aECMs that shape developing epithelia, and a potential partner of multiple ZP proteins.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Kristen M Flatt
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Illinois 61801-4730
| | - Nathan E Schroeder
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Illinois 61801-4730
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Illinois 61801-4730
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
108
|
Del Campo R, Martínez-García L, Sánchez-Díaz AM, Baquero F. Biology of Hand-to-Hand Bacterial Transmission. Microbiol Spectr 2019; 7:10.1128/microbiolspec.mtbp-0011-2016. [PMID: 30659556 PMCID: PMC11588151 DOI: 10.1128/microbiolspec.mtbp-0011-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have demonstrated that adequate hand hygiene among hospital staff is the best measure to prevent hand-to-hand bacterial transmission. The skin microbiome is conditioned by the individual physiological characteristics and anatomical microenvironments. Furthermore, it is important to separate the autochthonous resident microbiota from the transitory microbiota that we can acquire after interactions with contaminated surfaces. Two players participate in the hand-to-hand bacterial transmission process: the bacteria and the person. The particularities of the bacteria have been extensively studied, identifying some genera or species with higher transmission efficiency, particularly those linked to nosocomial infections and outbreaks. However, the human factor remains unstudied, and intrapersonal particularities in bacterial transmission have not been yet explored. Herein we summarize the current knowledge on hand-to-hand bacterial transmission, as well as unpublished results regarding interindividual and interindividual transmission efficiency differences. We designed a simple in vivo test based on four sequential steps of finger-to-finger contact in the same person artificially inoculated with a precise bacterial inoculum. Individuals can be grouped into one of three observed transmission categories: high, medium, and poor finger-to-finger transmitters. Categorization is relevant to predicting the ultimate success of a human transmission chain, particularly for the poor transmitters, who have the ability to cut the transmission chain. Our model allowed us to analyze transmission rate differences among five bacterial species and clones that cause nosocomial infections, from which we detected that Gram-positive microorganisms were more successfully transmitted than Gram-negative.
Collapse
Affiliation(s)
- Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Laura Martínez-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Ana María Sánchez-Díaz
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
109
|
Kien B, Grond S, Haemmerle G, Lass A, Eichmann TO, Radner FPW. ABHD5 stimulates PNPLA1-mediated ω- O-acylceramide biosynthesis essential for a functional skin permeability barrier. J Lipid Res 2018; 59:2360-2367. [PMID: 30361410 PMCID: PMC6277169 DOI: 10.1194/jlr.m089771] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/24/2018] [Indexed: 11/20/2022] Open
Abstract
Mutations in the genes coding for patatin-like phospholipase domain-containing 1 (PNPLA1) and α/β-hydrolase domain-containing 5 (ABHD5), also known as comparative gene identification 58, are causative for ichthyosis, a severe skin barrier disorder. Individuals with mutations in either of these genes show a defect in epidermal ω-O-acylceramide (AcylCer) biosynthesis, suggesting that PNPLA1 and ABHD5 act in the same metabolic pathway. In this report, we identified ABHD5 as a coactivator of PNPLA1 that stimulates the esterification of ω-hydroxy ceramides with linoleic acid for AcylCer biosynthesis. ABHD5 interacts with PNPLA1 and recruits the enzyme to its putative triacylglycerol substrate onto cytosolic lipid droplets. Conversely, alleles of ABHD5 carrying point mutations associated with ichthyosis in humans failed to accelerate PNPLA1-mediated AcylCer biosynthesis. Our findings establish an important biochemical function of ABHD5 in interacting with PNPLA1 to synthesize crucial epidermal lipids, emphasizing the significance of these proteins in the formation of a functional skin permeability barrier.
Collapse
Affiliation(s)
- Benedikt Kien
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Susanne Grond
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Center for Explorative Lipidomics, Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
110
|
Dumas SN, Ntambi JM. A Discussion on the Relationship between Skin Lipid Metabolism and Whole-Body Glucose and Lipid Metabolism: Systematic Review. ACTA ACUST UNITED AC 2018; 3. [PMID: 30474082 PMCID: PMC6247918 DOI: 10.4172/2576-1471.1000189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The obesity epidemic is a costly public health crisis that is not improving. In addition to the stigma and discomfort associated with carrying extra weight (at the expense of range of movement), obesity also goes hand-in-hand with co-morbidities like fatty liver disease, diabetes, cardiovascular disease, and increased risk of some forms of cancer. Currently there are no long-lasting treatments for obesity other than diet and exercise, which are not feasible for many populations that may not be equipped with the resources and/or support needed to lead a healthy lifestyle. Although there have been some pharmacological breakthroughs for treating obesity, each FDA-approved drug comes with unpleasant side-effects that make adherence unlikely. As a result, alternate approaches are necessary. In this review, we outline the relationship between skin lipid metabolism and whole-body glucose and lipid metabolism. Specifically, by summarizing studies that employed mice that were genetically modified to interrupt lipid metabolism in the skin. As a result, we propose that skin might be an overlooked, but viable target for combating obesity.
Collapse
Affiliation(s)
- Sabrina N Dumas
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James M Ntambi
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
111
|
Imaging the distribution of skin lipids and topically applied compounds in human skin using mass spectrometry. Sci Rep 2018; 8:16683. [PMID: 30420715 PMCID: PMC6232133 DOI: 10.1038/s41598-018-34286-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The barrier functions of skin against water loss, microbial invasion and penetration of xenobiotics rely, in part, on the spatial distribution of the biomolecular constituents in the skin structure, particularly its horny layer (stratum corneum). However, all skin layers are important to describe normal and dysfunctional skin conditions, and to develop adapted therapies or skin care products. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) combined with scanning electron microscopy (SEM) was used to image the spatial distribution of a variety of molecular species, from stratum corneum down to dermis, in cross-section samples of human abdominal skin. The results demonstrate the expected localization of ceramide and saturated long-chain fatty acids in stratum corneum (SC) and cholesterol sulfate in the upper part of the viable epidermis. The localization of exogenous compounds is demonstrated by the detection and imaging of carvacrol (a constituent of oregano or thyme essential oil) and ceramide, after topical application onto ex vivo human skin. Carvacrol showed pronounced accumulation to triglyceride-containing structures in the deeper parts of dermis. In contrast, the exogenous ceramide was found to be localized in SC. Furthermore, the complementary character of this approach with classical ex vivo skin absorption analysis methods is demonstrated.
Collapse
|
112
|
Jiang B, Cui L, Zi Y, Jia Y, He C. Skin surface lipid differences in sensitive skin caused by psychological stress and distinguished by support vector machine. J Cosmet Dermatol 2018; 18:1121-1127. [PMID: 30280473 DOI: 10.1111/jocd.12793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Biao Jiang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science; Beijing Technology and Business University; Beijing China
| | - Le Cui
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science; Beijing Technology and Business University; Beijing China
| | - Yusha Zi
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science; Beijing Technology and Business University; Beijing China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science; Beijing Technology and Business University; Beijing China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science; Beijing Technology and Business University; Beijing China
| |
Collapse
|
113
|
Shih CM, Huang CY, Wang KH, Huang CY, Wei PL, Chang YJ, Hsieh CK, Liu KT, Lee AW. Oxidized Low-Density Lipoprotein-Deteriorated Psoriasis Is Associated with the Upregulation of Lox-1 Receptor and Il-23 Expression In Vivo and In Vitro. Int J Mol Sci 2018; 19:ijms19092610. [PMID: 30177636 PMCID: PMC6163499 DOI: 10.3390/ijms19092610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 01/18/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. Even though scientists predict that abnormalities in lipid metabolism play an important role in the pathogenesis of psoriasis, the actual underlying mechanisms are still unclear. Therefore, understanding the possible relationship between mechanisms of the occurrence of psoriasis and dyslipidemia is an important issue that may lead to the development of effective therapies. Under this principle, we investigated the influences of hyperlipidemia in imiquimod (IMQ)-induced psoriasis-like B6.129S2-Apoetm1Unc/J mice and oxidized low-density lipoprotein (oxLDL) in tumor necrosis factor (TNF)-α-stimulated Hacat cells. In our study, we showed that a high-cholesterol diet aggravated psoriasis-like phenomena in IMQ-treated B6.129S2-Apoetm1Unc/J mice. In vitro analysis showed that oxLDL increased keratinocyte migration and lectin-type oxLDL receptor 1 (LOX-1) expression. Evidence suggested that interleukin (IL)-23 was a main cytokine in the pathogenesis of psoriasis. High-cholesterol diet aggravated IL-23 expression in IMQ-treated B6.129S2-Apoetm1Unc/J mice, and oxLDL induced IL-23 expression mediated by LOX-1 in TNF-α-stimulated Hacat cells. Therefore, it will be interesting to investigate the factors for the oxLDL induction of LOX-1 in psoriasis. LOX-1 receptor expression may be another novel treatment option for psoriasis and might represent the most promising strategy.
Collapse
Affiliation(s)
- Chun-Ming Shih
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Kuo-Hsien Wang
- Department of Dermatology, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Chun-Yao Huang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, Graduate Institute of Clinical Medicine and Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Jia Chang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, Graduate Institute of Clinical Medicine and Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chi-Kun Hsieh
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Kuan-Ting Liu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
114
|
Cheng K, Bou M, Ruyter B, Pickova J, Ehtesham E, Du L, Venegas C, Moazzami AA. Impact of Reduced Dietary Levels of Eicosapentaenoic Acid and Docosahexaenoic Acid on the Composition of Skin Membrane Lipids in Atlantic Salmon ( Salmo salar L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8876-8884. [PMID: 30044633 DOI: 10.1021/acs.jafc.8b02886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane lipids, including sphingolipids and glycerol-phospholipids, are essential in maintaining the skin's barrier function in mammals, but their composition in fish skin and their response to diets have not been evaluated. This study investigated the impacts of reducing dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on membrane lipids in the skin of Atlantic salmon through a 26 week feeding regime supplying different levels (0-2.0% of dry mass) of EPA/DHA. Ceramide, glucosylceramide, sphingomyelin, sphingosine, and sphinganine in salmon skin were analyzed for the first time. Higher concentrations of glucosylceramide and sphingomyelin and higher ratios of glucosylceramide/ceramide and sphingomyelin/ceramide were detected in the deficient group, indicating interruptions in sphingolipidomics. Changes in the glycerol-phospholipid profile in fish skin caused by reducing dietary EPA and DHA were observed. There were no dietary impacts on epidermal thickness and mucus-cell density, but the changes in the phospholipid profile suggest that low dietary EPA and DHA may interrupt the barrier function of fish skin.
Collapse
Affiliation(s)
- Ken Cheng
- Department of Molecular Sciences, Uppsala BioCenter , Swedish University of Agricultural Sciences , P.O. Box 7015, 75007 Uppsala , Sweden
| | - Marta Bou
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima) , Box 210, NO-1431 Ås , Norway
| | - Bente Ruyter
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima) , Box 210, NO-1431 Ås , Norway
| | - Jana Pickova
- Department of Molecular Sciences, Uppsala BioCenter , Swedish University of Agricultural Sciences , P.O. Box 7015, 75007 Uppsala , Sweden
| | - Emad Ehtesham
- Department of Molecular Sciences, Uppsala BioCenter , Swedish University of Agricultural Sciences , P.O. Box 7015, 75007 Uppsala , Sweden
| | - Liang Du
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima) , Box 210, NO-1431 Ås , Norway
| | | | - Ali A Moazzami
- Department of Molecular Sciences, Uppsala BioCenter , Swedish University of Agricultural Sciences , P.O. Box 7015, 75007 Uppsala , Sweden
| |
Collapse
|
115
|
The Antifungal Properties of Epidermal Fatty Acid Esters: Insights from White-Nose Syndrome (WNS) in Bats. Molecules 2018; 23:molecules23081986. [PMID: 30096918 PMCID: PMC6222711 DOI: 10.3390/molecules23081986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 02/01/2023] Open
Abstract
Numerous free fatty acids (FFAs) are known to have potent antifungal effects. The mammalian epidermis contains both FFAs and multiple classes of fatty acid esters, including 1-monoacylglycerols and wax esters. We thus hypothesized that wax esters and 1-monoacylglycerols composed of antifungal fatty acids would also have antifungal properties. We tested this hypothesis by examining the effects of 1-monoacylglycerols, 1,3-diacylglycerols, and wax esters on the growth of Pseudogymnoascus destructans (Pd), the fungus that causes White-nose Syndrome (WNS) in North American bats by invading their epidermis. Laboratory experiments with Pd cultures demonstrated that: (a) three 1-monoacylglycerols (1-monopalmitolein, 1-monoolein, and 1-monolinolein), as well as, (b) two wax esters, behenyl oleate and behenyl palmitoleate, profoundly inhibit Pd growth. The normal growth cycle of Pd was interrupted by addition of two cholesterol esters to the media as well. A bat species resistant to cutaneous Pd infections has these 1-monoacylglycerols in the epidermis, and another Pd resistant bat species has these wax esters in the sebum, thus cutaneous lipid composition is one factor which enables some bats to avoid WNS. Our experiments also revealed that the fatty acid esters which inhibit Pd growth are not hydrolyzed by the lipases secreted by this fungus, whereas the esters that do not inhibit Pd growth are hydrolyzed.
Collapse
|
116
|
Ludovici M, Kozul N, Materazzi S, Risoluti R, Picardo M, Camera E. Influence of the sebaceous gland density on the stratum corneum lipidome. Sci Rep 2018; 8:11500. [PMID: 30065281 PMCID: PMC6068117 DOI: 10.1038/s41598-018-29742-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022] Open
Abstract
The skin surface lipids (SSL) result from the blending of sebaceous and epidermal lipids, which derive from the sebaceous gland (SG) secretion and the permeability barrier of the stratum corneum (SC), respectively. In humans, the composition of the SSL is distinctive of the anatomical distribution of the SG. Thus, the abundance of sebum biomarkers is consistent with the density of the SG. Limited evidence on the influence that the SG exerts on the SC lipidome is available. We explored the differential amounts of sebaceous and epidermal lipids in areas at different SG density with lipidomics approaches. SC was sampled with adhesive patches from forearm, chest, and forehead of 10 healthy adults (8F, 2M) after mechanical removal of sebum with absorbing paper. Lipid extracts of SC were analysed by HPLC/(-)ESI-TOF-MS. In the untargeted approach, the naïve molecular features extraction algorithm was used to extract meaningful entities. Aligned and normalized data were evaluated by univariate and multivariate statistics. Quantitative analysis of free fatty acids (FFA) and cholesterol sulfate (CHS) was performed by targeted HPLC/(-)ESI-TOF-MS, whereas cholesterol and squalene were quantified by GC-MS. Untargeted approaches demonstrated that the relative abundance of numerous lipid species was distinctive of SC depending upon the different SG density. The discriminating species included FFA, CHS, and ceramides. Targeted analyses confirmed that sebaceous FFA and epidermal FFA were increased and decreased, respectively, in areas at high SG density. CHS and squalene, which are biomarkers of epidermal and sebaceous lipid matrices, respectively, were both significantly higher in areas at elevated SG density. Overall, results indicated that the SG secretion intervenes in shaping the lipid composition of the epidermal permeability barrier.
Collapse
Affiliation(s)
- Matteo Ludovici
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Nina Kozul
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy.,Department of Chemistry, University of Rome "Sapienza", Rome, Italy
| | | | - Roberta Risoluti
- Department of Chemistry, University of Rome "Sapienza", Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy.
| |
Collapse
|
117
|
Huang TH, Wang PW, Yang SC, Chou WL, Fang JY. Cosmetic and Therapeutic Applications of Fish Oil's Fatty Acids on the Skin. Mar Drugs 2018; 16:E256. [PMID: 30061538 PMCID: PMC6117694 DOI: 10.3390/md16080256] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023] Open
Abstract
Fish oil has been broadly reported as a potential supplement to ameliorate the severity of some skin disorders such as photoaging, skin cancer, allergy, dermatitis, cutaneous wounds, and melanogenesis. There has been increasing interest in the relationship of fish oil with skin protection and homeostasis, especially with respect to the omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). The other PUFAs, such as α-linolenic acid (ALA) and linoleic acid (LA), also show a beneficial effect on the skin. The major mechanisms of PUFAs for attenuating cutaneous inflammation are the competition with the inflammatory arachidonic acid and the inhibition of proinflammatory eicosanoid production. On the other hand, PUFAs in fish oil can be the regulators that affect the synthesis and activity of cytokines for promoting wound healing. A systemic review was conducted to demonstrate the association between fish oil supplementation and the benefits to the skin. The following describes the different cosmetic and therapeutic approaches using fatty acids derived from fish oil, especially ALA, LA, DHA, and EPA. This review summarizes the cutaneous application of fish oil and the related fatty acids in the cell-based, animal-based, and clinical models. The research data relating to fish oil treatment of skin disorders suggest a way forward for generating advances in cosmetic and dermatological uses.
Collapse
Affiliation(s)
- Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 33303, Taiwan.
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan.
| | - Wei-Ling Chou
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 33302, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Kweishan, Taoyuan 33305, Taiwan.
| |
Collapse
|
118
|
Faleeva TG, Ivanov IN, Mishin ES, Podporinova EE, Pravodelova AO, Kornienko IV. Possibilities of DNA Identification of Foreign Sweat and Grease Substance on Human Skin. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418060054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
119
|
Petyaev IM, Zigangirova NA, Pristensky D, Chernyshova M, Tsibezov VV, Chalyk NE, Morgunova EY, Kyle NH, Bashmakov YK. Non-Invasive Immunofluorescence Assessment of Lycopene Supplementation Status in Skin Smears. Monoclon Antib Immunodiagn Immunother 2018; 37:139-146. [DOI: 10.1089/mab.2018.0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ivan M. Petyaev
- Department of Research and Development, Lycotec Ltd., Granta Park, Cambridge, United Kingdom
| | - Naylia A. Zigangirova
- Department of Medical Microbiology, Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health, Moscow, Russia
| | - Dmitry Pristensky
- Department of Research and Development, Lycotec Ltd., Granta Park, Cambridge, United Kingdom
| | - Marina Chernyshova
- Department of Research and Development, Lycotec Ltd., Granta Park, Cambridge, United Kingdom
| | - Valeriy V. Tsibezov
- Department of Medical Microbiology, Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health, Moscow, Russia
| | - Natalya E. Chalyk
- Department of Clinical Cardiology, Institute of Cardiology, Saratov, Russia
| | - Elena Y. Morgunova
- Department of Medical Microbiology, Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health, Moscow, Russia
| | - Nigel H. Kyle
- Department of Research and Development, Lycotec Ltd., Granta Park, Cambridge, United Kingdom
| | - Yuriy K. Bashmakov
- Department of Research and Development, Lycotec Ltd., Granta Park, Cambridge, United Kingdom
| |
Collapse
|
120
|
Bonnel D, Legouffe R, Eriksson AH, Mortensen RW, Pamelard F, Stauber J, Nielsen KT. MALDI imaging facilitates new topical drug development process by determining quantitative skin distribution profiles. Anal Bioanal Chem 2018; 410:2815-2828. [PMID: 29546543 DOI: 10.1007/s00216-018-0964-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 01/10/2023]
Abstract
Generation of skin distribution profiles and reliable determination of drug molecule concentration in the target region are crucial during the development process of topical products for treatment of skin diseases like psoriasis and atopic dermatitis. Imaging techniques like mass spectrometric imaging (MSI) offer sufficient spatial resolution to generate meaningful distribution profiles of a drug molecule across a skin section. In this study, we use matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to generate quantitative skin distribution profiles based on tissue extinction coefficient (TEC) determinations of four different molecules in cross sections of human skin explants after topical administration. The four drug molecules: roflumilast, tofacitinib, ruxolitinib, and LEO 29102 have different physicochemical properties. In addition, tofacitinib was administrated in two different formulations. The study reveals that with MALDI-MSI, we were able to observe differences in penetration profiles for both the four drug molecules and the two formulations and thereby demonstrate its applicability as a screening tool when developing a topical drug product. Furthermore, the study reveals that the sensitivity of the MALDI-MSI techniques appears to be inversely correlated to the drug molecules' ability to bind to the surrounding tissues, which can be estimated by their Log D values. Graphical abstract.
Collapse
Affiliation(s)
- David Bonnel
- ImaBiotech SAS, Parc Eurasanté, 885 Avenue Eugène Avinée, 59120, Loos, France
| | - Raphaël Legouffe
- ImaBiotech SAS, Parc Eurasanté, 885 Avenue Eugène Avinée, 59120, Loos, France
| | | | | | - Fabien Pamelard
- ImaBiotech SAS, Parc Eurasanté, 885 Avenue Eugène Avinée, 59120, Loos, France
| | - Jonathan Stauber
- ImaBiotech SAS, Parc Eurasanté, 885 Avenue Eugène Avinée, 59120, Loos, France.,ImaBiotech Corp, 44 Manning Road Unit 3, Billerica, MA, 01821, USA
| | - Kim T Nielsen
- LEO Pharma A/S, Industriparken 55, 2750, Ballerup, Denmark.
| |
Collapse
|
121
|
Zouboulis CC, Elewa R, Ottaviani M, Fluhr J, Picardo M, Bernois A, Heusèle C, Camera E. Age influences the skin reaction pattern to mechanical stress and its repair level through skin care products. Mech Ageing Dev 2018; 170:98-105. [DOI: 10.1016/j.mad.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 01/27/2023]
|
122
|
Iqbal B, Ali J, Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol 2018; 57:646-660. [DOI: 10.1111/ijd.13902] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Babar Iqbal
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Javed Ali
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| |
Collapse
|
123
|
Soon CF, Tee KS, Wong SC, Nayan N, Sargunan Sundra, Ahmad MK, Sefat F, Sultana N, Youseffi M. Comparison of biophysical properties characterized for microtissues cultured using microencapsulation and liquid crystal based 3D cell culture techniques. Cytotechnology 2018; 70:13-29. [PMID: 29189979 PMCID: PMC5809678 DOI: 10.1007/s10616-017-0168-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/09/2017] [Indexed: 12/31/2022] Open
Abstract
Growing three dimensional (3D) cells is an emerging research in tissue engineering. Biophysical properties of the 3D cells regulate the cells growth, drug diffusion dynamics and gene expressions. Scaffold based or scaffoldless techniques for 3D cell cultures are rarely being compared in terms of the physical features of the microtissues produced. The biophysical properties of the microtissues cultured using scaffold based microencapsulation by flicking and scaffoldless liquid crystal (LC) based techniques were characterized. Flicking technique produced high yield and highly reproducible microtissues of keratinocyte cell lines in alginate microcapsules at approximately 350 ± 12 pieces per culture. However, microtissues grown on the LC substrates yielded at lower quantity of 58 ± 21 pieces per culture. The sizes of the microtissues produced using alginate microcapsules and LC substrates were 250 ± 25 μm and 141 ± 70 μm, respectively. In both techniques, cells remodeled into microtissues via different growth phases and showed good integrity of cells in field-emission scanning microscopy (FE-SEM). Microencapsulation packed the cells in alginate scaffolds of polysaccharides with limited spaces for motility. Whereas, LC substrates allowed the cells to migrate and self-stacking into multilayered structures as revealed by the nuclei stainings. The cells cultured using both techniques were found viable based on the live and dead cell stainings. Stained histological sections showed that both techniques produced cell models that closely replicate the intrinsic physiological conditions. Alginate microcapsulation and LC based techniques produced microtissues containing similar bio-macromolecules but they did not alter the main absorption bands of microtissues as revealed by the Fourier transform infrared spectroscopy. Cell growth, structural organization, morphology and surface structures for 3D microtissues cultured using both techniques appeared to be different and might be suitable for different applications.
Collapse
Affiliation(s)
- Chin Fhong Soon
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Kian Sek Tee
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Soon Chuan Wong
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nafarizal Nayan
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Sargunan Sundra
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Mohd Khairul Ahmad
- Biosensor and Bioengineering Lab, MiNT-SRC, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Farshid Sefat
- Faculty of Engineering and Informatics, Medical and Healthcare Technology Department, University of Bradford, Bradford, BD7 1DP, UK
| | - Naznin Sultana
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mansour Youseffi
- Faculty of Engineering and Informatics, Medical and Healthcare Technology Department, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
124
|
Moner V, Fernández E, Calpena AC, Garcia-Herrera A, Cócera M, López O. A lamellar body mimetic system for the treatment of oxazolone-induced atopic dermatitis in hairless mice. J Dermatol Sci 2018; 90:172-179. [PMID: 29395580 DOI: 10.1016/j.jdermsci.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atopic dermatitis is a common skin disease characterized by a Th2 cell-dominant inflammatory infiltrate, elevated serum IgE levels and impaired epidermal barrier function. It is associated to abnormal epidermal lamellar body secretion, producing alteration in lipid composition and extracellular lamellar membrane organization. OBJECTIVES The oxazolone-induced atopic dermatitis in hairless mice was used to evaluate in vivo the effect of the application of a lipid system that mimics the morphology, structure and composition of epidermal lamellar bodies. METHODS The skin barrier function was evaluated measuring TEWL and skin hydration in vivo. Inflammation was assessed by analysis of serum IgE levels and histological analysis. The microstructure of the intercellular lipid region was also evaluated before and after treatment. RESULTS The skin condition was improved after 10 days of treatment indicated by decreased TEWL, decreased serum IgE levels, reduced epidermal thickness and reduced lymphocyte-dominated infiltrate. However, the treatment did no improve skin hydration. CONCLUSIONS The treatment with this lipid system seems to improve the skin condition by reinforcing the barrier function and reducing the skin inflammation. Therefore, the present study provides evidence that this lipid system combining appropriate lipid composition and morphology could be of interest for the development of future treatments for atopic dermatitis.
Collapse
Affiliation(s)
- Verónica Moner
- Department of chemical and surfactant technology. Institute of Advanced Chemistry of Catalonia (IQAC-CSIC). C/Jordi Girona 18-26, 08034. Barcelona, Spain.
| | | | - Ana Cristina Calpena
- Department of pharmacy and pharmaceutical technology. Faculty of Pharmacy, University of Barcelona. C/Joan XXII 27-31, 08028. Barcelona, Spain
| | | | | | - Olga López
- Department of chemical and surfactant technology. Institute of Advanced Chemistry of Catalonia (IQAC-CSIC). C/Jordi Girona 18-26, 08034. Barcelona, Spain
| |
Collapse
|
125
|
Reisberg M, Arnold N, Porzel A, Neubert RHH, Dräger B. Malusides, novel glucosylceramides isolated from apple pomace (Malus domestica). Z NATURFORSCH C 2018; 73:33-39. [PMID: 28937966 DOI: 10.1515/znc-2017-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/28/2017] [Indexed: 11/15/2022]
Abstract
Three new glucosylceramides (GluCers) named malusides I-III (1-3) were isolated from apple (cultivars of Malus domestica) pomace (fruit material remaining after juice extraction). An unusual oxo/hydroxy group pattern within the sphingadienine (d18:2) type sphingoid base was observed. All compounds contained the same α-hydroxylated fatty acid (h16:0) and a β-D-glucose moiety. Their structures were assigned on the basis of one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopic analyses and mass spectrometry (MS) measurements.
Collapse
Affiliation(s)
- Mathias Reisberg
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle (Saale), Germany
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany
| | - Birgit Dräger
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle (Saale), Germany
| |
Collapse
|
126
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
127
|
Becam J, Walter T, Burgert A, Schlegel J, Sauer M, Seibel J, Schubert-Unkmeir A. Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria. Sci Rep 2017; 7:17627. [PMID: 29247204 PMCID: PMC5732201 DOI: 10.1038/s41598-017-18071-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/01/2017] [Indexed: 12/29/2022] Open
Abstract
Certain fatty acids and sphingoid bases found at mucosal surfaces are known to have antibacterial activity and are thought to play a more direct role in innate immunity against bacterial infections. Herein, we analysed the antibacterial activity of sphingolipids, including the sphingoid base sphingosine as well as short-chain C6 and long-chain C16-ceramides and azido-functionalized ceramide analogs against pathogenic Neisseriae. Determination of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) demonstrated that short-chain ceramides and a ω-azido-functionalized C6-ceramide were active against Neisseria meningitidis and N. gonorrhoeae, whereas they were inactive against Escherichia coli and Staphylococcus aureus. Kinetic assays showed that killing of N. meningitidis occurred within 2 h with ω–azido-C6-ceramide at 1 X the MIC. Of note, at a bactericidal concentration, ω–azido-C6-ceramide had no significant toxic effect on host cells. Moreover, lipid uptake and localization was studied by flow cytometry and confocal laser scanning microscopy (CLSM) and revealed a rapid uptake by bacteria within 5 min. CLSM and super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy demonstrated homogeneous distribution of ceramide analogs in the bacterial membrane. Taken together, these data demonstrate the potent bactericidal activity of sphingosine and synthetic short-chain ceramide analogs against pathogenic Neisseriae.
Collapse
Affiliation(s)
- Jérôme Becam
- Institute of Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Tim Walter
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Anne Burgert
- Department of Biotechnology and Biophysics, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Jürgen Seibel
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
128
|
Ingala MR, Ravenelle RE, Monro JJ, Frank CL. The effects of epidermal fatty acid profiles, 1-oleoglycerol, and triacylglycerols on the susceptibility of hibernating bats to Pseudogymnoascus destructans. PLoS One 2017; 12:e0187195. [PMID: 29077745 PMCID: PMC5659645 DOI: 10.1371/journal.pone.0187195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
White Nose Syndrome (WNS) greatly increases the over-winter mortality of little brown (Myotis lucifugus), Indiana (M. sodalis), northern (M. septentrionalis), and tricolored (Perimyotis subflavus) bats, and is caused by cutaneous infections with Pseudogymnoascus destructans (Pd). Big brown bats (Eptesicus fuscus) are highly resistant to Pd infections. Seven different fatty acids (myristic, pentadecanoic, palmitic, palmitoleic, oleic, and, linoleic acids) occur in the wing epidermis of both M. lucifugus and E. fuscus, 4 of which (myristic, palmitoleic, oleic, and, linoleic acids) inhibit Pd growth. The amounts of myristic and linoleic acids in the epidermis of M. lucifugus decrease during hibernation, thus we predicted that the epidermal fatty acid profile of M. lucifugus during hibernation has a reduced ability to inhibit Pd growth. Laboratory Pd growth experiments were conducted to test this hypothesis. The results demonstrated that the fatty acid profile of M. lucifugus wing epidermis during hibernation has a reduced ability to inhibit the growth of Pd. Additional Pd growth experiments revealed that: a) triacylglycerols composed of known anti-Pd fatty acids do not significantly affect growth, b) pentadecanoic acid inhibits Pd growth, and c) 1-oleoglycerol, which is found in the wing epidermis of E. fuscus, also inhibits the growth of this fungus. Analyses of white adipose from M. lucifugus also revealed the selective retention of oleic and linoleic acids in this tissue during hibernation.
Collapse
Affiliation(s)
- Melissa R. Ingala
- Department of Biological Sciences, Fordham University, Louis Calder Center, Armonk, NY, United States of America
| | - Rebecca E. Ravenelle
- Department of Biological Sciences, Fordham University, Louis Calder Center, Armonk, NY, United States of America
| | - Johanna J. Monro
- Environmental Science Program, Fordham University, Bronx, NY, United States of America
| | - Craig L. Frank
- Department of Biological Sciences, Fordham University, Louis Calder Center, Armonk, NY, United States of America
- * E-mail:
| |
Collapse
|
129
|
Yokota M, Masaki H, Okano Y, Tokudome Y. Effect of glycation focusing on the process of epidermal lipid synthesis in a reconstructed skin model and membrane fluidity of stratum corneum lipids. DERMATO-ENDOCRINOLOGY 2017; 9:e1338992. [PMID: 29484088 PMCID: PMC5821160 DOI: 10.1080/19381980.2017.1338992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022]
Abstract
We previously reported that epidermal glycation causes an increase in saturated fatty acid (FA) content in a differentiated reconstructed skin model and HaCaT cells. However, the relationship between ceramides (CERs) and glycation and their effects on stratum corneum (SC) barrier function was not elucidated. In this study, we investigated the effect of glycation on lipid content in 6-day-old cultured reconstructed skin. We used the EPISKIN RHE 6D model and induced glycation using glyoxal. In addition to transepidermal water loss, content of CERs, cholesterol and FA in the reconstructed epidermal model were analyzed by high performance thin layer chromatography. Expression of genes related to ceramide metabolism was determined by real time RT-PCR. Membrane fluidity of stratum corneum lipid liposomes (SCLL) that mimic glycated epidermis was analyzed using an electron spin resonance technique. It was found that FA was significantly increased by glycation. CER[NS], [AP], and cholesterol were decreased in glycated epidermis. Expression of ceramide synthase 3 (CERS3) was significantly decreased while fatty acid elongase 3 was increased by glyoxal in a dose dependent manner. Membrane fluidity of SCLL mimicking the lipid composition of glycated epidermis was increased compared with controls. Therefore, disruption of CER and FA content in glycated epidermis may be regulated via CERS3 expression and contribute to abnormal membrane fluidity.
Collapse
Affiliation(s)
- Mami Yokota
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Yoshihiro Tokudome
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| |
Collapse
|
130
|
Phytosphingosine enhances moisture level in human skin barrier through stimulation of the filaggrin biosynthesis and degradation leading to NMF formation. Arch Dermatol Res 2017; 309:795-803. [DOI: 10.1007/s00403-017-1782-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023]
|
131
|
Frank CL. Changes in the Pseudogymnoascus destructans transcriptome during White-nose Syndrome reveal possible mechanisms for both virulence and host resistance. Virulence 2017; 8:1486-1488. [PMID: 28806135 DOI: 10.1080/21505594.2017.1366409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Craig L Frank
- a Department of Biological Sciences , Fordham University , Armonk , NY , USA
| |
Collapse
|
132
|
Lipocalins Are Required for Apical Extracellular Matrix Organization and Remodeling in Caenorhabditis elegans. Genetics 2017; 207:625-642. [PMID: 28842397 DOI: 10.1534/genetics.117.300207] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
A lipid and glycoprotein-rich apical extracellular matrix (aECM) or glycocalyx lines exposed membranes in the body, and is particularly important to protect narrow tube integrity. Lipocalins ("fat cups") are small, secreted, cup-shaped proteins that bind and transport lipophilic cargo and are often found in luminal or aECM compartments such as mammalian plasma, urine, or tear film. Although some lipocalins can bind known aECM lipids and/or matrix metalloproteinases, it is not known if and how lipocalins affect aECM structure due to challenges in visualizing the aECM in most systems. Here we show that two Caenorhabditiselegans lipocalins, LPR-1 and LPR-3, have distinct functions in the precuticular glycocalyx of developing external epithelia. LPR-1 moves freely through luminal compartments, while LPR-3 stably localizes to a central layer of the membrane-anchored glycocalyx, adjacent to the transient zona pellucida domain protein LET-653 Like LET-653 and other C. elegans glycocalyx components, these lipocalins are required to maintain the patency of the narrow excretory duct tube, and also affect multiple aspects of later cuticle organization. lpr-1 mutants cannot maintain a continuous excretory duct apical domain and have misshapen cuticle ridges (alae) and abnormal patterns of cuticular surface lipid staining. lpr-3 mutants cannot maintain a passable excretory duct lumen, properly degrade the eggshell, or shed old cuticle during molting, and they lack cuticle barrier function. Based on these phenotypes, we infer that both LPR-1 and LPR-3 are required to build a properly organized aECM, while LPR-3 additionally is needed for aECM clearance and remodeling. The C. elegans glycocalyx provides a powerful system, amenable to both genetic analysis and live imaging, for investigating how lipocalins and lipids affect aECM structure.
Collapse
|
133
|
The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo. Int J Mol Sci 2017; 18:ijms18081814. [PMID: 28829355 PMCID: PMC5578200 DOI: 10.3390/ijms18081814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema.
Collapse
|
134
|
Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur J Pharm Biopharm 2017; 116:111-124. [DOI: 10.1016/j.ejpb.2017.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
|
135
|
Heinz L, Kim GJ, Marrakchi S, Christiansen J, Turki H, Rauschendorf MA, Lathrop M, Hausser I, Zimmer AD, Fischer J. Mutations in SULT2B1 Cause Autosomal-Recessive Congenital Ichthyosis in Humans. Am J Hum Genet 2017; 100:926-939. [PMID: 28575648 DOI: 10.1016/j.ajhg.2017.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/05/2017] [Indexed: 12/30/2022] Open
Abstract
Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism.
Collapse
|
136
|
Li H, Zhou L, Dai J. Retinoic acid receptor-related orphan receptor RORα regulates differentiation and survival of keratinocytes during hypoxia. J Cell Physiol 2017; 233:641-650. [PMID: 28332183 DOI: 10.1002/jcp.25924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/21/2017] [Indexed: 01/13/2023]
Abstract
Low O2 pressures present in the microenvironment of epidermis control keratinocyte differentiation and epidermal barrier function through hypoxia inducible factors (HIFs) dependent gene expression. This study focuses on investigating relations of the retinoic acid receptor-related orphan receptor alpha (RORα) to HIF-1α in keratinocytes under hypoxic conditions. The expression level of RORα is significantly elevated under hypoxia in both human and murine keratinocytes. Gene silencing of RORA attenuates hypoxia-stimulated expression of genes related to late differentiation and epidermal barrier function, and leads to an enhanced apoptotic response. While the hypoxic induction of RORα is dependent on HIF-1α, RORα is in turn critical for nuclear accumulation of HIF-1α and activation of HIF transcriptional activity. These results collectively suggest that RORα functions as an important mediator of HIF-1α activities in regulating keratinocyte differentiation/survival and epidermal barrier function during the oxygen sensing stage.
Collapse
Affiliation(s)
- Hongyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Longjian Zhou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Jun Dai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China.,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
137
|
Ip SCI, Cottle DL, Jones LK, Weir JM, Kelsell DP, O'Toole EA, Meikle PJ, Smyth IM. A profile of lipid dysregulation in harlequin ichthyosis. Br J Dermatol 2017; 177:e217-e219. [PMID: 28493316 DOI: 10.1111/bjd.15642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S C I Ip
- Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, 3800, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic, Australia
| | - D L Cottle
- Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, 3800, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - L K Jones
- Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, 3800, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - J M Weir
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - D P Kelsell
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, 3800, VIC, Australia
| | - E A O'Toole
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, 3800, VIC, Australia
| | - P J Meikle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - I M Smyth
- Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, 3800, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
138
|
Healing effect of sea buckthorn, olive oil, and their mixture on full-thickness burn wounds. Adv Skin Wound Care 2017; 27:317-23. [PMID: 24932952 DOI: 10.1097/01.asw.0000451061.85540.f9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this study is to evaluate the healing effect of silver sulfadiazine (SSD), sea buckthorn, olive oil, and 5% sea buckthorn and olive oil mixture on full-thickness burn wounds with respect to both gross and histopathologic features. METHODS Full-thickness burns were induced on 60 rats; the rats were then were divided into 5 groups and treated with sea buckthorn, olive oil, a 5% sea buckthorn/olive oil mixture, SSD, and normal saline (control). They were observed for 28 days, and the wounds' healing process was evaluated. RESULTS Wound contraction occurred faster in sea buckthorn, olive oil, and the sea buckthorn/olive oil mixture groups compared with the SSD and control groups. The volume of the exudates was controlled more effectively in wounds treated with the sea buckthorn/olive oil mixture. Purulent exudates were observed in the control group, but the others did not show infection. The group treated with sea buckthorn/olive oil mixture revealed more developed re-epithelialization with continuous basement membrane with a mature granulation tissue, whereas the SSD-treated group showed ulceration, necrosis, and immature granulation. The results show that sea buckthorn and olive oil individually are proper dressing for burn wounds and that they also show a synergetic effect when they are used together. CONCLUSION A sea buckthorn and olive oil mixture could be considered as an alternative dressing for full-thickness burns because of improved wound healing characteristics and antibacterial property.
Collapse
|
139
|
Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1679-1689. [PMID: 28341437 PMCID: PMC5504780 DOI: 10.1016/j.bbamem.2017.03.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Abstract
Ceramides are important for skin health, with a multitude of species found in both dermis and epidermis. The epidermis contains linoleic acid-Ester-linked Omega-hydroxylated ceramides of 6-Hydroxy-sphingosine, Sphingosine and Phytosphingosine bases (CER[EOH], CER[EOS] and CER[EOP], respectively), that are crucial for the formation of the epidermal barrier, conferring protection from environmental factors and preventing trans-epidermal water loss. Furthermore, a large number of ceramides, derivatives of the same sphingoid bases and various fatty acids, are produced by dermal and epidermal cells and perform signalling roles in cell functions ranging from differentiation to apoptosis. Supplementation with the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise as therapeutic agents in a number of inflammatory skin conditions, altering the lipid profile of the skin and production of bioactive lipids such as the eicosanoids, docosanoids and endocannabinoids. In this study we wished to investigate whether EPA and DHA could also affect the ceramide profile in epidermis and dermis, and, in this way, contribute to formation of a robust lipid barrier and ceramide-mediated regulation of skin functions. Ex vivo skin explants were cultured for 6 days, and supplemented with EPA or DHA (50 μM). Liquid chromatography coupled to tandem mass spectrometry with electrospray ionisation was used to assess the prevalence of 321 individual ceramide species, and a number of sphingoid bases, phosphorylated sphingoid bases, and phosphorylated ceramides, within the dermis and epidermis. EPA augmented dermal production of members of the ceramide families containing Non-hydroxy fatty acids and Sphingosine or Dihydrosphingosine bases (CER[NS] and CER[NDS], respectively), while epidermal CER[EOH], CER[EOS] and CER[EOP] ceramides were not affected. DHA did not significantly affect ceramide production. Ceramide-1-phosphate levels in the epidermis, but not the dermis, increased in response to EPA, but not DHA. This ex vivo study shows that dietary supplementation with EPA has the potential to alter the ceramide profile of the skin, and this may contribute to its anti-inflammatory profile. This has implications for formation of the epidermal lipid barrier, and signalling pathways within the skin mediated by ceramides and other sphingolipid species. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Omega-3 fatty acid supplementation alters ex vivo skin ceramide profiles Eicosapentaenoic acid (EPA) increases dermal ceramides with non-hydroxy fatty acids (CER[NS] and CER[NDS]) EPA increases ceramide-1-phosphate (C1P) in the epidermis but not dermis Long-chain linoleic-acid-containing ceramides were unaltered by EPA or docosahexaenoic acid (DHA)
Collapse
|
140
|
Saadatmand M, Stone KJ, Vega VN, Felter S, Ventura S, Kasting G, Jaworska J. Skin hydration analysis by experiment and computer simulations and its implications for diapered skin. Skin Res Technol 2017; 23:500-513. [DOI: 10.1111/srt.12362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 11/29/2022]
Affiliation(s)
- M. Saadatmand
- UC-P&G Simulation Center; University of Cincinnati; Cincinnati OH USA
| | - K. J. Stone
- Procter and Gamble Company; Cincinnati OH USA
| | - V. N. Vega
- Procter and Gamble Company; Cincinnati OH USA
| | - S. Felter
- Procter and Gamble Company; Cincinnati OH USA
| | - S. Ventura
- James L. Winkle College of Pharmacy; University of Cincinnati; Cincinnati OH USA
| | - G. Kasting
- James L. Winkle College of Pharmacy; University of Cincinnati; Cincinnati OH USA
| | - J. Jaworska
- Procter & Gamble Company; Strombeek-Bever Belgium
| |
Collapse
|
141
|
The trisaccharide raffinose modulates epidermal differentiation through activation of liver X receptor. Sci Rep 2017; 7:43823. [PMID: 28266648 PMCID: PMC5339792 DOI: 10.1038/srep43823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
The epidermal barrier function requires optimal keratinocyte differentiation and epidermal lipid synthesis. Liver X receptor (LXR) α and β, are important transcriptional regulators of the epidermal gene expression. Here, we show that raffinose, a ubiquitously present trisaccharide in plants, activated the transcriptional activity of LXRα/β, which led to the induction of genes required for keratinocyte differentiation such as involucrin and filaggrin, and genes involved in lipid metabolism and transport including SCD1 and ABCA1 in both HaCaT and normal human epidermal keratinocytes. Raffinose induced the expression of JunD and Fra1, and their DNA binding in the AP1 motif in the promoters of involucrin and loricrin. Interestingly, LXR bound the AP1 motif upon raffinose treatment, and conversely, JunD and Fra1 bound the LXR response element in promoters of LXR target genes, which indicates the presence of a postive cross-talk between LXR and AP1 in the regualtion of these genes. Finally, the effect of raffinose in epidermal barrier function was confirmed by applying raffinose in an ointment formulation to the skin of hairless mice. These findings suggest that raffinose could be examined as an ingredient in functional cosmetics and therapeutic agents for the treatment of cutaneous disorders associated with abnormal epidermal barrier function.
Collapse
|
142
|
PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat Commun 2017; 8:14609. [PMID: 28248300 PMCID: PMC5337976 DOI: 10.1038/ncomms14609] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in patatin-like phospholipase domain-containing 1 (PNPLA1) cause autosomal recessive congenital ichthyosis, but the mechanism involved remains unclear. Here we show that PNPLA1, an enzyme expressed in differentiated keratinocytes, plays a crucial role in the biosynthesis of ω-O-acylceramide, a lipid component essential for skin barrier. Global or keratinocyte-specific Pnpla1-deficient neonates die due to epidermal permeability barrier defects with severe transepidermal water loss, decreased intercellular lipid lamellae in the stratum corneum, and aberrant keratinocyte differentiation. In Pnpla1−/− epidermis, unique linoleate-containing lipids including acylceramides, acylglucosylceramides and (O-acyl)-ω-hydroxy fatty acids are almost absent with reciprocal increases in their putative precursors, indicating that PNPLA1 catalyses the ω-O-esterification with linoleic acid to form acylceramides. Moreover, acylceramide supplementation partially rescues the altered differentiation of Pnpla1−/− keratinocytes. Our findings provide valuable insight into the skin barrier formation and ichthyosis development, and may contribute to novel therapeutic strategies for treatment of epidermal barrier defects. Loss-of-function mutations in PNPLA1, a gene encoding an enzyme with unknown function, cause dry and scaling skin in humans. Using mouse models with PNPLA1 deficiency, the authors show that PNPLA1 participates in the biosynthesis of acylceramide, a lipid component essential for skin barrier function.
Collapse
|
143
|
Reisberg M, Arnold N, Porzel A, Neubert RHH, Dräger B. Production of Rare Phyto-Ceramides from Abundant Food Plant Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1507-1517. [PMID: 28118713 DOI: 10.1021/acs.jafc.6b04275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ceramides (Cers) are major components of the outermost layer of the skin, the stratum corneum, and play a crucial role in permeability barrier functions. Alterations in Cer composition causing skin diseases are compensated with semisynthetic skin-identical Cers. Plants constitute new resources for Cer production as they contain glucosylceramides (GluCers) as major components. GluCers were purified from industrial waste plant materials, apple pomace (Malus domestica), wheat germs (Triticum sp.), and coffee grounds (Coffea sp.), with GluCer contents of 28.9 mg, 33.7 mg, and 4.4 mg per 100 g of plant material. Forty-five species of GluCers (1-45) were identified with different sphingoid bases, saturated or monounsaturated α-hydroxy fatty acids (C15-28), and β-glucose as polar headgroup. Three main GluCers were hydrolyzed by a recombinant human glucocerebrosidase to produce phyto-Cers (46-48). These studies showed that rare and expensive phyto-Cers can be obtained from industrial food plant residues.
Collapse
Affiliation(s)
- Mathias Reisberg
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Hoher Weg 8, D-06120 Halle (Saale), Germany
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, D-06120 Halle (Saale), Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, D-06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Birgit Dräger
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Hoher Weg 8, D-06120 Halle (Saale), Germany
| |
Collapse
|
144
|
Fatty acids penetration into human skin ex vivo: A TOF-SIMS analysis approach. Biointerphases 2017; 12:011003. [DOI: 10.1116/1.4977941] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
145
|
Kuehne A, Hildebrand J, Soehle J, Wenck H, Terstegen L, Gallinat S, Knott A, Winnefeld M, Zamboni N. An integrative metabolomics and transcriptomics study to identify metabolic alterations in aged skin of humans in vivo. BMC Genomics 2017; 18:169. [PMID: 28201987 PMCID: PMC5312537 DOI: 10.1186/s12864-017-3547-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/02/2017] [Indexed: 11/12/2022] Open
Abstract
Background Aging human skin undergoes significant morphological and functional changes such as wrinkle formation, reduced wound healing capacity, and altered epidermal barrier function. Besides known age-related alterations like DNA-methylation changes, metabolic adaptations have been recently linked to impaired skin function in elder humans. Understanding of these metabolic adaptations in aged skin is of special interest to devise topical treatments that potentially reverse or alleviate age-dependent skin deterioration and the occurrence of skin disorders. Results We investigated the global metabolic adaptions in human skin during aging with a combined transcriptomic and metabolomic approach applied to epidermal tissue samples of young and old human volunteers. Our analysis confirmed known age-dependent metabolic alterations, e.g. reduction of coenzyme Q10 levels, and also revealed novel age effects that are seemingly important for skin maintenance. Integration of donor-matched transcriptome and metabolome data highlighted transcriptionally-driven alterations of metabolism during aging such as altered activity in upper glycolysis and glycerolipid biosynthesis or decreased protein and polyamine biosynthesis. Together, we identified several age-dependent metabolic alterations that might affect cellular signaling, epidermal barrier function, and skin structure and morphology. Conclusions Our study provides a global resource on the metabolic adaptations and its transcriptional regulation during aging of human skin. Thus, it represents a first step towards an understanding of the impact of metabolism on impaired skin function in aged humans and therefore will potentially lead to improved treatments of age related skin disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3547-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093, Zürich, Switzerland.,PhD Program Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Janosch Hildebrand
- Coburg University of Applied Sciences and Arts, Friedrich-Streib-Straße 2, Coburg, 96450, Germany
| | - Joern Soehle
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Horst Wenck
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Lara Terstegen
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Stefan Gallinat
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Anja Knott
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany
| | - Marc Winnefeld
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253, Germany.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093, Zürich, Switzerland.
| |
Collapse
|
146
|
Mou K, Liu W, Han D, Li P. HMGB1/RAGE axis promotes autophagy and protects keratinocytes from ultraviolet radiation-induced cell death. J Dermatol Sci 2016; 85:162-169. [PMID: 28012822 DOI: 10.1016/j.jdermsci.2016.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/06/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The primary cause of skin cancer is ultraviolet (UV) light from the sun. Keratinocytes are the predominant cell type in the epidermis and form a barrier against environmental damage, especially from UV light irradiation. Autophagy is a self-digestion mechanism for energy homeostasis at critical times during development and as a response to stress. High-mobility group protein 1 (HMGB1) is a highly conserved nuclear protein that is associated with cell autophagy. OBJECTIVE We investigated the role of HMGB1 in keratinocytes exposed to UV irradiation and its regulation of keratinocyte autophagy. METHODS Specimens of UV-exposed human skin were assayed immunohistochemically for HMGB1. HaCaT immortalized human keratinocytes were used to investigate the mechanism of HMGB1 translocation induced by UV irradiation. Levels of cytosolic reactive oxygen species (ROS) were determined by H2DCF assay, apoptosis was assayed by flow cytometry and western-blot after lentivirus-mediated shRNA targeting of HMGB1 in keratinocytes by UV irradiation. Phosphorylated-Erk1/2 expression was assayed by western blotting. RESULTS HMGB1 and its receptor (receptor for advanced glycation end products, RAGE) were both expressed by HaCaT cells, and HMGB1 was transferred from the nucleus to the cytoplasm after UV irradiation in both HaCaT and human skin keratinocytes. Knockdown of HMGB1 expression by lentivirus-mediated shRNA limited UV-induced autophagy and led to increased apoptosis of HaCaT cells. Pharmacological inhibition of HMGB1 cytoplasmic translocation by agents such as ethyl pyruvate limits starvation-induced autophagy. UV irradiation led to phosphorylation of Erk1/2 in HaCaT cells. Inhibition of RAGE and Erk1/2 limited HaCaT cell autophagy. CONCLUSION Autocrine HMGB1 modulated HaCaT autophagy via a RAGE/HMGB1/extracellular signal-regulated Erk1/2-dependent pathway to protect keratinocytes from apoptosis during UV irradiation.
Collapse
Affiliation(s)
- Kuanhou Mou
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Wei Liu
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Dan Han
- Department of Dermatology, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Pan Li
- Center for Translational Medicine, the Frist Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
147
|
|
148
|
Jain S, Patel N, Shah MK, Khatri P, Vora N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J Pharm Sci 2016; 106:423-445. [PMID: 27865609 DOI: 10.1016/j.xphs.2016.10.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
In the recent decade, skin delivery (topical and transdermal) has gained an unprecedented popularity, especially due to increased incidences of chronic skin diseases, demand for targeted and patient compliant delivery, and interest in life cycle management strategies among pharmaceutical companies. Literature review of recent publications indicates that among various skin delivery systems, lipid-based delivery systems (vesicular carriers and lipid particulate systems) have been the most successful. Vesicular carriers consist of liposomes, ultradeformable liposomes, and ethosomes, while lipid particulate systems consist of lipospheres, solid lipid nanoparticles, and nanostructured lipid carriers. These systems can increase the skin drug transport by improving drug solubilization in the formulation, drug partitioning into the skin, and fluidizing skin lipids. Considering that lipid-based delivery systems are regarded as safe and efficient, they are proving to be an attractive delivery strategy for the pharmaceutical as well as cosmeceutical drug substances. However, development of these delivery systems requires comprehensive understanding of physicochemical characteristics of drug and delivery carriers, formulation and process variables, mechanism of skin delivery, recent technological advancements, specific limitations, and regulatory considerations. Therefore, this review article encompasses recent research advances addressing the aforementioned issues.
Collapse
Affiliation(s)
- Shashank Jain
- Department of Product Development, G & W Labs, 101 Coolidge Street, South Plainfield, New Jersey 07080.
| | - Niketkumar Patel
- Charles River Laboratories Contract Manufacturing PA, LLC, Boothwyn, Pennsylvania 19061
| | - Mansi K Shah
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Pinak Khatri
- Department of Product Development, G & W PA Laboratories, Sellersville, Pennsylvania 18960
| | - Namrata Vora
- Department of Formulation Development, Capsugel Dosage Form Solutions Division, Xcelience, Tampa, Florida 33634
| |
Collapse
|
149
|
Boyles A, Hunt S. Care and management of a stoma: maintaining peristomal skin health. ACTA ACUST UNITED AC 2016; 25:S14-S21. [DOI: 10.12968/bjon.2016.25.17.s14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna Boyles
- Nurse Specialist, Stoma Care, King's College Hospital NHS Foundation Trust
| | - Sharon Hunt
- Lead Advanced Nurse Practitioner, Wellway Medical Group, Independent Specialist Wound Care
| |
Collapse
|
150
|
Mauro M, De Giusti V, Bovenzi M, Larese Filon F. Effectiveness of a secondary prevention protocol for occupational contact dermatitis. J Eur Acad Dermatol Venereol 2016; 31:656-663. [DOI: 10.1111/jdv.13947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/18/2016] [Indexed: 01/20/2023]
Affiliation(s)
- M. Mauro
- Clinical Unit of Occupational Medicine; Department of Medical Sciences; University of Trieste; Trieste Italy
| | - V. De Giusti
- Clinical Unit of Occupational Medicine; Department of Medical Sciences; University of Trieste; Trieste Italy
| | - M. Bovenzi
- Clinical Unit of Occupational Medicine; Department of Medical Sciences; University of Trieste; Trieste Italy
| | - F. Larese Filon
- Clinical Unit of Occupational Medicine; Department of Medical Sciences; University of Trieste; Trieste Italy
| |
Collapse
|