101
|
Ganesan R, Jeong JJ, Kim DJ, Suk KT. Recent Trends of Microbiota-Based Microbial Metabolites Metabolism in Liver Disease. Front Med (Lausanne) 2022; 9:841281. [PMID: 35615096 PMCID: PMC9125096 DOI: 10.3389/fmed.2022.841281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome and microbial metabolomic influences on liver diseases and their diagnosis, prognosis, and treatment are still controversial. Research studies have provocatively claimed that the gut microbiome, metabolomics understanding, and microbial metabolite screening are key approaches to understanding liver cancer and liver diseases. An advance of logical innovations in metabolomics profiling, the metabolome inclusion, challenges, and the reproducibility of the investigations at every stage are devoted to this domain to link the common molecules across multiple liver diseases, such as fatty liver, hepatitis, and cirrhosis. These molecules are not immediately recognizable because of the huge underlying and synthetic variety present inside the liver cellular metabolome. This review focuses on microenvironmental metabolic stimuli in the gut-liver axis. Microbial small-molecule profiling (i.e., semiquantitative monitoring, metabolic discrimination, target profiling, and untargeted profiling) in biological fluids has been incompletely addressed. Here, we have reviewed the differential expression of the metabolome of short-chain fatty acids (SCFAs), tryptophan, one-carbon metabolism and bile acid, and the gut microbiota effects are summarized and discussed. We further present proof-of-evidence for gut microbiota-based metabolomics that manipulates the host's gut or liver microbes, mechanosensitive metabolite reactions and potential metabolic pathways. We conclude with a forward-looking perspective on future attention to the "dark matter" of the gut microbiota and microbial metabolomics.
Collapse
|
102
|
Fries CM, Haange SB, Rolle-Kampczyk U, Till A, Lammert M, Grasser L, Medawar E, Dietrich A, Horstmann A, von Bergen M, Fenske WK. Metabolic Profile and Metabolite Analyses in Extreme Weight Responders to Gastric Bypass Surgery. Metabolites 2022; 12:metabo12050417. [PMID: 35629921 PMCID: PMC9147451 DOI: 10.3390/metabo12050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Roux-en-Y gastric bypass (RYGB) surgery belongs to the most frequently performed surgical therapeutic strategies against adiposity and its comorbidities. However, outcome is limited in a substantial cohort of patients with inadequate primary weight loss or considerable weight regain. In this study, gut microbiota composition and systemically released metabolites were analyzed in a cohort of extreme weight responders after RYGB. Methods: Patients (n = 23) were categorized based on excess weight loss (EWL) at a minimum of two years after RYGB in a good responder (EWL 93 ± 4.3%) or a bad responder group (EWL 19.5 ± 13.3%) for evaluation of differences in metabolic outcome, eating behavior and gut microbiota taxonomy and metabolic activity. Results: Mean BMI was 47.2 ± 6.4 kg/m2 in the bad vs. 26.6 ± 1.2 kg/m2 in the good responder group (p = 0.0001). We found no difference in hunger and satiety sensation, in fasting or postprandial gut hormone release, or in gut microbiota composition between both groups. Differences in weight loss did not reflect in metabolic outcome after RYGB. While fecal and circulating metabolite analyses showed higher levels of propionate (p = 0.0001) in good and valerate (p = 0.04) in bad responders, respectively, conjugated primary and secondary bile acids were higher in good responders in the fasted (p = 0.03) and postprandial state (GCA, p = 0.02; GCDCA, p = 0.02; TCA, p = 0.01; TCDCA, p = 0.02; GDCA, p = 0.05; GUDCA, p = 0.04; TLCA, p = 0.04). Conclusions: Heterogenous weight loss response to RYGB surgery separates from patients’ metabolic outcome, and is linked to unique serum metabolite signatures post intervention. These findings suggest that the level of adiposity reduction alone is insufficient to assess the metabolic success of RYGB surgery, and that longitudinal metabolite profiling may eventually help us to identify markers that could predict individual adiposity response to surgery and guide patient selection and counseling.
Collapse
Affiliation(s)
- Charlotte M. Fries
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.T.); (W.K.F.)
- Correspondence:
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; (S.-B.H.); (U.R.-K.); (M.v.B.)
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; (S.-B.H.); (U.R.-K.); (M.v.B.)
| | - Andreas Till
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.T.); (W.K.F.)
| | - Mathis Lammert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; (M.L.); (L.G.); (E.M.); (A.H.)
| | - Linda Grasser
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; (M.L.); (L.G.); (E.M.); (A.H.)
| | - Evelyn Medawar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; (M.L.); (L.G.); (E.M.); (A.H.)
| | - Arne Dietrich
- Department of Visceral and Metabolic Surgery, University Hospital Leipzig, Liebigstraße 18, 04103 Leipzig, Germany;
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; (M.L.); (L.G.); (E.M.); (A.H.)
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; (S.-B.H.); (U.R.-K.); (M.v.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Wiebke K. Fenske
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.T.); (W.K.F.)
| |
Collapse
|
103
|
Liu Y, Zhang S, Zhou W, Hu D, Xu H, Ji G. Secondary Bile Acids and Tumorigenesis in Colorectal Cancer. Front Oncol 2022; 12:813745. [PMID: 35574393 PMCID: PMC9097900 DOI: 10.3389/fonc.2022.813745] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and deadly cancers in the world and is a typical inflammatory tumor. In recent years, the incidence of CRC has been increasing year by year. There is evidence that the intake of high-fat diet and overweight are associated with the incidence of CRC, among which bile acids play a key role in the pathogenesis of the disease. Studies on the relationship between bile acid metabolism and the occurrence of CRC have gradually become a hot topic, improving the understanding of metabolic factors in the etiology of colorectal cancer. Meanwhile, intestinal flora also plays an important role in the occurrence and development of CRC In this review, the classification of bile acids and their role in promoting the occurrence of CRC are discussed, and we highlights how a high-fat diet affects bile acid metabolism and destroys the integrity of the intestinal barrier and the effects of gut bacteria.
Collapse
Affiliation(s)
- Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- Department of Internal Medicine of Chinese Medicine, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
104
|
Improved choleretic effect of Benachio-F®-based formula enriched with fennel extracts. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
105
|
Bhushan B, Apte U. The Benevolent Bile: Bile Acids as Stimulants of Liver Regeneration. Cell Mol Gastroenterol Hepatol 2022; 13:1478-1480. [PMID: 35176509 PMCID: PMC9043297 DOI: 10.1016/j.jcmgh.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas,Correspondence Address correspondence to: Udayan Apte, PhD, DABT, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1018, HLSIC4087, Kansas City, Kansas 66160.
| |
Collapse
|
106
|
Li Y, Zhao H, Sun G, Duan Y, Guo Y, Xie L, Ding X. Alterations in the gut microbiome and metabolome profiles of septic rats treated with aminophylline. J Transl Med 2022; 20:69. [PMID: 35115021 PMCID: PMC8812188 DOI: 10.1186/s12967-022-03280-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
The treatment of sepsis remains a major challenge worldwide. Aminophylline has been shown to have anti-inflammatory effects; however, the role of aminophylline in sepsis, a disease characterized by immune dysregulation, is unknown. In this study, we combined microbiome sequencing and metabolomic assays to investigate the effect of aminophylline administration on the intestinal flora and metabolites in septic rats. Sixty SD rats were randomly divided into three groups: a sham-operated (SC) group, a sepsis model (CLP) group and a CLP + aminophylline treatment (Amino) group. The intestinal flora and metabolic profile of rats in the CLP group were significantly different than those of the SC group, while aminophylline administration resulted in a return to a state similar to healthy rats. Differential abundance analysis showed that aminophylline significantly back-regulated the abundance of Firmicutes, unidentified_Bacteria, Proteobacteria, Lactobacillus, Escherichia-Shigella and other dominant bacteria (P < 0.05) and altered chenodeoxycholic acid, isolithocholic acid and a total of 26 metabolites (variable importance in the projection (VIP) > 1, P < 0.05). In addition, we found that there were significant correlations between differential metabolites and bacterial genera of the Amino and CLP groups. For example, Escherichia-Shigella was associated with 12 metabolites, and Lactobacillus was associated with two metabolites (P < 0.05), suggesting that differences in the metabolic profiles caused by aminophylline were partly dependent on its influence on the gutmicrobiome. In conclusion, this study identified a novel protective mechanism whereby aminophylline could regulate disordered intestinal flora and metabolites in septic rats.
Collapse
Affiliation(s)
- Yuanzhe Li
- Department of Pediatrics, Children's Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huayan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiying Sun
- Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Department of Pediatrics, Children's Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjun Guo
- Department of Pediatrics, Children's Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Xie
- Department of Pediatrics, Children's Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
107
|
The Mediating Role of the Gut Microbiota in the Physical Growth of Children. Life (Basel) 2022; 12:life12020152. [PMID: 35207440 PMCID: PMC8880549 DOI: 10.3390/life12020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota succession overlaps with intensive growth in infancy and early childhood. The multitude of functions performed by intestinal microbes, including participation in metabolic, hormonal, and immune pathways, makes the gut bacterial community an important player in cross-talk between intestinal processes and growth. Long-term disturbances in the colonization pattern may affect the growth trajectory, resulting in stunting or wasting. In this review, we summarize the evidence on the mediating role of gut microbiota in the mechanisms controlling the growth of children.
Collapse
|
108
|
Seyfried F, Phetcharaburanin J, Glymenaki M, Nordbeck A, Hankir M, Nicholson JK, Holmes E, Marchesi JR, Li JV. Roux-en-Y gastric bypass surgery in Zucker rats induces bacterial and systemic metabolic changes independent of caloric restriction-induced weight loss. Gut Microbes 2022; 13:1-20. [PMID: 33535876 PMCID: PMC7872092 DOI: 10.1080/19490976.2021.1875108] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mechanisms of Roux-en-Y gastric bypass (RYGB) surgery are not fully understood. This study aimed to investigate weight loss-independent bacterial and metabolic changes, as well as the absorption of bacterial metabolites and bile acids through the hepatic portal system following RYGB surgery. Three groups of obese Zucker (fa/fa) rats were included: RYGB (n = 11), sham surgery and body weight matched with RYGB (Sham-BWM, n = 5), and sham surgery fed ad libitum (Sham-obese, n = 5). Urine and feces were collected at multiple time points, with portal vein and peripheral blood obtained at the end of the study. Metabolic phenotyping approaches and 16S rRNA gene sequencing were used to determine the biochemical and bacterial composition of the samples, respectively. RYGB surgery-induced distinct metabolic and bacterial disturbances, which were independent of weight loss through caloric restriction. RYGB resulted in lower absorption of phenylalanine and choline, and higher urinary concentrations of host-bacterial co-metabolites (e.g., phenylacetylglycine, indoxyl sulfate), together with higher fecal trimethylamine, suggesting enhanced bacterial aromatic amino acid and choline metabolism. Short chain fatty acids (SCFAs) were lower in feces and portal vein blood from RYGB group compared to Sham-BWM, accompanied with lower abundances of Lactobacillaceae, and Ruminococcaceae known to contain SCFA producers, indicating reduced bacterial fiber fermentation. Fecal γ-amino butyric acid (GABA) was found in higher concentrations in RYGB than that in Sham groups and could play a role in the metabolic benefits associated with RYGB surgery. While no significant difference in urinary BA excretion, RYGB lowered both portal vein and circulating BA compared to Sham groups. These findings provide a valuable resource for how dynamic, multi-systems changes impact on overall metabolic health, and may provide potential therapeutic targets for developing downstream non-surgical treatment for metabolic disease.
Collapse
Affiliation(s)
- Florian Seyfried
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jutarop Phetcharaburanin
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Maria Glymenaki
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK
| | - Arno Nordbeck
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Mohammed Hankir
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jeremy K Nicholson
- Division of Organisms and Environment, School of Biosciences, Institute of Health Futures, Murdoch University, Perth, Western Australia, Australia
| | - Elaine Holmes
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK,Division of Organisms and Environment, School of Biosciences, Institute of Health Futures, Murdoch University, Perth, Western Australia, Australia
| | - Julian R. Marchesi
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK,School of Biosciences, Cardiff University, Cardiff, UK
| | - Jia V. Li
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College LondonLondon, UK,CONTACT Jia V. Li Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
109
|
Abstract
Cardiovascular diseases (CVDs) still remain the leading concern of global health, accounting for approximately 17.9 million deaths in 2016. The pathogenetic mechanisms of CVDs are multifactorial and incompletely understood. Recent evidence has shown that alterations in the gut microbiome and its associated metabolites may influence the pathogenesis and progression of CVDs such as atherosclerosis, heart failure, hypertension, and arrhythmia, yet the underlying links are not fully elucidated. Owing to the progress in next-generation sequencing techniques and computational strategies, researchers now are available to explore the emerging links to the genomes, transcriptomes, proteomes, and metabolomes in parallel meta-omics approaches, presenting a panoramic vista of culture-independent microbial investigation. This review aims to outline the characteristics of meta-omics pipelines and provide a brief overview of current applications in CVDs studies which can be practical for addressing crucial knowledge gaps in this field, as well as to shed its light on cardiovascular risk biomarkers and therapeutic intervention in the near future.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital & National Center for Cardiovascular Diseases, Beijing, China,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital & National Center for Cardiovascular Diseases, Beijing, China,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,CONTACT Yuejin Yang State Key Laboratory of Cardiovascular Disease, Fuwai Hospital & National Center for Cardiovascular Disease, Beijing, China; Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
110
|
Alam MJ, Puppala V, Uppulapu SK, Das B, Banerjee SK. Human microbiome and cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:231-279. [PMID: 36280321 DOI: 10.1016/bs.pmbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
111
|
Zhao WW, Xiao M, Wu X, Li XW, Li XX, Zhao T, Yu L, Chen XQ. Ilexsaponin A 1 Ameliorates Diet-Induced Nonalcoholic Fatty Liver Disease by Regulating Bile Acid Metabolism in Mice. Front Pharmacol 2022; 12:771976. [PMID: 34970143 PMCID: PMC8712733 DOI: 10.3389/fphar.2021.771976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acid (BA) metabolism is an attractive therapeutic target in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the effect of ilexsaponin A1 (IsA), a major bioactive ingredient of Ilex, on high-fat diet (HFD)-induced NAFLD in mice with a focus on BA homeostasis. Male C57BL/6J mice were fed an HFD to induce NAFLD and were treated with IsA (120 mg/kg) for 8 weeks. The results showed that administration of IsA significantly decreased serum total cholesterol (TC), attenuated liver steatosis, and decreased total hepatic BA levels in HFD-induced NAFLD mice. IsA-treated mice showed increased BA synthesis in the alternative pathway by upregulating the gene expression levels of sterol 27-hydroxylase (CYP27A1) and cholesterol 7b-hydroxylase (CYP7B1). IsA treatment accelerated efflux and decreased uptake of BA in liver by increasing hepatic farnesoid X receptor (FXR) and bile salt export pump (BSEP) expression, and reducing Na+-taurocholic acid cotransporting polypeptide (NTCP) expression. Alterations in the gut microbiota and increased bile salt hydrolase (BSH) activity might be related to enhanced fecal BA excretion in IsA-treated mice. This study demonstrates that consumption of IsA may prevent HFD-induced NAFLD and exert cholesterol-lowering effects, possibly by regulating the gut microbiota and BA metabolism.
Collapse
Affiliation(s)
- Wen-Wen Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, Beijing, China
| | - Meng Xiao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,National Institutes for Food and Drug Control, Beijing, China
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiu-Wei Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-Xi Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ting Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lan Yu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-Qing Chen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
112
|
Hylemon PB, Su L, Zheng PC, Bajaj JS, Zhou H. Bile Acids, Gut Microbiome and the Road to Fatty Liver Disease. Compr Physiol 2021; 12:2719-2730. [PMID: 34964117 DOI: 10.1002/cphy.c210024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article describes the complex interactions occurring between diet, the gut microbiome, and bile acids in the etiology of fatty liver disease. Perhaps 25% of the world's population may have nonalcoholic fatty liver disease (NAFLD) and a significant percentage (∼20%) of these individuals will progress to nonalcoholic steatohepatitis (NASH). Currently, the only recommended treatment for NAFLD and NASH is a change in diet and exercise. A Western-type diet containing high fructose corn syrup, fats, and cholesterol creates gut dysbiosis, increases intestinal permeability and uptake of LPS causing low-grade chronic inflammation in the body. Fructose is a "lipogenic" sugar that induces long-chain fatty acid (LCFA) synthesis in the liver. Inflammation decreases the oxidation of LCFA, allowing fat accumulation in hepatocytes. Hepatic bile acid transporters are downregulated by inflammation slowing their enterohepatic circulation and allowing conjugated bile acids (CBA) to increase in the serum and liver of NASH patients. High levels of CBA in the liver are hypothesized to activate sphingosine-1-phosphate receptor 2 (S1PR2), activating pro-inflammatory and fibrosis pathways enhancing NASH progression. Because inflammation appears to be a major physiological driving force in NAFLD/NASH, new drugs and treatment protocols may require the use of anti-inflammatory compounds, such as berberine, in combination with bile acid receptor agonists or antagonists. Emerging new molecular technologies may provide guidance in unraveling the complex physiological pathways driving fatty liver disease and better approaches to prevention and treatment. © 2021 American Physiological Society. Compr Physiol 11:1-12, 2021.
Collapse
Affiliation(s)
- Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA.,Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Lianyong Su
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Po-Cheng Zheng
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Department of Medicine/Division of Gastroenterology, Hepatology and Nutrition, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA.,Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA.,Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
113
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
114
|
Li Y, Cao H, Wang X, Guo L, Ding X, Zhao W, Zhang F. Diet-mediated metaorganismal relay biotransformation: health effects and pathways. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34802351 DOI: 10.1080/10408398.2021.2004993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In recent years, the concept of metaorganism expands our insight into how diet-microbe-host interactions contribute to human health and diseases. We realized that many biological metabolic processes in the host can be summarized into metaorganismal relay pathways, in which metabolites such as trimethylamine-N‑oxide, short-chain fatty acids and bile acids act as double-edged swords (beneficial or harmful effects) in the initiation and progression of diseases. Pleiotropic effects of metabolites are derived from several influencing factors including dose level, targeted organ of effect, action duration and species of these metabolites. Based on the pleiotropic effects of metabolites, personalized therapeutic approaches including microecological agents, enzymatic regulators and changes in dietary habits to govern related metabolite production may provide a new insight in promoting human health. In this review, we summarize our current knowledge of metaorganismal relay pathways and elaborate on the pleiotropic effects of metabolites in these pathways, with special emphasis on related therapeutic nutritional interventions.
Collapse
Affiliation(s)
- Yanmin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hong Cao
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoqian Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feng Zhang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
115
|
Which Microbes Like My Diet and What Does It Mean for My Heart? Nutrients 2021; 13:nu13114146. [PMID: 34836400 PMCID: PMC8625446 DOI: 10.3390/nu13114146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases are the most common causes of hospitalization, death and disability in Europe. Despite our knowledge of nonmodifiable and modifiable cardiovascular classical risk factors, the morbidity and mortality in this group of diseases remains high, leading to high social and economic costs. Therefore, it is necessary to explore new factors, such as the gut microbiome, that may play a role in many crucial pathological processes related to cardiovascular diseases. Diet is a potentially modifiable cardiovascular risk factor. Fats, proteins, carbohydrates, vitamins and minerals are nutrients that are essential to the proper function of the human body. The style and composition of the human diet has changed over time, evolving from a hunter–gatherer diet to an industrialized and Westernized modern diet that includes processed products. The relationship between the gut microbiome, diet and cardiovascular diseases is complex and still not fully understood. In this review, we discuss, in the context of diet, why particular microbes occur in individuals and how they can influence the host’s cardiovascular system in health and disease. We investigate the role of particular microorganisms and changes in the Firmicutes/Bacteroidetes ratio.
Collapse
|
116
|
Sugimoto K, Hosomi R, Yoshida M, Fukunaga K. Dietary Phospholipids Prepared From Scallop Internal Organs Attenuate the Serum and Liver Cholesterol Contents by Enhancing the Expression of Cholesterol Hydroxylase in the Liver of Mice. Front Nutr 2021; 8:761928. [PMID: 34778346 PMCID: PMC8578998 DOI: 10.3389/fnut.2021.761928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we successfully prepared scallop oil (SCO), which contains high levels of phospholipids (PL) and eicosapentaenoic acid (EPA), from the internal organs of the Japanese giant scallop (Patinopecten yessoensis), one of the most important underutilized fishery resources in Japan. The intake of SCO lowers the serum and liver cholesterol contents in mice; however, whether the fatty acids (FA) composition or PL of SCO exhibits any cholesterol-lowering effect remains unknown. To elucidate whether the cholesterol-lowering function is due to FA composition or PL of SCO, and investigate the cholesterol-lowering mechanism by SCO, in the present study, mice were fed SCO's PL fraction (SCO-PL), triglyceride (TG)-type oil with almost the same FA composition as SCO-PL, called SCO's TG fraction (SCO-TG), soybean oil (SOY-TG), and soybean's PL fraction (SOY-PL). Male C57BL/6J mice (5-week-old) were fed high-fat and cholesterol diets containing 3% (w/w) experimental oils (SOY-TG, SOY-PL, SCO-TG, and SCO-PL) for 28 days. The SCO-PL diet significantly decreased the serum and liver cholesterol contents compared with the SOY-TG diet, but the intake of SOY-PL and SCO-TG did not show this effect. This result indicated that the serum and liver cholesterol-lowering effect observed in the SCO intake group was due to the effect of SCO-PL. The cholesterol-lowering effect of SCO-PL was in part related to the promotion of liver cholesterol 7α-hydroxylase (CYP7A1) expression, which is the rate-limiting enzyme for bile acid synthesis. In contrast, the expression levels of the ileum farnesoid X receptor (Fxr) and fibroblast growth factor 15 (Fgf15), which inhibit the expression of liver CYP7A1, were significantly reduced in the SCO-PL group than the SOY-TG group. From these results, the increase in the liver CYP7A1 expression by dietary SCO-PL was in part through the reduction of the ileum Fxr/Fgf15 regulatory pathway. Therefore, this study showed that SCO-PL may be a health-promoting component as it lowers the serum and liver cholesterol contents by increasing the liver CYP7A1 expression, which is not seen in SOY-PL and SCO-TG.
Collapse
Affiliation(s)
- Koki Sugimoto
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| | - Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| | - Munehiro Yoshida
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| | - Kenji Fukunaga
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| |
Collapse
|
117
|
Yue H, Cai W, Li Y, Feng X, Dong P, Xue C, Wang J. A Novel Sialoglycopeptide from Gadus morhua Eggs Prevents Liver Fibrosis Induced by CCl 4 via Downregulating FXR/FGF15 and TLR4/TGF-β/Smad Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13093-13101. [PMID: 34714650 DOI: 10.1021/acs.jafc.1c05411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liver fibrosis plays a critical role in liver disease progression. A sialoglycopeptide from the Gadus morhua eggs (Gm-SGPP) was identified having a 7000 Da molecular weight with a core pentasaccharide structure and osteogenesis activity. However, whether Gm-SGPP is beneficial to liver fibrosis remains unknown. In this study, mice with liver fibrosis were intraperitoneally injected with 2.5% CCl4 (10 mL/kg) and orally administered with Gm-SGPP (500 mg/kg) for 30 days. Results showed that Gm-SGPP alleviated oxidative liver damage and lipid metabolism disorder and reduced hepatocyte necrosis and lipid droplet accumulation. Notably, we found that Gm-SGPP increased the number and changed the composition of bile acids via increasing cholesterol 7a-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) expression, which caused inhibition of ileum farnesoid X receptor (FXR) expression and accelerated the cholesterol conversion. Cholesterol accumulation is a risk factor for liver fibrosis. Masson staining showed that Gm-SGPP significantly reduced the degree of collagen deposition. Western blotting further suggested that Gm-SGPP downregulated the key gene of the toll-like receptor 4 (TLR4)-mediated transforming growth factor-β (TGF-β)/Smad pathway. To our best knowledge, this is the first report that Gm-SGPP prevented liver fibrosis via attenuating cholesterol accumulation. Our present results provide new ideas for the Gadus morhua egg's high-value utilization.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Weizhen Cai
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Yanqi Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Xiaoxuan Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province 266237, P.R. China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| |
Collapse
|
118
|
Aburahma A, Pachhain S, Choudhury SR, Rana S, Phuntumart V, Larsen R, Sprague JE. Potential Contribution of the Intestinal Microbiome to Phenethylamine-Induced Hyperthermia. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:256-271. [PMID: 33472193 DOI: 10.1159/000512098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Phenethylamines (e.g., methamphetamine) are a common source of drug toxicity. Phenethylamine-induced hyperthermia (PIH) can activate a cascade of events that may result in rhabdomyolysis, coagulopathy, and even death. Here, we review recent evidence that suggests a potential link between the gut-brain axis and PIH. Within the preoptic area of the hypothalamus, phenethylamines lead to changes in catecholamine levels, that activate the sympathetic nervous system (SNS) and increase the peripheral levels of norepinephrine (NE), resulting in: (1) the loss of heat dissipation through α1 adrenergic receptor (α1-AR)-mediated vasoconstriction, (2) heat generation through β-AR activation and subsequent free fatty acid (FFA) activation of uncoupling proteins (UCPs) in brown and white adipose tissue, and (3) alteration of the gut microbiome and its link to the gut-brain axis. Recent studies have shown that phenethylamine derivatives can influence the composition of the gut microbiome and thus its metabolic potential. Phenethylamines increase the relative level of Proteuswhich has been linked to enhanced NE turnover. Bidirectional fecal microbial transplants (FMT) between PIH-tolerant and PIH-naïve rats demonstrated that the transplantation of gut microbiome can confer phenotypic hyperthermic and tolerant responses to phenethylamines. These phenethylamine-mediated changes in the gut microbiome were also associated with epigenetic changes in the mediators of thermogenesis. Given the significant role that the microbiome has been shown to play in the maintenance of body temperature, we outline current studies demonstrating the effects of phenethylamines on the gut microbiome and how these microbiome changes may mechanistically contribute to alterations in body temperature.
Collapse
Affiliation(s)
- Amal Aburahma
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA
| | - Sudhan Pachhain
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Sayantan Roy Choudhury
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Srishti Rana
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Vipa Phuntumart
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Ray Larsen
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA,
| |
Collapse
|
119
|
Sun Z, Huang C, Shi Y, Wang R, Fan J, Yu Y, Zhang Z, Zhu K, Li M, Ni Q, Chen Z, Zheng M, Yang Z. Distinct Bile Acid Profiles in Patients With Chronic Hepatitis B Virus Infection Reveal Metabolic Interplay Between Host, Virus and Gut Microbiome. Front Med (Lausanne) 2021; 8:708495. [PMID: 34671614 PMCID: PMC8520922 DOI: 10.3389/fmed.2021.708495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) can hijack the host bile acids (BAs) metabolic pathway during infection in cell and animal models. Additionally, microbiome was known to play critical role in the enterohepatic cycle of BAs. However, the impact of HBV infection and associated gut microbiota on the BA metabolism in chronic hepatitis B (CHB) patients is unknown. This study aimed to unveil the distinct BA profiles in chronic HBV infection (CHB) patients with no or mild hepatic injury, and to explore the relationship between HBV, microbiome and BA metabolism with clinical implications. Methods: Serum BA profiles were compared between CHB patients with normal ALT (CHB-NALT, n = 92), with abnormal ALT (CHB-AALT, n = 34) and healthy controls (HCs, n = 28) using UPLC-MS measurement. Hepatic gene expression in CHB patients were explored using previously published transcriptomic data. Fecal microbiome was compared between 30 CHB-NALT and 30 HCs using 16S rRNA sequencing, and key microbial function was predicted by PICRUSt analysis. Results: Significant higher percentage of conjugated BAs and primary BAs was found in CHB patients even without apparent liver injury. Combinatory BA features can discriminate CHB patients and HCs with high accuracy (AUC = 0.838). Up-regulation of BA importer Na+ taurocholate co-transporting peptide (NTCP) and down-regulation of bile salt export pump (BSEP) was found in CHB-NALT patients. The microbial diversity and abundance of Lactobacillus, Clostridium, Bifidobacterium were lower in CHB-NALT patients compared to healthy controls. Suppressed microbial bile salt hydrolases (BSH), 7-alpha-hydroxysteroid dehydrogenase (hdhA) and 3-dehydro-bile acid Delta 4, 6-reductase (BaiN) activity were found in CHB-NALT patients. Conclusion: This study provides new insight into the BA metabolism influenced both by HBV infection and associated gut microbiome modulations, and may lead to novel strategy for clinical management for chronic HBV infection.
Collapse
Affiliation(s)
- Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chenjie Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Kidney Disease Center, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Yixian Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Rusha Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ye Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhehua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Kundan Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Minwei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qin Ni
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhenggang Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
120
|
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol 2021; 12:715506. [PMID: 34646151 PMCID: PMC8502967 DOI: 10.3389/fphys.2021.715506] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Tamer A E Ahmed
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
121
|
Yang C, Wan M, Xu D, Pan D, Xia H, Yang L, Sun G. Flaxseed Powder Attenuates Non-Alcoholic Steatohepatitis via Modulation of Gut Microbiota and Bile Acid Metabolism through Gut-Liver Axis. Int J Mol Sci 2021; 22:10858. [PMID: 34639207 PMCID: PMC8509295 DOI: 10.3390/ijms221910858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is gradually becoming one of the most common and health-endangering diseases; therefore, it is very important to prevent the occurrence of NASH and prevent simple non-alcoholic fatty liver (NAFL) from further developing into NASH. We fed mice a high-fat diet (HFD, 60% fat) for 14 weeks to induce NAFL and then fed different doses of flaxseed powder (low (10%), middle (20%), and high (30%)) to the mice for 28 weeks. After the animal experiment, we analyzed fecal bile acid (BA) profiles of the HFD mice, flaxseed-fed (FLA-fed) mice, and control mice with a normal diet (10% fat) using a targeted metabolomics approach, and we analyzed the gut microbiota at the same time. We also investigated the mechanistic role of BAs in NASH and identified whether the altered BAs strongly bind to colonic FXR or TGR5. In the present study, we found that 28-week FLA treatment notably alleviated NASH development in NAFL model mice fed with an HFD, and the beneficial effects may be attributed to the regulation of and improvement in the gut flora- and microbiota-related BAs, which then activate the intestinal FXR-FGF15 and TGR5-NF-κB pathways. Our data indicate that FLA might be a promising functional food for preventing NASH through regulating microbiomes and BAs.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Min Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (C.Y.); (M.W.); (D.X.); (D.P.); (H.X.)
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
122
|
Folz JS, Shalon D, Fiehn O. Metabolomics analysis of time-series human small intestine lumen samples collected in vivo. Food Funct 2021; 12:9405-9415. [PMID: 34606553 DOI: 10.1039/d1fo01574e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human small intestine remains an elusive organ to study due to the difficulty of retrieving samples in a non-invasive manner. Stool samples as a surrogate do not reflect events in the upper gut intestinal tract. As proof of concept, this study investigates time-series samples collected from the upper gastrointestinal tract of a single healthy subject. Samples were retrieved using a small diameter tube that collected samples in the stomach and duodenum as the tube progressed to the jejunum, and then remained positioned in the jejunum during the final 8.5 hours of the testing period. Lipidomics and metabolomics liquid chromatography tandem mass spectrometry (LC-MS/MS) assays were employed to annotate 828 unique metabolites using accurate mass with retention time and/or tandem MS library matches. Annotated metabolites were clustered based on correlation to reveal sets of biologically related metabolites. Typical clusters included bile metabolites, food metabolites, protein breakdown products, and endogenous lipids. Acylcarnitines and phospholipids were clustered with known human bile components supporting their presence in human bile, in addition to novel human bile compounds 4-hydroxyhippuric acid, N-acetylglucosaminoasparagine and 3-methoxy-4-hydroxyphenylglycol sulfate. Food metabolites were observed passing through the small intestine after meals. Acetaminophen and its human phase II metabolism products appeared for hours after the initial drug treatment, due to excretion back into the gastrointestinal tract after initial absorption. This exploratory study revealed novel trends in timing and chemical composition of the human jejunum under standard living conditions.
Collapse
Affiliation(s)
- Jacob S Folz
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| | | | - Oliver Fiehn
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
123
|
Desai MS. Mechanistic insights into the pathophysiology of cirrhotic cardiomyopathy. Anal Biochem 2021; 636:114388. [PMID: 34587512 DOI: 10.1016/j.ab.2021.114388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/22/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Myocardial dysfunction in end stage cirrhotic liver disease, termed cirrhotic cardiomyopathy, is a long known, but little understood comorbidity seen in ∼50% of adults and children who present for liver transplantation. Structural, functional, hemodynamic and electrocardiographic aberrations that occur in the heart as a direct consequence of a damaged liver, is associated with multi-organ failure and increased mortality and morbidity in patients undergoing surgical procedures such as porto-systemic shunt placement and liver transplantation. Despite its clinical significance and rapid advances in science and pharmacotherapy, there is yet no specific treatment for this disease. This may be due to a lack of understanding of the pathogenesis and mechanisms behind how a cirrhotic liver causes cardiac pathology. This review will focus specifically on insights into the molecular mechanisms that drive this liver-heart interaction. Deeper understanding of the etio-pathogenesis of cirrhotic cardiomyopathy will allow us to design and test treatments that can be targeted to prevent and/or reverse this co-morbid consequence of liver failure and improve health care delivery and outcomes in patients with cirrhosis.
Collapse
Affiliation(s)
- Moreshwar S Desai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine and Liver ICU. Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
124
|
Zare M, Tran HQ, Prokešová M, Stejskal V. Effects of Garlic Allium sativum Powder on Nutrient Digestibility, Haematology, and Immune and Stress Responses in Eurasian Perch Perca fluviatilis Juveniles. Animals (Basel) 2021; 11:2735. [PMID: 34573701 PMCID: PMC8467537 DOI: 10.3390/ani11092735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/05/2023] Open
Abstract
The supplementation of fish diets with phytogenics can increase growth performance and can modulate immune system response. European perch Perca fluviatilis (initial weight 25.0 ± 0.4 g) were fed a diet including 0 (Control), 10 (G10), 20 (G20), and 30 (G30) g kg-1 garlic powder. No significant difference in the growth parameters and somatic indices were observed. Significantly higher fat digestibility was observed in G10 and G30 diets compared to in the control and G20 diets(p < 0.05). Significantly greater red blood cell and white blood cell counts were observed with the G10 diet (p < 0.05). Garlic significantly decreased serum cholesterol in all of the experimental groups. Serum albumin was significantly higher in the G10 and G20 diets (p < 0.05). Immediately after the overcrowding stress challenge, the garlic groups showed significantly higher cortisol levels than the control group, while no significant difference was observed in the glucose concentration among groups. At 1 h post-stress, all of the groups that had been fed a garlic-supplemented diet showed lower cortisol levels than the control group, and this trend was maintained at 6 and 24 h post stress (p < 0.05), and glucose level in all garlic groups was significantly lower than control (p < 0.05). Garlic at 10 g kg-1 in feed can improve apparent fat digestibility and selected blood parameters and can enhance resistance against high-density and net handling stress in Eurasian perch.
Collapse
Affiliation(s)
| | | | | | - Vlastimil Stejskal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Husova třída 458/102, 370 05 České Budějovice, Czech Republic; (M.Z.); (H.Q.T.); (M.P.)
| |
Collapse
|
125
|
Schmidt JC, Dougherty BV, Beger RD, Jones DP, Schmidt MA, Mattes WB. Metabolomics as a Truly Translational Tool for Precision Medicine. Int J Toxicol 2021; 40:413-426. [PMID: 34514887 DOI: 10.1177/10915818211039436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics is unique among omics technologies in being applicable to metabolism and toxicity studies broadly across organisms (e.g., humans, other mammals, model organisms, and even bacteria) and across biological materials (e.g., blood, urine, saliva, biopsy, and stool), including cultured cells and subcellular fractions. Metabolomics can be used to characterize biologic response patterns in humans as well as to support mechanistic studies in model systems and ex vivo studies. A broad range of resources are available, including publicly accessible data repositories (e.g., Metabolomics Workbench), tools for biostatistics and bioinformatics (e.g., MetaboAnalyst), metabolite identification (e.g., Metlin), and pathway analysis (e.g., Kyoto Encyclopedia of Genes and Genomes). Thus, metabolomics is more than a promise of the future; metabolomics is already available as a translational approach to facilitate precision medicine. This ACT Symposium review will contain an introduction to metabolomics in toxicity studies followed by sections on translational metabolic networks, translational metabolite biomarkers of acetaminophen-induced acute liver injury, translational framework using high-resolution metabolomics for integrated pharmacokinetics and pharmacodynamics, and precision medicine applications: extracting actionable targets from untargeted metabolomics data following one year in space.
Collapse
Affiliation(s)
| | - Bonnie V Dougherty
- Department of Biomedical Engineering, 2358University of Virginia, Charlottesville, VA, USA
| | - Richard D Beger
- Division of Systems Biology, 4136National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, 1371Emory University School of Medicine, Atlanta, GA, USA
| | - Michael A Schmidt
- 466810Sovaris Aerospace, Boulder, CO, USA.,Advanced Pattern Analysis & Countermeasures Group, Boulder, CO, USA
| | - William B Mattes
- Division of Systems Biology, 4136National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
126
|
Feller FM, Wöhlbrand L, Holert J, Schnaars V, Elsner L, Mohn WW, Rabus R, Philipp B. Proteome, Bioinformatic, and Functional Analyses Reveal a Distinct and Conserved Metabolic Pathway for Bile Salt Degradation in the Sphingomonadaceae. Appl Environ Microbiol 2021; 87:e0098721. [PMID: 34260303 PMCID: PMC8432579 DOI: 10.1128/aem.00987-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Bile salts are amphiphilic steroids with digestive functions in vertebrates. Upon excretion, bile salts are degraded by environmental bacteria. Degradation of the bile salt steroid skeleton resembles the well-studied pathway for other steroids, like testosterone, while specific differences occur during side chain degradation and the initiating transformations of the steroid skeleton. Of the latter, two variants via either Δ1,4- or Δ4,6-3-ketostructures of the steroid skeleton exist for 7-hydroxy bile salts. While the Δ1,4 variant is well known from many model organisms, the Δ4,6 variant involving a 7-hydroxysteroid dehydratase as a key enzyme has not been systematically studied. Here, combined proteomic, bioinformatic, and functional analyses of the Δ4,6 variant in Sphingobium sp. strain Chol11 were performed. They revealed a degradation of the steroid rings similar to that of the Δ1,4 variant except for the elimination of the 7-OH as a key difference. In contrast, differential production of the respective proteins revealed a putative gene cluster for the degradation of the C5 carboxylic side chain encoding a CoA ligase, an acyl-CoA dehydrogenase, a Rieske monooxygenase, and an amidase but lacking most canonical genes known from other steroid-degrading bacteria. Bioinformatic analyses predicted the Δ4,6 variant to be widespread among the Sphingomonadaceae, which was verified for three type strains which also have the predicted side chain degradation cluster. A second amidase in the side chain degradation gene cluster of strain Chol11 was shown to cleave conjugated bile salts while having low similarity to known bile salt hydrolases. This study identifies members of the Sphingomonadaceae that are remarkably well adapted to the utilization of bile salts via a partially distinct metabolic pathway. IMPORTANCE This study highlights the biochemical diversity of bacterial degradation of steroid compounds, in particular bile salts. Furthermore, it substantiates and advances knowledge of a variant pathway for degradation of steroids by sphingomonads, a group of environmental bacteria that are well known for their broad metabolic capabilities. Biodegradation of bile salts is a critical process due to the high input of these compounds from manure into agricultural soils and wastewater treatment plants. In addition, these results may also be relevant for the biotechnological production of bile salts or other steroid compounds with pharmaceutical functions.
Collapse
Affiliation(s)
- Franziska M. Feller
- Microbial Biotechnology and Ecology, Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Johannes Holert
- Microbial Biotechnology and Ecology, Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lea Elsner
- Microbial Biotechnology and Ecology, Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - William W. Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Bodo Philipp
- Microbial Biotechnology and Ecology, Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Applied Ecology and Bioresources, Fraunhofer-Institute for Molecular and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
127
|
Ji G, Si X, Dong S, Xu Y, Li M, Yang B, Tang Z, Fang X, Huang L, Song W, Chen X. Manipulating Liver Bile Acid Signaling by Nanodelivery of Bile Acid Receptor Modulators for Liver Cancer Immunotherapy. NANO LETTERS 2021; 21:6781-6791. [PMID: 34382807 DOI: 10.1021/acs.nanolett.1c01360] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gut bacteria and their metabolites influence the immune microenvironment of liver through the gut-liver axis, thus representing emerging therapeutic targets for liver cancer therapy. However, directly manipulating gut microbiota or their metabolites is not practical in clinic since the safety concerns and the complicated mechanism of action. Considering the dysregulated bile acid profiles associated with liver cancer, here we propose a strategy that directly manipulates the primary and secondary bile acid receptors through nanoapproach as an alternative and more precise way for liver cancer therapy. We show that nanodelivery of bile acid receptor modulators elicited robust antitumor immune responses and significantly changed the immune microenvironment in the murine hepatic tumor. In addition, ex vivo stimulation on both murine and patient hepatic tumor tissues suggests the observation here may be meaningful for clinical practice. This study elucidates a novel and precise strategy for liver cancer immunotherapy.
Collapse
Affiliation(s)
- Guofeng Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Si Dong
- College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yajun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuedong Fang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
128
|
Feller FM, Holert J, Yücel O, Philipp B. Degradation of Bile Acids by Soil and Water Bacteria. Microorganisms 2021; 9:1759. [PMID: 34442838 PMCID: PMC8399759 DOI: 10.3390/microorganisms9081759] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are surface-active steroid compounds with a C5 carboxylic side chain at the steroid nucleus. They are produced by vertebrates, mainly functioning as emulsifiers for lipophilic nutrients, as signaling compounds, and as an antimicrobial barrier in the duodenum. Upon excretion into soil and water, bile acids serve as carbon- and energy-rich growth substrates for diverse heterotrophic bacteria. Metabolic pathways for the degradation of bile acids are predominantly studied in individual strains of the genera Pseudomonas, Comamonas, Sphingobium, Azoarcus, and Rhodococcus. Bile acid degradation is initiated by oxidative reactions of the steroid skeleton at ring A and degradation of the carboxylic side chain before the steroid nucleus is broken down into central metabolic intermediates for biomass and energy production. This review summarizes the current biochemical and genetic knowledge on aerobic and anaerobic degradation of bile acids by soil and water bacteria. In addition, ecological and applied aspects are addressed, including resistance mechanisms against the toxic effects of bile acids.
Collapse
Affiliation(s)
- Franziska Maria Feller
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Onur Yücel
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
129
|
Nguyen JT, Riessen R, Zhang T, Kieffer C, Anakk S. Deletion of Intestinal SHP Impairs Short-term Response to Cholic Acid Challenge in Male Mice. Endocrinology 2021; 162:6189092. [PMID: 33769482 PMCID: PMC8256632 DOI: 10.1210/endocr/bqab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Small heterodimer partner (SHP) is a crucial regulator of bile acid (BA) transport and synthesis; however, its intestine-specific role is not fully understood. Here, we report that male intestine-specific Shp knockout (IShpKO) mice exhibit higher intestinal BA but not hepatic or serum BA levels compared with the f/f Shp animals when challenged with an acute (5-day) 1% cholic acid (CA) diet. We also found that BA synthetic genes Cyp7a1 and Cyp8b1 are not repressed to the same extent in IShpKO compared with control mice post-CA challenge. Loss of intestinal SHP did not alter Fxrα messenger RNA (mRNA) but increased Asbt (BA ileal uptake transporter) and Ostα (BA ileal efflux transporter) expression even under chow-fed conditions. Surprisingly, the acute CA diet in IShpKO did not elicit the expected induction of Fgf15 but was able to maintain the suppression of Asbt, and Ostα/β mRNA levels. At the protein level, apical sodium-dependent bile acid transporter (ASBT) was downregulated, while organic solute transporter-α/β (OSTα/β) expression was induced and maintained regardless of diet. Examination of ileal histology in IShpKO mice challenged with acute CA diet revealed reduced villi length and goblet cell numbers. However, no difference in villi length, and the expression of BA regulator and transporter genes, was seen between f/f Shp and IShpKO animals after a chronic (14-day) CA diet, suggesting a potential adaptive response. We found the upregulation of the Pparα-Ugt axis after 14 days of CA diet may reduce the BA burden and compensate for the ileal SHP function. Thus, our study reveals that ileal SHP expression contributes to both overall intestinal structure and BA homeostasis.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan Riessen
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tongyu Zhang
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin Kieffer
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:Sayeepriyadarshini Anakk, Department of Molecular & Integrative Physiology and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 450 Medical Science Building, 506 South Matthews Avenue, Urbana, IL 61801, USA. E-mail:
| |
Collapse
|
130
|
Metabolomics in Bariatric Surgery: Towards Identification of Mechanisms and Biomarkers of Metabolic Outcomes. Obes Surg 2021; 31:4564-4574. [PMID: 34318371 DOI: 10.1007/s11695-021-05566-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022]
Abstract
Bariatric surgery has been widely performed for the treatment of obesity and type 2 diabetes. Efforts have been made to investigate the mechanisms underlying the metabolic effects achieved by bariatric surgery and to identify candidates who will benefit from this surgery. Metabolomics, which includes comprehensive profiling of metabolites in biological samples, has been utilized for various disease entities to discover pathophysiological metabolic pathways and biomarkers predicting disease progression or prognosis. Over the last decade, metabolomic studies on patients undergoing bariatric surgery have identified significant biomarkers related to metabolic effects. This review describes the significance, progress, and challenges for the future of metabolomics in the area of bariatric surgery.
Collapse
|
131
|
Tu Y, Bao Y, Zhang P. Metabolic surgery in China: present and future. J Mol Cell Biol 2021; 13:mjab039. [PMID: 34240190 PMCID: PMC8697345 DOI: 10.1093/jmcb/mjab039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Obesity and its related complications comprise a serious public health problem worldwide, and obesity is increasing in China. Metabolic surgery is a new type of treatment with unique advantages in weight loss and obesity-related metabolic complications. The pathogenesis of obesity is complex and not yet fully understood. Here, we review the current efficacy and safety of metabolic surgery, as well as recent progress in mechanistic studies and surgical procedures in China. The exciting and rapid advances in this field provide new opportunities for patients with obesity and strike a balance between long-term effectiveness and safety.
Collapse
Affiliation(s)
- Yinfang Tu
- Department of Endocrinology and Metabolism, Shanghai
Jiao Tong University Affiliated Sixth People’s HospitalShanghai Diabetes
Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of
Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic
Disease, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai
Jiao Tong University Affiliated Sixth People’s HospitalShanghai Diabetes
Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of
Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic
Disease, Shanghai 200233, China
- Department of Endocrinology and Metabolism, Jinshan
District Central Hospital of Shanghai Sixth People's
Hospital, Shanghai 201599, China
| | - Pin Zhang
- Department of Bariatric and Metabolic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital, Shanghai 200233, China
| |
Collapse
|
132
|
Xu M, Shen Y, Cen M, Zhu Y, Cheng F, Tang L, Zheng X, Kim JJ, Dai N, Hu W. Modulation of the Gut Microbiota-farnesoid X Receptor Axis Improves Deoxycholic Acid-induced Intestinal Inflammation in Mice. J Crohns Colitis 2021; 15:1197-1210. [PMID: 33417675 DOI: 10.1093/ecco-jcc/jjab003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) is associated with gut dysbiosis and dysregulation of bile acid metabolism. A high luminal content of deoxycholic acid (DCA) with consumption of a Westernised diet is implicated in the pathogenesis of IBD. The aim of the study is to explore the role of intestinal microbiota and bile acid metabolism in mice with DCA-induced intestinal inflammation. METHODS Wild-type C57BL mice, 4 weeks old, were fed with AIN-93G (control diet), AIN-93G+0.2% DCA, AIN-93G+0.2% DCA+6 weeks of fexaramine (FXR agonist), or AIN-93G+0.2% DCA+antibiotic cocktail, for 24 weeks. Histopathology, western blotting, and qPCR were performed on the intestinal tissue. Faecal microbiota was analysed by 16S rDNA sequencing. Faecal bile acid and short chain fatty acid (SCFA) levels were analysed by chromatography. RESULTS Gut dysbiosis and enlarged bile acid pool were observed in DCA-treated mice, accompanied by a lower farnesoid X receptor (FXR) activity in the intestine. Administration of fexaramine mitigated DCA-induced intestinal injury, restored intestinal FXR activity, activated fibroblast growth factor 15, and normalised bile acid metabolism. Furthermore, fexaramine administration increased the abundance of SCFA-producing bacteria. Depletion of the commensal microbiota with antibiotics decreased the diversity of the intestinal microbiota, attenuated bile acid synthesis, and reduced intestinal inflammation induced by DCA. CONCLUSIONS DCA induced-intestinal inflammation is associated with alterations of gut microbiota and bile acid profiles. Interventions targeting the gut microbiota-FXR signalling pathway may reduce DCA-induced intestinal disease.
Collapse
Affiliation(s)
- Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuqin Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengsha Cen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yubin Zhu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangli Cheng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linlin Tang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Zheng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John J Kim
- Division of Gastroenterology, Loma Linda University Health, Loma Linda, CA, USA
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
133
|
Teramoto T, Nishio T, Kurogi K, Sakakibara Y, Kakuta Y. The crystal structure of mouse SULT2A8 reveals the mechanism of 7α-hydroxyl, bile acid sulfation. Biochem Biophys Res Commun 2021; 562:15-20. [PMID: 34030040 DOI: 10.1016/j.bbrc.2021.04.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Bile acids play essential roles in facilitating the intestinal absorption of lipophilic nutrients as well as regulation of glucose, lipid, and energy homeostasis via activation of some receptors. Bile acids are cytotoxic, and consequently their concentrations are tightly controlled. A critical pathway for bile acid elimination and detoxification is sulfation. The pattern of bile acid sulfation differs by species. Sulfation preferentially occurs at the 3α-OH of bile acids in humans, but at the 7α-OH in mice. A recent study identified mouse cytosolic sulfotransferase 2A8 (mSULT2A8) as the major hepatic 7α-hydroxyl bile acid-sulfating enzyme. To elucidate the 7α-OH specific sulfation mechanism of mSULT2A8, instead of 3α-OH specific sulfation in humans, we determined a crystal structure of mSULT2A8 in complex with cholic acid, a major bile acid, and 3'-phosphoadenosine-5'-phosphate, the sulfate donor product. Our study shows that bile acid-binding mode of mSULT2A8 and how the enzyme holds the 7α-OH group of bile acids at the catalytic center, revealing that the mechanism underlying 7α-OH specific sulfation. The structure shows the substrate binds to mSULT2A8 in an orientation perpendicular to that of human 3α-hydroxyl bile acid-sulfotransferase (hSULT2A1). The structure of the complex provides new insight into species different bile acid metabolism.
Collapse
Affiliation(s)
- Takamasa Teramoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takeaki Nishio
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
134
|
Rajeev R, Seethalakshmi PS, Jena PK, Prathiviraj R, Kiran GS, Selvin J. Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Crit Rev Food Sci Nutr 2021; 62:7615-7631. [PMID: 34016000 DOI: 10.1080/10408398.2021.1916429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut microbiome and its link with human health and disease have gained a lot of attention recently. The microbiome executes its functions in the host by carrying out the transformation of dietary components and/or de novo synthesis of various essential nutrients. The presence of complex microbial communities makes it difficult to understand the host-microbiome interplay in the metabolism of dietary components. This review attempts to uncover the incredible role of the gut microbiome in the metabolism of dietary components, diet-microbiome interplay, and restoration of the microbiome. The in silico analysis performed in this study elucidates the functional description of essential/hub genes involved in the amino acid degradation pathway, which are mutually present in the host and its gut microbiome. Hence, the computational model helps comprehend the inter-and intracellular molecular networks between humans and their microbial partners.
Collapse
Affiliation(s)
- Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Prasant Kumar Jena
- Immunology and infectious disease research, Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| |
Collapse
|
135
|
Li R, Mao Z, Ye X, Zuo T. Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms 2021; 9:1017. [PMID: 34066850 PMCID: PMC8151257 DOI: 10.3390/microorganisms9051017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
The important role of human gut microbiota in liver diseases has long been recognized as dysbiosis and the translocation of certain microbes from the gut to liver. With the development of high-throughput DNA sequencing, the complexity and integrity of the gut microbiome in the whole spectrum of liver diseases is emerging. Specific patterns of gut microbiota have been identified in liver diseases with different causes, including alcoholic, non-alcoholic, and virus induced liver diseases, or even at different stages, ranging from steatohepatitis, fibrosis, cirrhosis, to hepatocellular carcinoma. At the same time, the mechanism of how microbiota contributes to liver diseases goes beyond the traditional function of the gut-liver axis which could lead to liver injury and inflammation. With the application of proteomics, metabolomics, and modern molecular technologies, more microbial metabolites and the complicated interaction of microbiota with host immunity come into our understanding in the liver pathogenesis. Germ-free animal models serve as a workhorse to test the function of microbiota and their derivatives in liver disease models. Here, we review the current evidence on the relationship between gut microbiota and liver diseases, and the mechanisms underlying this phenotype. In addition to original liver diseases, gut microbiota might also affect liver injury in systemic disorders involving multiple organs, as in the case of COVID-19 at a severe state. A better understanding of the gut microbial contribution to liver diseases might help us better benefit from this guest-host relationship and pave the way for novel therapies.
Collapse
Affiliation(s)
- Rui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China;
| | - Zhengsheng Mao
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China;
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510000, China
| |
Collapse
|
136
|
Wu Q, Sun L, Hu X, Wang X, Xu F, Chen B, Liang X, Xia J, Wang P, Aibara D, Zhang S, Zeng G, Yun C, Yan Y, Zhu Y, Bustin M, Zhang S, Gonzalez FJ, Jiang C. Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis. J Clin Invest 2021; 131:142865. [PMID: 33938457 DOI: 10.1172/jci142865] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Intestinal farnesoid X receptor (FXR) signaling is involved in the development of obesity, fatty liver disease, and type 2 diabetes. However, the role of intestinal FXR in atherosclerosis and its potential as a target for clinical treatment have not been explored. The serum levels of fibroblast growth factor 19 (FGF19), which is encoded by an FXR target gene, were much higher in patients with hypercholesterolemia than in control subjects and were positively related to circulating ceramide levels, indicating a link between intestinal FXR, ceramide metabolism, and atherosclerosis. Among ApoE-/- mice fed a high-cholesterol diet (HCD), intestinal FXR deficiency (in FxrΔIE ApoE-/- mice) or direct FXR inhibition (via treatment with the FXR antagonist glycoursodeoxycholic acid [GUDCA]) decreased atherosclerosis and reduced the levels of circulating ceramides and cholesterol. Sphingomyelin phosphodiesterase 3 (SMPD3), which is involved in ceramide synthesis in the intestine, was identified as an FXR target gene. SMPD3 overexpression or C16:0 ceramide supplementation eliminated the improvements in atherosclerosis in FxrΔIE ApoE-/- mice. Administration of GUDCA or GW4869, an SMPD3 inhibitor, elicited therapeutic effects on established atherosclerosis in ApoE-/- mice by decreasing circulating ceramide levels. This study identified an intestinal FXR/SMPD3 axis that is a potential target for atherosclerosis therapy.
Collapse
Affiliation(s)
- Qing Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bo Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xianyi Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pengcheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Daisuke Aibara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shaofei Zhang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuyu Yun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yu Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yicheng Zhu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Michael Bustin
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shuyang Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.,Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
137
|
Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutr Res Rev 2021; 35:161-180. [PMID: 33926590 DOI: 10.1017/s0954422421000081] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beneficial effects of probiotic, prebiotic and polyphenol-rich interventions on fasting lipid profiles have been reported, with changes in the gut microbiota composition believed to play an important role in lipid regulation. Primary bile acids, which are involved in the digestion of fats and cholesterol metabolism, can be converted by the gut microbiota to secondary bile acids, some species of which are less well reabsorbed and consequently may be excreted in the stool. This can lead to increased hepatic bile acid neo-synthesis, resulting in a net loss of circulating low-density lipoprotein. Bile acids may therefore provide a link between the gut microbiota and cardiovascular health. This narrative review presents an overview of bile acid metabolism and the role of probiotics, prebiotics and polyphenol-rich foods in modulating circulating cardiovascular disease (CVD) risk markers and bile acids. Although findings from human studies are inconsistent, there is growing evidence for associations between these dietary components and improved lipid CVD risk markers, attributed to modulation of the gut microbiota and bile acid metabolism. These include increased bile acid neo-synthesis, due to bile sequestering action, bile salt metabolising activity and effects of short-chain fatty acids generated through bacterial fermentation of fibres. Animal studies have demonstrated effects on the FXR/FGF-15 axis and hepatic genes involved in bile acid synthesis (CYP7A1) and cholesterol synthesis (SREBP and HMGR). Further human studies are needed to determine the relationship between diet and bile acid metabolism and whether circulating bile acids can be utilised as a potential CVD risk biomarker.
Collapse
|
138
|
Glycine-Conjugated Bile Acids Protect RPE Tight Junctions against Oxidative Stress and Inhibit Choroidal Endothelial Cell Angiogenesis In Vitro. Biomolecules 2021; 11:biom11050626. [PMID: 33922434 PMCID: PMC8146504 DOI: 10.3390/biom11050626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
We previously demonstrated that the bile acid taurocholic acid (TCA) inhibits features of age-related macular degeneration (AMD) in vitro. The purpose of this study was to determine if the glycine-conjugated bile acids glycocholic acid (GCA), glycodeoxycholic acid (GDCA), and glycoursodeoxycholic acid (GUDCA) can protect retinal pigment epithelial (RPE) cells against oxidative damage and inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in choroidal endothelial cells (CECs). Paraquat was used to induce oxidative stress and disrupt tight junctions in HRPEpiC primary human RPE cells. Tight junctions were assessed via transepithelial electrical resistance and ZO-1 immunofluorescence. GCA and GUDCA protected RPE tight junctions against oxidative damage at concentrations of 100–500 µM, and GDCA protected tight junctions at 10–500 µM. Angiogenesis was induced with VEGF in RF/6A macaque CECs and evaluated with cell proliferation, cell migration, and tube formation assays. GCA inhibited VEGF-induced CEC migration at 50–500 µM and tube formation at 10–500 µM. GUDCA inhibited VEGF-induced CEC migration at 100–500 µM and tube formation at 50–500 µM. GDCA had no effect on VEGF-induced angiogenesis. None of the three bile acids significantly inhibited VEGF-induced CEC proliferation. These results suggest glycine-conjugated bile acids may be protective against both atrophic and neovascular AMD.
Collapse
|
139
|
Gut Dysbiosis and Its Associations with Gut Microbiota-Derived Metabolites in Dogs with Myxomatous Mitral Valve Disease. mSystems 2021; 6:6/2/e00111-21. [PMID: 33879495 PMCID: PMC8546968 DOI: 10.1128/msystems.00111-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gut dysbiosis and gut microbiota-derived metabolites, including bile acid (BA), short-chain fatty acid, and trimethylamine N-oxide (TMAO), are associated with cardiovascular disease. Canine myxomatous mitral valve disease (MMVD) is a model for human MMVD. The aim of the study is to evaluate gut microbial dysbiosis and its relationship with gut-produced metabolites in dogs with MMVD. Fecal samples from 92 privately owned dogs, including 17 healthy, 23 and 27 asymptomatic MMVD dogs without (stage B1) and with (stage B2) secondary cardiac enlargement, respectively, and 25 MMVD dogs with history of congestive heart failure (stage C or D), were analyzed by 16S rRNA sequencing. Alpha and beta diversities were different between healthy and MMVD dogs (adjusted P < 0.05). The average dysbiosis indexes were −1.48, −0.6, 0.01, and 1.47 for healthy, B1, B2, and C/D dogs, respectively (P = 0.07). Dysbiosis index was negatively correlated with Clostridium hiranonis (P < 0.0001, r = −0.79). Escherichia coli, capable of trimethylamine production in the gut, had an increased abundance (adjusted P < 0.05) and may be responsible for the increased circulating TMAO levels in stage B2 and C/D MMVD dogs. Primary and secondary BAs showed opposite associations with C. hiranonis, a key BA converter (P < 0.0001 for both, r = −0.94 and 0.95, respectively). Secondary BAs appeared to promote the growth of Fusobacterium and Faecalibacterium but inhibit that of E. coli. Multivariate analysis revealed significant but weak associations between gut microbiota and several circulating metabolites, including short-chain acylcarnitines and TMAO. IMPORTANCE Our study expands the current “gut hypothesis” to include gut dysbiosis at the preclinical stage, prior to the onset of heart failure. Gut dysbiosis index increases in proportion to the severity of myxomatous mitral valve disease (MMVD) and is inversely associated with Clostridium hiranonis, a key bile acid (BA) converter in the gut. Secondary BAs appear to promote the growth of beneficial bacteria but inhibit that of harmful ones. An intricate interplay between gut microbiota, gut microbiota-produced metabolites, and MMVD pathophysiological progression is implicated.
Collapse
|
140
|
Fitness for purpose of stabilized stool samples for bile acid metabolite analyses. Sci Rep 2021; 11:7904. [PMID: 33846363 PMCID: PMC8042040 DOI: 10.1038/s41598-021-86784-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023] Open
Abstract
Biobanks and cohort studies are increasingly utilizing chemical stabilizers to collect and store stool samples for downstream DNA-based microbiome analyses. While stabilizers permit ambient-temperature collection and storage of samples for gut microbiome studies, the use of the same sample type for downstream metabolomics assays has not been explored. Microbiome-metabolomics analysis of fecal samples is increasingly getting attention to further elucidate the mechanisms by which the gut microbiota influences the host. In this study, we evaluated fitness-for-purpose of OMNIgene-GUT-collected stool samples for downstream metabolomics assays in the scope of fecal bile acids (BA) quantification. Biocrates Bile Acids Kit was used for the quantification of BA from eight healthy donors' samples collected in (1) OMNIgene-GUT kit and (2) snap frozen in -80 °C in duplicates. A highly selective reversed phase LC-MS/MS analysis method in negative ion multiple reaction monitoring (MRM) detection mode was applied to determine the BA concentrations in each sample.Total fecal BA levels were detectable in OMNIgene-GUT-collected samples (range: 29.9-903.7 pmol/mg). Paired t-test confirmed that there was a significant difference in the total BAs between the OMNIgene-GUT and snap frozen samples (p < 0.05). Extractions from snap frozen samples resulted in higher concentrations of total BAs (range: 243.7-1136.2 pmol/mg). Qualitative differences between individual donors' BA profiles were detectable using the two sample collection methods. No significant difference was found in the relative concentrations of primary (CA, CDCA) or secondary (DCA, LCA, UDCA) unconjugated BAs to the total BA concentrations in OMNIgene-GUT-collected samples as compared with the snap frozen samples (Wilcoxon-Mann-Whitney test, p > 0.05). Passing-Bablok method comparison and correlation analyis showed a high degree of correlation in the relative concentrations of CA, CDCA, DCA and LCA between OMNIgene-GUT and snap frozen samples. For these four bile acids, the two methods are comparable at an acceptability bias of 30%. We conclude that the OMNIgene-GUT-collected stool samples are fit-for-purpose for downstream fecal bile acids analysis.
Collapse
|
141
|
Banerjee A, Pradhan LK, Sahoo PK, Jena KK, Chauhan NR, Chauhan S, Das SK. Unravelling the potential of gut microbiota in sustaining brain health and their current prospective towards development of neurotherapeutics. Arch Microbiol 2021; 203:2895-2910. [PMID: 33763767 DOI: 10.1007/s00203-021-02276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Increasing incidences of neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are being reported, but an insight into their pathology remains elusive. Findings have suggested that gut microbiota play a major role in regulating brain functions through the gut-brain axis. A unique bidirectional communication between gut microbiota and maintenance of brain health could play a pivotal role in regulating incidences of neurodegenerative diseases. Contrarily, the present life style with changing food habits and disturbed circadian rhythm may contribute to gut homeostatic imbalance and dysbiosis leading to progression of several neurological disorders. Therefore, dysbiosis, as a primary factor behind intestinal disorders, may also augment inflammation, intestinal and blood-brain barrier permeability through microbiota-gut-brain axis. This review primarily focuses on the gut-brain axis functions, specific gut microbial population, metabolites produced by gut microbiota, their role in regulating various metabolic processes and role of gut microbiota towards development of neurodegenerative diseases. However, several studies have reported a decrease in abundance of a specific gut microbial population and a corresponding increase in other microbial family, with few findings revealing some contradictions. Reports also showed that colonization of gut microbiota isolated from patients suffering from neurodegenerative disease leads to the development of enhance pathological outcomes in animal models. Hence, a systematic understanding of the dominant role of specific gut microbiome towards development of different neurodegenerative diseases could possibly provide novel insight into the use of probiotics and microbial transplantation as a substitute approach for treating/preventing such health maladies.
Collapse
Affiliation(s)
- Ankita Banerjee
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Kautilya Kumar Jena
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Nishant Ranjan Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
142
|
Liu H, Cui H, Huang Y, Gao S, Tao S, Hu J, Wan Y. Xenobiotics Targeting Cardiolipin Metabolism to Promote Thrombosis in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3855-3866. [PMID: 33629855 DOI: 10.1021/acs.est.0c08068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exposure to environmental pollutants is an important factor contributing to the development and severity of thrombosis. However, the important physiological molecules in the thrombotic processes affected by environmental exposures remain unknown. In this study, we show that exposure to environmental chemicals disrupts the equilibrium of cardiolipins (CLs), and directing CL synthesis promotes thrombosis. Using an untargeted metabolomics approach, approximately 3030 molecules were detected in zebrafish embryos exposed to 11 environmental chemicals and automatically clustered into a network. Interconnectivity among CLs and linoleates or isoxanthopterin was discovered through the highly consistent variations in the coregulated metabolites in the network. The chemical exposure resulted in significant upregulation of CLs through influencing the enzymatic activities of phospholipase A2, cardiolipin synthase, and lysocardiolipin acyltransferase. Consequently, metabolic disorders of CLs affected the levels of anticardiolipin antibodies, disrupted the homeostasis between platelet thromboxane A2 and endothelial prostacyclin, and promoted thrombotic events including heart ischemia and tachycardia. Our study thus reveals the common molecular mechanisms underlying the CL-induced thrombosis targeted by environmental exposures.
Collapse
Affiliation(s)
- Hang Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shixiong Gao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
143
|
Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms 2021; 9:microorganisms9030469. [PMID: 33668351 PMCID: PMC7996314 DOI: 10.3390/microorganisms9030469] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Bile acids (BAs) and glucocorticoids are steroid hormones derived from cholesterol that are important signaling molecules in humans and other vertebrates. Hydroxysteroid dehydrogenases (HSDHs) are encoded both by the host and by their resident gut microbiota, and they reversibly convert steroid hydroxyl groups to keto groups. Pairs of HSDHs can reversibly epimerize steroids from α-hydroxy conformations to β-hydroxy, or β-hydroxy to ω-hydroxy in the case of ω-muricholic acid. These reactions often result in products with drastically different physicochemical properties than their precursors, which can result in steroids being activators or inhibitors of host receptors, can affect solubility in fecal water, and can modulate toxicity. Microbial HSDHs modulate sterols associated with diseases such as colorectal cancer, liver cancer, prostate cancer, and polycystic ovary syndrome. Although the role of microbial HSDHs is not yet fully elucidated, they may have therapeutic potential as steroid pool modulators or druggable targets in the future. In this review, we explore metabolism of BAs and glucocorticoids with a focus on biotransformation by microbial HSDHs.
Collapse
|
144
|
The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci 2021; 272:119252. [PMID: 33636170 DOI: 10.1016/j.lfs.2021.119252] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Bear bile has been used in Traditional Chinese Medicine for thousands of years due to its therapeutic potential and clinical applications. The tauroursodeoxycholic acid (TUDCA), one of the acids found in bear bile, is a hydrophilic bile acid and naturally produced in the liver by conjugation of taurine to ursodeoxycholic acid (UDCA). Several studies have shown that TUDCA has neuroprotective action in several models of neurodegenerative disorders (ND), including Alzheimer's disease, Parkinson's disease, and Huntington's disease, based on its potent ability to inhibit apoptosis, attenuate oxidative stress, and reduce endoplasmic reticulum stress in different experimental models of these illnesses. Our research extends the knowledge of the bile acid TUDCA actions in ND and the mechanisms and pathways involved in its cytoprotective effects on the brain, providing a novel perspective and opportunities for treatment of these diseases.
Collapse
|
145
|
Xu M, Cen M, Shen Y, Zhu Y, Cheng F, Tang L, Hu W, Dai N. Deoxycholic Acid-Induced Gut Dysbiosis Disrupts Bile Acid Enterohepatic Circulation and Promotes Intestinal Inflammation. Dig Dis Sci 2021; 66:568-576. [PMID: 32198567 DOI: 10.1007/s10620-020-06208-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND A Western diet is a risk factor for the development of inflammatory bowel disease (IBD). High levels of fecal deoxycholic acid (DCA) in response to a Western diet contribute to bowel inflammatory injury. However, the mechanism of DCA in the natural course of IBD development remains unanswered. AIMS The aim of this study is to investigate the effect of DCA on the induction of gut dysbiosis and its roles in the development of intestinal inflammation. METHODS Wild-type C57BL/6J mice were fed an AIN-93G diet, either supplemented with or without 0.2% DCA, and killed at 24 weeks. Distal ileum and colon tissues were assessed by histopathological analysis. Hepatic and ileal gene expression was examined by qPCR, and the gut microbiota was analyzed by high-throughput 16S rRNA gene sequencing. HPLC-MS was used for fecal bile acid quantification. RESULTS Mice fed the DCA-supplemented diet developed focal areas of ileal and colonic inflammation, accompanied by alteration of the composition of the intestinal microbiota and accumulation of fecal bile acids. DCA-induced dysbiosis decreased the deconjugation of bile acids, and this regulation was associated with the repressed expression of target genes in the enterohepatic farnesoid X receptor-fibroblast growth factor (FXR-FGF15) axis, leading to upregulation of hepatic de novo bile acid synthesis. CONCLUSIONS These results suggest that DCA-induced gut dysbiosis may act as a key etiologic factor in intestinal inflammation, associated with bile acid metabolic disturbance and downregulation of the FXR-FGF15 axis.
Collapse
Affiliation(s)
- Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Mengsha Cen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yuqin Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yubin Zhu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Fangli Cheng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Linlin Tang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
146
|
Wang Y, Tai YL, Zhao D, Zhang Y, Yan J, Kakiyama G, Wang X, Gurley EC, Liu J, Liu J, Liu J, Lai G, Hylemon PB, Pandak WM, Chen W, Zhou H. Berberine Prevents Disease Progression of Nonalcoholic Steatohepatitis through Modulating Multiple Pathways. Cells 2021; 10:210. [PMID: 33494295 PMCID: PMC7912096 DOI: 10.3390/cells10020210] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The disease progression of nonalcoholic fatty liver disease (NAFLD) from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) is driven by multiple factors. Berberine (BBR) is an ancient Chinese medicine and has various beneficial effects on metabolic diseases, including NAFLD/NASH. However, the underlying mechanisms remain incompletely understood due to the limitation of the NASH animal models used. Methods: A high-fat and high-fructose diet-induced mouse model of NAFLD, the best available preclinical NASH mouse model, was used. RNAseq, histological, and metabolic pathway analyses were used to identify the potential signaling pathways modulated by BBR. LC-MS was used to measure bile acid levels in the serum and liver. The real-time RT-PCR and Western blot analysis were used to validate the RNAseq data. Results: BBR not only significantly reduced hepatic lipid accumulation by modulating fatty acid synthesis and metabolism but also restored the bile acid homeostasis by targeting multiple pathways. In addition, BBR markedly inhibited inflammation by reducing immune cell infiltration and inhibition of neutrophil activation and inflammatory gene expression. Furthermore, BBR was able to inhibit hepatic fibrosis by modulating the expression of multiple genes involved in hepatic stellate cell activation and cholangiocyte proliferation. Consistent with our previous findings, BBR's beneficial effects are linked with the downregulation of microRNA34a and long noncoding RNA H19, which are two important players in promoting NASH progression and liver fibrosis. Conclusion: BBR is a promising therapeutic agent for NASH by targeting multiple pathways. These results provide a strong foundation for a future clinical investigation.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Qianjiang, Hefei 230012, China;
| | - Yun-Ling Tai
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Derrick Zhao
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Yuan Zhang
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Junkai Yan
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Genta Kakiyama
- Department of Internal Medicine, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (G.K.); (W.M.P.)
| | - Xuan Wang
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Emily C. Gurley
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Jinpeng Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA;
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L6M0L8, Canada;
| | - Guanhua Lai
- Department of Pathology, Medical College of Virginia, 23298 Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| | - William M. Pandak
- Department of Internal Medicine, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (G.K.); (W.M.P.)
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Qianjiang, Hefei 230012, China;
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA; (Y.W.); (Y.-L.T.); (D.Z.); (Y.Z.); (J.Y.); (X.W.); (E.C.G.); (P.B.H.)
| |
Collapse
|
147
|
Hild B, Heinzow HS, Schmidt HH, Maschmeier M. Bile Acids in Control of the Gut-Liver-Axis. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:63-68. [PMID: 33429452 DOI: 10.1055/a-1330-9644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The liver and gut share an intimate relationship whose communication relies heavily on metabolites, among which bile acids play a major role. Beyond their function as emulsifiers, bile acids have been recognized for their influence on metabolism of glucose and lipids as well as for their impact on immune responses. Therefore, changes to the composition of the bile acid pool can be consequential to liver and to gut physiology. By metabolizing primary bile acids to secondary bile acids, the bacterial gut microbiome modifies how bile acids exert influence. An altered ratio of secondary to primary bile acids is found to be substantial in many studies. Thus, disease pathogenesis and progression could be changed by gut microbiome modification which influences the bile acid pool.
Collapse
Affiliation(s)
- Benedikt Hild
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster, Munster, Germany
| | - Hauke S Heinzow
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster, Munster, Germany
| | - Hartmut H Schmidt
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster, Munster, Germany
| | - Miriam Maschmeier
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster, Munster, Germany
| |
Collapse
|
148
|
Wolf PG, Devendran S, Doden HL, Ly LK, Moore T, Takei H, Nittono H, Murai T, Kurosawa T, Chlipala GE, Green SJ, Kakiyama G, Kashyap P, McCracken VJ, Gaskins HR, Gillevet PM, Ridlon JM. Berberine alters gut microbial function through modulation of bile acids. BMC Microbiol 2021; 21:24. [PMID: 33430766 PMCID: PMC7798349 DOI: 10.1186/s12866-020-02020-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.
Collapse
Affiliation(s)
- Patricia G Wolf
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL, USA
- Cancer Education and Career Development Program, University of Illinois, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Saravanan Devendran
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Structural and Computational Biology Research Unit, European Molecular Biology Laboratory, Heidelburg, Germany
| | - Heidi L Doden
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lindsey K Ly
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tyler Moore
- Center for Microbiome Analysis, George Mason University, Manassas, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-Ku, Tokyo, 152-0011, Japan
| | - Hiroshi Nittono
- Junshin Clinic Bile Acid Institute, Meguro-Ku, Tokyo, 152-0011, Japan
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Takao Kurosawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - George E Chlipala
- University of Illinois Chicago Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Stefan J Green
- University of Illinois Chicago Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Genta Kakiyama
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Purna Kashyap
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Vance J McCracken
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Patrick M Gillevet
- Structural and Computational Biology Research Unit, European Molecular Biology Laboratory, Heidelburg, Germany
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
149
|
Song P, Shen X. Proteomic analysis of liver in diet-induced Hyperlipidemic mice under Fructus Rosa roxburghii action. J Proteomics 2021; 230:103982. [PMID: 32927110 DOI: 10.1016/j.jprot.2020.103982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/28/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022]
Abstract
Fructus Rosae Roxburghii (FRR) has been considered as edible and medicinal fruit possessing antiatherosclerotic effect, but the mechanism is still unclear. HLP is material basis for AS formation. Under FRR action, TC, TG, LDL, HDL and ASI in serum were regulated to control level. Differentially expressed proteins in liver were analyzed by using TMT labeling and LC-MS/MS for better understanding the effect and molecular mechanism of FRR on diet-induced hyperlipidemic mice. In total, 4460 proteins were quantified, of which 469 proteins showed dramatic changes between each group. According to molecular functions, 25 differentially co-expressed proteins were divided into five categories: substance metabolism, energy transformation and signal transduction, transcription and translation, immune defense. 15 key proteins involved lipids metabolism, which were identified as Cyp7a1, Cyp3a11, Tm7sf2, COAT2, CSAD, RBP3, Lpin1, Dhrs4, Aldh1b1, GK, Acot 4, TSC22D1, PGFS, EHs, GSTM1. This suggested that FRR could maintain metabolic homeostasis by regulating the metabolism of fatty acids, biosynthesis of BAs and steroids, and production of LPOs. 20 oxidative lipids further confirmed their importance regulating lipids metabolism. It's first time potential antiatherosclerotic mechanism of FRR regulating blood lipids was explored from protein level, which is of great significance to explore new drug targets for AS. SIGNIFICANCE: Under the action of FRR juice, the blood lipids in mice were regulated to control level. By TMT proteomic analysis, the effect and molecular mechanism of FRR on diet-induced hyperlipidemic mice were further explored. 25 differentially co-expressed proteins obtained in three diet groups might cooperatively regulate the lipids metabolism and hepatic function of mice, thus maintaining the metabolism homeostasis. By lipidomics analysis, 20 oxidative lipids further confirmed the importance of ω-3 and ω-6 PUFAs in regulating the lipids metabolism. These findings provide an improved understanding for the regulation of FRR on the blood lipids and explores potential metabolic targets for AS prevention.
Collapse
Affiliation(s)
- Pingping Song
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The high Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high Educational Key laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), Guizhou Medical University, Guian New District, Guizhou 550000, China; Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550000, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The high Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high Educational Key laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), Guizhou Medical University, Guian New District, Guizhou 550000, China; Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550000, China.
| |
Collapse
|
150
|
Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021; 13:1-24. [PMID: 33764858 PMCID: PMC8007165 DOI: 10.1080/19490976.2021.1897212] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays an important role in cardio-metabolic diseases with diet being among the strongest modulators of gut microbiota composition and function. Resistant dietary carbohydrates are fermented to short-chain fatty acids (SCFAs) by the gut bacteria. Fiber and omega-3 rich diets increase SCFAs production and abundance of SCFA-producing bacteria. Likewise, SCFAs can improve gut barrier integrity, glucose, and lipid metabolism, regulate the immune system, the inflammatory response, and blood pressure. Therefore, targeting the gut microbiota with dietary strategies leading to increased SCFA production may benefit cardio-metabolic health. In this review, we provide an overview of the association between diet, SCFAs produced by the gut microbiota and cardio-metabolic diseases. We first discuss the association between the human gut microbiota and cardio-metabolic diseases, then investigate the role of SCFAs and finally explore the beneficial effects of specific dietary interventions that can improve cardio-metabolic outcomes through boosting the SCFA production.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
| | - Ana M. Valdes
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
- School of Medicine, Nottingham City Hospital, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
| |
Collapse
|