101
|
Lee MH, Han MH, Lee DS, Park C, Hong SH, Kim GY, Hong SH, Song KS, Choi IW, Cha HJ, Choi YH. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int J Mol Med 2016; 39:399-406. [PMID: 28035409 DOI: 10.3892/ijmm.2016.2837] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
In the present study, we investigated the cytoprotective efficacy of morin, a natural flavonoid, against oxidative stress and elucidated the underlying mechanisms in C2C12 myoblasts. Our results indicated that morin treatment prior to hydrogen peroxide (H2O2) exposure significantly increased cell viability and prevented the generation of reactive oxygen species. H2O2-induced comet-like DNA formation and γH2AX phosphorylation were also markedly suppressed by morin with a parallel inhibition of apoptosis in C2C12 myoblasts, suggesting that morin prevented H2O2-induced cellular DNA damage. Furthermore, morin markedly enhanced the expression of heme oxygenase-1 (HO-1) associated with the induction and phosphorylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the inhibition of Kelch-like ECH-associated protein 1 (Keap1) expression. Notably, these events were eliminated by transient transfection with Nrf2‑specific small interfering RNA. Additional experiments demonstrated that the activation of the Nrf2/HO-1 pathway by morin was mediated by the extracellular signal‑regulated kinase (ERK) signaling cascade. This phenomenon was confirmed with suppressed Nrf2 phosphorylation and consequently diminished HO-1 expression in cells treated with a pharmacological inhibitor of ERK. Collectively, these results demonstrated that morin augments the cellular antioxidant defense capacity through the activation of Nrf2/HO‑1 signaling, which involves the activation of the ERK pathway, thereby protecting C2C12 myoblasts from H2O2-induced oxidative cytotoxicity.
Collapse
Affiliation(s)
- Moon Hee Lee
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Min Ho Han
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon 325-902, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 614-714, Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Kyoung Seob Song
- Department of Physiology, Kosin University College of Medicine, Busan 602-072, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 608-737, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-072, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
102
|
Shill DD, Southern WM, Willingham TB, Lansford KA, McCully KK, Jenkins NT. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. J Physiol 2016; 594:7005-7014. [PMID: 27501153 PMCID: PMC5134375 DOI: 10.1113/jp272491] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non-specific antioxidants on exercise training-induced vascular adaptations remain elusive. Circulating angiogenic cells (CACs) are an exercise-inducible subset of white blood cells that maintain vascular integrity. We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men. We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole-body aerobic adaptations to exercise training. These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. ABSTRACT Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training-induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3+ , CD3+ /CD31+ , CD14+ /CD31+ , CD31+ , CD34+ /VEGFR2+ and CD62E+ peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m-2 , and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14+ /CD31+ , CD62E+ and CD34+ /VEGFR2+ CACs, respectively, and reduced CD3+ /CD31- PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial-targeted antioxidant does not influence skeletal muscle or whole-body aerobic adaptations to exercise training.
Collapse
|
103
|
Garbeloti EJR, Paiva RCA, Restini CBA, Durand MT, Miranda CES, Teixeira VE. Biochemical biomarkers are not dependent on physical exercise in patients with spinal cord injury. BBA CLINICAL 2016; 6:5-11. [PMID: 27331022 PMCID: PMC4900297 DOI: 10.1016/j.bbacli.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/05/2022]
|
104
|
Loureiro ACC, do Rêgo-Monteiro IC, Louzada RA, Ortenzi VH, de Aguiar AP, de Abreu ES, Cavalcanti-de-Albuquerque JPA, Hecht F, de Oliveira AC, Ceccatto VM, Fortunato RS, Carvalho DP. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6738701. [PMID: 27847553 PMCID: PMC5101397 DOI: 10.1155/2016/6738701] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 01/24/2023]
Abstract
NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense.
Collapse
Affiliation(s)
- Adriano César Carneiro Loureiro
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Igor Coutinho do Rêgo-Monteiro
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ruy A Louzada
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Victor Hugo Ortenzi
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Angélica Ponte de Aguiar
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Ewerton Sousa de Abreu
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | | | - Fabio Hecht
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ariclécio Cunha de Oliveira
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Vânia Marilande Ceccatto
- Laboratório de Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Rodrigo S Fortunato
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Denise P Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
105
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
106
|
Ji LL, Kang C, Zhang Y. Exercise-induced hormesis and skeletal muscle health. Free Radic Biol Med 2016; 98:113-122. [PMID: 26916558 DOI: 10.1016/j.freeradbiomed.2016.02.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
Hormesis refers to the phenomenon that an exposure or repeated exposures of a toxin can elicit adaptive changes within the organism to resist to higher doses of toxin with reduced harm. Skeletal muscle shows considerable plasticity and adaptions in response to a single bout of acute exercise or chronic training, especially in antioxidant defense capacity and metabolic functions mainly due to remodeling of mitochondria. It has thus been hypothesized that contraction-induced production of reactive oxygen species (ROS) may stimulate the hormesis-like adaptations. Furthermore, there has been considerable evidence that select ROS such as hydrogen peroxide and nitric oxide, or even oxidatively degraded macromolecules, may serve as signaling molecules to stimulate such hermetic adaptations due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of nuclear factor (NF) κB, mitogen-activated protein kinase (MAPK), and peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), along with other newly discovered signaling pathways, in some of the most vital biological functions such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. The inability of the cell to maintain proper redox signaling underlies mechanisms of biological aging, during which inflammatory and catabolic pathways prevail. Research evidence and mechanisms connecting exercise-induced hormesis and redox signaling are reviewed.
Collapse
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA.
| | - Chounghun Kang
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sport Science, Tianjin University of Sport, China
| |
Collapse
|
107
|
Li F, Nie J, Lu Y, Tong TKK, Yi L, Yan H, Fu FHK, Ma S. The impact of intermittent exercise in a hypoxic environment on redox status and cardiac troponin release in the serum of well-trained marathon runners. Eur J Appl Physiol 2016; 116:2045-51. [PMID: 27572505 DOI: 10.1007/s00421-016-3460-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the effects of hypoxic training on redox status and cardiac troponin (cTn) release after intermittent exercise. METHOD Nine well-trained male marathon runners (age, 21.7 ± 2.3 year; body mass, 64.7 ± 4.8 kg; height, 177.9 ± 3.8 cm; and VO2max, 64.3 ± 6.7 ml kg(-1) min(-1)) completed intermittent exercise under normoxic [trial N; fraction of inspiration oxygen (FIO2), 21.0 %] and hypoxic (trial H; FIO2, 14.4 %) conditions in random order. Each bout of intermittent exercise included hard run (16.2 ± 0.8 km h(-1)) at 90 % VO2max for 2 min followed by easy run (9.0 ± 0.4 km h(-1)) at 50 % VO2max for 2 min and 23 bouts in 92 min totally. Malondialdehyde, reduced glutathione (GSH), superoxide dismutase, an estimate of total antioxidant capacity (T-AOC), high-sensitivity cardiac troponin T (hs-cTnT), and cardiac troponin I (cTnI) were measured before, immediately after (0 h), and 2, 4, and 24 h after the completion of trials N and H. RESULT GSH was increased immediately after trial N. T-AOC was lower 4 h after trial H than trial N. Hs-cTnT was elevated from 0 to 4 h and returned to baseline 24 h after both trials. CTnI was increased after trial H; peaked at 2-4 h and returned to below the detection by 24 h. CONCLUSION The overall redox status was balanced under normoxic conditions, and exercise-induced cTn release did not deviate. However, the protective effects of antioxidant were weaker in the hypoxic state than normoxic, and the stress on the myocardium induced by intermittent exercise was transiently aggravated.
Collapse
Affiliation(s)
- Feifei Li
- Department of Rehabilitation, Beijing Sport University, 48 Xinxi Road, Haidian District, Beijing, 100084, China.
| | - Jinlei Nie
- School of Physical Education and Sports, Macao Polytechnic Institute, Macao, China
| | - Yifan Lu
- Department of Rehabilitation, Beijing Sport University, 48 Xinxi Road, Haidian District, Beijing, 100084, China
| | - Tom Kwok Keung Tong
- Department of Physical Education, Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong, China
| | - Longyan Yi
- Sport Science Research Centre, Beijing Sport University, Beijing, China
| | - Huiping Yan
- Department of Rehabilitation, Beijing Sport University, 48 Xinxi Road, Haidian District, Beijing, 100084, China
| | - Frank Hoo Kin Fu
- Department of Physical Education, Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong, China
| | - Shengxia Ma
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
108
|
Lee YH, Kim JH, Song CH, Jang KJ, Kim CH, Kang JS, Choi YH, Yoon HM. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1. J Pharmacopuncture 2016; 19:59-69. [PMID: 27280051 PMCID: PMC4887753 DOI: 10.3831/kpi.2016.19.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the cellular anti-oxidant defense capacity through activation of Nrf2/HO-1, thereby protecting C2C12 myoblasts from H2O2-induced oxidative cytotoxicity.
Collapse
Affiliation(s)
- Yoo-Hwan Lee
- Departments of Acupuncture and Moxibustion, Dong-Eui University College of Korean Medicine, Busan, Korea
| | - Jung-Hee Kim
- Departments of Acupuncture and Moxibustion, Dong-Eui University College of Korean Medicine, Busan, Korea
| | - Choon-Ho Song
- Departments of Acupuncture and Moxibustion, Dong-Eui University College of Korean Medicine, Busan, Korea
| | - Kyung-Jeon Jang
- Departments of Acupuncture and Moxibustion, Dong-Eui University College of Korean Medicine, Busan, Korea
| | - Cheol-Hong Kim
- Departments of Acupuncture and Moxibustion, Dong-Eui University College of Korean Medicine, Busan, Korea
| | - Ji-Sook Kang
- Anti-Aging Research Center, Dong-Eui University, Busan, Korea
| | - Yung-Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan, Korea; Department of Acupuncture and Moxibustion, Dong-Eui University College of Korean Medicine, Busan, Korea
| | - Hyun-Min Yoon
- Departments of Acupuncture and Moxibustion, Dong-Eui University College of Korean Medicine, Busan, Korea
| |
Collapse
|
109
|
Turner JE. Is immunosenescence influenced by our lifetime "dose" of exercise? Biogerontology 2016; 17:581-602. [PMID: 27023222 PMCID: PMC4889625 DOI: 10.1007/s10522-016-9642-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
The age-associated decline in immune function, referred to as immunosenescence, is well characterised within the adaptive immune system, and in particular, among T cells. Hallmarks of immunosenescence measured in the T cell pool, include low numbers and proportions of naïve cells, high numbers and proportions of late-stage differentiated effector memory cells, poor proliferative responses to mitogens, and a CD4:CD8 ratio <1.0. These changes are largely driven by infection with Cytomegalovirus, which has been directly linked with increased inflammatory activity, poor responses to vaccination, frailty, accelerated cognitive decline, and early mortality. It has been suggested however, that exercise might exert an anti-immunosenescence effect, perhaps delaying the onset of immunological ageing or even rejuvenating aged immune profiles. This theory has been developed on the basis of evidence that exercise is a powerful stimulus of immune function. For example, in vivo antibody responses to novel antigens can be improved with just minutes of exercise undertaken at the time of vaccination. Further, lymphocyte immune-surveillance, whereby cells search tissues for antigens derived from viruses, bacteria, or malignant transformation, is thought to be facilitated by the transient lymphocytosis and subsequent lymphocytopenia induced by exercise bouts. Moreover, some forms of exercise are anti-inflammatory, and if repeated regularly over the lifespan, there is a lower morbidity and mortality from diseases with an immunological and inflammatory aetiology. The aim of this article is to discuss recent theories for how exercise might influence T cell immunosenescence, exploring themes in the context of hotly debated issues in immunology.
Collapse
Affiliation(s)
- James E Turner
- Department for Health, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
110
|
Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise. Biochem Res Int 2016; 2016:3757623. [PMID: 27064342 PMCID: PMC4811060 DOI: 10.1155/2016/3757623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT), moderately trained (MT), and untrained (UT) groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG), cysteine/cystine (Cys/CySS), and GSH/GSSG ratio in red blood cells (RBCs) were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p = 0.001) and Cys/CySS (p = 0.005) were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p = 0.860), while RBCs GSH/GSSG showed significant reduction (p = 0.003) and elevation (p = 0.007) in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases.
Collapse
|
111
|
Powers SK, Radak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. J Physiol 2016; 594:5081-92. [PMID: 26893258 DOI: 10.1113/jp270646] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/06/2015] [Indexed: 01/16/2023] Open
Abstract
The existence of free radicals in living cells was first reported in 1954 and this important finding helped launch the field of free radical biology. However, the discovery that muscular exercise is associated with increased biomarkers of oxidative stress did not occur until 1978. Following the initial report that exercise promotes oxidative stress in humans, many studies have confirmed that prolonged or short-duration high intensity exercise results in increased radical production in active skeletal muscles resulting in the formation of oxidized lipids and proteins in the working muscles. Since these early descriptive studies, the investigation of radicals and redox biology related to exercise and skeletal muscle has grown as a discipline and the importance of this research in the biomedical sciences is widely recognized. This review will briefly summarize the history of research in exercise-induced oxidative stress and will discuss the major paradigm shifts that the field has undergone and continues to experience. We conclude with a discussion of future directions in the hope of stimulating additional research in this important field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA.
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Li Li Ji
- School of Kinesiology, University of Minnesota, 111 Cooke Hall, 1900 University Avenue, Minneapolis, MN, 55455, USA
| |
Collapse
|
112
|
Conti V, Izzo V, Corbi G, Russomanno G, Manzo V, De Lise F, Di Donato A, Filippelli A. Antioxidant Supplementation in the Treatment of Aging-Associated Diseases. Front Pharmacol 2016; 7:24. [PMID: 26903869 PMCID: PMC4751263 DOI: 10.3389/fphar.2016.00024] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is generally considered as the consequence of an imbalance between pro- and antioxidants species, which often results into indiscriminate and global damage at the organismal level. Elderly people are more susceptible to oxidative stress and this depends, almost in part, from a decreased performance of their endogenous antioxidant system. As many studies reported an inverse correlation between systemic levels of antioxidants and several diseases, primarily cardiovascular diseases, but also diabetes and neurological disorders, antioxidant supplementation has been foreseen as an effective preventive and therapeutic intervention for aging-associated pathologies. However, the expectations of this therapeutic approach have often been partially disappointed by clinical trials. The interplay of both endogenous and exogenous antioxidants with the systemic redox system is very complex and represents an issue that is still under debate. In this review a selection of recent clinical studies concerning antioxidants supplementation and the evaluation of their influence in aging-related diseases is analyzed. The controversial outcomes of antioxidants supplementation therapies, which might partially depend from an underestimation of the patient specific metabolic demand and genetic background, are presented.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine and Surgery, University of Salerno Baronissi, Italy
| | - Viviana Izzo
- Department of Medicine and Surgery, University of Salerno Baronissi, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Giusy Russomanno
- Department of Medicine and Surgery, University of Salerno Baronissi, Italy
| | - Valentina Manzo
- Department of Medicine and Surgery, University of Salerno Baronissi, Italy
| | - Federica De Lise
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Alberto Di Donato
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Amelia Filippelli
- Department of Medicine and Surgery, University of Salerno Baronissi, Italy
| |
Collapse
|
113
|
Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration. Sci Rep 2016; 6:20752. [PMID: 26853930 PMCID: PMC4745102 DOI: 10.1038/srep20752] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40phox and p47phox) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration.
Collapse
|
114
|
Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8327410. [PMID: 26788252 PMCID: PMC4691634 DOI: 10.1155/2016/8327410] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
Accurate control of the cell redox state is mandatory for maintaining the structural integrity and physiological functions. This control is achieved both by a fine-tuned balance between prooxidant and anti-oxidant molecules and by spatial and temporal confinement of the oxidative species. The diverse cellular compartments each, although structurally and functionally related, actively maintain their own redox balance, which is necessary to fulfill specialized tasks. Many fundamental cellular processes such as insulin signaling, cell proliferation and differentiation and cell migration and adhesion, rely on localized changes in the redox state of signal transducers, which is mainly mediated by hydrogen peroxide (H2O2). Therefore, oxidative stress can also occur long before direct structural damage to cellular components, by disruption of the redox circuits that regulate the cellular organelles homeostasis. The hepatocyte is a systemic hub integrating the whole body metabolic demand, iron homeostasis and detoxification processes, all of which are redox-regulated processes. Imbalance of the hepatocyte's organelles redox homeostasis underlies virtually any liver disease and is a field of intense research activity. This review recapitulates the evolving concept of oxidative stress in the diverse cellular compartments, highlighting the principle mechanisms of oxidative stress occurring in the healthy and wounded hepatocyte.
Collapse
|
115
|
Venditti P, Napolitano G, Barone D, Pervito E, Di Meo S. Vitamin E-enriched diet reduces adaptive responses to training determining respiratory capacity and redox homeostasis in rat heart. Free Radic Res 2015; 50:56-67. [DOI: 10.3109/10715762.2015.1106530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
116
|
Spanidis Y, Goutzourelas N, Stagos D, Mpesios A, Priftis A, Bar-Or D, Spandidos DA, Tsatsakis AM, Leon G, Kouretas D. Variations in oxidative stress markers in elite basketball players at the beginning and end of a season. Exp Ther Med 2015; 11:147-153. [PMID: 26889231 PMCID: PMC4726866 DOI: 10.3892/etm.2015.2843] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to examine the changes occuring in the redox status in male basketball players at the beginning and end of a highly competitive season. For this purpose, the redox status of 14 professional athletes of a European basketball club was examined at 2 different time points, at the beginning (phase 1) and at the end of the season (phase 2). The redox status was assessed in blood using conventional oxidative stress markers, such as thiobarbituric acid reactive substances (TBARS), protein carbonyls (CARB) and the total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. Moreover, a new static oxidation-reduction potential marker (sORP) was assessed in plasma. Our results revealed that sORP was significantly increased by 9.6% and GSH levels were significantly decreased by 35.0% at phase 2 compared to phase 1, indicating the induction of oxidative stress due to excessive exercise. Moreover, TAC was significantly increased by 12.9% at phase 2 compared to phase 1, indicating the activation of adaptive responses for counteracting oxidative stress. The CARB and TBARS levels were not significantly altered between the 2 phases, although there was a significant correlation (r=0.798) between the sORP and CARB levels. Furthermore, the variations in these markers between athletes were examined. We found that 3 markers exhibited a similar response between athletes, that is, sORP was increased in all 14 athletes, TAC was increased in 13 and the GSH levels were decreased in 14. However, the other 3 markers (i.e., TBARS, CARB and CAT) exhibited marked variations between the athletes, suggesting that the optimal approach with which to counteract (e.g., antioxidant supplementation) the observed increase in oxidative stress is the individualized examination of the redox status of athletes using a series of markers. This would allow the identification of athletes affected by severe oxidative stress and inflammation, and would thus indicate when necessary intervention measures are required to improve their health and performance.
Collapse
Affiliation(s)
- Ypatios Spanidis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Anastasios Mpesios
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - Alexandros Priftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - David Bar-Or
- Department of Trauma Research, St. Anthony Hospital, Lakewood, CO 80228, USA; Department of Trauma Research, Swedish Medical Center, Englewood, CO 80113, USA; Department of Trauma Research, Medical Center of Plano, Plano, TX 75075, USA; Luoxis Diagnostics, Inc., Englewood, CO 80112, USA
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George Leon
- Standard Centre of Bioassays, 'Hartografoi Hygeias', Athens 15124, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| |
Collapse
|
117
|
Fraile-Bermúdez A, Kortajarena M, Zarrazquin I, Maquibar A, Yanguas J, Sánchez-Fernández C, Gil J, Irazusta A, Ruiz-Litago F. Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals. Exp Gerontol 2015; 70:26-31. [DOI: 10.1016/j.exger.2015.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/15/2015] [Accepted: 07/07/2015] [Indexed: 01/22/2023]
|
118
|
Huang CJ, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO. Obesity-Related Oxidative Stress: the Impact of Physical Activity and Diet Manipulation. SPORTS MEDICINE-OPEN 2015; 1:32. [PMID: 26435910 PMCID: PMC4580715 DOI: 10.1186/s40798-015-0031-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 01/03/2023]
Abstract
Obesity-related oxidative stress, the imbalance between pro-oxidants and antioxidants (e.g., nitric oxide), has been linked to metabolic and cardiovascular disease, including endothelial dysfunction and atherosclerosis. Reactive oxygen species (ROS) are essential for physiological functions including gene expression, cellular growth, infection defense, and modulating endothelial function. However, elevated ROS and/or diminished antioxidant capacity leading to oxidative stress can lead to dysfunction. Physical activity also results in an acute state of oxidative stress. However, it is likely that chronic physical activity provides a stimulus for favorable oxidative adaptations and enhanced physiological performance and physical health, although distinct responses between aerobic and anaerobic activities warrant further investigation. Studies support the benefits of dietary modification as well as exercise interventions in alleviating oxidative stress susceptibility. Since obese individuals tend to demonstrate elevated markers of oxidative stress, the implications for this population are significant. Therefore, in this review our aim is to discuss (i) the role of oxidative stress and inflammation as associated with obesity-related diseases, (ii) the potential concerns and benefits of exercise-mediated oxidative stress, and (iii) the advantageous role of dietary modification, including acute or chronic caloric restriction and vitamin D supplementation.
Collapse
Affiliation(s)
- Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431 USA
| | | | - Aaron L Slusher
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431 USA ; Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA USA
| | - Heather E Webb
- Department of Kinesiology, Texas A&M University-Corpus Christi, Corpus Christi, TX USA
| | - J Thomas Mock
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431 USA
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
119
|
Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med 2015; 45:187-200. [PMID: 25249278 DOI: 10.1007/s40279-014-0264-9] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has traditionally been believed that resistance training can only induce muscle growth when the exercise intensity is greater than 65% of the 1-repetition maximum (RM). However, more recently, the use of low-intensity resistance exercise with blood-flow restriction (BFR) has challenged this theory and consistently shown that hypertrophic adaptations can be induced with much lower exercise intensities (<50% 1-RM). Despite the potent hypertrophic effects of BFR resistance training being demonstrated by numerous studies, the underlying mechanisms responsible for such effects are not well defined. Metabolic stress has been suggested to be a primary factor responsible, and this is theorised to activate numerous other mechanisms, all of which are thought to induce muscle growth via autocrine and/or paracrine actions. However, it is noteworthy that some of these mechanisms do not appear to be mediated to any great extent by metabolic stress but rather by mechanical tension (another primary factor of muscle hypertrophy). Given that the level of mechanical tension is typically low with BFR resistance exercise (<50% 1-RM), one may question the magnitude of involvement of these mechanisms aligned to the adaptations reported with BFR resistance training. However, despite the low level of mechanical tension, it is plausible that the effects induced by the primary factors (mechanical tension and metabolic stress) are, in fact, additive, which ultimately contributes to the adaptations seen with BFR resistance training. Exercise-induced mechanical tension and metabolic stress are theorised to signal a number of mechanisms for the induction of muscle growth, including increased fast-twitch fibre recruitment, mechanotransduction, muscle damage, systemic and localised hormone production, cell swelling, and the production of reactive oxygen species and its variants, including nitric oxide and heat shock proteins. However, the relative extent to which these specific mechanisms are induced by the primary factors with BFR resistance exercise, as well as their magnitude of involvement in BFR resistance training-induced muscle hypertrophy, requires further exploration.
Collapse
Affiliation(s)
- Stephen John Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Manchester, M6 6PU, UK,
| | | |
Collapse
|
120
|
Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species--the good, the bad and the ugly. Acta Physiol (Oxf) 2015; 214:329-48. [PMID: 25912260 DOI: 10.1111/apha.12515] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are chemically reactive molecules that are naturally produced within biological systems. Research has focused extensively on revealing the multi-faceted and complex roles that ROS play in living tissues. In regard to the good side of ROS, this article explores the effects of ROS on signalling, immune response and other physiological responses. To review the potentially bad side of ROS, we explain the consequences of high concentrations of molecules that lead to the disruption of redox homeostasis, which induces oxidative stress damaging intracellular components. The ugly effects of ROS can be observed in devastating cardiac, pulmonary, neurodegenerative and other disorders. Furthermore, this article covers the regulatory enzymes that mitigate the effects of ROS. Glutathione peroxidase, superoxide dismutase and catalase are discussed in particular detail. The current understanding of ROS is incomplete, and it is imperative that future research be performed to understand the implications of ROS in various therapeutic interventions.
Collapse
Affiliation(s)
- L. Zuo
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; Columbus OH USA
- Biophysics Graduate Program; The Ohio State University; Columbus OH USA
| | - T. Zhou
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; Columbus OH USA
- Biophysics Graduate Program; The Ohio State University; Columbus OH USA
| | - B. K. Pannell
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; Columbus OH USA
| | - A. C. Ziegler
- Radiologic Sciences and Respiratory Therapy Division; School of Health and Rehabilitation Sciences; The Ohio State University College of Medicine; Columbus OH USA
| | - T. M. Best
- Division of Sports Medicine; Department of Family Medicine; Sports Health & Performance Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
| |
Collapse
|
121
|
Finkler M, Lichtenberg D, Pinchuk I. The relationship between oxidative stress and exercise. J Basic Clin Physiol Pharmacol 2015; 25:1-11. [PMID: 23959662 DOI: 10.1515/jbcpp-2013-0082] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/16/2013] [Indexed: 01/09/2023]
Abstract
Physical exercise has many benefits, but it might also have a negative impact on the body, depending on the training level, length of workout, gender, age and fitness. The negative effects of physical exercise are commonly attributed to an imbalance between the levels of antioxidants (both low molecular weight antioxidants and antioxidant enzymes) and reactive oxygen and nitrogen species due to excessive production of free radicals during physical exercise. In this critical review, we look for answers for three specific questions regarding the interrelationship between physical exercise and oxidative stress (OS), namely, (i) the dependence of the steady-state level of OS on fitness, (ii) the effect of intensive exercise on the OS and (iii) the dependence of the effect of the intense exercise on the individual fitness. All these questions have been raised, investigated and answered, but the answers given on the basis of different studies are different. In the present review, we try to explain the reason(s) for the inconsistencies between the conclusions of different investigations, commonly based on the concentrations of specific biomarkers in body fluids. We think that most of the inconsistencies can be attributed to the difference between the criteria of the ill-defined term denoted OS, the methods used to test them and in some cases, between the qualities of the applied assays. On the basis of our interpretation of the differences between different criteria of OS, we consider possible answers to three well-defined questions. Possible partial answers are given, all of which lend strong support to the conclusion that the network responsible for homeostasis of the redox status is very effective. However, much more data are required to address the association between exercise and OS and its dependence on various relevant factors.
Collapse
|
122
|
Crisafulli A, Mancardi D, Marongiu E, Rastaldo R, Penna C, Pagliaro P. Preconditioning cardioprotection and exercise performance: a radical point of view. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0225-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
123
|
De Nunzio C, Presicce F, Lombardo R, Cancrini F, Petta S, Trucchi A, Gacci M, Cindolo L, Tubaro A. Physical activity as a risk factor for prostate cancer diagnosis: a prospective biopsy cohort analysis. BJU Int 2015; 117:E29-35. [PMID: 25908534 DOI: 10.1111/bju.13157] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To assess the association between physical activity, evaluated by the Physical Activity Scale for the Elderly (PASE) questionnaire, and prostate cancer risk in a consecutive series of men undergoing prostate biopsy. PATIENTS AND METHOD From 2011 onwards, consecutive men undergoing 12-core prostate biopsy were enrolled into a prospective database. Indications for a prostatic biopsy were a prostate-specific antigen (PSA) value of ≥4 ng/mL and/or a positive digital rectal examination. Body mass index (BMI) and waist circumferences were measured before the biopsy. Fasting blood samples were collected before biopsy and tested for: total PSA, glucose, high-density lipoprotein cholesterol, and trygliceride levels. Blood pressure was recorded. Metabolic syndrome (MetS) was defined according to the Adult Treatment panel III. The PASE questionnaire was completed before the biopsy. RESULTS In all, 286 patients were enrolled with a median (interquartile range, IQR) age and PSA level of 68 (62-74) years and 6.1 (5-8.8) ng/mL, respectively. The median (IQR) BMI was 26.4 (24.6-29) kg/m(2) and waist circumference was 102 (97-108) cm, with 75 patients (26%) presenting with MetS. In all, 106 patients (37%) had prostate cancer at biopsy. Patients with prostate cancer had higher PSA levels (median [IQR] 6.7 [5-10] vs 5.6 [4.8-8] ng/mL; P = 0.007) and lower LogPASE scores (median [IQR] 2.03 [1.82-2.18] vs 2.10 [1.92-2.29]; P = 0.005). On multivariate analysis, in addition to well-recognised risk factors such as age, PSA level and prostate volume, LogPASE score was an independent risk factor for prostate cancer diagnosis (odds ratio [OR] 0.146, 95% confidence interval [CI] 0.037-0.577; P = 0.006]. LogPASE score was also an independent predictor of high-grade cancer (OR 0.07, 95% CI 0.006-0.764; P = 0.029). CONCLUSION In our single-centre study, increased physical activity, evaluated by the PASE questionnaire, is associated with a reduced risk of prostate cancer and of high-grade prostate cancer at biopsy. Further studies should clarify the molecular pathways behind this association.
Collapse
Affiliation(s)
- Cosimo De Nunzio
- Department of Urology, Sant' Andrea Hospital, 'La Sapienza' University of Rome, Rome, Italy
| | - Fabrizio Presicce
- Department of Urology, Sant' Andrea Hospital, 'La Sapienza' University of Rome, Rome, Italy
| | - Riccardo Lombardo
- Department of Urology, Sant' Andrea Hospital, 'La Sapienza' University of Rome, Rome, Italy
| | - Fabiana Cancrini
- Department of Urology, Sant' Andrea Hospital, 'La Sapienza' University of Rome, Rome, Italy
| | - Stefano Petta
- Department of Urology, Sant' Andrea Hospital, 'La Sapienza' University of Rome, Rome, Italy
| | - Alberto Trucchi
- Department of Urology, Sant' Andrea Hospital, 'La Sapienza' University of Rome, Rome, Italy
| | - Mauro Gacci
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Luca Cindolo
- Department of Urology, Padre Pio Hospital, Vasto, Italy
| | - Andrea Tubaro
- Department of Urology, Sant' Andrea Hospital, 'La Sapienza' University of Rome, Rome, Italy
| |
Collapse
|
124
|
Dash C, Bostick RM, Goodman M, Flanders WD, Patel R, Shah R, Campbell PT, McCullough ML. Oxidative balance scores and risk of incident colorectal cancer in a US prospective cohort study. Am J Epidemiol 2015; 181:584-94. [PMID: 25693772 DOI: 10.1093/aje/kwu318] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/15/2014] [Indexed: 12/17/2022] Open
Abstract
Although oxidative stress is implicated in colorectal carcinogenesis, human studies on associations of individual prooxidants and antioxidants with colorectal cancer (CRC) have been inconclusive. We incorporated individual environmental factors known to affect oxidative stress into 4 oxidative balance scores (OBS) and investigated their associations with CRC in the Cancer Prevention Study II Nutrition Cohort. During 1999-2009, a total of 1,109 incident CRC cases were identified among 80,063 participants in the Nutrition Cohort who had completed detailed questionnaires. Four OBS with different weighting methods (equal weights, literature review-based, a posteriori data-based, and weights based on Bayesian analysis) were created by combining 16 dietary and nondietary lifestyle factors. Higher values for all 4 OBS, representing more antioxidant exposures than prooxidant exposures, were associated with 41%-53% lower risks of CRC; for example, the relative risk for the highest OBS quartile versus the lowest in the Bayesian analysis was 0.50 (95% confidence interval: 0.41, 0.61). The associations were more modest when OBS was restricted to either dietary or nondietary components. These results, obtained using comprehensive summary measures of oxidative balance-especially considering the similarity of the findings derived using the different weighting methods-support the hypothesis that a predominance of antioxidant lifestyle exposures (both dietary and nondietary) over prooxidant lifestyle exposures reduces risk of CRC.
Collapse
|
125
|
Kawamoto R, Kohara K, Katoh T, Kusunoki T, Ohtsuka N, Abe M, Kumagi T, Miki T. Changes in oxidized low-density lipoprotein cholesterol are associated with changes in handgrip strength in Japanese community-dwelling persons. Endocrine 2015; 48:871-7. [PMID: 25064380 DOI: 10.1007/s12020-014-0360-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Nordic walking (NW), characterized by the use of two walking poles, has positive effects on several muscle groups. Muscle strength and mass decrease with age, and recently, this decrease is defined as sarcopenia. Sarcopenia may be triggered by oxidative stress. We investigated whether changes in the oxidative stress marker, malondialdehyde-modified low-density lipoprotein (MDA-LDL)/LDL-cholesterol (LDL-C) ratio are associated with change in handgrip strength (HGS), which is a useful indicator of sarcopenia, by a 12-week NW exercise among Japanese community-dwelling persons. The present study included 65 women aged 67±7 years and 9 men aged 71±8 years from a rural village. NW exercise of 120 min per week was performed for 12 weeks. Before and at the end of the 12-week intervention, various confounding factors and HGS were measured. 12-week changes in various factors were calculated by subtracting the baseline values from the 12-week values. Changes in HGS and follow-up HGS increased progressively with decreased changes in the MDA-LDL/LDL-C ratio after the 12-week walking exercise (r=-0.32, P=0.006 and r=-0.35, P=0.002, respectively). Multiple linear regression analysis showed that changes in HDL-C (β=0.26, P=0.019) and MDA-LDL/LDL-C ratio (β=-0.32, P=0.004) were significantly and independently associated with changes in HGS. When the data were further stratified by gender, change in the MDA-LDL/LDL-C ratio was significantly and similarly associated with change in HGS in women only. These results suggest that change in MDA-LDL/LDL-C ratio may be a predictor for HGS after a 12-week NW exercise in community-dwelling persons.
Collapse
Affiliation(s)
- Ryuichi Kawamoto
- Department of Community Medicine, Ehime University Graduate School of Medicine, Toon-city, Ehime, 791-0295, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
126
|
García-Mesa Y, Colie S, Corpas R, Cristòfol R, Comellas F, Nebreda AR, Giménez-Llort L, Sanfeliu C. Oxidative Stress Is a Central Target for Physical Exercise Neuroprotection Against Pathological Brain Aging. J Gerontol A Biol Sci Med Sci 2015; 71:40-9. [PMID: 25720862 DOI: 10.1093/gerona/glv005] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/08/2015] [Indexed: 01/09/2023] Open
Abstract
Physical exercise is suggested for preventing or delaying senescence and Alzheimer's disease (AD). We have examined its therapeutic value in the advanced stage of AD-like pathology in 3xTg-AD female mice through voluntary wheel running from 12 to 15 months of age. Mice submitted to exercise showed improved body fitness, immunorejuvenation, improvement of behavior and cognition, and reduced amyloid and tau pathology. Brain tissue analysis of aged 3xTg-AD mice showed high levels of oxidative damage. However, this damage was decreased by physical exercise through regulation of redox homeostasis. Network analyses showed that oxidative stress was a central event, which correlated with AD-like pathology and the AD-related behaviors of anxiety, apathy, and cognitive loss. This study corroborates the importance of redox mechanisms in the neuroprotective effect of physical exercise, and supports the theory of the crucial role of oxidative stress in the switch from normal brain aging to pathological aging and AD.
Collapse
Affiliation(s)
- Yoelvis García-Mesa
- Institut d'Investigacions Biomèdiques de Barcelona - CSIC, Spain. Present address: Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sandra Colie
- Signalling and Cell Cycle Laboratory, Institute for Research in Biomedicine, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona - CSIC, Spain
| | - Rosa Cristòfol
- Institut d'Investigacions Biomèdiques de Barcelona - CSIC, Spain
| | - Francesc Comellas
- Department of Applied Mathematics IV, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Angel R Nebreda
- Signalling and Cell Cycle Laboratory, Institute for Research in Biomedicine, Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Lydia Giménez-Llort
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona - CSIC, Spain. Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
127
|
Yavari A, Javadi M, Mirmiran P, Bahadoran Z. Exercise-induced oxidative stress and dietary antioxidants. Asian J Sports Med 2015; 6:e24898. [PMID: 25883776 PMCID: PMC4393546 DOI: 10.5812/asjsm.24898] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/22/2014] [Indexed: 12/23/2022] Open
Abstract
Context: Overproduction of reactive oxygen and nitrogen species during physical exercise, exercise induced oxidative stress and antioxidant supplementation is interesting and controversial concepts that have been considered during the past decades. Evidence Acquisition: In this review, we aimed to summarize current evidence in relation to antioxidant supplementation outcomes during exercise and physical activity. For this aim, we obtained relevant articles through searches of the Medline and PubMed databases between 1980 to 2013. Although major studies have indicated that antioxidants could attenuate biomarkers of exercise-induced oxidative stress and the use of antioxidant supplement is a common phenomenon among athletes and physically active people, there are some doubts regarding the benefits of these. Results: It seems that the best recommendations regarding antioxidants and exercise are having a balanced diet rich in natural antioxidants and phytochemicals. Conclusions: Regular consumption of various fresh fruits and vegetables, whole grains, legumes and beans, sprouts and seeds is an effective and safe way to meet all antioxidant requirements in physically active persons and athletes.
Collapse
Affiliation(s)
- Abbas Yavari
- Department of Physical Education, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Maryam Javadi
- Department of Nutrition, Faculty of Health, Qazvin University of Medical Sciences, Qazvin, IR Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Parvin Mirmiran, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-2122432500, E-mail:
| | - Zahra Bahadoran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
128
|
Bouzid MA, Hammouda O, Matran R, Robin S, Fabre C. Influence of physical fitness on antioxidant activity and malondialdehyde level in healthy older adults. Appl Physiol Nutr Metab 2015; 40:582-9. [PMID: 25942379 DOI: 10.1139/apnm-2014-0417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate how physical fitness level could affect antioxidant activity and malondialdehyde (MDA) level at rest and in response to exhaustive exercise in healthy older adults. Fifty older adults (average age: 66.1 ± 3.8 years) were divided according to their physical fitness level into an unfit group (UG) (n = 15), a low fitness level group (LFG) (n = 18), and a high fitness level group (HFG) (n = 17). Fitness status was classified based on answers to a questionnaire about physical activity in the previous 12 months. Before and after an incremental cycle ergometer test to exhaustion, the following markers were assessed: superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase, ascorbic acid, α-tocopherol, and MDA. At rest, SOD, GPX, and α-tocopherol activities were higher in the HFG (p < 0.05), whereas MDA level was lower in the LFG in comparison with the 2 other groups (p < 0.05). During the postexercise period, antioxidant activity increased only in the LFG and the HFG (GPX, SOD, and α-tocopherol). MDA level increased in all groups after the exercise (p < 0.05). In addition, MDA level was higher during the recovery period in the HFG as compared with the others groups. This study concluded that both low and high physical fitness levels help maintain better antioxidant defenses in older adults. However, a higher physical fitness level, rather than a lower physical fitness level, could increase lipid peroxidation.
Collapse
Affiliation(s)
- Mohamed Amine Bouzid
- Faculté des Sciences du Sport, Université Lille Nord de France, UDSL, EA-4488 Activité Physique Muscle Santé, Faculté des Sciences du Sport, France
| | | | | | | | | |
Collapse
|
129
|
Bellassoued K, Van Pelt J, Elfeki A. Neurotoxicity in rats induced by the poisonous dreamfish (Sarpa salpa). PHARMACEUTICAL BIOLOGY 2015; 53:286-295. [PMID: 25243872 DOI: 10.3109/13880209.2014.916311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Consumption of Sarpa salpa Linn. (Sparidae) in certain periods of the year is inadvisable because it can cause central nervous system disorders resulting in sea food poisoning. AIMS The present study assesses the cytotoxic effects of compounds, not-yet identified, present in the organ extracts of S. salpa, collected in autumn, the period corresponding to the peak in human health problems. MATERIALS AND METHODS The toxicity was assessed by mouse bioassay of aqueous extract of the fish organs. Wistar rats received daily extracts of different organs of S. salpa by gastric gavage for 7 d (0.3 mL of extract/100 g body weight BW). The dose of tissue extracts of viscera, liver, brain, and flesh of S. salpa administered to rats was as follows: 172, 313, 2050, and 2660 mg/kg BW, respectively. No deaths occurred during the period of treatment. RESULTS The lethal dose (LD50) determined for the crude ciguatoxin (neurotoxins) extracts of viscera, liver, brain, and flesh of S. salpa was as follows: 1.2, 2.2, 14.4, and 18.6 g/kg mouse, respectively. Changes in locomotor activity during the first 2 h and failure in breathing and no evident signs of gastrointestinal problems were recorded. We observed (1) induction of oxidative stress, indicated by an increase in lipid peroxidation (TBARS) in groups that received extracts of liver (+425%) or viscera (+433%), and a significant decrease in antioxidant enzyme activities (SOD, CAT, and GPx) in cerebral cortex tissue by 13%, 25%, and 25% (LT: animals receiving liver extracts) and by 16%, 26%, and 27% (VT: animals receiving viscera extracts), respectively. In contrast, the administration of extracts of flesh and brain induced an increase in antioxidant enzyme activities (SOD, CAT, and GPx) in cerebral cortex tissue by 26%, 23%, and 44% (FT: flesh extract) and 28%, 24%, and 46% (BT: brain extract), respectively; (2) a significant decrease for acetylcholinesterase (AChE) activity in cerebral cortex was recorded in FT, BT, LT, and VT by 27, 34, 58, and 78%, respectively. Moreover, a significant decrease of AChE activity in plasma was recorded in FT, BT, LT, and VT by 16, 21, 38, and 48%, respectively; (3) the histological findings confirmed the biochemical results. CONCLUSIONS Liver and especially the visceral part of S. salpa presented toxicity, which clearly indicates the danger of using this fish as food.
Collapse
Affiliation(s)
- Khaled Bellassoued
- Animal Ecophysiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax , Sfax , Tunisia and
| | | | | |
Collapse
|
130
|
Exercise improves endothelial function: a local analysis of production of nitric oxide and reactive oxygen species. Nitric Oxide 2015; 45:7-14. [PMID: 25619203 DOI: 10.1016/j.niox.2015.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/15/2014] [Accepted: 01/16/2015] [Indexed: 12/20/2022]
Abstract
This study aimed at investigating the acute effects of aerobic exercise on endothelium-dependent vasomotor function of rat aorta, as well as mechanisms involved in endothelial nitric oxide (NO) bioactivity. Wistar rats were assigned to either a resting control (C, n = 21) or acutely exercised (E, n = 21) groups (60 min, 55-60% of maximum speed). After exercise, thoracic aorta was excised and cut into rings. Two rings were promptly applied to evaluate vasomotor function and the rest of aorta was used for additional measurements. Acute exercise significantly improved maximum ACh-induced relaxation (C, 91.6 ± 1.2 vs. E, 102.4 ± 1.7%, p < 0.001) and sensitivity to ACh (C, -7.3 ± 0.06 vs. E, -7.3 ± 0.02 log M, p < 0.01), and was accompanied by significantly increases on serine1177 eNOS phosphorylation, reflecting its enhanced activation. However, acute exercise also enhanced both superoxide and hydrogen peroxide production, as assayed by dihydroethidium oxidation, lucigenin chemiluminescence and Amplex Red assays. We also provided evidence for Nox2 NADPH oxidase (Nox) activation through gp91dstat-mediated inhibition of superoxide signals. Enhanced arterial relaxations associated with acute exercise were nearly-completely prevented by catalase, suggesting a role for paracrine hydrogen peroxide. Despite increased detectable oxidant generation, cellular oxidative stress was not evident, as suggested by unaltered GSH:GSSG ratio and lipid hydroperoxides. Collectively, these results demonstrate that one bout of moderate aerobic exercise improves endothelial function by increasing NO bioavailability, while superoxide and hydrogen peroxide are generated in a controlled fashion.
Collapse
|
131
|
Shi X, Li D, Deng Q, Li Y, Sun G, Yuan X, Song Y, Wang Z, Li X, Li X, Liu G. NEFAs activate the oxidative stress-mediated NF-κB signaling pathway to induce inflammatory response in calf hepatocytes. J Steroid Biochem Mol Biol 2015; 145:103-12. [PMID: 25465477 DOI: 10.1016/j.jsbmb.2014.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022]
Abstract
Non-esterified fatty acids (NEFAs) are important induction factors of inflammatory responses in some metabolic diseases. High plasma levels of NEFAs and oxidative stress exist in the dairy cows with ketosis. The aim of this study was to investigate whether high levels of NEFAs can induce inflammatory response and the specific molecular mechanism in the hepatocytes of dairy cow. In vitro, primary cultured bovine hepatocytes were treated with different concentrations of NEFAs, PDTC (an NF-κB inhibitor) and NAC (an antioxidant). NEFAs significantly activated NF-κB pathway. Activated NF-κB upregulated the release of pro-inflammatory cytokines, thereby inducing inflammatory response in bovine hepatocytes. When PDTC was added, activation of NF-κB-mediated inflammatory response induced by NEFAs was inhibited. NEFAs treatment results in the overproduction of the markers of oxidative stress, reactive oxygen species (ROS) and malondialdehyde (MDA), which were ameliorated by NAC treatment. These increased ROS and MDA were caused by decreasing activity of antioxidant system, including glutathione peroxidase, superoxide dismutase and catalase, in bovine hepatocytes treated with NEFAs. NAC also ameliorated NEFAs-mediated NF-κB activation and the release of pro-inflammatory cytokines. These results indicate that high concentrations of NEFAs can induce cattle hepatocytes inflammatory response through activating the oxidative stress-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaoxia Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Dangdang Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Qinghua Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Yu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Guoquan Sun
- College of Animal Science and Technology, Inner Mongolia National University, Tongliao 028042, China
| | - Xue Yuan
- College of Animal Science and Technology, Inner Mongolia National University, Tongliao 028042, China
| | - Yuxiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China.
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, Jilin, China.
| |
Collapse
|
132
|
Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never! Biogerontology 2014; 16:249-64. [PMID: 25537184 DOI: 10.1007/s10522-014-9546-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).
Collapse
|
133
|
Borges JP, Verdoorn KS, Daliry A, Powers SK, Ortenzi VH, Fortunato RS, Tibiriçá E, Lessa MA. Delta opioid receptors: the link between exercise and cardioprotection. PLoS One 2014; 9:e113541. [PMID: 25415192 PMCID: PMC4240613 DOI: 10.1371/journal.pone.0113541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/27/2014] [Indexed: 12/26/2022] Open
Abstract
This study investigated the role of opioid receptor (OR) subtypes as a mechanism by which endurance exercise promotes cardioprotection against myocardial ischemia-reperfusion (IR) injury. Wistar rats were randomly divided into one of seven experimental groups: 1) control; 2) exercise-trained; 3) exercise-trained plus a non-selective OR antagonist; 4) control sham; 5) exercise-trained plus a kappa OR antagonist; 6) exercise-trained plus a delta OR antagonist; and 7) exercise-trained plus a mu OR antagonist. The exercised animals underwent 4 consecutive days of treadmill training (60 min/day at ∼70% of maximal oxygen consumption). All groups except the sham group were exposed to an in vivo myocardial IR insult, and the myocardial infarct size (IS) was determined histologically. Myocardial capillary density, OR subtype expression, heat shock protein 72 (HSP72) expression, and antioxidant enzyme activity were measured in the hearts of both the exercised and control groups. Exercise training significantly reduced the myocardial IS by approximately 34%. Pharmacological blockade of the kappa or mu OR subtypes did not blunt exercise-induced cardioprotection against IR-mediated infarction, whereas treatment of animals with a non-selective OR antagonist or a delta OR antagonist abolished exercise-induced cardioprotection. Exercise training enhanced the activities of myocardial superoxide dismutase (SOD) and catalase but did not increase the left ventricular capillary density or the mRNA levels of HSP72, SOD, and catalase. In addition, exercise significantly reduced the protein expression of kappa and delta ORs in the heart by 44% and 37%, respectively. Together, these results indicate that ORs contribute to the cardioprotection conferred by endurance exercise, with the delta OR subtype playing a key role in this response.
Collapse
Affiliation(s)
- Juliana P. Borges
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Victor H. Ortenzi
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo S. Fortunato
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo Tibiriçá
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Marcos Adriano Lessa
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
134
|
Effects of tadalafil administration on plasma markers of exercise-induced muscle damage, IL6 and antioxidant status capacity. Eur J Appl Physiol 2014; 115:531-9. [PMID: 25381629 DOI: 10.1007/s00421-014-3040-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Physical exercise is associated with enhanced production of reactive oxygen species, which if uncontrolled can result in tissue injury. Phosphodiesterase type 5 inhibitors (PDE5i) exhibit protective effect against oxidative stress, both in animals and healthy/unhealthy humans. However, the effect of a chronic administration of PDE5i, particularly combined with physical exercise, has never been investigated. PURPOSE The present study was designed to evaluate the effect of the long-acting PDE5i tadalafil on oxidative status and muscle damage after exhaustive exercise in healthy males included in a double-blind crossover trial. HYPOTHESIS Tadalafil, having a putative antioxidant activity, may reduce oxidative damage after strenuous exercise. METHODS Each volunteer randomly received two tablets of placebo or tadalafil (20 mg/day) with 36 h of interval before performing exhaustive exercise. After 2 weeks of washout, the volunteers were crossed over. Blood samples were collected immediately before exercise, immediately after, and during recovery (15, 30, 60 min). Plasma total antioxidant status, glutathione homeostasis (GSH/GSSG), malondialdehyde (MDA), protein carbonyls, creatine kinase (CK), lactate dehydrogenase (LDH) and the inflammatory cytokine interleukin 6 were assessed. RESULTS Tadalafil administration per se affected redox homeostasis (GSH/GSSG -36%; p < 0.05), cellular (CK +75% and LDH +36%; p < 0.05) and oxidative damage (MDA +41% and protein carbonyls +50%; p < 0.05) markers. The exhaustive exercise increased all the above-reported biochemical parameters, with subjects from the tadalafil group showing significantly higher values with respect to the placebo group. CONCLUSIONS A prolonged exposure to tadalafil decreases antioxidant capacity at resting condition, therefore making subjects more susceptible to the oxidative stress induced by an exhaustive bout of exercise.
Collapse
|
135
|
Marques-Aleixo I, Santos-Alves E, Mariani D, Rizo-Roca D, Padrão AI, Rocha-Rodrigues S, Viscor G, Torrella JR, Ferreira R, Oliveira PJ, Magalhães J, Ascensão A. Physical exercise prior and during treatment reduces sub-chronic doxorubicin-induced mitochondrial toxicity and oxidative stress. Mitochondrion 2014; 20:22-33. [PMID: 25446396 DOI: 10.1016/j.mito.2014.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022]
Abstract
Doxorubicin (DOX) is an anti-cancer agent whose clinical usage results in a cumulative and dose-dependent cardiotoxicity. We have previously shown that exercise performed prior to DOX treatment reduces the resulting cardiac(mito) toxicity. We sought to determine the effects on cardiac mitochondrial toxicity of two distinct chronic exercise models (endurance treadmill training-TM and voluntary free-wheel activity-FW) when used prior and during DOX treatment. Male-young Sprague-Dawley rats were divided into six groups (n=6 per group): SAL+SED (saline sedentary), SAL+TM (12-weeks TM), SAL+FW (12-weeks FW), DOX+SED (7-weeks of chronic DOX treatment 2mg/kg per week), DOX+TM and DOX+FW. DOX administration started 5weeks after the beginning of the exercise protocol. Heart mitochondrial ultrastructural alterations, mitochondrial function (oxygen consumption and membrane potential), semi-quantification of oxidative phosphorylation (OXPHOS) proteins and their in-gel activity, as well as proteins involved in mitochondrial oxidative stress (SIRT3, p66shc and UCP2), biogenesis (PGC1α and TFAM), acetylation and markers for oxidative damage (carbonyl groups, MDA,SH, aconitase, Mn-SOD activity) were evaluated. DOX treatment resulted in ultrastructural and functional alterations and decreased OXPHOS. Moreover, DOX decreased complex I activity and content, mitochondrial biogenesis (TFAM), increased acetylation and oxidative stress. TM and FW prevented DOX-induced alteration in OXPHOS, the increase in oxidative stress, the decrease in complex V activity and in complex I activity and content. DOX-induced decreases in TFAM and SIRT3 content were prevented by TM only. Both chronic models of physical exercise performed before and during the course of sub-chronic DOX treatment translated into an improved mitochondrial bioenergetic fitness, which may result in part from the prevention of mitochondrial oxidative stress and damage.
Collapse
Affiliation(s)
- Inês Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal.
| | - Estela Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Diogo Mariani
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - David Rizo-Roca
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Ana I Padrão
- QOPNA Chemistry Department, University of Aveiro, Portugal
| | - Sílvia Rocha-Rodrigues
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - Ginés Viscor
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - J Ramon Torrella
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Rita Ferreira
- QOPNA Chemistry Department, University of Aveiro, Portugal
| | - Paulo J Oliveira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - José Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - António Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
136
|
Theodorou AA, Paschalis V, Kyparos A, Panayiotou G, Nikolaidis MG. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus? Biochem Biophys Res Commun 2014; 454:131-6. [PMID: 25450369 DOI: 10.1016/j.bbrc.2014.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 02/04/2023]
Abstract
The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena.
Collapse
Affiliation(s)
| | - Vassilis Paschalis
- Department of Health Sciences, European University Cyprus, Nicosia, Cyprus; School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Antonios Kyparos
- School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - George Panayiotou
- Department of Health Sciences, European University Cyprus, Nicosia, Cyprus
| | - Michalis G Nikolaidis
- School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
137
|
Goutzourelas N, Stagos D, Demertzis N, Mavridou P, Karterolioti H, Georgadakis S, Kerasioti E, Aligiannis N, Skaltsounis L, Statiri A, Tsioutsiouliti A, Tsatsakis AM, Hayes AW, Kouretas D. Effects of polyphenolic grape extract on the oxidative status of muscle and endothelial cells. Hum Exp Toxicol 2014; 33:1099-112. [DOI: 10.1177/0960327114533575] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A grape pomace extract enhanced antioxidant mechanisms in muscle and endothelial cells both in the absence and in the presence of oxidative stress-induced agent tert-butyl hydroperoxide (tBHP). In particular, muscle (C2C12) and endothelial (EA.hy926) cells were treated with the extract at noncytotoxic concentrations for 24 h, and the oxidative stress markers, total reactive oxygen species (ROS), glutathione (GSH), thiobarbituric reactive substances (TBARS), and protein carbonyl levels were assessed. The results showed that the grape extract treatment reduced significantly ROS, TBARS, and protein carbonyl levels and increased GSH in C2C12 cells, while it increased GSH and decreased protein carbonyl levels in EA.hy926 cells. In the presence of tBHP, the grape extract treatment in C2C12 cells reduced significantly ROS, TBARS, and protein carbonyls and increased GSH compared with tBHP alone treatment, while, in EA.hy926 cells, the extract decreased significantly TBARS and protein carbonyls but increased GSH. The antioxidant potency of the extract was different between muscle and endothelial cells suggesting that the antioxidant activity depends on cell type. Moreover, the antioxidant activity of the grape extract, in both cell lines, exerted, at least in part, through increase in GSH levels. The present work is the first to report the effects of grape extract shown for skeletal muscle cells.
Collapse
Affiliation(s)
- N Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - D Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - N Demertzis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - P Mavridou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - H Karterolioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - S Georgadakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - E Kerasioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - N Aligiannis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - L Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - A Statiri
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - A Tsioutsiouliti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - AM Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion, Greece
| | - AW Hayes
- Harvard School of Public Health, Boston, MA, USA
- Spherix Consulting, Inc., Bethesda, MD, USA
| | - D Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
138
|
Siebert C, Kolling J, Scherer EBS, Schmitz F, da Cunha MJ, Mackedanz V, de Andrade RB, Wannmacher CMD, Wyse ATS. Effect of physical exercise on changes in activities of creatine kinase, cytochrome c oxidase and ATP levels caused by ovariectomy. Metab Brain Dis 2014; 29:825-35. [PMID: 24810635 DOI: 10.1007/s11011-014-9564-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
The reduction in the secretion of ovarian hormones, principally estrogen, is a consequence of menopause. Estrogens act primarily as female sex hormones, but also exert effects on different physiological systems including the central nervous system. The treatment normally used to reduce the symptoms of menopause is the hormone therapy, which seems to be effective in treating symptoms, but it may be responsible for adverse effects. Based on this, there is an increasing demand for alternative therapies that minimize signs and symptoms of menopause. In the present study we investigated the effect of ovariectomy and/or physical exercise on the activities of energy metabolism enzymes, such as creatine kinase (cytosolic and mitochondrial fractions), pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, as well as on ATP levels in the hippocampus of adult rats. Adult female Wistar rats with 90 days of age were subjected to ovariectomy (an animal model widely used to mimic the postmenopausal changes). Thirty days after the procedure, the rats were submitted to the exercise protocol, which was performed three times a week for 30 days. Twelve hours after the last training session, the rats were decapitated for subsequent biochemical analyzes. Results showed that ovariectomy did not affect the activities of pyruvate kinase, succinate dehydrogenase and complex II, but decreased the activities of creatine kinase (cytosolic and mitochondrial fractions) and cytochrome c oxidase. ATP levels were also reduced. Exercise did not produce the expected results since it was only able to partially reverse the activity of creatine kinase cytosolic fraction. The results of this study suggest that estrogen deficiency, which occurs as a result of ovariectomy, affects generation systems and energy homeostasis, reducing ATP levels in hippocampus of adult female rats.
Collapse
Affiliation(s)
- Cassiana Siebert
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Park EJ, Lee SY, Lee GH, Kim DW, Kim Y, Cho MH, Kim JH. Sheet-type titania, but not P25, induced paraptosis accompanying apoptosis in murine alveolar macrophage cells. Toxicol Lett 2014; 230:69-79. [PMID: 25111187 DOI: 10.1016/j.toxlet.2014.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 02/08/2023]
Abstract
In this study, we identified the toxic effects of sheet-type titania (TNS), which are being developed as a material for UV-blocking glass, comparing with P25, a benchmark control for titania, in MH-S cells, a mouse alveolar macrophage cell line. After 24 h exposure, the TNS-exposed cells formed large vacuoles while the P25-exposed ones did not. The decreased levels of cell viability were similar between the P25 and TNS groups, but ATP production was clearly lower in cells exposed to the TNS. P25 decreased the expression of calnexin protein, an endoplasmic reticulum (ER) membrane marker, and increased the number of cells generating ROS in a dose dependent manner. Meanwhile, TNS dilated the ER and mitochondria and increased the secretion of NO and pro-inflammatory cytokines, but not of ROS. Subsequently, we studied the molecular response following TNS-induced vacuolization. TNS started to form vacuoles in the cytosol since 20 min after exposure, and the expression of the mitochondria function-related genes were down-regulated the most in the cells exposed for 1 h. After 24 h exposure, the number of apoptotic cells and the relative levels of BAX to Bcl-2 increased. The expression of SOD1 protein, but not of SOD2, also dose-dependently increased with an increase in caspase-8 activity. Additionally, the MAPK pathway was significantly activated, even though the expression of p-EGFR did not change significantly. Furthermore, the number of apoptotic cells increased rapidly with time and with the inhibition of vacuole formation. Taken together, we suggest that P25 and TNS may target different organelles. In addition, TNS, but not P25, induced paraptosis accompanied by apoptosis in MH-S cells, and the formation of the cytoplasmic vacuoles allowed delay apoptosis following TNS exposure.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea.
| | - Seung Yun Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Myung-Haing Cho
- College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea.
| |
Collapse
|
140
|
Sureda A, Batle JM, Capó X, Martorell M, Córdova A, Tur JA, Pons A. Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils. Physiol Genomics 2014; 46:647-54. [PMID: 25005793 DOI: 10.1152/physiolgenomics.00028.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Scuba diving, characterized by hyperoxia and hyperbaria, could increase reactive oxygen species production which acts as signaling molecules to induce adaptation against oxidative stress. The aim was to study the effects of scuba diving immersion on neutrophil inflammatory response, the induction of oxidative damage, and the NO synthesis. DESIGN Nine male divers performed a dive at 50 m depth for a total time of 35 min. Blood samples were obtained at rest before the dive, after the dive, and 3 h after the diving session. MEASUREMENTS Markers of oxidative and nitrosative damage, nitrite, and the gene expression of genes related with the synthesis of nitric oxide and lipid mediators, cytokine synthesis, and inflammation were determined in neutrophils. RESULTS The mRNA levels of genes related with the inflammatory and immune response of neutrophils, except TNF-α, myeloperoxidase, and toll-like receptor (TLR) 2, significantly increased after the recovery period respect to predive and postdive levels. NF-κB, IL-6, and TLR4 gene expression reported significant differences immediately after diving respect to the predive values. Protein nitrotyrosine levels significantly rose after diving and remained high during recovery, whereas no significant differences were reported in malondialdehyde. Neutrophil nitrite levels as indicative of inducible nitric oxide synthase (iNOS) activity progressively increased after diving and recovery. The iNOS protein levels maintained the basal values in all situations. CONCLUSION Scuba diving which combines hyperoxia, hyperbaria, and acute exercise induces nitrosative damage with increased nitrotyrosine levels and an inflammatory response in neutrophils.
Collapse
Affiliation(s)
- Antoni Sureda
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Juan M Batle
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Xavier Capó
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Miquel Martorell
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Alfredo Córdova
- Department of Biochemistry and Physiology, School of Physical Therapy, University of Valladolid, Soria, Spain
| | - Josep A Tur
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| | - Antoni Pons
- Laboratori de Ciències de la Activitat Física, Research Group on Community Nutrition and Oxidative Stress, Departament de Biologia Fonamental i Ciències de la Salut, University of Balearic Islands, Palma de Mallorca, Spain, and CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Spain; and
| |
Collapse
|
141
|
Vitamin E in sarcopenia: current evidences on its role in prevention and treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:914853. [PMID: 25097722 PMCID: PMC4109111 DOI: 10.1155/2014/914853] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/06/2014] [Indexed: 01/01/2023]
Abstract
Sarcopenia is a geriatric syndrome that is characterized by gradual loss of muscle mass and strength with increasing age. Although the underlying mechanism is still unknown, the contribution of increased oxidative stress in advanced age has been recognized as one of the risk factors of sarcopenia. Thus, eliminating reactive oxygen species (ROS) can be a strategy to combat sarcopenia. In this review, we discuss the potential role of vitamin E in the prevention and treatment of sarcopenia. Vitamin E is a lipid soluble vitamin, with potent antioxidant properties and current evidence suggesting a role in the modulation of signaling pathways. Previous studies have shown its possible beneficial effects on aging and age-related diseases. Although there are evidences suggesting an association between vitamin E and muscle health, they are still inconclusive compared to other more extensively studied chronic diseases such as neurodegenerative diseases and cardiovascular diseases. Therefore, we reviewed the role of vitamin E and its potential protective mechanisms on muscle health based on previous and current in vitro and in vivo studies.
Collapse
|
142
|
Huang XY, Eungpinichpong W, Silsirivanit A, Nakmareong S, Wu XH. Tai chi improves oxidative stress response and DNA damage/repair in young sedentary females. J Phys Ther Sci 2014; 26:825-9. [PMID: 25013276 PMCID: PMC4085201 DOI: 10.1589/jpts.26.825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/07/2014] [Indexed: 12/24/2022] Open
Abstract
[Purpose] This study was to examine the effects of 12 weeks of Tai Chi (TC) exercise on antioxidant capacity, and DNA damage/repair in young females who did not perform regular physical exercise. [Subjects and Methods] Ten female students from a Chinese university voluntarily participated in this program. All of them practiced the 24-form simplified Tai Chi, 5 times weekly, for 12 weeks. Plasma levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), glutathione (GSH), hydroxyl radical inhibiting capacity (OH·-IC), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and 8-oxoguanine DNA glycosylase (OGG1) were measured at 0, 8, and 12 weeks. Heart rate (HR) was monitored during the last set of the training session at 4, 8, and 12 weeks. [Results] Plasma SOD and OH·-IC levels were increased at 8 and 12 weeks compared to the baseline (0 weeks). Gpx and GSH levels did not change significantly throughout the study period. The plasma MDA level was decreased significantly at 8 weeks but not at 12 weeks compared to the baseline value. While the plasma 8-OHdG level did not change throughout the study period, the plasma OGG1 level was significantly increased at 8 and 12 weeks compared to the baseline value. [Conclusion] TC practice for 12 weeks efficiently improved the oxidative stress response in young females who did not perform regular physical exercise. The TC exercise also increased the DNA repairing capacity.
Collapse
Affiliation(s)
- Xing-Yu Huang
- Department of Physical Therapy, Faculty of Associated
Medical Sciences, Khon Kaen University, Thailand
- School of Physical Education, Gannan Normal University,
China
- Back, Neck and Other Joint Pain Research Group, Khon Kaen
University, Thailand
| | - Wichai Eungpinichpong
- Department of Physical Therapy, Faculty of Associated
Medical Sciences, Khon Kaen University, Thailand
- Back, Neck and Other Joint Pain Research Group, Khon Kaen
University, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen
University, Thailand
| | - Saowanee Nakmareong
- Department of Physical Therapy, Faculty of Associated
Medical Sciences, Khon Kaen University, Thailand
| | - Xiu-Hua Wu
- School of Science and Technology, Gannan Normal University,
China
| |
Collapse
|
143
|
Ristow M, Schmeisser K. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS). Dose Response 2014; 12:288-341. [PMID: 24910588 PMCID: PMC4036400 DOI: 10.2203/dose-response.13-035.ristow] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful.
Collapse
Affiliation(s)
- Michael Ristow
- Energy Metabolism Laboratory, ETH Zürich (Swiss Federal Institute of Technology Zurich), Schwerzenbach/Zürich, CH 8603, Switzerland
- Dept. of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Kathrin Schmeisser
- Dept. of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| |
Collapse
|
144
|
Zivkovic V, Lazarevic P, Djuric D, Cubrilo D, Macura M, Vuletic M, Barudzic N, Nesic M, Jakovljevic V. Alteration in basal redox state of young male soccer players after a six-month training programme. ACTA ACUST UNITED AC 2014; 100:64-76. [PMID: 23471042 DOI: 10.1556/aphysiol.100.2013.1.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite worldwide popularity of soccer, there are still insufficient data about the effects of training process on oxidative stress-induced damage, which may occur during chronic exercise. The present study aimed to determine the effects of a six-month training programme on basal redox status of young male soccer players. The study included 26 male soccer players, aged 12-13, who participated in a six-month training programme, and 26 age-matched non-athletes who were not implemented in the training process. Blood samples were collected (before and after six-month training programme) in order to measure the following oxidative stress markers: index of lipid peroxidation (measured as TBARS), nitrites (NO2-), superoxide anion radical (O2-), hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) level. After six months, the levels of TBARS and NO2- were significantly increased, while the O2- and H2O2 remained unchanged. On the other hand, SOD and CAT activity increased, while GSH decreased. A carefully prepared training programme could strengthen most components of antioxidant defence systems and, except lipid peroxidation, does not promote oxidative stress in response to regular physical activity. These findings could help in the improvement of training programmes for young athletes.
Collapse
Affiliation(s)
- V Zivkovic
- University of Kragujevac Department of Physiology, Faculty of Medical Sciences Kragujevac Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Alexandrou AT, Li JJ. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response. Antioxid Redox Signal 2014; 20:1463-80. [PMID: 24180340 PMCID: PMC3936506 DOI: 10.1089/ars.2013.5684] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. RECENT ADVANCES Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. CRITICAL ISSUES The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. FUTURE DIRECTIONS Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk.
Collapse
Affiliation(s)
- Aris T Alexandrou
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis , Sacramento, California
| | | |
Collapse
|
146
|
Koenig R, Dickman JR, Kang C, Zhang T, Chu YF, Ji LL. Avenanthramide supplementation attenuates exercise-induced inflammation in postmenopausal women. Nutr J 2014; 13:21. [PMID: 24645793 PMCID: PMC3999982 DOI: 10.1186/1475-2891-13-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/04/2014] [Indexed: 03/11/2023] Open
Abstract
During aging, chronic systemic inflammation increases in prevalence and antioxidant balance shifts in favor of oxidant generation. Avenanthramide (AVA) is a group of oat phenolics that have shown anti-inflammatory and antioxidant capability. The present study investigated whether dietary supplementation of avenanthramides (AVA) in oats would increase antioxidant protection and reduce inflammation after a bout of downhill walking (DW) in postmenopausal women. Women at age of 50–80 years (N = 16) were randomly divided into two groups in a double-blinded fashion, receiving two cookies made of oat flour providing 9.2 mg AVA or 0.4 mg AVA (control, C) each day for 8 weeks. Before and after the dietary regimen, each group of subjects walked downhill on a treadmill (−9% grade) for 4 bouts of 15 minutes at a speed of 4.0 km/h with 5 minutes rest between sessions. Blood samples were collected at rest, 24 h post-DW, and 48 h post-DW pre- and post-supplementation. Both DW sessions increased plasma creatine kinase activity (P < 0.05). Before supplementation, in vitro neutrophil respiratory burst (NRB) activity was increased at 24 h post-DW (P < 0.05) and C-reactive protein (CRP) was increased 48 h post-DW (P < 0.05). AVA supplementation decreased DW-induced NRB at 24 h (P < 0.05) and CRP level 48 h (P < 0.05). Plasma interleukin (IL)-1β concentration and mononuclear cell nuclear factor (NF) κB binding were suppressed at rest and during post-DW period in AVA but not C group (P < 0.05). Plasma total antioxidant capacity (P < 0.05) and erythrocyte superoxide dismutase activity were increased in AVA vs. C (P < 0.05), whereas glutathione redox status was elevated 48 h post-DW but not affected by AVA. Thus, chronic AVA supplementation decreased systemic and DW-induced inflammation and increased blood-borne antioxidant defense in postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Li Ji
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
147
|
Moderate swimming exercise and caffeine supplementation reduce the levels of inflammatory cytokines without causing oxidative stress in tissues of middle-aged rats. Amino Acids 2014; 46:1187-95. [DOI: 10.1007/s00726-014-1679-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023]
|
148
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
149
|
Pilch W, Szygula Z, Tyka AK, Palka T, Tyka A, Cison T, Pilch P, Teleglow A. Disturbances in pro-oxidant-antioxidant balance after passive body overheating and after exercise in elevated ambient temperatures in athletes and untrained men. PLoS One 2014; 9:e85320. [PMID: 24465535 PMCID: PMC3896384 DOI: 10.1371/journal.pone.0085320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of the study was to investigate pro-oxidant-antioxidant balance in two series of examinations with two types of stressors (exogenous heat and the combined exogenous and endogenous heat) in trained and untrained men. The exogenous stressor was provided by Finnish sauna session, whereas the combined stressor was represented by the exercise in elevated ambient temperature. The men from the two groups performed the physical exercise on a cycle ergometer with the load of 53 ± 2% maximal oxygen uptake at the temperature of 33 ± 1 °C and relative humidity of 70% until their rectal temperature rose by 1.2 °C. After a month from completion of the exercise test the subjects participated in a sauna bathing session with the temperature of 96 ± 2 °C, and relative humidity of 16 ± 5%. 15-minutes heating and 2-minute cool-down in a shower with the temperature of 20 °C was repeated until rectal temperature rose by 1.2 °C compared to the initial value. During both series of tests rectal temperature was measured at 5-minute intervals. Before both series of tests and after them body mass was measured and blood samples were taken for biochemical tests. Serum total protein, serum concentration of lipid peroxidation products and serum antioxidants were determined. The athletes were characterized by higher level of antioxidant status and lower concentration of lipid peroxidation products. Physical exercise at elevated ambient temperature caused lower changes in oxidative stress indices compared to sauna bathing. Sauna induced a shift in pro-oxidant-antioxidant balance towards oxidation, which was observed less intensively in the athletes compared to the untrained men. This leads to the conclusion that physical exercise increases tolerance to elevated ambient temperature and oxidative stress.
Collapse
Affiliation(s)
- Wanda Pilch
- Department of Physiology and Biochemistry, University School of Physical Education, Cracow, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine, University School of Physical Education, Cracow, Poland
| | - Anna K Tyka
- Department of Recreation and Biological Regeneration, University School of Physical Education, Cracow, Poland ; Institute of Physical Education, State Higher Vocational School, NowySącz, Poland
| | - Tomasz Palka
- Department of Physiology and Biochemistry, University School of Physical Education, Cracow, Poland
| | - Aleksander Tyka
- Department of Physiology and Biochemistry, University School of Physical Education, Cracow, Poland
| | - Tomasz Cison
- Department of Physiology and Biochemistry, University School of Physical Education, Cracow, Poland ; Institute of Physical Education, State Higher Vocational School, NowySącz, Poland
| | | | - Aneta Teleglow
- Department of Clinical Rehabilitation, University School of Physical Education, Cracow, Poland
| |
Collapse
|
150
|
Neuroprotective effects of swimming training in a mouse model of Parkinson’s disease induced by 6-hydroxydopamine. Neuroscience 2014; 256:61-71. [DOI: 10.1016/j.neuroscience.2013.09.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/29/2013] [Accepted: 09/20/2013] [Indexed: 01/08/2023]
|