101
|
Harting I, Boy N, Heringer J, Seitz A, Bendszus M, Pouwels PJW, Kölker S. (1)H-MRS in glutaric aciduria type 1: impact of biochemical phenotype and age on the cerebral accumulation of neurotoxic metabolites. J Inherit Metab Dis 2015; 38:829-38. [PMID: 25860816 DOI: 10.1007/s10545-015-9826-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND In glutaric aciduria type 1 (GA1) the neurotoxic metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3-OH-GA) accumulate within the brain. Due to limited efflux across the blood-brain-barrier biochemical monitoring of intracerebrally accumulating toxic metabolites is as yet not possible. AIMS To investigate brain metabolic patterns in glutaric aciduria type 1 using (1)H magnetic resonance spectroscopy ((1)H-MRS) with focus on detecting the disease-related neurotoxic metabolites GA and 3-OH-GA. PATIENTS AND METHODS Short echo time (1)H-MRS was performed in 13 treated metabolically stable patients. Twenty-one white matter and 16 basal ganglia spectra from 12 patients (age range 7 months - 22 years) were included. Subgroups based on age, biochemical phenotype and/or associated MRI changes were compared with control spectra. RESULTS GA was elevated in white matter of patients. 3-OH-GA was elevated in white matter of older patients with associated signal changes on MRI, which was structurally characterized by decreased creatine and phosphocreatine (tCr) and elevated choline (Cho). Metabolite changes differed with biochemical phenotype and disease duration: Low excretors with up to 30% residual enzyme activity had only mildly, non-significantly elevated GA and mildly subnormal N-acetylaspartate (tNAA). High excretors with complete lack of enzyme activity had significantly increased GA, tNAA was mildly subnormal in younger and decreased in older high excretors. CONCLUSIONS GA and 3-OH-GA are detectable by in vivo (1)H-MRS, which might finally allow biochemical follow-up monitoring of intracerebrally accumulating neurotoxic metabolites in GA1. A high excreting phenotype appears to be a risk factor for cerebral GA accumulation and progressive neuroaxonal compromise despite a similar clinical course in younger high and low excreting patients. This might have consequences for long-term outcome.
Collapse
Affiliation(s)
- Inga Harting
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany,
| | | | | | | | | | | | | |
Collapse
|
102
|
Amaral AU, Cecatto C, Seminotti B, Ribeiro CA, Lagranha VL, Pereira CC, de Oliveira FH, de Souza DG, Goodman S, Woontner M, Wajner M. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Brain Res 2015; 1620:116-29. [DOI: 10.1016/j.brainres.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
|
103
|
Coughlin CR, van Karnebeek CDM, Al-Hertani W, Shuen AY, Jaggumantri S, Jack RM, Gaughan S, Burns C, Mirsky DM, Gallagher RC, Van Hove JLK. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: Neurodevelopmental outcome. Mol Genet Metab 2015; 116:35-43. [PMID: 26026794 DOI: 10.1016/j.ymgme.2015.05.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 11/21/2022]
Abstract
Pyridoxine-dependent epilepsy (PDE) is an epileptic encephalopathy characterized by response to pharmacologic doses of pyridoxine. PDE is caused by deficiency of α-aminoadipic semialdehyde dehydrogenase resulting in impaired lysine degradation and subsequent accumulation of α-aminoadipic semialdehyde. Despite adequate seizure control with pyridoxine monotherapy, 75% of individuals with PDE have significant developmental delay and intellectual disability. We describe a new combined therapeutic approach to reduce putative toxic metabolites from impaired lysine metabolism. This approach utilizes pyridoxine, a lysine-restricted diet to limit the substrate that leads to neurotoxic metabolite accumulation and L-arginine to compete for brain lysine influx and liver mitochondrial import. We report the developmental and biochemical outcome of six subjects who were treated with this triple therapy. Triple therapy reduced CSF, plasma, and urine biomarkers associated with neurotoxicity in PDE. The addition of arginine supplementation to children already treated with dietary lysine restriction and pyridoxine further reduced toxic metabolites, and in some subjects appeared to improve neurodevelopmental outcome. Dietary lysine restriction was associated with improved seizure control in one subject, and the addition of arginine supplementation increased the objective motor outcome scale in two twin siblings, illustrating the contribution of each component of this treatment combination. Optimal results were noted in the individual treated with triple therapy early in the course of the disease. Residual disease symptoms could be related to early injury suggested by initial MR imaging prior to initiation of treatment or from severe epilepsy prior to diagnosis. This observational study reports the use of triple therapy, which combines three effective components in this rare condition, and suggests that early diagnosis and treatment with this new triple therapy may ameliorate the cognitive impairment in PDE.
Collapse
Affiliation(s)
- Curtis R Coughlin
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Clara D M van Karnebeek
- Division of Biochemical Diseases &Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Walla Al-Hertani
- Department of Medical Genetics, Montreal Children's Hospital, McGill University of Health Centre, Montreal, QC, Canada
| | - Andrew Y Shuen
- Department of Medical Genetics, Montreal Children's Hospital, McGill University of Health Centre, Montreal, QC, Canada
| | - Sravan Jaggumantri
- Division of Biochemical Diseases &Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Rhona M Jack
- Department of Laboratory Medicine, Seattle Children's Hospital Laboratory, Seattle, WA, United States
| | - Sommer Gaughan
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Casey Burns
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - David M Mirsky
- Department of Radiology, University of Colorado, Aurora, CO, United States
| | - Renata C Gallagher
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, United States.
| |
Collapse
|
104
|
Pierson TM, Nezhad M, Tremblay MA, Lewis R, Wong D, Salamon N, Sicotte N. Adult-onset glutaric aciduria type I presenting with white matter abnormalities and subependymal nodules. Neurogenetics 2015; 16:325-8. [PMID: 26316201 DOI: 10.1007/s10048-015-0456-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/04/2015] [Indexed: 11/24/2022]
Abstract
A 55-year-old female presented with a 6-year history of paresthesias, incontinence, spasticity, and gait abnormalities. Neuroimaging revealed white matter abnormalities associated with subependymal nodules. Biochemical evaluation noted increased serum C5-DC glutarylcarnitines and urine glutaric and 3-hydroxyglutaric acids. Evaluation of the glutaryl-CoA dehydrogenase (GCDH) gene revealed compound heterozygosity consisting of a novel variant (c.1219C>G; p.Leu407Val) and pathogenic mutation (c.848delT; p.L283fs). Together, these results were consistent with a diagnosis of adult-onset type I glutaric aciduria.
Collapse
Affiliation(s)
- T M Pierson
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Mani Nezhad
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew A Tremblay
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Richard Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Derek Wong
- Division of Genetics, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nancy Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
105
|
Abstract
Purpose Glutaric aciduria type 1 (GA1) is a rare metabolic disorder of glutaryl-CoA-dehydrogenase enzyme deficiency. Children with GA1 are reported to be predisposed to subdural hematoma (SDH) development due to stretching of cortical veins secondary to cerebral atrophy and expansion of CSF spaces. Therefore, GA1 testing is part of the routine work-up in abusive head trauma (AHT). This systematic review addresses the coexistence of GA1 and SDH and the validity of GA1 in the differential diagnosis of AHT. Methods A systematic literature review, with language restriction, of papers published before 1 Jan 2015, was performed using Pubmed, PsychINFO, and Embase. Inclusion criteria were reported SDHs, hygromas or effusions in GA1 patients up to 18 years of age. Of 1599 publications, 20 publications were included for analysis. Results In total 20 cases, 14 boys and 6 girls, were included. In eight cases (40 %) a child abuse work-up was performed, which was negative in all cases. Clinical history revealed the presence of trauma in eight cases (40 %). In only one case neuroradiology revealed no abnormalities related to GA1 according to the authors, although on evaluation we could not exclude AHT. Conclusion From this systematic review we conclude that SDHs in 19/20 children with GA1 are accompanied by other brain abnormalities specific for GA1. One case with doubtful circumstances was the exception to this rule.
Collapse
|
106
|
Zielonka M, Braun K, Bengel A, Seitz A, Kölker S, Boy N. Severe Acute Subdural Hemorrhage in a Patient With Glutaric Aciduria Type I After Minor Head Trauma: A Case Report. J Child Neurol 2015; 30:1065-9. [PMID: 25038128 DOI: 10.1177/0883073814541479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/01/2014] [Indexed: 11/15/2022]
Abstract
Glutaric aciduria type I is a rare metabolic disorder caused by deficiency of glutaryl-coenzyme A dehydrogenase. Chronic subdural hematomas have been reported in glutaric aciduria type I and are considered as important differential diagnosis of nonaccidental head trauma. However, chronic subdural hematomas are usually thought to remain clinically silent in these patients. Here we report on a hitherto asymptomatic glutaric aciduria type I patient who developed severe, acute subdural hemorrhage after minor accidental head injury at age 23 months. Computed tomography confirmed significant mass effect on the brain necessitating decompressive hemicraniectomy. Subdural hemorrhage caused large hypoxic lesions of the cerebral cortex and subcortical regions resulting in spastic tetraplegia, dystonia, and loss of developmental milestones. This report emphasizes that acute subdural hemorrhage may be a life-threatening complication in glutaric aciduria type I patients after minor head trauma and should be considered in those patients presenting with neurologic deterioration after accidental head injury.
Collapse
Affiliation(s)
- Matthias Zielonka
- Division of Inherited Metabolic Diseases, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Katrin Braun
- Department of General Pediatrics, Children's Hospital Ludwigsburg, Ludwigsburg, Germany
| | - Andreas Bengel
- Institute for Diagnostic and Interventional Neuroradiology, Hospital Ludwigsburg, Ludwigsburg, Germany
| | - Angelika Seitz
- Division of Neuroradiology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Inherited Metabolic Diseases, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Nikolas Boy
- Division of Inherited Metabolic Diseases, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
107
|
Babu RP, Bishnupriya G, Thushara PK, Alap C, Cariappa R, Annapoorani, Viswanathan K. Detection of glutaric acidemia type 1 in infants through tandem mass spectrometry. Mol Genet Metab Rep 2015; 3:75-9. [PMID: 26937400 PMCID: PMC4750559 DOI: 10.1016/j.ymgmr.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Glutaric acidemia type 1 (GA1) is a rare inherited metabolic disorder which goes underdiagnosed due to its latency period and subtle presentation. A pilot clinical study was conducted to assess the usefulness, specificity and sensitivity of the tandem mass (MS/MS) spectrometer, specifically the Abbott (AB) Sciex 3200, in the screening for GA1 using dried blood spots. A total of 17,100 specimens, comprising pediatric patients and healthy newborns, were screened from June 2012 to June 2014. A selection criterion was applied to increase the range of samples tested. 14 of the total specimens tested presumptive positive for GA1, of whom all were symptomatic. The diagnosis was confirmed in 4 of the 14 cases and they were started on treatment. 4 cases expired before confirmation. The remaining cases were empirically started on treatment. Most of the patients responded favorably to the dietary management. One important observation was that the older symptomatic children diagnosed with GA1 had poorer outcomes in terms of recovery of delayed milestones and mental deterioration, further emphasizing the need for early diagnosis of organic acidemias along with the other biochemical defects. Tandem mass spectrometry was found to be more than 93.33% sensitive and more than 99.42% specific. The screening test proved to be very simple and economical.
Collapse
Affiliation(s)
| | | | | | | | | | - Annapoorani
- Department of Pediatric Oncology and Hematology, Meenakshi Mission Hospital, Madurai, India
| | - Kasi Viswanathan
- Department of Pediatric Oncology and Hematology, Meenakshi Mission Hospital, Madurai, India
| |
Collapse
|
108
|
Gupta N, Singh PK, Kumar M, Shastri S, Gulati S, Kumar A, Agarwala A, Kapoor S, Nair M, Sapra S, Dubey S, Singh A, Kaur P, Kabra M. Glutaric Acidemia Type 1-Clinico-Molecular Profile and Novel Mutations in GCDH Gene in Indian Patients. JIMD Rep 2015; 21:45-55. [PMID: 25762492 PMCID: PMC4470956 DOI: 10.1007/8904_2014_377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 02/05/2023] Open
Abstract
Glutaric acidemia I (GA I, #231670) is one of the treatable, autosomal recessively inherited metabolic disorders. Macrocephaly, acute encephalitis-like crises, dystonia and characteristic frontotemporal atrophy are the hallmarks of this disease. In this communication, we present the clinical, biochemical and molecular profile of seventeen GA I patients from 15 unrelated families from India and report seven novel mutations in GCDH gene (c.281G>A (p.Arg94Gln), c.401A>G (p.Asp134Gly), c.662T>C (p.Leu221Pro), c.881G>C (p.Arg294Pro), c.1173dupG (p.Asn392Glufs*5), c.1238A>G (p.Tyr413Cys) and c.1241A>C (p.Glu414Ala)). Out of these, c.662T>C (p.Leu221Pro) in exon 8 and c.281G>A (p.Arg94Gln) allele in exon 4 were low excretor alleles, whereas c.1241A>C (p.Glu414Ala), c.1173dupG and c.1207C>T (p.His403Tyr) in exon 11 were high excretor alleles. We conclude that c.1204C>T (p.Arg402Trp) is probably the most common mutant allele. Exons 11 and 8 are the hot spot regions of GCDH gene in Indian patients with GA I. An early diagnosis and timely intervention can improve the underlying prognosis. Molecular confirmation is helpful in providing genetic counselling and prenatal diagnosis in subsequent pregnancy.
Collapse
Affiliation(s)
- Neerja Gupta
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Pawan Kumar Singh
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Manoj Kumar
- />Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Shivaram Shastri
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sheffali Gulati
- />Division of Neurology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Atin Kumar
- />Department of Radiology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Anuja Agarwala
- />Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Seema Kapoor
- />Maulana Azad Medical College, New Delhi, India
| | | | - Savita Sapra
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sudhisha Dubey
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Ankur Singh
- />Maulana Azad Medical College, New Delhi, India
| | - Punit Kaur
- />Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Madhulika Kabra
- />Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
109
|
Kölker S, Dobbelaere D, Häberle J, Burgard P, Gleich F, Summar ML, Hannigan S, Parker S, Chakrapani A, Baumgartner MR. Networking Across Borders for Individuals with Organic Acidurias and Urea Cycle Disorders: The E-IMD Consortium. JIMD Rep 2015; 22:29-38. [PMID: 25701269 PMCID: PMC4486274 DOI: 10.1007/8904_2015_408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Patients with organic acidurias (OAD) and urea cycle disorders (UCD) are at increased risk of disability, impaired quality of life and reduced life expectancy. Clinical care in any one centre is constrained by small patient numbers; and furthermore diagnostic and treatment strategies vary between metabolic centres and countries, resulting in significant inequalities and disparity in patient outcome. AIMS/METHODS The overall objective of the EU-funded activity 'European registry and network for intoxication type metabolic diseases' (E-IMD) is to collect systematic data to improve the knowledge of these diseases, to develop consensus care guidelines and to provide detailed information materials for families and professionals. RESULTS Within three years E-IMD has (1) established a network of 87 partners in 25 countries (2) set up a patient registry of more than 1,000 individuals with OAD and UCD, (3) launched a website ( www.e-imd.org ) including detailed information materials in 11 languages, (4) developed guidelines for OAD and UCD, (5) organised two teaching courses and various scientific meetings, (6) extended the IT platform clustering with other inherited metabolic diseases (IMD) and (7) strengthened the collaboration with other international scientific consortia. CONCLUSIONS E-IMD has made important steps towards improving and sharing knowledge on OAD and UCD and harmonisation of diagnostic and therapeutic strategies. Through the establishment of a modular patient registry, clustering with other IMD and stepwise extension of the network, E-IMD has implemented the core components of a European Reference Network for rare diseases.
Collapse
Affiliation(s)
- Stefan Kölker
- Division of Inherited Metabolic Diseases, Department of General Pediatrics, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Sauer SW, Opp S, Komatsuzaki S, Blank AE, Mittelbronn M, Burgard P, Koeller DM, Okun JG, Kölker S. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I. Biochim Biophys Acta Mol Basis Dis 2015; 1852:768-77. [PMID: 25558815 DOI: 10.1016/j.bbadis.2014.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 12/27/2014] [Indexed: 01/05/2023]
Abstract
Glutaric aciduria type I is an inherited defect in L-lysine, L-hydroxylysine and L-tryptophan degradation caused by deficiency of glutaryl-CoA dehydrogenase (GCDH). The majority of untreated patients presents with accumulation of neurotoxic metabolites - glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) - and striatal injury. Gcdh(-/-) mice display elevated levels of GA and 3-OH-GA but do not spontaneously develop striatal lesions. L-lysine-enriched diets (appr. 235 mg/d) were suggested to induce a neurological phenotype similar to affected patients. In our hands 93% of mice stressed according to the published protocol remained asymptomatic. To understand the underlying mechanism, we modified their genetic background (F1 C57BL6/Jx129/SvCrl) and increased the daily oral L-lysine supply (235-433 mg). We identified three modulating factors, (1) gender, (2) genetic background, and (3) amount of L-lysine. Male mice displayed higher vulnerability and inbreeding for more than two generations as well as elevating L-lysine supply increased the diet-induced mortality rate (up to 89%). Onset of first symptoms leads to strongly reduced intake of food and, thus, L-lysine suggesting a threshold for toxic metabolite production to induce neurological disease. GA and 3-OH-GA tissue concentrations did not correlate with dietary L-lysine supply but differed between symptomatic and asymptomatic mice. Cerebral activities of glyceraldehyde 3-phosphate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and aconitase were decreased. Symptomatic mice did not develop striatal lesions or intracerebral hemorrhages. We found severe spongiosis in the hippocampus of Gcdh(-/-) mice which was independent of dietary L-lysine supply. In conclusion, the L-lysine-induced pathology in Gcdh(-/-) mice depends on genetic and dietary parameters.
Collapse
Affiliation(s)
- Sven W Sauer
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Silvana Opp
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Shoko Komatsuzaki
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Anna-Eva Blank
- Institute of Neurology (Edinger Institute), Goethe-University Frankfurt, D-60528 Frankfurt/Main, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe-University Frankfurt, D-60528 Frankfurt/Main, Germany
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - D M Koeller
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Jürgen G Okun
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
111
|
Brown A, Crowe L, Beauchamp MH, Anderson V, Boneh A. Neurodevelopmental profiles of children with glutaric aciduria type I diagnosed by newborn screening: a follow-up case series. JIMD Rep 2014; 18:125-34. [PMID: 25503300 PMCID: PMC4361926 DOI: 10.1007/8904_2014_360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 01/20/2023] Open
Abstract
Glutaric aciduria type I (GA-I) is an inherited metabolic disorder that may lead to severe motor disorder and cognitive impairment. GA-I is now included in the newborn screening programme in many countries as early detection allows for prompt treatment and effectively reduces the risk of poor developmental outcome. Information regarding the long-term neurodevelopmental outcome of children with GA-I treated early is sparse.We recruited children with a confirmed diagnosis of GA-I diagnosed via newborn screening, treated in our centre and >3 years of age (n = 6). Children were assessed at two time points using a comprehensive neuropsychological test battery. Four of these had been the subject of a previous report. All participants were male, 3-6 years at the initial assessment and 6-12 years of age at the follow-up assessment.Fine motor skills were below average in all patients. Speech, which was affected in all four patients reported previously, improved following speech therapy. IQ scores remained generally stable within the normal range. Executive functioning was average to high average in four patients. Behaviour, as assessed through parental questionnaires, was problematic in two patients. Compounding factors included child neglect, family history of autism and multiple admissions to hospital (n = 1 in each).GA-I affects fine motor skills and speech, regardless of early treatment, but not IQ scores. Patients with GA-I should be referred for assessment and appropriate early intervention. Further research is needed to correlate specific neuropsychological deficits with neuroimaging.
Collapse
Affiliation(s)
- Amy Brown
- Department of Child Neuropsychology, Murdoch Childrens Research Institute, Australian Centre for Child Neuropsychological Studies, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, VIC, 3052, Australia,
| | | | | | | | | |
Collapse
|
112
|
Busanello ENB, Fernandes CG, Martell RV, Lobato VGA, Goodman S, Woontner M, de Souza DOG, Wajner M. Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: Possible implications for the neuropathology of glutaric acidemia type I. J Neurol Sci 2014; 346:260-7. [DOI: 10.1016/j.jns.2014.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/21/2014] [Accepted: 09/03/2014] [Indexed: 11/30/2022]
|
113
|
Clinical and mutational spectra of 23 Chinese patients with glutaric aciduria type 1. Brain Dev 2014; 36:813-22. [PMID: 24332224 DOI: 10.1016/j.braindev.2013.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Glutaric aciduria type 1 (GA1) is a rare neurometabolic disorder caused by glutaryl-CoA dehydrogenase deficiency due to GCDH gene mutations. In this study, the clinical presentation and molecular aspects of 23 Chinese patients (11 males and 12 females) were investigated. METHODS All patients were diagnosed by elevated urinary glutaric acid and GCDH gene analysis. Protein-restricted diet supplemented with special formula, l-carnitine and GABA analog were initialed after diagnosis. The clinical and biochemical features were analyzed. Mutational analysis of GCDH was conducted. RESULTS Clinical manifestations of 23 patients varied from asymptomatic to severe encephalopathy, with notable phenotypic differences between siblings with the same mutations. One case was detected by newborn screening, while 22 Cases were diagnosed between the ages of 5 months and 51 years. 29 mutations in GCDH were identified. Among them, 11 were novel, including seven missense mutations (c.406G > T, C.416C > G, c.442G > A, c.640A > G, c.901G > A, c.979G > A, and c.1207C > T), three frameshift mutations (c.873delC, c.1172-1173insT and c.1282-1285ins71) and one nonsense mutation (c.411C > G). In exon 5, c.553G > A and c.148T > C were found in four alleles (8.7%) and three alleles (6.5%) of the patients, respectively. CONCLUSIONS In 23 Chinese patients with GA1, 11 novel GCDH mutations were identified. This may indicate that the genetic profiles of Chinese patients are different from those of other populations. SYNOPSIS 23 Chinese GA1 patients with varied clinical manifestations have been reported. 11 novel mutations in their GCDH gene were identified, indicating that the genetic profiles of Chinese GA1 patients differ from those of other populations.
Collapse
|
114
|
Fraidakis MJ, Liadinioti C, Stefanis L, Dinopoulos A, Pons R, Papathanassiou M, Garcia-Villoria J, Ribes A. Rare Late-Onset Presentation of Glutaric Aciduria Type I in a 16-Year-Old Woman with a Novel GCDH Mutation. JIMD Rep 2014; 18:85-92. [PMID: 25256449 DOI: 10.1007/8904_2014_353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 12/13/2022] Open
Abstract
Glutaric acidemia type I (GA-I) is a treatable autosomal recessive disorder of lysine, hydroxylysine, and tryptophan metabolism caused by glutaryl-CoA dehydrogenase (GCDH) deficiency. Presentation and progression of disease are variable ranging from asymptomatic carrier state to catastrophic encephalopathy. GA-I usually presents before age 18 months, usually triggered by childhood infection, with mild or severe acute encephalopathy, striatal degeneration, and movement disorder, most often acute dystonia. At a presymptomatic stage diagnosis is suggested clinically by macrocephaly, radiologically by widened Sylvian fissures and biochemically by the presence of excess 3-hydroxyglutaric acid and glutaric acid in urine. Treatment consists of lysine-restricted diet and carnitine supplementation, specific diet restrictions, as well as symptomatic and anticatabolic treatment of intercurrent illness. Presymptomatic diagnosis and treatment are essential to prognosis. We report the case of 16-year-old macrocephalic female with late-onset GA-I and unusual paucisymptomatic presentation with fainting after exercise and widespread white matter signal changes at MRI. She was compound heterozygote for a novel mutation (IVS10-2A>G) affecting splicing at GCDH and a common missense mutation (c. 1240C>T; p.Arg402Trp, R402W). Interestingly, the site of the novel mutation is the nucleotide position of a common mutation found almost exclusively in patients of Chinese/Taiwanese origin (IVS10-2A>C).
Collapse
Affiliation(s)
- M J Fraidakis
- Outpatient for Rare Neurological Diseases, 2nd Department of Neurology, University Hospital "Attikon", Medical School of the University of Athens, Athens, Greece,
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Summar ML, Endo F, Kölker S. On the Creation, Utility and Sustaining of Rare Diseases Research Networks: Lessons learned from the Urea Cycle Disorders Consortium, the Japanese Urea Cycle Disorders Consortium and the European Registry and Network for Intoxication Type Metabolic Diseases. Mol Genet Metab 2014; 113:105-8. [PMID: 25261246 PMCID: PMC4868037 DOI: 10.1016/j.ymgme.2014.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The past two decades has seen a rapid expansion in the scientific and public interest in rare diseases and their treatment. One consequence of this has been the formation of registries/longitudinal natural history studies for these disorders. Given the expense and effort needed to develop and maintain such programs, we describe our experience with three linked registries on the same disease group, urea cycle disorders. The Urea Cycle Disorders Consortium (UCDC) was formed in the U.S. in 2003 in response to a request for application from the National Institutes of Health (NIH); the European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD) was formed in 2011 in response to a request for applications from the Directorate-General for Health and Consumers (DG SANCO) of the EU; and the Japanese Urea Cycle Disorders Consortium (JUCDC) was founded in 2012 as a sister organization to the UCDC and E-IMD. The functions of these groups are to collect natural history data, educate the professional and lay population, develop and test new treatments, and establish networks of excellence for the care for these disorders. The UCDC and JUCDC focus exclusively on urea cycle disorders while the E-IMD includes patients with urea cycle disorders and organic acidurias. More than 1400 patients have been enrolled in the three consortia, and numerous projects have been developed and joint meetings held including an international UCDC/E-IMD/JUCDC Urea Cycle meeting in Barcelona in 2013. This article summarizes some of the experiences from the three groups regarding formation, funding, and models for sustainability.
Collapse
Affiliation(s)
- Marshall L Summar
- Children's National Health System, Department of Genetics and Metabolism, Washington D.C., USA, and representing the Urea Cycle Disorders Consortium; Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Honjo Japan and representing the Japanese Urea Cycle Disorders Consortium.
| | - Fumio Endo
- University Children's Hospital Heidelberg, Department of General Pediatrics, Division of Inherited Metabolic Diseases, Heidelberg, Germany, and representing the European Registry and Network for Intoxication Type Metabolic Diseases; Japanese Urea Cycle Disorders Consortium
| | - Stefan Kölker
- University Children's Hospital Heidelberg, Department of General Pediatrics, Division of Inherited Metabolic Diseases, Heidelberg, Germany, and representing the European Registry and Network for Intoxication Type Metabolic Diseases; Japanese Urea Cycle Disorders Consortium; University Children's Hospital Heidelberg, Department of General Pediatrics, Division of Inherited Metabolic Diseases, Heidelberg, Germany; European Registry and Network for Intoxication Type Metabolic Diseases
| |
Collapse
|
116
|
Garbade SF, Greenberg CR, Demirkol M, Gökçay G, Ribes A, Campistol J, Burlina AB, Burgard P, Kölker S. Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models-a cohort study in 180 patients. J Inherit Metab Dis 2014; 37:763-73. [PMID: 24810368 DOI: 10.1007/s10545-014-9676-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by inherited deficiency of glutaryl-CoA dehydrogenase and is characterized biochemically by an accumulation of putatively neurotoxic dicarboxylic metabolites. The majority of untreated patients develops a complex movement disorder with predominant dystonia during age 3-36 months. Magnetic resonance imaging (MRI) studies have demonstrated striatal and extrastriatal abnormalities. AIMS/METHODS The major aim of this study was to elucidate the complex neuroradiological pattern of patients with GA-I and to associate the MRI findings with the severity of predominant neurological symptoms. In 180 patients, detailed information about the neurological presentation and brain region-specific MRI abnormalities were obtained via a standardized questionnaire. RESULTS Patients with a movement disorder had more often MRI abnormalities in putamen, caudate, cortex, ventricles and external CSF spaces than patients without or with minor neurological symptoms. Putaminal MRI changes and strongly dilated ventricles were identified as the most reliable predictors of a movement disorder. In contrast, abnormalities in globus pallidus were not clearly associated with a movement disorder. Caudate and putamen as well as cortex, ventricles and external CSF spaces clearly collocalized on a two-dimensional map demonstrating statistical similarity and suggesting the same underlying pathomechanism. CONCLUSIONS This study demonstrates that complex statistical methods are useful to decipher the age-dependent and region-specific MRI patterns of rare neurometabolic diseases and that these methods are helpful to elucidate the clinical relevance of specific MRI findings.
Collapse
Affiliation(s)
- Sven F Garbade
- SFG: Faculty of Applied Psychology, SRH University of Applied Sciences, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Georgiou T, Nicolaidou P, Hadjichristou A, Ioannou R, Dionysiou M, Siama E, Chappa G, Anastasiadou V, Drousiotou A. Molecular analysis of Cypriot patients with Glutaric aciduria type I: identification of two novel mutations. Clin Biochem 2014; 47:1300-5. [PMID: 24973495 DOI: 10.1016/j.clinbiochem.2014.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The purpose of this study was to identify the mutations in the glutaryl-CoA dehydrogenase gene (GCDH) in ten Cypriot patients with Glutaric aciduria type I (GAI). DESIGN AND METHODS Molecular analysis of the GCDH gene was performed by direct sequencing of the patients' genomic DNA. In silico tools were applied to predict the effect of the novel variants on the structure and function of the protein. RESULTS All disease alleles were characterized (mutation detection rate 100%). Five missense mutations were identified: c.192G>T (p.Glu64Asp) and c.803G>T (p.Gly268Val), which are novel, and three previously described mutations, c.1123T>C (p.Cys375Arg), c.1204C>T (p.Arg402Trp) and c.1286C>T (p.Thr429Met). CONCLUSIONS Two novel mutations, p.Glu64Asp and p.Gly268Val, account for the majority of disease alleles (76.5%) in Cypriot patients with Glutaric aciduria type I. A founder effect for the p.Glu64Asp and the p.Gly268Val can be suggested based on the place of origin of the carriers of these mutations. Identification of the causative mutations of GAI in Cypriot patients will facilitate carrier detection as well as post- and pre-natal diagnosis.
Collapse
Affiliation(s)
- Theodoros Georgiou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | - Rodothea Ioannou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Dionysiou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elli Siama
- Archbishop Makarios III Hospital, Nicosia, Cyprus
| | | | | | - Anthi Drousiotou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
118
|
McH J, Laj K, S B W. Screening of a healthy newborn identifies three adult family members with symptomatic glutaric aciduria type I. BBA CLINICAL 2014; 1:30-32. [PMID: 26674492 PMCID: PMC4633940 DOI: 10.1016/j.bbacli.2014.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
We report three adult sibs (one female, two males) with symptomatic glutaric acidura type I, who were diagnosed after a low carnitine level was found by newborn screening in a healthy newborn of the women. All three adults had low plasma carnitine, elevated glutaric acid levels and pronounced 3-hydroxyglutaric aciduria. The diagnosis was confirmed by undetectable glutaryl-CoA dehydrogenase activity in lymphocytes and two pathogenic heterozygous mutations in the GCDH gene (c.1060A > G, c.1154C > T). These results reinforce the notion that abnormal metabolite levels in newborns may lead to the diagnosis of adult metabolic disease in the mother and potentially other family members.
Collapse
Affiliation(s)
- Janssen McH
- Departments of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands ; Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kluijtmans Laj
- Laboratory of Genetic Endocrine and Metabolic Diseases, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Wortmann S B
- Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
119
|
Tian F, Fu X, Gao J, Ying Y, Hou L, Liang Y, Ning Q, Luo X. Glutaric acid-mediated apoptosis in primary striatal neurons. BIOMED RESEARCH INTERNATIONAL 2014; 2014:484731. [PMID: 24900967 PMCID: PMC4036723 DOI: 10.1155/2014/484731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
Glutaric acid (GA) has been implicated in the mechanism of neurodegeneration in glutaric aciduria type I. In the present study, the potential cytotoxic effects of GA (0.1~50 mM for 24~96 h) were examined in cultured primary rat striatal neurons. Results showed increase in the number of cells labeled by annexin-V or with apoptotic features shown by Hoechst/PI staining and transmission electron microscopy (TEM) and upregulation of the expression of mRNA as well as the active protein fragments caspase 3, suggesting involvement of the caspase 3-dependent apoptotic pathway in GA-induced striatal neuronal death. This effect was in part suppressed by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 but not the α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) antagonist 6-cyano-7-nitroquinoxalone-2,3-dione (CNQX). Thus, GA may trigger neuronal damage partially through apoptotic pathway and via activation of NMDA receptors in cultured primary striatal neurons.
Collapse
Affiliation(s)
- Fengyan Tian
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xi Fu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinzhi Gao
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qin Ning
- Laboratory of Infectious Immunology, Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
120
|
van Karnebeek CDM, Stockler-Ipsiroglu S, Jaggumantri S, Assmann B, Baxter P, Buhas D, Bok LA, Cheng B, Coughlin CR, Das AM, Giezen A, Al-Hertani W, Ho G, Meyer U, Mills P, Plecko B, Struys E, Ueda K, Albersen M, Verhoeven N, Gospe SM, Gallagher RC, Van Hove JKL, Hartmann H. Lysine-Restricted Diet as Adjunct Therapy for Pyridoxine-Dependent Epilepsy: The PDE Consortium Consensus Recommendations. JIMD Rep 2014; 15:1-11. [PMID: 24748525 DOI: 10.1007/8904_2014_296] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Seventy-five percent of patients with pyridoxine-dependent epilepsy (PDE) due to Antiquitin (ATQ) deficiency suffer from developmental delay and/or intellectual disability (IQ < 70) despite seizure control. An observational study showed that adjunct treatment with a lysine-restricted diet is safe, results in partial normalization of lysine intermediates in body fluids, and may have beneficial effects on seizure control and psychomotor development. METHODS In analogy to the NICE guideline process, the international PDE Consortium, an open platform uniting scientists and clinicians working in the field of this metabolic epilepsy, during four workshops (2010-2013) developed a recommendation for a lysine-restricted diet in PDE, with the aim of standardizing its implementation and monitoring of patients. Additionally, a proposal for a further observational study is suggested. RESULTS (1) All patients with confirmed ATQ deficiency are eligible for adjunct treatment with lysine-restricted diet, unless treatment with pyridoxine alone has resulted in complete symptom resolution, including normal behavior and development. (2) Lysine restriction should be started as early as possible; the optimal duration remains undetermined. (3) The diet should be implemented and the patient be monitored according to these recommendations in order to assure best possible quality of care and safety. DISCUSSION The implementation of this recommendation will provide a unique and a much needed opportunity to gather data with which to refine the recommendation as well as improve our understanding of outcomes of individuals affected by this rare disease. We therefore propose an international observational study that would utilize freely accessible, online data sharing technologies to generate more evidence.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Centre for Molecular Medicine and Therapeutics, 3091-950 West 28th Avenue, Vancouver, Canada, V5Z 4H4,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Demographic and clinical features of glutaric acidemia type 1; a high frequency among isolates in Upper Egypt. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2014. [DOI: 10.1016/j.ejmhg.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
122
|
Zinnanti WJ, Lazovic J, Housman C, Antonetti DA, Koeller DM, Connor JR, Steinman L. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I. Acta Neuropathol Commun 2014; 2:13. [PMID: 24468193 PMCID: PMC3940023 DOI: 10.1186/2051-5960-2-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/18/2014] [Indexed: 12/28/2022] Open
Abstract
Background Metabolic stroke is the rapid onset of lasting central neurological deficit associated with decompensation of an underlying metabolic disorder. Glutaric aciduria type I (GA1) is an inherited disorder of lysine and tryptophan metabolism presenting with metabolic stroke in infancy. The clinical presentation includes bilateral striatal necrosis and spontaneous subdural and retinal hemorrhages, which has been frequently misdiagnosed as non-accidental head trauma. The mechanisms underlying metabolic stroke and spontaneous hemorrhage are poorly understood. Results Using a mouse model of GA1, we show that metabolic stroke progresses in the opposite sequence of ischemic stroke, with initial neuronal swelling and vacuole formation leading to cerebral capillary occlusion. Focal regions of cortical followed by striatal capillaries are occluded with shunting to larger non-exchange vessels leading to early filling and dilation of deep cerebral veins. Blood–brain barrier breakdown was associated with displacement of tight-junction protein Occludin. Conclusion Together the current findings illuminate the pathophysiology of metabolic stroke and vascular compromise in GA1, which may translate to other neurometabolic disorders presenting with stroke.
Collapse
|
123
|
Pfeil J, Listl S, Hoffmann GF, Kölker S, Lindner M, Burgard P. Newborn screening by tandem mass spectrometry for glutaric aciduria type 1: a cost-effectiveness analysis. Orphanet J Rare Dis 2013; 8:167. [PMID: 24135440 PMCID: PMC4015693 DOI: 10.1186/1750-1172-8-167] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 10/05/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Glutaric aciduria type I (GA-I) is a rare metabolic disorder caused by inherited deficiency of glutaryl-CoA dehydrogenase. Despite high prognostic relevance of early diagnosis and start of metabolic treatment as well as an additional cost saving potential later in life, only a limited number of countries recommend newborn screening for GA-I. So far only limited data is available enabling health care decision makers to evaluate whether investing into GA-I screening represents value for money. The aim of our study was therefore to assess the cost-effectiveness of newborn screening for GA-I by tandem mass spectrometry (MS/MS) compared to a scenario where GA-I is not included in the MS/MS screening panel. METHODS We assessed the cost-effectiveness of newborn screening for GA-I against the alternative of not including GA-I in MS/MS screening. A Markov model was developed simulating the clinical course of screened and unscreened newborns within different time horizons of 20 and 70 years. Monte Carlo simulation based probabilistic sensitivity analysis was used to determine the probability of GA-I screening representing a cost-effective therapeutic strategy. RESULTS Within a 20 year time horizon, GA-I screening averts approximately 3.7 DALYs (95% CI 2.9 - 4.5) and about one life year is gained (95% CI 0.7 - 1.4) per 100,000 neonates screened initially . Moreover, the screening programme saves a total of around 30,682 Euro (95% CI 14,343 to 49,176 Euro) per 100,000 screened neonates over a 20 year time horizon. CONCLUSION Within the limitations of the present study, extending pre-existing MS/MS newborn screening programmes by GA-I represents a highly cost-effective diagnostic strategy when assessed under conditions comparable to the German health care system.
Collapse
Affiliation(s)
- Johannes Pfeil
- Department of General Paediatrics, Division of Inherited Metabolic Diseases, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg 69120, Germany
| | - Stefan Listl
- Department of Conservative Dentistry, University of Heidelberg, Heidelberg, Germany
- Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social Policy, Munich, Germany
| | - Georg F Hoffmann
- Department of General Paediatrics, Division of Inherited Metabolic Diseases, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg 69120, Germany
| | - Stefan Kölker
- Department of General Paediatrics, Division of Inherited Metabolic Diseases, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg 69120, Germany
| | - Martin Lindner
- Department of General Paediatrics, Division of Inherited Metabolic Diseases, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg 69120, Germany
| | - Peter Burgard
- Department of General Paediatrics, Division of Inherited Metabolic Diseases, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, Heidelberg 69120, Germany
| |
Collapse
|
124
|
Marigliano M, Anton G, Sabbion A, Morandi A, Morandi G, Degani D, Maffeis C. Difficult management of glucose homeostasis in a 21-month-old child with type 1 diabetes and unknown glutaric aciduria type I: a case report. Diabetes Care 2013; 36:e135-6. [PMID: 23970718 PMCID: PMC3747885 DOI: 10.2337/dc13-0724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marco Marigliano
- Regional Center for Pediatric Diabetes, Clinical Nutrition and Obesity, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Genan Anton
- Regional Center for Pediatric Diabetes, Clinical Nutrition and Obesity, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Alberto Sabbion
- Regional Center for Pediatric Diabetes, Clinical Nutrition and Obesity, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Anita Morandi
- Regional Center for Pediatric Diabetes, Clinical Nutrition and Obesity, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Grazia Morandi
- Unit of Pediatrics, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Daniela Degani
- Unit of Pediatrics, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Claudio Maffeis
- Regional Center for Pediatric Diabetes, Clinical Nutrition and Obesity, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| |
Collapse
|
125
|
Kölker S, Burgard P, Sauer SW, Okun JG. Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis 2013; 36:635-44. [PMID: 23512157 DOI: 10.1007/s10545-013-9600-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 12/20/2022]
Abstract
This review focuses on the pathophysiology of organic acidurias (OADs), in particular, OADs caused by deficient amino acid metabolism. OADs are termed classical if patients present with acute metabolic decompensation and multiorgan dysfunction or cerebral if patients predominantly present with neurological symptoms but without metabolic crises. In both groups, however, the brain is the major target. The high energy demand of the brain, the gate-keeping function of the blood-brain barrier, a high lipid content, vulnerable neuronal subpopulations, and glutamatergic neurotransmission all make the brain particularly vulnerable against mitochondrial dysfunction, oxidative stress, and excitotoxicity. In fact, toxic metabolites in OADs are thought to cause secondary impairment of energy metabolism; some of these toxic metabolites are trapped in the brain. In contrast to cerebral OADs, patients with classical OADs have an increased risk of multiorgan dysfunction. The lack of the anaplerotic propionate pathway, synergistic inhibition of energy metabolism by toxic metabolites, and multiple oxidative phosphorylation (OXPHOS) deficiency may best explain the involvement of organs with a high energy demand. Intriguingly, late-onset organ dysfunction may manifest even under metabolically stable conditions. This might be explained by chronic mitochondrial DNA depletion, increased production of reactive oxygen species, and altered gene expression due to histone modification. In conclusion, pathomechanisms underlying the acute disease manifestation in OADs, with a particular focus on the brain, are partially understood. More work is required to predict the risk and to elucidate the mechanism of late-onset organ dysfunction, extracerebral disease manifestation, and tumorigenesis.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, Centre for Child and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
126
|
Couce ML, López-Suárez O, Bóveda MD, Castiñeiras DE, Cocho JA, García-Villoria J, Castro-Gago M, Fraga JM, Ribes A. Glutaric aciduria type I: outcome of patients with early- versus late-diagnosis. Eur J Paediatr Neurol 2013; 17:383-9. [PMID: 23395213 DOI: 10.1016/j.ejpn.2013.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 12/22/2012] [Accepted: 01/01/2013] [Indexed: 11/30/2022]
Abstract
Patients with Glutaric aciduria type 1 (GA-1) can be identified by newborn screening using tandem mass spectrometry. The clinical evolution of screened patients seems to be more favourable compared with those diagnosed later, although long-term evolution is still doubtful. We have evaluated the outcome in nine GA-1 patients diagnosed in our region during 12 years. Six were detected by newborn screening and 3 clinically. The birth prevalence was 1:35,027. High blood C5DC concentration, in 8/9 patients, was found, whereas all patients exhibited high concentration of this metabolite in urine. Therefore, urine C5DC was a good marker for the detection of this disease. Eight different mutations in the GCDH gene were identified, four of them were novel (p.R88H, p.Y398C, p.R372K, p.D220N); being p.R227P the mostcommon. Macrocephaly with enlarged frontotemporal subarachnoid space was present in 4/6 patients diagnosed by newborn screening, all these patients required high energy intake, and in two cases, enteral feeding during the first year of life was needed. One child had an intercurrent episode of feeding refuse with hypoglycemia at two years of age. The mean follow-up time of screened patients was 56 months, and patients still remain asymptomatic. However, after a mean follow-up of 97 months treatment efficacy was poor in unscreened patients, two of them showing a severe spastic tetraparesis. Plasma levels of lysine, tryptophan and carnitine, were the most useful biomarkers for the follow-up. Our data support that, early diagnosis and treatment strategies are essential measures for the good clinical evolution of GA-1 patients.
Collapse
Affiliation(s)
- Ma Luz Couce
- Unidad de Diagnóstico y Tratamiento de Enfermedades Congénitas del Metabolismo, Departamento de Pediatría, Hospital Clínico Universitario, Universidad de Santiago, Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Nunes J, Loureiro S, Carvalho S, Pais RP, Alfaiate C, Faria A, Garcia P, Diogo L. Brain MRI findings as an important diagnostic clue in glutaric aciduria type 1. Neuroradiol J 2013; 26:155-61. [PMID: 23859237 DOI: 10.1177/197140091302600204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2013] [Indexed: 11/17/2022] Open
Abstract
Glutaric aciduria type 1 is an autosomal recessive disorder caused by deficiency of glutaryl-coenzyme A dehydrogenase, with accumulation of glutaric acid, 3-hydroxyglutaric acid and glutaconic acid. Increased blood glutarylcarnitine levels are the basis for identification of affected infants by newborn screening. Despite the highly variability, this disease usually presents with an acute encephalitis-like encephalopathy in infancy or childhood after a period of normal development. The characteristic neurological sequel is a complex movement disorder due to acute bilateral striatal injury. Frequently, the only abnormality preceding the first episode is a progressive macrocephaly. Although neuroimaging findings are quite variable, the widening of the Sylvian fissures combined with abnormalities of the basal ganglia in a child with macrocephaly should raise the suspicion of this diagnosis. We describe two patients in whom macrocephaly was the only presenting symptom and whose diagnosis was suggested by the brain MRI findings. Our purpose is to illustrate the clinical value of neuroimaging in the diagnosis of glutaric aciduria type 1 even before the onset of neurologic symptoms, which is particularly important if newborn screening is not available.
Collapse
Affiliation(s)
- J Nunes
- Medical Imaging Service, Coimbra Paediatric Hospital; Coimbra, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Gao J, Zhang C, Fu X, Yi Q, Tian F, Ning Q, Luo X. Effects of targeted suppression of glutaryl-CoA dehydrogenase by lentivirus-mediated shRNA and excessive intake of lysine on apoptosis in rat striatal neurons. PLoS One 2013; 8:e63084. [PMID: 23658800 PMCID: PMC3642093 DOI: 10.1371/journal.pone.0063084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/29/2013] [Indexed: 12/31/2022] Open
Abstract
In glutaric aciduria type 1 (GA1), glutaryl-CoA dehydrogenase (GCDH) deficiency has been shown to be responsible for the accumulation of glutaric acid and striatal degeneration. However, the mechanisms by which GA1 induces striatal degeneration remain unclear. In this study, we aimed to establish a novel neuronal model of GA1 and to investigate the effects of GCDH deficiency and lysine-related metabolites on the viability of rat striatal neurons. Thus we constructed a lentiviral vector containing short hairpin RNA targeted against the GCDH gene expression (lentivirus-shRNA) in neurons. A virus containing a scrambled short hairpin RNA construct served as a control. Addition of lysine (5 mmol/L) was used to mimic hypermetabolism. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Apoptosis was assessed using Hoechst33342 staining and Annexin V-PE/7-AAD staining. The mitochondrial membrane potential (MPP) was monitored using tetramethylrhodamine methyl ester. The expression levels of caspases 3, 8, and 9 were determined by Western blotting. We found that lentivirus-shRNA induced apoptosis and decreased MMP levels in neurons, and addition of 5 mmol/L lysine enhanced this effect markedly. Lentivirus-shRNA upregulated the protein levels of caspases 3 and 9 regardless of the presence of 5 mmol/L lysine. The expression level of caspase 8 was higher in neurons co-treated with lentivirus-shRNA and 5 mmol/L lysine than in control. Benzyloxy-carbonyl-Val-Ala-Asp(OMe)-fluoromethylketone, a pan-caspase inhibitor, blocked the apoptosis induced by lentivirus-shRNA and 5 mmol/L lysine to a great extent. These results indicate that the targeted suppression of GCDH by lentivirus-mediated shRNA and excessive intake of lysine may be a useful cell model of GA1. These also suggest that GA1-induced striatal degeneration is partially caspase-dependent.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/enzymology
- Amino Acid Metabolism, Inborn Errors/metabolism
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Base Sequence
- Biological Transport/genetics
- Brain Diseases, Metabolic/enzymology
- Brain Diseases, Metabolic/metabolism
- Brain Diseases, Metabolic/pathology
- Caspase Inhibitors/pharmacology
- Cell Survival/drug effects
- Cell Survival/genetics
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Knockdown Techniques
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/genetics
- Glutaryl-CoA Dehydrogenase/metabolism
- Lentivirus/genetics
- Lysine/metabolism
- Lysine/pharmacology
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Neostriatum/cytology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- RNA, Small Interfering/genetics
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jinzhi Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Fu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengyan Tian
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
129
|
Boy N, Haege G, Heringer J, Assmann B, Mühlhausen C, Ensenauer R, Maier EM, Lücke T, Hoffmann GF, Müller E, Burgard P, Kölker S. Low lysine diet in glutaric aciduria type I--effect on anthropometric and biochemical follow-up parameters. J Inherit Metab Dis 2013; 36:525-33. [PMID: 22971958 DOI: 10.1007/s10545-012-9517-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Metabolic treatment in glutaric aciduria type I (GA-I) including a low lysine diet with lysine-free, tryptophan-reduced amino acid supplements (AAS), carnitine supplementation and early start of emergency treatment during putatively threatening episodes of intermittent febrile illness dramatically improves the outcome and thus has been recommended by an international guideline group (Kölker et al, J Inherit Metab Dis 30:5-22, 2007). However, possible affection of linear growth, weight gain and biochemical follow-up monitoring has not been studied systematically. METHODS Thirty-three patients (n = 29 asymptomatic, n = 4 dystonic) with GA-I who have been identified by newborn screening in Germany from 1999 to 2009 were followed prospectively during the first six years of life. Dietary treatment protocols, anthropometrical and biochemical parameters were longitudinally evaluated. RESULTS Mean daily intake as percentage of guideline recommendations was excellent for lysine (asymptomatic patients: 101 %; dystonic patients: 103 %), lysine-free, tryptophan-reduced AAS (108 %; 104 %), energy (106 %; 110 %), and carnitine (92 %; 102 %). Low lysine diet did not affect weight gain (mean SDS 0.05) but mildly impaired linear growth in asymptomatic patients (mean SDS -0.38), while dystonic patients showed significantly reduced weight gain (mean SDS -1.32) and a tendency towards linear growth retardation (mean SDS -1.03). Patients treated in accordance with recent recommendations did not show relevant abnormalities of routine biochemical follow-up parameters. INTERPRETATION Low lysine diet promotes sufficient intake of essential nutrients and anthropometric development in asymptomatic children up to age 6 year, whereas individualized nutritional concepts are required for dystonic patients. Revised recommendations for biochemical monitoring might be required for asymptomatic patients.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/blood
- Amino Acid Metabolism, Inborn Errors/diet therapy
- Amino Acid Metabolism, Inborn Errors/metabolism
- Amino Acid Metabolism, Inborn Errors/physiopathology
- Anthropometry
- Biomarkers/analysis
- Biomarkers/blood
- Body Weights and Measures
- Brain Diseases, Metabolic/blood
- Brain Diseases, Metabolic/diet therapy
- Brain Diseases, Metabolic/metabolism
- Brain Diseases, Metabolic/physiopathology
- Carnitine/administration & dosage
- Child
- Child, Preschool
- Dietary Supplements
- Eating/physiology
- Female
- Follow-Up Studies
- Food, Formulated
- Glutaryl-CoA Dehydrogenase/blood
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/metabolism
- Humans
- Infant
- Lysine/administration & dosage
- Male
- Monitoring, Physiologic/methods
Collapse
Affiliation(s)
- Nikolas Boy
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Lee CS, Chien YH, Peng SF, Cheng PW, Chang LM, Huang AC, Hwu WL, Lee NC. Promising outcomes in glutaric aciduria type I patients detected by newborn screening. Metab Brain Dis 2013; 28:61-7. [PMID: 23104440 DOI: 10.1007/s11011-012-9349-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/21/2012] [Indexed: 10/27/2022]
Abstract
Glutaric aciduria type I (GA-I) is an inborn error of lysine and tryptophan metabolism. Clinical manifestations of GA-I include dystonic or dyskinetic cerebral palsy, but when the symptoms occur, treatment is not effective. In Taiwan, newborn screening for GA-I started in 2001; we wish to evaluate the outcomes of patients detected through newborn screening. Newborns diagnosed with GA-I by abnormal dried blood spot glutarylcarnitine (C5DC) levels followed in our hospital were included in this study. They were treated with special diets, carnitine supplements, and immediate stress avoidance. Six patients were included in this study. All patients were treated prior to reaching 1 month of age. They were followed up with for 4 to 9 years. One patient had encephalopathic crisis episodes prior to turning 1 year old that caused pallidal lesions. Another patient had a chronic progressive disease during infancy that caused bilateral putamen lesions. These two patients had delayed development, but their brain lesions were resolved. The other four patients ran uneventful courses. They had normal intelligenece, ranged between average to low average level and their brain magnetic resonance imaging showed only high intensity over deep white matter. Patients with GA-I diagnosed by newborn screening have promising outcomes, though the risks of disease progression prior to 1 year of age remain significant.
Collapse
Affiliation(s)
- Chee-Seng Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Violante S, Ijlst L, Ruiter J, Koster J, van Lenthe H, Duran M, de Almeida IT, Wanders RJA, Houten SM, Ventura FV. Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism. Biochim Biophys Acta Mol Basis Dis 2013; 1832:773-9. [PMID: 23485643 DOI: 10.1016/j.bbadis.2013.02.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 01/18/2023]
Abstract
Carnitine acyltransferases catalyze the reversible conversion of acyl-CoAs into acylcarnitine esters. This family includes the mitochondrial enzymes carnitine palmitoyltransferase 2 (CPT2) and carnitine acetyltransferase (CrAT). CPT2 is part of the carnitine shuttle that is necessary to import fatty acids into mitochondria and catalyzes the conversion of acylcarnitines into acyl-CoAs. In addition, when mitochondrial fatty acid β-oxidation is impaired, CPT2 is able to catalyze the reverse reaction and converts accumulating long- and medium-chain acyl-CoAs into acylcarnitines for export from the matrix to the cytosol. However, CPT2 is inactive with short-chain acyl-CoAs and intermediates of the branched-chain amino acid oxidation pathway (BCAAO). In order to explore the origin of short-chain and branched-chain acylcarnitines that may accumulate in various organic acidemias, we performed substrate specificity studies using purified recombinant human CrAT. Various saturated, unsaturated and branched-chain acyl-CoA esters were tested and the synthesized acylcarnitines were quantified by ESI-MS/MS. We show that CrAT converts short- and medium-chain acyl-CoAs (C2 to C10-CoA), whereas no activity was observed with long-chain species. Trans-2-enoyl-CoA intermediates were found to be poor substrates for this enzyme. Furthermore, CrAT turned out to be active towards some but not all the BCAAO intermediates tested and no activity was found with dicarboxylic acyl-CoA esters. This suggests the existence of another enzyme able to handle the acyl-CoAs that are not substrates for CrAT and CPT2, but for which the corresponding acylcarnitines are well recognized as diagnostic markers in inborn errors of metabolism.
Collapse
Affiliation(s)
- Sara Violante
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.UL, Faculty of Pharmacy, University of Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Busanello ENB, Pettenuzzo L, Botton PH, Pandolfo P, de Souza DOG, Woontner M, Goodman S, Koeller D, Wajner M. Neurodevelopmental and cognitive behavior of glutaryl-CoA dehydrogenase deficient knockout mice. Life Sci 2013. [DOI: 10.1016/j.lfs.2012.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
133
|
Hoffmann GF, Kölker S. Defects in amino acid catabolism and the urea cycle. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1755-1773. [PMID: 23622399 DOI: 10.1016/b978-0-444-59565-2.00046-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Symptoms in patients with defects in amino acid catabolism and the urea cycle usually develop because of intoxication of accumulating metabolites. The cumulative prevalence of these disorders is considerable (at least>1:2000 newborns). Timely and correct intervention during the initial presentation and during later episodes is most important. Evaluation of metabolic parameters should be performed on an emergency basis in every patient with symptoms of unexplained metabolic crisis, intoxication, and/or unexplained encephalopathy. A substantial number of patients develop acute encephalopathy or chronic and fluctuating progressive neurological disease. The so-called cerebral organic acid disorders present with (progressive) neurological symptoms: ataxia, myoclonus, extrapyramidal symptoms, and "metabolic stroke." Important diagnostic clues, such as white matter abnormalities, cortical or cerebellar atrophy, and injury of the basal ganglia can be derived from cranial magnetic resonance imaging (MRI). Long-term neurological disease is common, particularly in untreated patients, and the manifestations are varied, the most frequent being (1) mental defect, (2) epilepsy, and (3) movement disorders. Successful treatment strategies are becoming increasingly available. They mostly require an experienced interdisciplinary team including a neuropediatrician and/or later on a neurologist.
Collapse
Affiliation(s)
- Georg F Hoffmann
- Department of General Pediatrics, University Children's Hospital Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
134
|
Nassogne MC, Hertz-Pannier L. Metabolic diagnostic work-up in chronic conditions. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1563-1580. [PMID: 23622379 DOI: 10.1016/b978-0-444-59565-2.00026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neurological symptoms are very frequent in inborn errors of metabolism. This chapter presents a general approach to investigate inborn errors of metabolism in chronic neurological conditions. A diagnostic work-up has been designed to evaluate progressive neurological conditions with motor, cognitive, and/or behavioral signs in early infancy, late infancy to early childhood, and late childhood to adolescence. Inborn errors of metabolism associated with peripheral neuropathies, microcephaly, or macrocephaly are also reviewed.
Collapse
Affiliation(s)
- Marie-Cécile Nassogne
- Pediatric Neurology and Metabolism, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| | | |
Collapse
|
135
|
Amaral AU, Seminotti B, Cecatto C, Fernandes CG, Busanello ENB, Zanatta Â, Kist LW, Bogo MR, de Souza DOG, Woontner M, Goodman S, Koeller DM, Wajner M. Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 2012; 107:375-82. [PMID: 22999741 DOI: 10.1016/j.ymgme.2012.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Mitochondrial dysfunction has been proposed to play an important role in the neuropathology of glutaric acidemia type I (GA I). However, the relevance of bioenergetics disruption and the exact mechanisms responsible for the cortical leukodystrophy and the striatum degeneration presented by GA I patients are not yet fully understood. Therefore, in the present work we measured the respiratory chain complexes activities I-IV, mitochondrial respiratory parameters state 3, state 4, the respiratory control ratio and dinitrophenol (DNP)-stimulated respiration (uncoupled state), as well as the activities of α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and Na+, K+-ATPase in cerebral cortex, striatum and hippocampus from 30-day-old Gcdh-/- and wild type (WT) mice fed with a normal or a high Lys (4.7%) diet. When a baseline (0.9% Lys) diet was given, we verified mild alterations of the activities of some respiratory chain complexes in cerebral cortex and hippocampus, but not in striatum from Gcdh-/- mice as compared to WT animals. Furthermore, the mitochondrial respiratory parameters and the activities of α-KGDH and CK were not modified in all brain structures from Gcdh-/- mice. In contrast, we found a significant reduction of Na(+), K(+)-ATPase activity associated with a lower degree of its expression in cerebral cortex from Gcdh-/- mice. Furthermore, a high Lys (4.7%) diet did not accentuate the biochemical alterations observed in Gcdh-/- mice fed with a normal diet. Since Na(+), K(+)-ATPase activity is required for cell volume regulation and to maintain the membrane potential necessary for a normal neurotransmission, it is presumed that reduction of this enzyme activity may represent a potential underlying mechanism involved in the brain swelling and cortical abnormalities (cortical atrophy with leukodystrophy) observed in patients affected by GA I.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Lund AM, Hougaard DM, Simonsen H, Andresen BS, Christensen M, Dunø M, Skogstrand K, Olsen RKJ, Jensen UG, Cohen A, Larsen N, Saugmann-Jensen P, Gregersen N, Brandt NJ, Christensen E, Skovby F, Nørgaard-Pedersen B. Biochemical screening of 504,049 newborns in Denmark, the Faroe Islands and Greenland--experience and development of a routine program for expanded newborn screening. Mol Genet Metab 2012; 107:281-93. [PMID: 22795865 DOI: 10.1016/j.ymgme.2012.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Expanded newborn screening for selected inborn errors of metabolism (IEM) in Denmark, the Faroe Islands and Greenland was introduced in 2002. We now present clinical, biochemical, and statistical results of expanded screening (excluding PKU) of 504,049 newborns during nine years as well as diagnoses and clinical findings in 82,930 unscreened newborns born in the same period. The frequencies of diagnoses made within the panel of disorders screened for are compared with the frequencies of the disorders in the decade preceding expanded newborn screening. The expanded screening was performed as a pilot study during the first seven years, and the experience obtained during these years was used in the development of the routine neonatal screening program introduced in 2009. Methods for screening included tandem mass spectrometry and an assay for determination of biotinidase activity. A total of 310 samples from 504,049 newborns gave positive screening results. Of the 310 results, 114 were true positive, including results from 12 newborns in which the disease in question was subsequently diagnosed in their mothers. Thus, the overall frequency of an IEM in the screening panel was 1:4942 (mothers excluded) or 1:4421 (mothers included). The false positive rate was 0.038% and positive predictive value 37%. Overall specificity was 99.99%. All patients with true positive results were followed in The Center for Inherited Metabolic Disorders in Copenhagen, and the mean follow-up period was 45 months (range 2109 months). There were no deaths among the 102 children, and 94% had no clinically significant sequelae at last follow-up. Our study confirms the higher frequency of selected IEM after implementation of expanded newborn screening and suggests an improved outcome for several disorders. We argue that newborn screening for these disorders should be standard of care, though unresolved issues remain, e.g. about newborns with a potential for remaining asymptomatic throughout life. Well organized logistics of the screening program from screening laboratory to centralized, clinical management is important.
Collapse
Affiliation(s)
- Allan Meldgaard Lund
- Center for Inherited Metabolic Disorders, Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Kamate M, Patil V, Chetal V, Darak P, Hattiholi V. Glutaric aciduria type I: A treatable neurometabolic disorder. Ann Indian Acad Neurol 2012; 15:31-4. [PMID: 22412270 PMCID: PMC3299068 DOI: 10.4103/0972-2327.93273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/16/2011] [Accepted: 11/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background and Objectives: Glutaric aciduria Type-I (GA-I) has characteristic clinical and neuroimaging features, which clinches the diagnosis in a majority of patients. However, there have been few case reports on GA-I from India. This study was undertaken to study the clinical presentations, metabolic profile, neuroimaging findings and outcome of patients with GA-I. Study Design: The present study was a retrospective study. Materials and Methods: Retrospective review of charts of patients with a diagnosis of GA-I was carried out from March 2008 to April 2010. The clinical, laboratory and neuroimaging findings were extracted in a predesigned proforma and the data was analyzed. Results: Eleven cases were found to have GA-1. Clinical presentation was quite varied. Follow-up of patients revealed that one patient with macrocephaly as the only clinical finding was developmentally normal. One patient with encephalitis-like illness steadily improved and started walking at 2 years. Two patients were bed ridden and had severe dystonia. One patient died during follow-up. The remaining six patients had dystonia and other abnormal movements, but had attained sitting without support and were not ambulatory. Conclusion: GA-I is not an uncommon disorder and diagnosis can be made easily based on clinical, laboratory investigations and neuroimaging findings. It is one of the treatable metabolic disorders and, if managed appropriately, favorable prognosis can be given.
Collapse
Affiliation(s)
- Mahesh Kamate
- Department of Pediatrics, KLE University's J N Medical College, Belgaum, Karnataka State, India
| | | | | | | | | |
Collapse
|
138
|
Kölker S, Boy SPN, Heringer J, Müller E, Maier EM, Ensenauer R, Mühlhausen C, Schlune A, Greenberg CR, Koeller DM, Hoffmann GF, Haege G, Burgard P. Complementary dietary treatment using lysine-free, arginine-fortified amino acid supplements in glutaric aciduria type I - A decade of experience. Mol Genet Metab 2012; 107:72-80. [PMID: 22520952 DOI: 10.1016/j.ymgme.2012.03.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 12/30/2022]
Abstract
The cerebral formation and entrapment of neurotoxic dicarboxylic metabolites (glutaryl-CoA, glutaric and 3-hydroxyglutaric acid) are considered to be important pathomechanisms of striatal injury in glutaric aciduria type I (GA-I). The quantitatively most important precursor of these metabolites is lysine. Recommended therapeutic interventions aim to reduce lysine oxidation (low lysine diet, emergency treatment to minimize catabolism) and to enhance physiologic detoxification of glutaryl-CoA via formation of glutarylcarnitine (carnitine supplementation). It has been recently shown in Gcdh(-/-) mice that cerebral lysine influx and oxidation can be modulated by arginine which competes with lysine for transport at the blood-brain barrier and the inner mitochondrial membrane [Sauer et al., Brain 134 (2011) 157-170]. Furthermore, short-term outcome of 12 children receiving arginine-fortified diet showed very promising results [Strauss et al., Mol. Genet. Metab. 104 (2011) 93-106]. Since lysine-free, arginine-fortified amino acid supplements (AAS) are commercially available and used in Germany for more than a decade, we evaluated the effect of arginine supplementation in a cohort of 34 neonatally diagnosed GA-I patients (median age, 7.43 years; cumulative follow-up period, 221.6 patient years) who received metabolic treatment according to a published guideline [Kölker et al., J. Inherit. Metab. Dis. 30 (2007) 5-22]. Patients used one of two AAS product lines during the first year of life, resulting in differences in arginine consumption [group 1 (Milupa Metabolics): mean=111 mg arginine/kg; group 2 (Nutricia): mean=145 mg arginine/kg; p<0.001]. However, in both groups the daily arginine intake was increased (mean, 137 mg/kg body weight) and the dietary lysine-to-arginine ratio was decreased (mean, 0.7) compared to infants receiving human milk and other natural foods only. All other dietary parameters were in the same range. Despite significantly different arginine intake, the plasma lysine-to-arginine ratio did not differ in both groups. Frequency of dystonia was low (group 1: 12.5%; group 2: 8%) compared with patients not being treated according to the guideline, and gross motor development was similar in both groups. In conclusion, the development of complementary dietary strategies exploiting transport competition between lysine and arginine for treatment of GA-I seems promising. More work is required to understand neuroprotective mechanisms of arginine, to develop dietary recommendations for arginine and to evaluate the usefulness of plasma monitoring for lysine and arginine levels as predictors of cerebral lysine influx.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Viau K, Ernst SL, Vanzo RJ, Botto LD, Pasquali M, Longo N. Glutaric acidemia type 1: outcomes before and after expanded newborn screening. Mol Genet Metab 2012; 106:430-8. [PMID: 22728054 DOI: 10.1016/j.ymgme.2012.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 11/24/2022]
Abstract
Glutaric acidemia type 1 (GA-1) is an autosomal recessive disorder of lysine, hydroxylysine, and tryptophan metabolism. Patients may present with brain atrophy, macrocephaly, and acute dystonia secondary to striatal degeneration typically triggered by an infection, fever, and/or dehydration. This disorder is identified on expanded newborn screening by increased glutarylcarnitine. We evaluated the outcome of 19 patients with GA-1. Ten patients were diagnosed by newborn screening and 9 were diagnosed clinically. DNA testing in 12 patients identified 15 different mutations in the glutaryl-CoA dehydrogenase gene. Plasma glutarylcarnitine and urinary 3-hydroxyglutaric acid were elevated in all patients. However, only 10 of 17 patients who underwent urine organic acid analysis were high excretors of glutaric acid. Levels of glutarylcarnitine in plasma correlated with the urinary excretion of glutaric and 3-hydroxyglutaric acid, but not with clinical outcome. Plasma lysine was also significantly correlated with urinary glutaric acid, but not with urinary 3-hydroxyglutaric acid. Brain magnetic resonance imaging in all patients showed wide Sylvian fissures before treatment, which normalized by 4 years of age in treated patients. The occurrence of three adverse outcomes (oral motor function, ambulatory capability, and dystonic movements) was on average reduced by 75% (relative risk 0.25 to 0.28) in patients identified by newborn screening compared to patients diagnosed before newborn screening (Fisher's exact test; p=0.0055 for oral motor function and ambulatory capability; p=0.023 for dystonic movements). Newborn screening is effective in the prevention of complications in patients with GA-1 when coupled with treatment strategies.
Collapse
Affiliation(s)
- Krista Viau
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | |
Collapse
|
140
|
Gokmen-Ozel H, MacDonald A, Daly A, Ashmore C, Preece MA, Hendriksz C, Vijay S, Chakrapani A. Dietary practices in glutaric aciduria type 1 over 16 years. J Hum Nutr Diet 2012; 25:514-9. [DOI: 10.1111/j.1365-277x.2012.01269.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
141
|
Burgard P, Rupp K, Lindner M, Haege G, Rigter T, Weinreich SS, Loeber JG, Taruscio D, Vittozzi L, Cornel MC, Hoffmann GF. Newborn screening programmes in Europe; arguments and efforts regarding harmonization. Part 2. From screening laboratory results to treatment, follow-up and quality assurance. J Inherit Metab Dis 2012; 35:613-25. [PMID: 22544437 DOI: 10.1007/s10545-012-9484-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/13/2012] [Accepted: 03/28/2012] [Indexed: 11/30/2022]
Abstract
In a survey conducted in 2010/2011 data from the 28 EU member states, four EU candidate states (Croatia, FYROM, Iceland, Turkey), three potential EU candidate states (Bosnia Herzegovina, Montenegro, Serbia), and two EFTA states (Norway and Switzerland) were collected. The status and function of newborn screening (NBS) programmes were investigated from the information to prospective parents and the public via confirmation of a positive screening result up to decisions on treatment. This article summarises the results from screening laboratory findings to start of treatment. In addition we asked about the existence of feedback loops reporting the conclusions of confirmation of screening results to the screening laboratory and communication of long-term outcome to diagnostic units and possibly existing central registries. Parallel to the description of actual practices of where, how and by whom the different steps of the programmes are executed, we also asked for the existence of guidelines or directives regulating the screening programmes, material to support information of parents about diagnoses and treatment and training facilities for professionals involved in the programmes. This survey gives a first comprehensive overview of the steps following a positive screening result in European NBS programmes. The 37 data sets reveal substantial variation of national screening panels, but also a lot of similarities. Analysis across all countries revealed that actual practice is often organised but not regulated by guidelines. Material to inform patients is available more often for explaining treatment (69 %) than explaining the necessity of confirmatory diagnostics (41 %). Training of professionals is rarely regulated by a guideline (2 %), but is offered for paediatricians (40 %) and dieticians (29 %) and only rarely for other professions (e.g. geneticists, clinical nurse specialists, psychologists). Registry-based evaluation of long-term outcome is as yet almost nonexistent (3 %).
Collapse
Affiliation(s)
- Peter Burgard
- Department of Paediatrics, University Hospital - Heidelberg (DE), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Magni DV, Brüning CA, Gai BM, Quines CB, Rosa SG, Fighera MR, Nogueira CW. m-Trifluoromethyl diphenyl diselenide attenuates glutaric acid-induced seizures and oxidative stress in rat pups: involvement of the γ-aminobutyric acidergic system. J Neurosci Res 2012; 90:1723-31. [PMID: 22535575 DOI: 10.1002/jnr.23070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/15/2012] [Accepted: 03/22/2012] [Indexed: 11/11/2022]
Abstract
Glutaric acidemia type I (GA-I) is an inherited metabolic disease characterized by accumulation of glutaric acid (GA) and seizures. The intrastriatal GA administration in rats has been used as an animal model to mimic seizures presented by glutaric acidemic patients. m-Trifluoromethyl diphenyl diselenide, (m-CF(3) -C(6) H(4) Se)(2) , is an organoselenium compound that protects against seizures induced by pentylenetetrazole in mice. Thus, the aim of this study was to investigate whether (m-CF(3) -C(6) H(4) Se)(2) is effective against GA-induced seizures and oxidative stress in rat pups 21 days of age. Our findings demonstrate that (m-CF(3) -C(6) H(4) Se)(2) preadministration (50 mg/kg; p.o.) protected against the reduction in latency and the increased duration of GA (1.3 μmol/right striatum)-induced seizures in rat pups. In addition, (m-CF(3) -C(6) H(4) Se)(2) protected against the increase in reactive species generation and the reduction in antioxidant defenses glutathione peroxidase and glutathione S-transferase activities induced by GA. By contrast, no change in glutathione reductase or catalase activities was found. In addition, (m-CF(3) -C(6) H(4) Se)(2) was effective in protecting against inhibition of Na(+) ,K(+) -ATPase activity caused by GA in striatum of rat pups. This study showed for the first time that GA administration caused an increase in [(3) H]GABA uptake from striatum slices of rat pups and that (m-CF(3) -C(6) H(4) Se)(2) preadministration protected against this increase. A positive correlation between duration of seizures and [(3) H]GABA uptake levels was demonstrated. The results indicate that (m-CF(3) -C(6) H(4) Se)(2) protected against GA-induced seizures. Moreover, these findings suggest that the protection against oxidative stress, the inhibition of Na(+) ,K(+) -ATPase activity, and the increase in [(3) H]GABA uptake are possible mechanisms for the potential anticonvulsant action of (m-CF(3) -C(6) H(4) Se)(2).
Collapse
Affiliation(s)
- Danieli Valnes Magni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brasil.
| | | | | | | | | | | | | |
Collapse
|
143
|
Nasser M, Javaheri H, Fedorowicz Z, Noorani Z. Carnitine supplementation for inborn errors of metabolism. Cochrane Database Syst Rev 2012; 2012:CD006659. [PMID: 22336821 PMCID: PMC7390060 DOI: 10.1002/14651858.cd006659.pub3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Inborn errors of metabolism are genetic conditions which can lead to abnormalities in the synthesis and metabolism of proteins, carbohydrates, or fats. It has been proposed that in some instances carnitine supplementation should be provided to infants with a suspected metabolic disease as an interim measure, particularly whilst awaiting test results. Carnitine supplementation is used in the treatment of primary carnitine deficiency, and also where the deficiency is a secondary complication of several inborn errors of metabolism, such as organic acidaemias and fatty acid oxidation defects in children and adults. OBJECTIVES To assess the effectiveness and safety of carnitine supplementation in the treatment of inborn errors of metabolism. SEARCH METHODS We searched the Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Trials Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library 2007, Issue 4) and MEDLINE via Ovid (1950 to July week 4 2007), LILACS (15/05/2008) and Iranmedex (15/05/2008) and also the reference lists of retrieved articles.Date of most recent search of the Group's Inborn Errors of Metabolism Register: 27 October 2011. SELECTION CRITERIA Randomised controlled trials and quasi-randomised controlled trials comparing carnitine supplementation (in different dose, frequency, or duration) versus placebo in children and adults diagnosed with an inborn error of metabolism. DATA COLLECTION AND ANALYSIS Two authors independently screened and assessed the eligibility of the identified trials. MAIN RESULTS No trials were included in the review. AUTHORS' CONCLUSIONS There are no published or ongoing randomised controlled clinical trials relevant to this review question. Therefore, in the absence of any high level evidence, clinicians should base their decisions on clinical experience and in conjunction with preferences of the individual where appropriate. This does not mean that carnitine is ineffective or should not be used in any inborn error of metabolism. However, given the lack of evidence both on the effectiveness and safety of carnitine and on the necessary dose and frequency to be prescribed, the current prescribing practice should continue to be observed and monitored with care until further evidence is available. Methodologically sound trials, reported according to the Consolidated Standards of Reporting Trials (CONSORT) statement, are required. It should be considered whether placebo-controlled trials in potentially lethal diseases, e.g. carnitine transporter disorder or glutaric aciduria type I, are ethical.
Collapse
Affiliation(s)
- Mona Nasser
- Peninsula Dental School, University of Plymouth, Plymouth,
| | | | | | | |
Collapse
|
144
|
|
145
|
Jafari P, Braissant O, Bonafé L, Ballhausen D. The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 2011; 104:425-37. [PMID: 21944461 DOI: 10.1016/j.ymgme.2011.08.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022]
Abstract
Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by deficiency of glutaryl-Co-A dehydrogenase (GCDH). GCDH deficiency leads to accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA), two metabolites that are believed to be neurotoxic, in brain and body fluids. The disorder usually becomes clinically manifest during a catabolic state (e.g. intercurrent illness) with an acute encephalopathic crisis that results in striatal necrosis and in a permanent dystonic-dyskinetic movement disorder. The results of numerous in vitro and in vivo studies have pointed to three main mechanisms involved in the metabolite-mediated neuronal damage: excitotoxicity, impairment of energy metabolism and oxidative stress. There is evidence that during a metabolic crisis GA and its metabolites are produced endogenously in the CNS and accumulate because of limiting transport mechanisms across the blood-brain barrier. Despite extensive experimental work, the relative contribution of the proposed pathogenic mechanisms remains unclear and specific therapeutic approaches have yet to be developed. Here, we review the experimental evidence and try to delineate possible pathogenetic models and approaches for future studies.
Collapse
Affiliation(s)
- Paris Jafari
- Inborn Errors of Metabolism, Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
146
|
Yang L, Yin H, Yang R, Huang X. Diagnosis, treatment and outcome of glutaric aciduria type I in Zhejiang Province, China. Med Sci Monit 2011; 17:PH55-9. [PMID: 21709643 PMCID: PMC3539576 DOI: 10.12659/msm.881834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Glutaric aciduria type I (GA I; MIM 231670) is a rare autosomal recessive disorder resulting from glutaryl-CoA dehydrogenase deficiency. This article reports our experience in the diagnosis, treatment and outcome of GA I patients in Zhejiang Province, China. Material/Methods A total of 129,415 newborns (accounting for approximately one-tenth of the annual births in Zhejiang Province) and 9640 high-risk infants were screened for inborn errors of metabolism in the Neonatal Screening Center of Zhejiang Province during a 3-year period. Tandem mass spectrometry and gas chromatography-mass spectrometry were used for diagnosis of the patients. Dietary modification, carnitine supplementation and aggressive treatment of intercurrent illnesses were adapted for GA I patients. Results Three infants were diagnosed with GA I by high-risk screening (detection rate: 1/3,213) and 2 were diagnosed by newborn screening (incidence: 1/64,708). Four patients (3 by high-risk screening and 1 by neonatal screening) undergoing MRI examination showed remarkable changes on T2-weighted image. Four patients accepted timely treatment, and in the patient diagnosed by neonatal screening, treatment was delayed until hypotonia appeared 3 months later. Neuropsychological assessment showed mental and motor retardation in 3 patients after treatment, including the patient diagnosed by neonatal screening. Conclusions Individualized timely treatment and close monitoring of GA I patients needs to be optimized in China. Appropriate communication with parents may help to achieve successful management of GA I patients.
Collapse
Affiliation(s)
- Lili Yang
- Laboratory Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | |
Collapse
|
147
|
Strauss KA, Brumbaugh J, Duffy A, Wardley B, Robinson D, Hendrickson C, Tortorelli S, Moser AB, Puffenberger EG, Rider NL, Morton DH. Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: focus on cerebral amino acid influx. Mol Genet Metab 2011; 104:93-106. [PMID: 21820344 DOI: 10.1016/j.ymgme.2011.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 07/03/2011] [Indexed: 02/03/2023]
Abstract
Striatal degeneration from glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type 1, GA1) is associated with cerebral formation and entrapment of glutaryl-CoA and its derivatives that depend on cerebral lysine influx. In 2006 we designed a lysine-free study formula enriched with arginine to selectively block lysine transport across cerebral endothelia and thereby limit glutaryl-CoA production by brain. Between 2006 and present, we treated twelve consecutive children with study formula (LYSx group) while holding all other treatment practices constant. Clinical and biochemical outcomes were compared to 25 GA1 patients (PROx group) treated between 1995 and 2005 with natural protein restriction (dietary lysine/arginine ratio of 1.7±0.3 mg:mg). We used published kinetic parameters of the y+and LAT1 blood-brain barrier transporters to model the influx of amino acids into the brain. Arginine fortification to achieve a mean dietary lysine/arginine ratio of 0.7±0.2 mg:mg was neuroprotective. All 12 LYSx patients are physically and neurologically healthy after 28 aggregate patient-years of follow up (current ages 28±21 months) and there were no adverse events related to formula use. This represents a 36% reduction of neurological risk (95% confidence interval 14-52%, p=0.018) that we can directly attribute to altered amino acid intake. During the first year of life, 20% lower lysine intake and two-fold higher arginine intake by LYSx patients were associated with 50% lower plasma lysine, 3-fold lower plasma lysine/arginine concentration ratio, 42% lower mean calculated cerebral lysine influx, 54% higher calculated cerebral arginine influx, 15-26% higher calculated cerebral influx of several anaplerotic precursors (isoleucine, threonine, methionine, and leucine), 50% less 3-hydroxyglutarate excretion, and a 3-fold lower hospitalization rate (0.8 versus 2.3 hospitalizations per patient per year). The relationship between arginine fortification and plasma lysine indicates that transport competition exists at both cerebrovascular and gastrointestinal barriers, suggesting their co-administration is key to efficacy. Monitoring the ratio between lysine and arginine in diet and plasma may prove a useful strategy for treating children with GA1.
Collapse
|
148
|
Kölker S, Sauer S, Okun J, Burgard P, Hoffmann G. Glutarazidurie Typ I. Monatsschr Kinderheilkd 2011. [DOI: 10.1007/s00112-011-2443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
149
|
Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr 2011; 43:31-8. [PMID: 21249436 DOI: 10.1007/s10863-011-9324-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic acidurias or organic acidemias constitute a group of inherited disorders caused by deficient activity of specific enzymes of amino acids, carbohydrates or lipids catabolism, leading to large accumulation and excretion of one or more carboxylic (organic) acids. Affected patients usually present neurologic symptoms and abnormalities, sometimes accompanied by cardiac and skeletal muscle alterations, whose pathogenesis is poorly known. However, in recent years growing evidence has emerged indicating that mitochondrial dysfunction is directly or indirectly involved in the pathology of various organic acidemias. Mitochondrial impairment in some of these diseases are generally due to mutations in nuclear genes of the tricarboxylic acid cycle or oxidative phosphorylation, while in others it seems to result from toxic influences of the endogenous organic acids to the mitochondrion. In this minireview, we will briefly summarize the present knowledge obtained from human and animal studies showing that disruption of mitochondrial homeostasis may represent a relevant pathomechanism of tissue damage in selective organic acidemias. The discussion will focus on mitochondrial alterations found in patients affected by organic acidemias and by the deleterious effects of the accumulating organic acids on mitochondrial pathways that are crucial for ATP formation and transfer. The elucidation of the mechanisms of toxicity of these acidic compounds offers new perspectives for potential novel adjuvant therapeutic strategies in selected disorders of this group.
Collapse
Affiliation(s)
- Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| | | |
Collapse
|
150
|
Lindner M, Gramer G, Haege G, Fang-Hoffmann J, Schwab KO, Tacke U, Trefz FK, Mengel E, Wendel U, Leichsenring M, Burgard P, Hoffmann GF. Efficacy and outcome of expanded newborn screening for metabolic diseases--report of 10 years from South-West Germany. Orphanet J Rare Dis 2011; 6:44. [PMID: 21689452 PMCID: PMC3141366 DOI: 10.1186/1750-1172-6-44] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND National newborn screening programmes based on tandem-mass spectrometry (MS/MS) and other newborn screening (NBS) technologies show a substantial variation in number and types of disorders included in the screening panel. Once established, these methods offer the opportunity to extend newborn screening panels without significant investment and cost. However, systematic evaluations of newborn screening programmes are rare, most often only describing parts of the whole process from taking blood samples to long-term evaluation of outcome. METHODS In a prospective single screening centre observational study 373 cases with confirmed diagnosis of a metabolic disorder from a total cohort of 1,084,195 neonates screened in one newborn screening laboratory between January 1, 1999, and June 30, 2009 and subsequently treated and monitored in five specialised centres for inborn errors of metabolism were examined. Process times for taking screening samples, obtaining results, initiating diagnostic confirmation and starting treatment as well as the outcome variables metabolic decompensations, clinical status, and intellectual development at a mean age of 3.3 years were evaluated. RESULTS Optimal outcome is achieved especially for the large subgroup of patients with medium-chain acyl-CoA dehydrogenase deficiency. Kaplan-Meier-analysis revealed disorder related patterns of decompensation. Urea cycle disorders, organic acid disorders, and amino acid disorders show an early high and continuous risk, medium-chain acyl-CoA dehydrogenase deficiency a continuous but much lower risk for decompensation, other fatty acid oxidation disorders an intermediate risk increasing towards the end of the first year. Clinical symptoms seem inevitable in a small subgroup of patients with very early disease onset. Later decompensation can not be completely prevented despite pre-symptomatic start of treatment. Metabolic decompensation does not necessarily result in impairment of intellectual development, but there is a definite association between the two. CONCLUSIONS Physical and cognitive outcome in patients with presymptomatic diagnosis of metabolic disorders included in the current German screening panel is equally good as in phenylketonuria, used as a gold standard for NBS. Extended NBS entails many different interrelated variables which need to be carefully evaluated and optimized. More reports from different parts of the world are needed to allow a comprehensive assessment of the likely benefits, harms and costs in different populations.
Collapse
Affiliation(s)
- Martin Lindner
- Centre for Paediatric and Adolescent Medicine, University Heidelberg, Heidelberg, Germany
| | - Gwendolyn Gramer
- Centre for Paediatric and Adolescent Medicine, University Heidelberg, Heidelberg, Germany
| | - Gisela Haege
- Centre for Paediatric and Adolescent Medicine, University Heidelberg, Heidelberg, Germany
| | - Junmin Fang-Hoffmann
- Centre for Paediatric and Adolescent Medicine, University Heidelberg, Heidelberg, Germany
| | - Karl O Schwab
- Centre for Paediatric and Adolescent Medicine, University Freiburg, Freiburg, Germany
| | - Uta Tacke
- Centre for Paediatric and Adolescent Medicine, University Freiburg, Freiburg, Germany
| | - Friedrich K Trefz
- Children's Hospital, Klinikum am Steinenberg, Reutlingen, Reutlingen, Germany
| | - Eugen Mengel
- Centre for Paediatric and Adolescent Medicine, University Mainz, Mainz, Germany
| | - Udo Wendel
- Centre for Paediatric and Adolescent Medicine, University Düsseldorf, Düsseldorf, Germany
| | | | - Peter Burgard
- Centre for Paediatric and Adolescent Medicine, University Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Centre for Paediatric and Adolescent Medicine, University Heidelberg, Heidelberg, Germany
| |
Collapse
|