101
|
Spanos M, Shachar S, Sweeney T, Lehmann HI, Gokulnath P, Li G, Sigal GB, Nagaraj R, Bathala P, Rana F, Shah RV, Routenberg DA, Das S. Elevation of neural injury markers in patients with neurologic sequelae after hospitalization for SARS-CoV-2 infection. iScience 2022; 25:104833. [PMID: 35937088 PMCID: PMC9341164 DOI: 10.1016/j.isci.2022.104833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with SARS-CoV-2 infection (COVID-19) risk developing long-term neurologic symptoms after infection. Here, we identify biomarkers associated with neurologic sequelae one year after hospitalization for SARS-CoV-2 infection. SARS-CoV-2-positive patients were followed using post-SARS-CoV-2 online questionnaires and virtual visits. Hospitalized adults from the pre-SARS-CoV-2 era served as historical controls. 40% of hospitalized patients develop neurological sequelae in the year after recovery from acute COVID-19 infection. Age, disease severity, and COVID-19 infection itself was associated with additional risk for neurological sequelae in our cohorts. Glial fibrillary astrocytic protein (GFAP) and neurofilament light chain (NF-L) were significantly elevated in SARS-CoV-2 infection. After adjusting for age, sex, and disease severity, GFAP and NF-L remained significantly associated with longer term neurological symptoms in patients with SARS-CoV-2 infection. GFAP and NF-L warrant exploration as biomarkers for long-term neurologic complications after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Michail Spanos
- Cardiovascular Research Center, 185 Cambridge Street, Simches 3 Massachusetts General Hospital, Boston, MA, USA
| | - Sigal Shachar
- Meso Scale Diagnostics, LLC. (MSD), Rockville, MD, USA
| | - Thadryan Sweeney
- Cardiovascular Research Center, 185 Cambridge Street, Simches 3 Massachusetts General Hospital, Boston, MA, USA
| | - H. Immo Lehmann
- Cardiovascular Research Center, 185 Cambridge Street, Simches 3 Massachusetts General Hospital, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, 185 Cambridge Street, Simches 3 Massachusetts General Hospital, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Research Center, 185 Cambridge Street, Simches 3 Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Farhan Rana
- Cardiovascular Research Center, 185 Cambridge Street, Simches 3 Massachusetts General Hospital, Boston, MA, USA
| | - Ravi V. Shah
- Cardiovascular Research Center, 185 Cambridge Street, Simches 3 Massachusetts General Hospital, Boston, MA, USA
| | | | - Saumya Das
- Cardiovascular Research Center, 185 Cambridge Street, Simches 3 Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
102
|
Bagnato S, D’Ippolito ME, Boccagni C, De Tanti A, Lucca LF, Pingue V, Colombo V, Rubino F, Andriolo M. Six-month outcomes in patients with hemorrhagic and non-hemorrhagic traumatic disorders of consciousness. Neurol Sci 2022; 43:6511-6516. [DOI: 10.1007/s10072-022-06335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022]
|
103
|
Yakovleva O, Bett C, Pilant T, Asher DM, Gregori L. Abnormal prion protein, infectivity and neurofilament light-chain in blood of macaques with experimental variant Creutzfeldt-Jakob disease. J Gen Virol 2022; 103. [PMID: 35816369 PMCID: PMC10027005 DOI: 10.1099/jgv.0.001764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative infections. Variant Creutzfeldt-Jakob disease (vCJD) and sporadic CJD (sCJD) are human TSEs that, in rare cases, have been transmitted by human-derived therapeutic products. There is a need for a blood test to detect infected donors, identify infected individuals in families with TSEs and monitor progression of disease in patients, especially during clinical trials. We prepared panels of blood from cynomolgus and rhesus macaques experimentally infected with vCJD, as a surrogate for human blood, to support assay development. We detected abnormal prion protein (PrPTSE) in those blood samples using the protein misfolding cyclic amplification (PMCA) assay. PrPTSE first appeared in the blood of pre-symptomatic cynomolgus macaques as early as 2 months post-inoculation (mpi). In contrast, PMCA detected PrPTSE much later in the blood of two pre-symptomatic rhesus macaques, starting at 19 and 20 mpi, and in one rhesus macaque only when symptomatic, at 38 mpi. Once blood of either species of macaque became PMCA-positive, PrPTSE persisted through terminal illness at relatively constant concentrations. Infectivity in buffy coat samples from terminally ill cynomolgus macaques as well as a sample collected 9 months before clinical onset of disease in one of the macaques was assayed in vCJD-susceptible transgenic mice. The infectivity titres varied from 2.7 to 4.3 infectious doses ml-1. We also screened macaque blood using a four-member panel of biomarkers for neurodegenerative diseases to identify potential non-PrPTSE pre-symptomatic diagnostic markers. Neurofilament light-chain protein (NfL) increased in blood before the onset of clinical vCJD. Cumulatively, these data confirmed that, while PrPTSE is the first marker to appear in blood of vCJD-infected cynomolgus and rhesus macaques, NfL might offer a useful, though less specific, marker for forthcoming neurodegeneration. These studies support the use of macaque blood panels to investigate PrPTSE and other biomarkers to predict onset of CJD in humans.
Collapse
Affiliation(s)
- Oksana Yakovleva
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - Cyrus Bett
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - Teresa Pilant
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - David M Asher
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - Luisa Gregori
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| |
Collapse
|
104
|
Shin SS, Hefti MM, Mazandi VM, Issadore DA, Meaney DF, Schneider ALC, Diaz-Arrastia R, Kilbaugh TJ. Plasma Neurofilament Light and Glial Fibrillary Acidic Protein Levels over Thirty Days in a Porcine Model of Traumatic Brain Injury. J Neurotrauma 2022; 39:935-943. [PMID: 35369719 PMCID: PMC9836679 DOI: 10.1089/neu.2022.0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To establish the clinical relevance of porcine model of traumatic brain injury (TBI) using the plasma biomarkers of injury with diffusion tensor imaging (DTI) over 30 days, we performed a randomized, blinded, pre-clinical trial using Yorkshire pigs weighing 7-10 kg. Twelve pigs were subjected to Sham injury (n = 5) by skin incision or TBI (n = 7) by controlled cortical impact. Blood samples were collected before the injury, then at approximately 5-day intervals until 30 days. Both groups also had DTI at 24 h and at 30 days after injury. Plasma samples were isolated and single molecule array (Simoa) was performed for glial fibrillary acidic protein (GFAP) and neurofilament light (NFL) levels. Afterwards, brain tissue samples were stained for β-APP. DTI showed fractional anisotropy (FA) decrease in the right corona radiata (ipsilateral to injury), contralateral corona radiata, and anterior corpus callosum at 1 day. At 30 days, ipsilateral corona radiata showed decreased FA. Pigs with TBI also had increase in GFAP and NFL at 1-5 days after injury. Significant difference between Sham and TBI animals continued up to 20 days. Linear regression showed significant negative correlation between ipsilateral corona radiata FA and both NFL and GFAP levels at 1 day. To further validate the degree of axonal injury found in DTI, β-APP immunohistochemistry was performed on a perilesional tissue as well as corona radiata bilaterally. Variable degree of staining was found in ipsilateral corona radiata. Porcine model of TBI replicates the acute increase in plasma biomarkers seen in clinical TBI. Further, long term white matter injury is confirmed in the areas such as the splenium and corona radiata. However, future study stratifying severe and mild TBI, as well as comparison with other subtypes of TBI such as diffuse axonal injury, may be warranted.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | - Vanessa M. Mazandi
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A. Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea L. C. Schneider
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
105
|
Abdulla E, Ahmed N, Al-Salihi MM, Rahman R, E Ferdousse SN, Rahman S, Rahman MM. Letter: Blood Biomarkers and Structural Imaging Correlations Post-Traumatic Brain Injury: A Systematic Review. Neurosurgery 2022; 91:e24-e25. [PMID: 35482296 DOI: 10.1227/neu.0000000000002010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ebtesam Abdulla
- Department of Neurosurgery, Salmaniya Medical Complex, Manama, Bahrain
| | - Nazmin Ahmed
- Department of Neurosurgery, Ibrahim Cardiac Hospital and Research Institute (A Centre for Cardiovascular, Neuroscience and Organ Transplant Units), Dhaka, Bangladesh
| | | | - Raphia Rahman
- Rowan School of Osteopathic Medicine, Stratford, New Jersey, USA
| | | | - Sabrina Rahman
- Department of Public Health, Independent University-Bangladesh, Dhaka, Bangladesh
| | - Md Moshiur Rahman
- Department of Neurosurgery, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| |
Collapse
|
106
|
Min JH, Shin YI. Treatment and Rehabilitation for Traumatic Brain Injury: Current Update. BRAIN & NEUROREHABILITATION 2022; 15:e14. [PMID: 36743200 PMCID: PMC9833473 DOI: 10.12786/bn.2022.15.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Traumatic brain injury (TBI) is an acquired injury to the brain caused by external mechanical forces, which can cause temporary or permanent disability. TBI and its potential long-term consequences are serious public health concerns. This review seeks to provide updated information on the current methods of management of patients with TBI to improve patient care.
Collapse
Affiliation(s)
- Ji Hong Min
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
107
|
Newcombe VFJ, Ashton NJ, Posti JP, Glocker B, Manktelow A, Chatfield DA, Winzeck S, Needham E, Correia MM, Williams GB, Simrén J, Takala RSK, Katila AJ, Maanpää HR, Tallus J, Frantzén J, Blennow K, Tenovuo O, Zetterberg H, Menon DK. Post-acute blood biomarkers and disease progression in traumatic brain injury. Brain 2022; 145:2064-2076. [PMID: 35377407 PMCID: PMC9326940 DOI: 10.1093/brain/awac126] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 11/23/2022] Open
Abstract
There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein (GFAP) and neurofilament light have been widely explored in characterizing acute traumatic brain injury (TBI), their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following TBI. Two-hundred and three patients were recruited in two separate cohorts; 6 months post-injury (n = 165); and >5 years post-injury (n = 38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n = 199) and MRI (n = 172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualized Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at 6 months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualized brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. GFAP and neurofilament light levels can remain elevated months to years after TBI, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow-up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify TBI survivors who are at high risk of progressive neurological damage.
Collapse
Affiliation(s)
- Virginia F J Newcombe
- University Division of Anaesthesia, Department of Medicine, University of
Cambridge, Cambridge, UK
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine, University of
Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and
Physiology, The Sahlgrenska Academy at the University of Gothenburg,
Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and
Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute,
London, UK
- Mental Health and Biomedical Research Unit for Dementia, Maudsley NIHR
Biomedical Research Centre, London, UK
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and
University of Turku, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital and University of
Turku, Turku, Finland
| | - Ben Glocker
- Biomedical Image Analysis Group, Department of Computing, Imperial College
London, London, UK
| | - Anne Manktelow
- University Division of Anaesthesia, Department of Medicine, University of
Cambridge, Cambridge, UK
| | - Doris A Chatfield
- University Division of Anaesthesia, Department of Medicine, University of
Cambridge, Cambridge, UK
| | - Stefan Winzeck
- University Division of Anaesthesia, Department of Medicine, University of
Cambridge, Cambridge, UK
- Biomedical Image Analysis Group, Department of Computing, Imperial College
London, London, UK
| | - Edward Needham
- University Division of Anaesthesia, Department of Medicine, University of
Cambridge, Cambridge, UK
| | - Marta M Correia
- MRC (Medical Research Council) Cognition and Brain Sciences Unit,
University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, Department of Clinical
Neurosciences, Cambridge, UK
| | - Joel Simrén
- Institute of Neuroscience and Physiology, Department of Psychiatry and
Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg,
Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal, Sweden
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management,
Department of Anesthesiology and Intensive Care, Turku University Hospital, University
of Turku, Turku, Finland
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management,
Department of Anesthesiology and Intensive Care, Turku University Hospital, University
of Turku, Turku, Finland
| | - Henna Riikka Maanpää
- Neurocenter, Department of Neurosurgery, Turku University Hospital and
University of Turku, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital and University of
Turku, Turku, Finland
| | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital and University of
Turku, Turku, Finland
| | - Janek Frantzén
- Neurocenter, Department of Neurosurgery, Turku University Hospital and
University of Turku, Turku, Finland
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and
Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg,
Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal, Sweden
| | - Olli Tenovuo
- Turku Brain Injury Center, Turku University Hospital and University of
Turku, Turku, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and
Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg,
Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of
Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, University College
London, London, UK
- Hong Kong Center for Neurodegenerative Disease,
Hong Kong, China
| | - David K Menon
- University Division of Anaesthesia, Department of Medicine, University of
Cambridge, Cambridge, UK
| |
Collapse
|
108
|
Graham NSN. Progress towards predicting neurodegeneration and dementia after traumatic brain injury. Brain 2022; 145:1874-1876. [DOI: 10.1093/brain/awac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Neil S. N. Graham
- Imperial College London Department of Brain Sciences, , London, UK
- UK DRI Centre for Care Research and Technology, Imperial College London , London, UK
| |
Collapse
|
109
|
Shahim P, Zetterberg H, Simren J, Ashton NJ, Norato G, Schöll M, Tegner Y, Diaz-Arrastia R, Blennow K. Association of Plasma Biomarker Levels With Their CSF Concentration and the Number and Severity of Concussions in Professional Athletes. Neurology 2022; 99:e347-e354. [PMID: 35654597 DOI: 10.1212/wnl.0000000000200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine whether the brain biomarkers total-tau (T-tau), glial fibrillary acidic protein (GFAP), and β-amyloid (Aβ) isomers 40 and 42 in plasma relate to the corresponding concentrations in cerebrospinal fluid (CSF), blood-brain barrier integrity, and duration of post-concussion syndrome (PCS) due to repetitive head impacts (RHI) in professional athletes. METHOD In this cross-sectional study, professional athletes with persistent PCS due to RHI (median of 1.5 years after recent concussion) and uninjured controls were assessed with blood and CSF sampling. The diagnosis of PCS was based on the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition). The athletes were enrolled through information flyers about the study sent to the Swedish hockey league (SHL) and the SHL Medicine Committee. The controls were enrolled through flyers at University of Gothenburg and Sahlgrenska University Hospital, Sweden. The participants underwent lumbar puncture and blood assessment at Sahlgrenska University Hospital. The main outcome measures were history of RHI and PCS severity (PCS> 1 year versus PCS< 1 year) in relation to plasma and CSF concentrations of T-tau, GFAP, Aβ40, and Aβ42. Plasma T-tau, GFAP, Aβ40, and Aβ42 were quantified using an ultrasensitive assay technology. RESULTS A total of 47 participants (28 athletes [median age 28 years, range 18-52] with persistent PCS, due to RHI and 19 controls [median age, 25 years, range 21-35]) underwent paired blood and cerebrospinal fluid (CSF) sampling. T-tau, Aβ40 and Aβ42 concentrations measured in plasma did not correlate with the corresponding CSF concentrations, while there was a correlation between plasma and CSF levels of GFAP (r=0.45, p=0.020). There were no significant relationships between plasma T-tau, GFAP, and blood-brain barrier integrity as measured by CSF:serum albumin ratio. T-tau, GFAP, Aβ40, and Aβ42 measured in plasma did not relate to PCS severity. None of the markers measured in plasma correlated with number of concussions, except decreased Aβ42 in those with higher number of concussions (r=-0.40, p=0.04). CONCLUSIONS T-tau, GFAP, Aβ40 and Aβ42 measured in plasma do not correspond to CSF measures, and may have limited utility for the evaluation of the late effects of RHI, compared with when measured in CSF. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that in professional athletes with post-concussion symptoms, plasma concentrations of T-tau, GFAP, Aβ40, and Aβ42 are not informative in the diagnosis of late effects of repetitive head injuries.
Collapse
Affiliation(s)
- Pashtun Shahim
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Joel Simren
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael Schöll
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Yelverton Tegner
- Division of Health, Medicine and Rehabilitation, Department of Health Science, Luleå University of Technology, Luleå, Sweden
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
110
|
Edlow BL, Bodien YG, Baxter T, Belanger H, Cali R, Deary K, Fischl B, Foulkes AS, Gilmore N, Greve DN, Hooker JM, Huang SY, Kelemen JN, Kimberly WT, Maffei C, Masood M, Perl D, Polimeni JR, Rosen BR, Tromly S, Tseng CEJ, Yao EF, Zurcher NR, Mac Donald CL, Dams-O'Connor K. Long-Term Effects of Repeated Blast Exposure in United States Special Operations Forces Personnel: A Pilot Study Protocol. J Neurotrauma 2022; 39:1391-1407. [PMID: 35620901 PMCID: PMC9529318 DOI: 10.1089/neu.2022.0030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence suggests that repeated blast exposure (RBE) is associated with brain injury in military personnel. United States (U.S.) Special Operations Forces (SOF) personnel experience high rates of blast exposure during training and combat, but the effects of low-level RBE on brain structure and function in SOF have not been comprehensively characterized. Further, the pathophysiological link between RBE-related brain injuries and cognitive, behavioral, and physical symptoms has not been fully elucidated. We present a protocol for an observational pilot study, Long-Term Effects of Repeated Blast Exposure in U.S. SOF Personnel (ReBlast). In this exploratory study, 30 active-duty SOF personnel with RBE will participate in a comprehensive evaluation of: 1) brain network structure and function using Connectome magnetic resonance imaging (MRI) and 7 Tesla MRI; 2) neuroinflammation and tau deposition using positron emission tomography; 3) blood proteomics and metabolomics; 4) behavioral and physical symptoms using self-report measures; and 5) cognition using a battery of conventional and digitized assessments designed to detect subtle deficits in otherwise high-performing individuals. We will identify clinical, neuroimaging, and blood-based phenotypes that are associated with level of RBE, as measured by the Generalized Blast Exposure Value. Candidate biomarkers of RBE-related brain injury will inform the design of a subsequent study that will test a diagnostic assessment battery for detecting RBE-related brain injury. Ultimately, we anticipate that the ReBlast study will facilitate the development of interventions to optimize the brain health, quality of life, and battle readiness of U.S. SOF personnel.
Collapse
Affiliation(s)
- Brian L Edlow
- Harvard Medical School, 1811, 175 Cambridge Street - Suite 300, Boston, Massachusetts, United States, 02115.,Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Yelena G Bodien
- Massachusetts General Hospital, 2348, Department of Neurology, 101 Merrimac, Boston, Massachusetts, United States, 02114;
| | - Timothy Baxter
- University of South Florida, 7831, Institute for Applied Engineering, Tampa, Florida, United States;
| | - Heather Belanger
- University of South Florida, 7831, Department of Psychiatry and Behavioral Neurosciences, Tampa, Florida, United States;
| | - Ryan Cali
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Katryna Deary
- Navy SEAL Foundation, Virginia Beach, Virginia, United States;
| | - Bruce Fischl
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Room 2301, 149 13th Street, Charlestown, Massachusetts, United States, 02129-2020.,Massachusetts General Hospital;
| | - Andrea S Foulkes
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Natalie Gilmore
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Douglas N Greve
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Jacob M Hooker
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Susie Y Huang
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Jessica N Kelemen
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - W Taylor Kimberly
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Chiara Maffei
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Maryam Masood
- Massachusetts General Hospital, 2348, Boston, Massachusetts, United States;
| | - Daniel Perl
- Uniformed Services University of the Health Sciences, 1685, Pathology, 4301 Jones Bridge Road, Room B3138, Bethesda, Maryland, United States, 20814;
| | - Jonathan R Polimeni
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Bruce R Rosen
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States;
| | - Samantha Tromly
- University of South Florida, 7831, Institute for Applied Engineering, Tampa, Florida, United States;
| | - Chieh-En J Tseng
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Eveline F Yao
- United States Special Operations Command, Office of the Surgeon General, MacDill Air Force Base, United States;
| | - Nicole R Zurcher
- Massachusetts General Hospital, 2348, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States;
| | - Christine L Mac Donald
- University of Washington, 7284, Department of Neurological Surgery, Seattle, Washington, United States;
| | - Kristen Dams-O'Connor
- Icahn School of Medicine at Mount Sinai, 5925, Rehabilitation Medicine, One Gustave Levy Place, Box 1163, New York, New York, United States, 10029; kristen.dams-o'
| |
Collapse
|
111
|
Johnson NH, Hadad R, Taylor RR, Rodríguez Pilar J, Salazar O, Llompart-Pou JA, Dietrich WD, Keane RW, Pérez-Bárcena J, de Rivero Vaccari JP. Inflammatory Biomarkers of Traumatic Brain Injury. Pharmaceuticals (Basel) 2022; 15:ph15060660. [PMID: 35745576 PMCID: PMC9227014 DOI: 10.3390/ph15060660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) has a complex pathology in which the initial injury releases damage associated proteins that exacerbate the neuroinflammatory response during the chronic secondary injury period. One of the major pathological players in the inflammatory response after TBI is the inflammasome. Increased levels of inflammasome proteins during the acute phase after TBI are associated with worse functional outcomes. Previous studies reveal that the level of inflammasome proteins in biological fluids may be used as promising new biomarkers for the determination of TBI functional outcomes. In this study, we provide further evidence that inflammatory cytokines and inflammasome proteins in serum may be used to determine injury severity and predict pathological outcomes. In this study, we analyzed blood serum from TBI patients and respective controls utilizing Simple Plex inflammasome and V-PLEX inflammatory cytokine assays. We performed statistical analyses to determine which proteins were significantly elevated in TBI individuals. The receiver operating characteristics (ROC) were determined to obtain the area under the curve (AUC) to establish the potential fit as a biomarker. Potential biomarkers were then compared to documented patient Glasgow coma scale scores via a correlation matrix and a multivariate linear regression to determine how respective biomarkers are related to the injury severity and pathological outcome. Inflammasome proteins and inflammatory cytokines were elevated after TBI, and the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC), interleukin (IL)-18, tumor necrosis factor (TNF)-α, IL-4 and IL-6 were the most reliable biomarkers. Additionally, levels of these proteins were correlated with known clinical indicators of pathological outcome, such as the Glasgow coma scale (GCS). Our results show that inflammatory cytokines and inflammasome proteins are promising biomarkers for determining pathological outcomes after TBI. Additionally, levels of biomarkers could potentially be utilized to determine a patient’s injury severity and subsequent pathological outcome. These findings show that inflammation-associated proteins in the blood are reliable biomarkers of injury severity that can also be used to assess the functional outcomes of TBI patients.
Collapse
Affiliation(s)
- Nathan H. Johnson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.H.J.); (R.H.); (R.W.K.)
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.H.J.); (R.H.); (R.W.K.)
| | - Ruby Rose Taylor
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
| | - Javier Rodríguez Pilar
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - Osman Salazar
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - Juan Antonio Llompart-Pou
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - W. Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
| | - Robert W. Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.H.J.); (R.H.); (R.W.K.)
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
| | - Jon Pérez-Bárcena
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
- Correspondence:
| |
Collapse
|
112
|
Wang RM, Xu WQ, Zheng ZW, Yang GM, Zhang MY, Ke HZ, Xia N, Dong Y, Wu ZY. Serum Neurofilament Light Chain in Wilson's Disease: A Promising Indicator but Unparallel to Real-Time Treatment Response. Mov Disord 2022; 37:1531-1535. [PMID: 35507442 DOI: 10.1002/mds.29039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Wilson's disease (WD) currently lacks a promising indicator that could reflect neurological impairment and monitor treatment outcome. We aimed to investigate whether serum neurofilament light chain (sNfL) functions as a candidate for disease assessment and treatment monitoring of WD. METHODS We assessed preclinical and manifested WD patients' sNfL levels compared to controls and analyzed the differences between patients with various clinical symptoms. We then explored the correlation between clinical scales and sNfL levels. And repeated measurements were performed in 34 patients before and after treatment. RESULTS WD patients with neurological involvement had significantly higher sNfL levels than both hepatic patients and controls. Positive correlations were found between Unified Wilson's Disease Rating Scale scores and sNfL and between semiquantitative magnetic resonance imaging scales and sNfL levels in WD patients. However, in the treatment follow-up analysis, the trend of sNfL before and after treatment disaccorded with clinical response. CONCLUSION These findings suggest that sNfL levels can be an ideal indicator for the severity of neurological involvement but fail to evaluate change in disease condition after treatment. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rou-Min Wang
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wan-Qing Xu
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zi-Wei Zheng
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Min Yang
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-Yan Zhang
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Zhen Ke
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Xia
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
113
|
Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front Neurol 2022; 13:835597. [PMID: 35386417 PMCID: PMC8977512 DOI: 10.3389/fneur.2022.835597] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major global health issue, with outcomes spanning from intracranial bleeding, debilitating sequelae, and invalidity with consequences for individuals, families, and healthcare systems. Early diagnosis of TBI by testing peripheral fluids such as blood or saliva has been the focus of many research efforts, leading to FDA approval for a bench-top assay for blood GFAP and UCH-L1 and a plasma point-of-care test for GFAP. The biomarker S100B has been included in clinical guidelines for mTBI (mTBI) in Europe. Despite these successes, several unresolved issues have been recognized, including the robustness of prior data, the presence of biomarkers in tissues beyond the central nervous system, and the time course of biomarkers in peripheral body fluids. In this review article, we present some of these issues and provide a viewpoint derived from an analysis of existing literature. We focus on two astrocytic proteins, S100B and GFAP, the most commonly employed biomarkers used in mTBI. We also offer recommendations that may translate into a broader acceptance of these clinical tools.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,FloTBI, Cleveland, OH, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Johan Unden
- Department of Operation and Intensive Care, Hallands Hospital Halmstad, Lund University, Lund, Sweden
| |
Collapse
|
114
|
Posti JP, Tenovuo O. Blood-based biomarkers and traumatic brain injury-A clinical perspective. Acta Neurol Scand 2022; 146:389-399. [PMID: 35383879 DOI: 10.1111/ane.13620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 12/19/2022]
Abstract
Blood-based biomarkers are promising tools to complement clinical variables and imaging findings in the diagnosis, monitoring and outcome prediction of traumatic brain injury (TBI). Several promising biomarker candidates have been found for various clinical questions, but the translation of TBI biomarkers into clinical applications has been negligible. Measured biomarker levels are influenced by patient-related variables such as age, blood-brain barrier integrity and renal and liver function. It is not yet fully understood how biomarkers enter the bloodstream from the interstitial fluid of the brain. In addition, the diagnostic performance of TBI biomarkers is affected by sampling timing and analytical methods. In this focused review, the clinical aspects of glial fibrillary acidic protein, neurofilament light, S100 calcium-binding protein B, tau and ubiquitin C-terminal hydrolase-L1 are examined. Current findings and clinical caveats are addressed.
Collapse
Affiliation(s)
- Jussi P. Posti
- Neurocenter Department of Neurosurgery and Turku Brain Injury Center Turku University Hospital and University of Turku Turku Finland
| | - Olli Tenovuo
- Neurocenter Turku Brain Injury Center Turku University Hospital and University of Turku Turku Finland
| |
Collapse
|
115
|
Lippa SM, Gill J, Brickell TA, Guedes VA, French LM, Lange RT. Blood Biomarkers Predict Future Cognitive Decline after Military-Related Traumatic Brain Injury. Curr Alzheimer Res 2022; 19:351-363. [PMID: 35362372 DOI: 10.2174/1567205019666220330144432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) has been associated with increased likelihood of late-life dementia; however, the mechanisms driving this relationship are elusive. Blood-based biomarkers may provide insight into these mechanisms and serve as useful prognostic indicators of cognitive recovery or decline following a TBI. OBJECTIVE The aim of this study was to examine blood biomarkers within one year of TBI and explore their relationship with cognitive decline. METHODS Service members and veterans (n=224) without injury (n=77), or with history of bodily injury (n=37), uncomplicated mild TBI (n=55), or more severe TBI (n=55), underwent a blood draw and neuropsychological assessment within one year of their injury as part of a case-control study. A subsample (n=87) completed follow-up cognitive assessment. RESULTS In the more severe TBI group, baseline glial fibrillary acidic protein (p=.008) and ubiquitin C-terminal hydrolase-L1 (p=.026) were associated with processing speed at baseline, and baseline ubiquitin C-terminal hydrolase-L1 predicted change in immediate (R2Δ=.244, p=.005) and delayed memory (R2Δ=.390, p=.003) over time. In the mild TBI group, higher baseline tau predicted greater negative change in perceptual reasoning (R2Δ=.188, p=.033) and executive functioning (R2Δ=.298, p=.007); higher baseline neurofilament light predicted greater negative change in perceptual reasoning (R2Δ=.211, p=.012). CONCLUSION Baseline ubiquitin C-terminal hydrolase-L1 strongly predicted memory decline in the more severe TBI group, while tau and neurofilament light strongly predicted decline in the mild TBI group. A panel including these biomarkers could be particularly helpful in identifying those at risk for future cognitive decline following TBI.
Collapse
Affiliation(s)
- Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Tracey A Brickell
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
| | - Vivian A Guedes
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Louis M French
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rael T Lange
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
116
|
Guedes VA, Lange RT, Lippa SM, Lai C, Greer K, Mithani S, Devoto C, A Edwards K, Wagner CL, Martin CA, Driscoll AE, Wright MM, Gillow KC, Baschenis SM, Brickell TA, French LM, Gill JM. Extracellular vesicle neurofilament light is elevated within the first 12-months following traumatic brain injury in a U.S military population. Sci Rep 2022; 12:4002. [PMID: 35256615 PMCID: PMC8901614 DOI: 10.1038/s41598-022-05772-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) can be associated with long-term neurobehavioral symptoms. Here, we examined levels of neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in extracellular vesicles isolated from blood, and their relationship with TBI severity and neurobehavioral symptom reporting. Participants were 218 service members and veterans who sustained uncomplicated mild TBIs (mTBI, n = 107); complicated mild, moderate, or severe TBIs (smcTBI, n = 66); or Injured controls (IC, orthopedic injury without TBI, n = 45). Within one year after injury, but not after, NfL was higher in the smcTBI group than mTBI (p = 0.001, d = 0.66) and IC (p = 0.001, d = 0.35) groups, which remained after controlling for demographics and injury characteristics. NfL also discriminated the smcTBI group from IC (AUC:77.5%, p < 0.001) and mTBI (AUC:76.1%, p < 0.001) groups. No other group differences were observed for NfL or GFAP at either timepoint. NfL correlated with post-concussion symptoms (rs = - 0.38, p = 0.04) in the mTBI group, and with PTSD symptoms in mTBI (rs = - 0.43, p = 0.021) and smcTBI groups (rs = - 0.40, p = 0.024) within one year after injury, which was not confirmed in regression models. Our results suggest the potential of NfL, a protein previously linked to axonal damage, as a diagnostic biomarker that distinguishes TBI severity within the first year after injury.
Collapse
Affiliation(s)
- Vivian A Guedes
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Rael T Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
- University of British Columbia, Vancouver, BC, Canada
| | - Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Chen Lai
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Kisha Greer
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Sara Mithani
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Christina Devoto
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Katie A Edwards
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Chelsea L Wagner
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Carina A Martin
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA
| | - Angela E Driscoll
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Megan M Wright
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
| | - Kelly C Gillow
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
| | - Samantha M Baschenis
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
| | - Tracey A Brickell
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
- University of British Columbia, Vancouver, BC, Canada
| | - Louis M French
- Traumatic Brain Injury Center of Excellence, Silver Spring, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jessica M Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, 20814, USA.
| |
Collapse
|
117
|
Kammeyer R, Mizenko C, Sillau S, Richie A, Owens G, Nair KV, Alvarez E, Vollmer TL, Bennett JL, Piquet AL. Evaluation of Plasma Neurofilament Light Chain Levels as a Biomarker of Neuronal Injury in the Active and Chronic Phases of Autoimmune Neurologic Disorders. Front Neurol 2022; 13:689975. [PMID: 35309573 PMCID: PMC8924486 DOI: 10.3389/fneur.2022.689975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Objective To evaluate plasma neurofilament light (NfL) levels in autoimmune neurologic disorders (AINDs) and autoimmune encephalitis (AE). Background Each particular neural autoantibody syndrome has a different clinical phenotype, making one unifying clinical outcome measure difficult to assess. While this is a heterogeneous group of disorders, the final common pathway is likely CNS damage and inflammation. Defining a biomarker of CNS injury that is easily obtainable through a blood sample and reflects a positive treatment response would be highly advantageous in future therapeutic trials. Measurement of blood concentration of neurofilament light (NfL) chain, however, may provide a biomarker of central nervous system (CNS) injury in AE and other AINDs. Here we provide an initial evaluation of plasma NfL levels in AE as well as other AINDs during active and chronic phases of disease and demonstrate its potential utility as a minimally-invasive biomarker for AE and AINDs. Design/Methods Patients were retrospectively identified who were enrolled in the biorepository at the Rocky Mountain MS Center at the University of Colorado, or were prospectively enrolled after initial presentation. Patients had a well-defined AIND and were followed between 2014 and 2021. NfL was tested using the Single Molecule Array (SIMOA) technology. Patients with headaches but without other significant neurologic disease were included as controls. Results Twenty-six plasma and 14 CSF samples of patients with AINDs, and 20 plasma control samples stored in the biorepository were evaluated. A positive correlation was found between plasma and CSF NfL levels for patients with an AIND (R2 = 0.83, p < 0.001). Elevated plasma levels of NfL were seen in patients with active AE compared to controls [geometric mean (GM) 51.4 vs. 6.4 pg/ml, p = 0.002]. Patients with chronic symptoms (>6 months since new or worsening symptoms) of AE or cerebellar ataxia (CA) showed a trend toward lower plasma NfL levels (GM 15.1 pg/ml) compared to active AE or CA. Six patients with longitudinal, prospective sampling available demonstrated a trend in decreased plasma NfL levels over time. Conclusions Our findings support the use of plasma NfL as a potential minimally-invasive biomarker of CNS injury.
Collapse
Affiliation(s)
- Ryan Kammeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher Mizenko
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alanna Richie
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gregory Owens
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kavita V. Nair
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Enrique Alvarez
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Timothy L. Vollmer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey L. Bennett
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Amanda L. Piquet
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Amanda L. Piquet
| |
Collapse
|
118
|
Shahim P, Zetterberg H. Neurochemical Markers of Traumatic Brain Injury: Relevance to Acute Diagnostics, Disease Monitoring, and Neuropsychiatric Outcome Prediction. Biol Psychiatry 2022; 91:405-412. [PMID: 34857362 DOI: 10.1016/j.biopsych.2021.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
Considerable advancements have been made in the quantification of biofluid-based biomarkers for traumatic brain injury (TBI), which provide a clinically accessible window to investigate disease mechanisms and progression. Methods with improved analytical sensitivity compared with standard immunoassays are increasingly used, and blood tests are being used in the diagnosis, monitoring, and outcome prediction of TBI. Most work to date has focused on acute TBI diagnostics, while the literature on biomarkers for long-term sequelae is relatively scarce. In this review, we give an update on the latest developments in biofluid-based biomarker research in TBI and discuss how acute and prolonged biomarker changes can be used to detect and quantify brain injury and predict clinical outcome and neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Pashtun Shahim
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at University College London, London, United Kingdom; Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
| |
Collapse
|
119
|
Plasma biomarkers associated with deployment trauma and its consequences in post-9/11 era veterans: initial findings from the TRACTS longitudinal cohort. Transl Psychiatry 2022; 12:80. [PMID: 35217643 PMCID: PMC8881445 DOI: 10.1038/s41398-022-01853-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is among the most common injuries sustained by post-9/11 veterans; however, these injuries often occur within the context of psychological trauma. Blast exposure, even in the absence of a diagnosable TBI, leads to changes in neural connectivity and congitive functioning. Therefore, considering clinical comorbidities and injury characteristics is critical to understanding the long-term effects of mTBI. Research is moving towards identifying diagnostic and prognostic blood-based biomarkers for TBI; however, few studies include other prevalent clinical and medical comorbidities related to deployment. Here, we present the initial cross-sectional relationships between plasma biomarkers, clinical, and medical comorbidities in a well-characterized longitudinal sample of 550 post-9/11 veteran men and women. We examined biomarkers associated with inflammation (interleukin 6 and 10, tumor necrosis factor α, and eotaxin) and neurodegeneration (neurofilament light, glial fibrillary acidic protein (GFAP), tau, brain derived neurotrophic factor, amyloid ß 40 and 42, phosphorylated neurofilament heavy chain, and neuron specific enolase). Univariate analyses of covariance (ANCOVA) were conducted to determine mean level differences between close blast (blasts that occur within 0-10 meters) and mTBI groups. Our primary findings were twofold: (1) Inflammatory markers were consistently higher in participants exposed to close blasts and were strongly related to deployment-related psychopathology. (2) GFAP was consistently lower in participants exposed to blast and mTBI and lower GFAP was associated with more severe psychological symptoms. More research is clearly needed; however, our findings indicate that chronic increased inflammation and decreased GFAP may be related to close blast exposure.
Collapse
|
120
|
Blood Biomarkers in Brain Injury Medicine. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022; 2022:10.1007/s40141-022-00343-w. [PMID: 35433117 PMCID: PMC9009302 DOI: 10.1007/s40141-022-00343-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose of Review This review seeks to explore blood-based biomarkers with the potential for clinical implementation. Recent Findings Emerging non-proteomic biomarkers hold promise for more accurate diagnostic and prognostic capabilities, especially in the subacute to chronic phase of TBI recovery. Further, there is a growing understanding of the overlap between TBI-related and Dementia-related blood biomarkers. Summary Given the significant heterogeneity inherent in the clinical diagnosis of Traumatic Brain Injury (TBI), there has been an exponential increase in TBI-related biomarker research over the past two decades. While TBI-related biomarker assessments include both cerebrospinal fluid analysis and advanced neuroimaging modalities, blood-based biomarkers hold the most promise to be non-invasive biomarkers widely available to Brain Injury Medicine clinicians in diverse practice settings. In this article, we review the most relevant blood biomarkers for the field of Brain Injury Medicine, including both proteomic and non-proteomic blood biomarkers, biomarkers of cerebral microvascular injury, and biomarkers that overlap between TBI and Dementia.
Collapse
|
121
|
Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18:158-172. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Citation(s) in RCA: 359] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.
Collapse
|
122
|
Walker A, Chapin B, Abisambra J, DeKosky ST. Association between single moderate to severe traumatic brain injury and long-term tauopathy in humans and preclinical animal models: a systematic narrative review of the literature. Acta Neuropathol Commun 2022; 10:13. [PMID: 35101132 PMCID: PMC8805270 DOI: 10.1186/s40478-022-01311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The initiation, anatomic pattern, and extent of tau spread in traumatic brain injury (TBI), and the mechanism by which TBI leads to long-term tau pathology, remain controversial. Some studies suggest that moderate to severe TBI is sufficient to promote tau pathology; however, others suggest that it is simply a consequence of aging. We therefore conducted a systematic narrative review of the literature addressing whether a single moderate to severe head injury leads to long-term development of tauopathy in both humans and animal models. METHODS Studies considered for inclusion in this review assessed a single moderate to severe TBI, assessed tau pathology at long-term timepoints post-injury, comprised experimental or observational studies, and were peer-reviewed and published in English. Databases searched included: PUBMED, NCBI-PMC, EMBASE, Web of Science, Academic Search Premiere, and APA Psychnet. Search results were uploaded to Covidence®, duplicates were removed, and articles underwent an abstract and full-text screening process. Data were then extracted and articles assessed for risk of bias. FINDINGS Of 4,150 studies screened, 26 were eligible for inclusion, of which 17 were human studies, 8 were preclinical animal studies, and 1 included both human and preclinical animal studies. Most studies had low to moderate risk of bias. Most human and animal studies (n = 12 and 9, respectively) suggested that a single moderate to severe TBI resulted in greater development of long-term tauopathy compared to no history of head injury. This conclusion should be interpreted with caution, however, due to several limitations: small sample sizes; inconsistencies in controlling for confounding factors that may have affected tau pathology (e.g., family history of dementia or neurological illnesses, apolipoprotein E genotype, etc.), inclusion of mostly males, and variation in reporting injury parameters. INTERPRETATION Results indicate that a single moderate to severe TBI leads to greater chronic development of tauopathy compared to no history of head injury. This implies that tau pathology induced may not be transient, but can progressively develop over time in both humans and animal models. Targeting these tau changes for therapeutic intervention should be further explored to elucidate if disease progression can be reversed or mitigated.
Collapse
Affiliation(s)
- Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Ben Chapin
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Steven T DeKosky
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
123
|
Xu L, Ramadan S, Akingbade OE, Zhang Y, Alodan S, Graham N, Zimmerman KA, Torres E, Heslegrave A, Petrov PK, Zetterberg H, Sharp DJ, Klein N, Li B. Detection of Glial Fibrillary Acidic Protein in Patient Plasma Using On-Chip Graphene Field-Effect Biosensors, in Comparison with ELISA and Single-Molecule Array. ACS Sens 2022; 7:253-262. [PMID: 34908400 PMCID: PMC8805154 DOI: 10.1021/acssensors.1c02232] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Glial
fibrillary
acidic protein (GFAP) is a discriminative blood
biomarker for many neurological diseases, such as traumatic brain
injury. Detection of GFAP in buffer solutions using biosensors has
been demonstrated, but accurate quantification of GFAP in patient
samples has not been reported, yet in urgent need. Herein, we demonstrate
a robust on-chip graphene field-effect transistor (GFET) biosensing
method for sensitive and ultrafast detection of GFAP in patient plasma.
Patients with moderate–severe traumatic brain injuries, defined
by the Mayo classification, are recruited to provide plasma samples.
The binding of target GFAP with the specific antibodies that are conjugated
on a monolayer GFET device triggers the shift of its Dirac point,
and this signal change is correlated with the GFAP concentration in
the patient plasma. The limit of detection (LOD) values of 20 fg/mL
(400 aM) in buffer solution and 231 fg/mL (4 fM) in patient plasma
have been achieved using this approach. In parallel, for the first
time, we compare our results to the state-of-the-art single-molecule
array (Simoa) technology and the classic enzyme-linked immunosorbent
assay (ELISA) for reference. The GFET biosensor shows competitive
LOD to Simoa (1.18 pg/mL) and faster sample-to-result time (<15
min), and also it is cheaper and more user-friendly. In comparison
to ELISA, GFET offers advantages of total detection time, detection
sensitivity, and simplicity. This GFET biosensing platform holds high
promise for the point-of-care diagnosis and monitoring of traumatic
brain injury in GP surgeries and patient homes.
Collapse
Affiliation(s)
- Lizhou Xu
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Sami Ramadan
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Oluwatomi E. Akingbade
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| | - Yuanzhou Zhang
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Sarah Alodan
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Neil Graham
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| | - Karl A. Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| | - Elias Torres
- Graphenea Semiconductor, Paseo Mikeletegi 83, San Sebastián 20009, Spain
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, University College London, London WC1E 6BT, U.K
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, U.K
| | - Peter K. Petrov
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, University College London, London WC1E 6BT, U.K
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, U.K
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal 43141, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43141, Sweden
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong 999077, China
| | - David J. Sharp
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| | - Norbert Klein
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Bing Li
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| |
Collapse
|
124
|
Serrano-Navarro IC, Ramos-Zúñiga R, González-Rios JA. The underestimated extent of post-concussion syndrome (Espectro subestimado del síndrome postconmocional). STUDIES IN PSYCHOLOGY 2022. [DOI: 10.1080/02109395.2021.2006946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ilse C. Serrano-Navarro
- Translational Neuroscience Research Institute, University Centre for Health Sciences, Universidad de Guadalajara, Jalisco, México
| | - Rodrigo Ramos-Zúñiga
- Translational Neuroscience Research Institute, University Centre for Health Sciences, Universidad de Guadalajara, Jalisco, México
| | - Jorge A. González-Rios
- Translational Neuroscience Research Institute, University Centre for Health Sciences, Universidad de Guadalajara, Jalisco, México
| |
Collapse
|
125
|
Wilde EA, Wanner I, Kenney K, Gill J, Stone JR, Disner S, Schnakers C, Meyer R, Prager EM, Haas M, Jeromin A. A Framework to Advance Biomarker Development in the Diagnosis, Outcome Prediction, and Treatment of Traumatic Brain Injury. J Neurotrauma 2022; 39:436-457. [PMID: 35057637 PMCID: PMC8978568 DOI: 10.1089/neu.2021.0099] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elisabeth A. Wilde
- University of Utah, Neurology, 383 Colorow, Salt Lake City, Utah, United States, 84108
- VA Salt Lake City Health Care System, 20122, 500 Foothill Dr., Salt Lake City, Utah, United States, 84148-0002
| | - Ina Wanner
- UCLA, Semel Institute, NRB 260J, 635 Charles E. Young Drive South, Los Angeles, United States, 90095-7332, ,
| | - Kimbra Kenney
- Uniformed Services University of the Health Sciences, Neurology, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, Maryland, United States, 20814
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, 1 cloister, Bethesda, Maryland, United States, 20892
| | - James R. Stone
- University of Virginia, Radiology and Medical Imaging, Box 801339, 480 Ray C. Hunt Dr. Rm. 185, Charlottesville, Virginia, United States, 22903, ,
| | - Seth Disner
- Minneapolis VA Health Care System, 20040, Minneapolis, Minnesota, United States
- University of Minnesota Medical School Twin Cities, 12269, 10Department of Psychiatry and Behavioral Sciences, Minneapolis, Minnesota, United States
| | - Caroline Schnakers
- Casa Colina Hospital and Centers for Healthcare, 6643, Pomona, California, United States
- Ronald Reagan UCLA Medical Center, 21767, Los Angeles, California, United States
| | - Restina Meyer
- Cohen Veterans Bioscience, 476204, New York, New York, United States
| | - Eric M Prager
- Cohen Veterans Bioscience, 476204, External Affairs, 535 8th Ave, New York, New York, United States, 10018
| | - Magali Haas
- Cohen Veterans Bioscience, 476204, 535 8th Avenue, 12th Floor, New York City, New York, United States, 10018,
| | - Andreas Jeromin
- Cohen Veterans Bioscience, 476204, Translational Sciences, Cambridge, Massachusetts, United States
| |
Collapse
|
126
|
Green TRF, Murphy SM, Ortiz JB, Rowe RK. Age-At-Injury Influences the Glial Response to Traumatic Brain Injury in the Cortex of Male Juvenile Rats. Front Neurol 2022; 12:804139. [PMID: 35111130 PMCID: PMC8802670 DOI: 10.3389/fneur.2021.804139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Few translational studies have examined how age-at-injury affects the glial response to traumatic brain injury (TBI). We hypothesized that rats injured at post-natal day (PND) 17 would exhibit a greater glial response, that would persist into early adulthood, compared to rats injured at PND35. PND17 and PND35 rats (n = 75) received a mild to moderate midline fluid percussion injury or sham surgery. In three cortical regions [peri-injury, primary somatosensory barrel field (S1BF), perirhinal], we investigated the glial response relative to age-at-injury (PND17 or PND35), time post-injury (2 hours, 1 day, 7 days, 25 days, or 43 days), and post-natal age, such that rats injured at PND17 or PND35 were compared at the same post-natal-age (e.g., PND17 + 25D post-injury = PND42; PND35 + 7D post-injury = PND42). We measured Iba1 positive microglia cells (area, perimeter) and quantified their activation status using skeletal analysis (branch length/cell, mean processes/cell, cell abundance). GFAP expression was examined using immunohistochemistry and pixel analysis. Data were analyzed using Bayesian multivariate multi-level models. Independent of age-at-injury, TBI activated microglia (shorter branches, fewer processes) in the S1BF and perirhinal cortex with more microglia in all regions compared to uninjured shams. TBI-induced microglial activation (shorter branches) was sustained in the S1BF into early adulthood (PND60). Overall, PND17 injured rats had more microglial activation in the perirhinal cortex than PND35 injured rats. Activation was not confounded by age-dependent cell size changes, and microglial cell body sizes were similar between PND17 and PND35 rats. There were no differences in astrocyte GFAP expression. Increased microglial activation in PND17 brain-injured rats suggests that TBI upregulates the glial response at discrete stages of development. Age-at-injury and aging with an injury are translationally important because experiencing a TBI at an early age may trigger an exaggerated glial response.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - J. Bryce Ortiz
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ, United States
| | - Rachel K. Rowe
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
127
|
Datta D, Bangirana P, Opoka RO, Conroy AL, Co K, Bond C, Zhao Y, Kawata K, Saykin AJ, John CC. Association of Plasma Tau With Mortality and Long-term Neurocognitive Impairment in Survivors of Pediatric Cerebral Malaria and Severe Malarial Anemia. JAMA Netw Open 2021; 4:e2138515. [PMID: 34889945 PMCID: PMC8665370 DOI: 10.1001/jamanetworkopen.2021.38515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Cerebral malaria (CM) and severe malarial anemia (SMA) are associated with persistent neurocognitive impairment (NCI) among children in Africa. Identifying blood biomarkers of acute brain injury that are associated with future NCI could allow early interventions to prevent or reduce NCI in survivors of severe malaria. OBJECTIVE To investigate whether acutely elevated tau levels are associated with future NCI in children after CM or SMA. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted at Mulago National Referral Hospital in Kampala, Uganda, from March 2008 to October 2015. Children aged 1.5 to 12 years with CM (n = 182) or SMA (n = 162) as well as community children (CC; n = 123) were enrolled in the study. Data analysis was conducted from January 2020 to May 2021. EXPOSURE CM or SMA. MAIN OUTCOMES AND MEASURES Enrollment plasma tau levels were measured using single-molecule array detection technology. Overall cognition (primary) and attention and memory (secondary) z scores were measured at 1 week and 6, 12, and 24 months after discharge using tools validated in Ugandan children younger than 5 years or 5 years and older. RESULTS A total of 467 children were enrolled. In the CM group, 75 (41%) were girls, and the mean (SD) age was 4.02 (1.92) years. In the SMA group, 59 (36%) were girls, and the mean (SD) age was 3.45 (1.60) years. In the CC group, 65 (53%) were girls, and the mean (SD) age was 3.94 (1.92) years. Elevated plasma tau levels (>95th percentile in CC group; >6.43 pg/mL) were observed in 100 children (55%) with CM and 69 children (43%) with SMA (P < .001). In children with CM who were younger than 5 years, elevated plasma tau levels were associated with increased mortality (odds ratio [OR], 3.06; 95% CI, 1.01-9.26; P = .048). In children with CM who were younger than 5 years at both CM episode and follow-up neurocognitive testing, plasma tau levels (log10 transformed) were associated with worse overall cognition scores over 24-month follow-up (β = -0.80; 95% CI, -1.32 to -0.27; P = .003). In children with CM who were younger than 5 years at CM episode and 5 years or older at follow-up neurocognitive testing, plasma tau was associated with worse scores in attention (β = -1.08; 95% CI, -1.79 to -0.38; P = .003) and working memory (β = -1.39; 95% CI, -2.18 to -0.60; P = .001). CONCLUSIONS AND RELEVANCE In this study, plasma tau, a marker of injury to neuronal axons, was elevated in children with CM or SMA and was associated with mortality and persistent NCI in children with CM younger than 5 years.
Collapse
Affiliation(s)
- Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, Kampala, Uganda
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Katrina Co
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Caitlin Bond
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
| | - Yi Zhao
- Department of Biostatistics and Health Sciences, Indiana University School of Medicine, Indianapolis
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis
- Division of Global Pediatrics, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
128
|
Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, Puccio AM, Hutchison J, McKinnon N, Okonkwo DO, Yang Z, Kobeissy F, Tyndall JA, Büki A, Czeiter E, Pareja Zabala MC, Gandham N, Berman R. Blood-based traumatic brain injury biomarkers - Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn 2021; 21:1303-1321. [PMID: 34783274 DOI: 10.1080/14737159.2021.2005583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
Collapse
Affiliation(s)
- Kevin K Wang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Jennifer C Munoz Pareja
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Kimbra Kenney
- Department of Neurology, Uniformed Service University, Bethesda, Maryland, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Hutchison
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole McKinnon
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - J Adrian Tyndall
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Endre Czeiter
- Department of Neurosurgery, Pecs University, Pecs, Hungary
| | | | - Nithya Gandham
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rebecca Berman
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
129
|
Sass D, Guedes VA, Smith EG, Vorn R, Devoto C, Edwards KA, Mithani S, Hentig J, Lai C, Wagner C, Dunbar K, Hyde DR, Saligan L, Roy MJ, Gill J. Sex Differences in Behavioral Symptoms and the Levels of Circulating GFAP, Tau, and NfL in Patients With Traumatic Brain Injury. Front Pharmacol 2021; 12:746491. [PMID: 34899299 PMCID: PMC8662747 DOI: 10.3389/fphar.2021.746491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions of Americans each year and has been shown to disproportionately impact those subject to greater disparities in health. Female sex is one factor that has been associated with disparities in health outcomes, including in TBI, but sex differences in biomarker levels and behavioral outcomes after TBI are underexplored. This study included participants with both blunt and blast TBI with majority rating their TBI as mild. Time since injury was 5.4 (2.0, 15.5) years for females and 6.8 (2.4, 11.3) years for males. The aim of this cross sectional study is to investigate the relationship between postconcussive, depression, and post-traumatic stress disorder (PTSD) symptoms, as well as health related quality of life (HRQOL), and the levels of glial fibrillary acidic protein (GFAP), total tau (t-tau), neurofilament light chain (NfL), and ubiquitin C-terminal hydrolase-L1 (UCH-L1). Behavioral outcomes were evaluated with the Neurobehavioral Symptom Inventory (NSI), Patient Health Questionnaire-9 (PHQ-9), PTSD Checklist- Civilian Version (PCL-C), short form (SF)-36, and plasma levels of total tau, GFAP, NfL, and UCHL-1 measured with the Simoa-HDX. We observed that females had significantly higher levels of GFAP and tau (ps < 0.05), and higher PHQ-9 scores, NSI total scores, NSI- vestibular, NSI-somatosensory, NSI-affective sub-scale scores (ps < 0.05)), than males. In addition, females had lower scores in HRQOL outcomes of role limitations due to emotional problems, vitality, emotional well-being, social functioning, and pain compared to males (ps < 0.05). Correlation analysis showed positive associations between levels of tau and the NSI-total and NSI-cognitive sub-scale scores (ps < 0.05) in females. No significant associations were found for NfL or GFAP with NSI scores. For female participants, negative correlations were observed between tau and NfL concentrations and the SF-36 physical function subscale (ps < 0.05), as well as tau and the social function subscale (p < 0.001), while GFAP levels positively correlated with role limitations due to emotional problems (p = 0.004). No significant associations were observed in males. Our findings suggest that sex differences exist in TBI-related behavioral outcomes, as well as levels of biomarkers associated with brain injury, and that the relationship between biomarker levels and behavioral outcomes is more evident in females than males. Future studies are warranted to corroborate these results, and to determine the implications for prognosis and treatment. The identification of candidate TBI biomarkers may lead to development of individualized treatment guidelines.
Collapse
Affiliation(s)
- Dilorom Sass
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Vivian A. Guedes
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Ethan G. Smith
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Rany Vorn
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Christina Devoto
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Katie A. Edwards
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Sara Mithani
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - James Hentig
- Department of Biological Sciences, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Chen Lai
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Chelsea Wagner
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Kerri Dunbar
- Henry M. Jackson Foundation, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Rockville, MD, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David R. Hyde
- Department of Biological Sciences, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Leorey Saligan
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Michael J. Roy
- Center for Neuroscience and Regenerative Medicine, Rockville, MD, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jessica Gill
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Rockville, MD, United States
| |
Collapse
|
130
|
Wang Y, Brazdzionis J, Dong F, Patchana T, Ghanchi H, Podkovik S, Wiginton JG, Marino M, Duong J, Wacker M, Miulli DE, Neeki M, Bi X, Baudry M. P13BP, a Calpain-2-Mediated Breakdown Product of PTPN13, Is a Novel Blood Biomarker for Traumatic Brain Injury. J Neurotrauma 2021; 38:3077-3085. [PMID: 34498916 DOI: 10.1089/neu.2021.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Biomarkers play an increasing role in medicinal biology. They are used for diagnosis, management, drug target identification, drug responses, and disease prognosis. We have discovered that calpain-1 and calpain-2 play opposite functions in neurodegeneration, with calpain-1 activation being neuroprotective, while prolonged calpain-2 activation is neurodegenerative. This notion has been validated in several mouse models of acute neuronal injury, in particular in mouse models of traumatic brain injury (TBI) and repeated concussions. We have identified a selective substrate of calpain-2, the tyrosine phosphatase, PTPN13, which is cleaved in brain after TBI. One of the fragments generated by calpain-2, referred to as P13BP, is also found in the blood after TBI both in mice and humans. In humans, P13BP blood levels are significantly correlated with the severity of TBI, as measured by Glasgow Coma Scale scores and loss of consciousness. The results indicate that P13BP represents a novel blood biomarker for TBI.
Collapse
Affiliation(s)
- Yubin Wang
- Western University of Health Sciences, Pomona Valley, California, USA
| | - James Brazdzionis
- Riverside University Health System Medical Center, Moreno Valley, California, USA
| | - Fanglong Dong
- Western University of Health Sciences, Pomona Valley, California, USA
| | - Tye Patchana
- Riverside University Health System Medical Center, Moreno Valley, California, USA
| | - Hammad Ghanchi
- Riverside University Health System Medical Center, Moreno Valley, California, USA
| | - Stacey Podkovik
- Riverside University Health System Medical Center, Moreno Valley, California, USA
| | - James G Wiginton
- Riverside University Health System Medical Center, Moreno Valley, California, USA
| | - Maxwell Marino
- Riverside University Health System Medical Center, Moreno Valley, California, USA
| | - Jason Duong
- Arrowhead Regional Medical Center, Colton, California, USA
| | | | - Dan E Miulli
- Arrowhead Regional Medical Center, Colton, California, USA
| | - Michael Neeki
- Arrowhead Regional Medical Center, Colton, California, USA
| | - Xiaoning Bi
- Western University of Health Sciences, Pomona Valley, California, USA
| | - Michel Baudry
- Western University of Health Sciences, Pomona Valley, California, USA
| |
Collapse
|
131
|
McDonald SJ, Shultz SR, Agoston DV. The Known Unknowns: An Overview of the State of Blood-Based Protein Biomarkers of Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2652-2666. [PMID: 33906422 DOI: 10.1089/neu.2021.0011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blood-based protein biomarkers have revolutionized several fields of medicine by enabling molecular level diagnosis, as well as monitoring disease progression and treatment efficacy. Traumatic brain injury (TBI) so far has benefitted only moderately from using protein biomarkers to improve injury outcome. Because of its complexity and dynamic nature, TBI, especially its most prevalent mild form (mild TBI; mTBI), presents unique challenges toward protein biomarker discovery and validation given that blood is frequently obtained and processed outside of the clinical laboratory (e.g., athletic fields, battlefield) under variable conditions. As it stands, the field of mTBI blood biomarkers faces a number of outstanding questions. Do elevated blood levels of currently used biomarkers-ubiquitin carboxy-terminal hydrolase L1, glial fibrillary acidic protein, neurofilament light chain, and tau/p-tau-truly mirror the extent of parenchymal damage? Do these different proteins represent distinct injury mechanisms? Is the blood-brain barrier a "brick wall"? What is the relationship between intra- versus extracranial values? Does prolonged elevation of blood levels reflect de novo release or extended protein half-lives? Does biological sex affect the pathobiological responses after mTBI and thus blood levels of protein biomarkers? At the practical level, it is unknown how pre-analytical variables-sample collection, preparation, handling, and stability-affect the quality and reliability of biomarker data. The ever-increasing sensitivity of assay systems and lack of quality control of samples, combined with the almost complete reliance on antibody-based assay platforms, represent important unsolved issues given that false-negative results can lead to false clinical decision making and adverse outcomes. This article serves as a commentary on the state of mTBI biomarkers and the landscape of significant challenges. We highlight and discusses several biological and methodological "known unknowns" and close with some practical recommendations.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
132
|
Hier DB, Obafemi-Ajayi T, Thimgan MS, Olbricht GR, Azizi S, Allen B, Hadi BA, Wunsch DC. Blood biomarkers for mild traumatic brain injury: a selective review of unresolved issues. Biomark Res 2021; 9:70. [PMID: 34530937 PMCID: PMC8447604 DOI: 10.1186/s40364-021-00325-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background The use of blood biomarkers after mild traumatic brain injury (mTBI) has been widely studied. We have identified eight unresolved issues related to the use of five commonly investigated blood biomarkers: neurofilament light chain, ubiquitin carboxy-terminal hydrolase-L1, tau, S100B, and glial acidic fibrillary protein. We conducted a focused literature review of unresolved issues in three areas: mode of entry into and exit from the blood, kinetics of blood biomarkers in the blood, and predictive capacity of the blood biomarkers after mTBI. Findings Although a disruption of the blood brain barrier has been demonstrated in mild and severe traumatic brain injury, biomarkers can enter the blood through pathways that do not require a breach in this barrier. A definitive accounting for the pathways that biomarkers follow from the brain to the blood after mTBI has not been performed. Although preliminary investigations of blood biomarkers kinetics after TBI are available, our current knowledge is incomplete and definitive studies are needed. Optimal sampling times for biomarkers after mTBI have not been established. Kinetic models of blood biomarkers can be informative, but more precise estimates of kinetic parameters are needed. Confounding factors for blood biomarker levels have been identified, but corrections for these factors are not routinely made. Little evidence has emerged to date to suggest that blood biomarker levels correlate with clinical measures of mTBI severity. The significance of elevated biomarker levels thirty or more days following mTBI is uncertain. Blood biomarkers have shown a modest but not definitive ability to distinguish concussed from non-concussed subjects, to detect sub-concussive hits to the head, and to predict recovery from mTBI. Blood biomarkers have performed best at distinguishing CT scan positive from CT scan negative subjects after mTBI.
Collapse
Affiliation(s)
- Daniel B Hier
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| | - Tayo Obafemi-Ajayi
- Cooperative Engineering Program, Missouri State University, Springfield, MO 65897, United States
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Sima Azizi
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Blaine Allen
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Bassam A Hadi
- Department of Surgery, Mercy Hospital, St. Louis MO, Missouri, MO 63141, United States
| | - Donald C Wunsch
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.,National Science Foundation, ECCS Division, Virginia, 22314, USA
| |
Collapse
|
133
|
Huibregtse ME, Bazarian JJ, Shultz SR, Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neurosci Biobehav Rev 2021; 130:433-447. [PMID: 34474049 DOI: 10.1016/j.neubiorev.2021.08.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
HUIBREGTSE, M.E, Bazarian, J.J., Shultz, S.R., and Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. NEUROSCI BIOBEHAV REV XX (130) 433-447, 2021.- Blood biomarkers can serve as objective measures to gauge traumatic brain injury (TBI) severity, identify patients at risk for adverse outcomes, and predict recovery duration, yet the clinical use of blood biomarkers for TBI is limited to a select few and only to rule out the need for CT scanning. The biomarkers often examined in neurotrauma research are proteomic markers, which can reflect a range of pathological processes such as cellular damage, astrogliosis, or neuroinflammation. However, proteomic blood biomarkers are vulnerable to degradation, resulting in short half-lives. Emerging biomarkers for TBI may reflect the complex genetic and neurometabolic alterations that occur following TBI that are not captured by proteomics, are less vulnerable to degradation, and are comprised of microRNA, extracellular vesicles, and neurometabolites. Therefore, this review aims to summarize our understanding of how biomarkers for brain injury escape the brain parenchymal space and appear in the bloodstream, update recent research findings in several proteomic biomarkers, and characterize biological significance and examine clinical utility of microRNA, extracellular vesicles, and neurometabolites.
Collapse
Affiliation(s)
- Megan E Huibregtse
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA.
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester Medical Center, 200 E River Rd, Rochester, NY 14623, USA.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, University of Melbourne, Clinical Sciences Building, 4th Floor, 300 Grattan St, Parkville, VIC 3050, Australia.
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA; Program in Neuroscience, College of Arts and Sciences, Indiana University, 1101 E 10th St, Bloomington, IN 47405, USA.
| |
Collapse
|
134
|
Liu Y, Wu Y, Liu B, Zhang Y, San D, Chen Y, Zhou Y, Yu L, Zeng H, Zhou Y, Zhou F, Yang H, Yin L, Huang Y. Biomarkers and Immune Repertoire Metrics Identified by Peripheral Blood Transcriptomic Sequencing Reveal the Pathogenesis of COVID-19. Front Immunol 2021; 12:677025. [PMID: 34504487 PMCID: PMC8421539 DOI: 10.3389/fimmu.2021.677025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global crisis; however, our current understanding of the host immune response to SARS-CoV-2 infection remains limited. Herein, we performed RNA sequencing using peripheral blood from acute and convalescent patients and interrogated the dynamic changes of adaptive immune response to SARS-CoV-2 infection over time. Our results revealed numerous alterations in these cohorts in terms of gene expression profiles and the features of immune repertoire. Moreover, a machine learning method was developed and resulted in the identification of five independent biomarkers and a collection of biomarkers that could accurately differentiate and predict the development of COVID-19. Interestingly, the increased expression of one of these biomarkers, UCHL1, a molecule related to nervous system damage, was associated with the clustering of severe symptoms. Importantly, analyses on immune repertoire metrics revealed the distinct kinetics of T-cell and B-cell responses to SARS-CoV-2 infection, with B-cell response plateaued in the acute phase and declined thereafter, whereas T-cell response can be maintained for up to 6 months post-infection onset and T-cell clonality was positively correlated with the serum level of anti-SARS-CoV-2 IgG. Together, the significantly altered genes or biomarkers, as well as the abnormally high levels of B-cell response in acute infection, may contribute to the pathogenesis of COVID-19 through mediating inflammation and immune responses, whereas prolonged T-cell response in the convalescents might help these patients in preventing reinfection. Thus, our findings could provide insight into the underlying molecular mechanism of host immune response to COVID-19 and facilitate the development of novel therapeutic strategies and effective vaccines.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bing Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youpeng Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan San
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Long Yu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haihong Zeng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuxiang Zhou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Heng Yang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafei Huang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
135
|
Brain injury markers in new-onset seizures in adults: A pilot study. Seizure 2021; 92:62-67. [PMID: 34455195 DOI: 10.1016/j.seizure.2021.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Biochemical markers of brain pathology could potentially contribute to diagnosis and prediction in epilepsy. We describe levels of five brain injury markers in adults with new-onset seizures, and assess group differences in patients with a single seizure, epilepsy, and poststroke epilepsy. METHODS In this prospective observational study, adults with new-onset seizures were recruited at Sahlgrenska University Hospital, Sweden, and concentrations of glial fibrillary acidic protein (GFAP), neurofilament light (NfL), microtubule-associated protein tau (tau), S100 calcium-binding protein (S100B), and neuron-specific enolase (NSE) were measured. Participants were categorized as epilepsy, poststroke epilepsy (PSE), or single seizure (no additional seizures). Patients were followed until a diagnosis of epilepsy or PSE, or for at least two years in single seizure cases. RESULTS The cohort included 23 (37%) individuals with a single seizure, 24 (39%) with epilepsy, and 15 (24%) with PSE. The concentrations of S100B were higher in patients with epilepsy and PSE than in single seizures (p = 0.0023 and p = 0.0162, respectively). The concentrations of NfL were higher in patients with PSE than in single seizures (p=0.0027). After age-normalization, levels of S100B were higher in patients with epilepsy and levels of NfL were higher in patients with PSE (p = 0.0021 and p = 0.0180). CONCLUSION Levels of S100B and NfL were higher in patients with epilepsy or PSE than patients with single seizures. Further studies are needed to investigate the biomarker potential of brain injury markers as predictors of epilepsy course or indicators of epileptogenesis.
Collapse
|
136
|
Liu C, Lu Y, Wang J, Chang Y, Wang Y, Chen C, Liu Z, Kermode AG, Zhang Y, Qiu W. Serum neurofilament light chain and glial fibrillary acidic protein in AQP4-IgG-seropositive neuromyelitis optica spectrum disorders and multiple sclerosis: A cohort study. J Neurochem 2021; 159:913-922. [PMID: 34278578 DOI: 10.1111/jnc.15478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022]
Abstract
We investigated the serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) levels in a cohort of Chinese patients with neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) in relation to clinical disease course and treatment. sNfL and sGFAP levels were determined by ultrasensitive single molecule array (Simoa) assay in patients with NMOSD (n = 102) and MS (n = 98) and healthy controls (HCs; n = 84). Notably, 13 patients with NMOSD and 27 patients with MS were enrolled in the 1-year follow-up cohort. Levels were compared with data such as clinical course, disease duration, Expanded Disability Status Scale (EDSS) score, and lesions on MRI. Higher levels of sNfL and sGFAP were found in subjects with NMOSD and MS than in HCs (sNfL, median 12.11, 17.5 vs. 8.88 pg/ml, p < .05; sGFAP, median 130.2, 160.4 vs. 80.01 pg/ml, p < .05). Moreover, sNfL levels were higher in the relapse phase of MS than in the relapse phase of NMOSD (30.02 vs. 14.57 pg/ml, p < .05); sGFAP levels were higher in the remission phase of MS than in the remission phase of NMOSD (159.8 vs. 124.5 pg/ml, p < .01). A higher sGFAP/sNfL quotient at relapse differentiated NMOSD from MS. Multivariate analyses indicated that sGFAP levels were associated with the EDSS score in NMOSD (p < .05). At the 1-year follow-up, sNfL and sGFAP levels were both decreased in NMOSD patients in remission, while only sNfL levels were decreased in MS patients in remission. sGFAP and sNfL are potential blood biomarkers for diagnosing and monitoring NMOSD and MS.
Collapse
Affiliation(s)
- Chunxin Liu
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Emergency Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaxin Lu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingqi Wang
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanyu Chang
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Chen
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zifeng Liu
- Clinical Data Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Allan G Kermode
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Perron Institute, University of Western Australia, Perth, WA, Australia
| | - Yongbiao Zhang
- Emergency Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Neurology Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
137
|
Mizenko C, Bennett JL, Owens G, Vollmer TL, Piquet AL. A Longitudinal, Observational Analysis of Neuronal Injury Biomarkers in a Case Report of a Patient With Paraneoplastic Anti-CRMP5 Antibody-Associated Transverse Myelitis. Front Neurol 2021; 12:691509. [PMID: 34349723 PMCID: PMC8328144 DOI: 10.3389/fneur.2021.691509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 01/13/2023] Open
Abstract
Biomarkers are needed to guide therapeutic decision making in autoimmune and paraneoplastic neurologic disorders. Here, we describe a case of paraneoplastic collapsing response-mediator protein-5 (CRMP5)-associated transverse myelitis (TM) where plasma neurofilament light (NfL) chain and glial fibrillary protein (GFAP) levels were observed over a 14-month clinical course, correlating with radiographical and clinical outcome measures in response to treatment. Blood and CSF samples obtained at diagnosis as well as 7 and 14 months into treatment. At the time of initial diagnosis, both plasma NfL (782.62 pg/ml) and GFAP (283.26 pg/ml) were significantly elevated. Initial treatment was with IV steroids and plasma exchange (PLEX) followed by neuroendocrine tumor removal, chemotherapy, and radiation. After initial improvement with chemotherapy, the patient experienced clinical worsening and transient elevation of plasma NfL (103.27 pg/ml and GFAP (211.58 pg/ml) levels. Whole body positron emission tomography PET scan did not demonstrate recurrence of malignancy. Repeat PLEX and rituximab induction resulted in improvements in patient function, neurologic exam, and plasma biomarker levels. To our knowledge, this is the first described longitudinal, prospective analysis of neuronal injury biomarkers and association of clinical treatment outcomes in CRMP5 myelitis. Our findings suggest that clinical improvement correlates with NfL and GFAP concentrations.
Collapse
Affiliation(s)
| | - Jeffrey L Bennett
- Department of Neurology, University of Colorado, Aurora, CO, United States.,Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gregory Owens
- Department of Neurology, University of Colorado, Aurora, CO, United States
| | - Timothy L Vollmer
- Department of Neurology, University of Colorado, Aurora, CO, United States
| | - Amanda L Piquet
- Department of Neurology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
138
|
Azizi S, Hier DB, Allen B, Obafemi-Ajayi T, Olbricht GR, Thimgan MS, Wunsch DC. A Kinetic Model for Blood Biomarker Levels After Mild Traumatic Brain Injury. Front Neurol 2021; 12:668606. [PMID: 34295300 PMCID: PMC8289906 DOI: 10.3389/fneur.2021.668606] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023] Open
Abstract
Traumatic brain injury (TBI) imposes a significant economic and social burden. The diagnosis and prognosis of mild TBI, also called concussion, is challenging. Concussions are common among contact sport athletes. After a blow to the head, it is often difficult to determine who has had a concussion, who should be withheld from play, if a concussed athlete is ready to return to the field, and which concussed athlete will develop a post-concussion syndrome. Biomarkers can be detected in the cerebrospinal fluid and blood after traumatic brain injury and their levels may have prognostic value. Despite significant investigation, questions remain as to the trajectories of blood biomarker levels over time after mild TBI. Modeling the kinetic behavior of these biomarkers could be informative. We propose a one-compartment kinetic model for S100B, UCH-L1, NF-L, GFAP, and tau biomarker levels after mild TBI based on accepted pharmacokinetic models for oral drug absorption. We approximated model parameters using previously published studies. Since parameter estimates were approximate, we did uncertainty and sensitivity analyses. Using estimated kinetic parameters for each biomarker, we applied the model to an available post-concussion biomarker dataset of UCH-L1, GFAP, tau, and NF-L biomarkers levels. We have demonstrated the feasibility of modeling blood biomarker levels after mild TBI with a one compartment kinetic model. More work is needed to better establish model parameters and to understand the implications of the model for diagnostic use of these blood biomarkers for mild TBI.
Collapse
Affiliation(s)
- Sima Azizi
- Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Daniel B Hier
- Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Blaine Allen
- Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Tayo Obafemi-Ajayi
- Engineering Program, Missouri State University, Springfield, MO, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO, United States
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States
| | - Donald C Wunsch
- Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States.,ECCS Division, National Science Foundation, Alexandria, VA, United States
| |
Collapse
|
139
|
Chatterton Z, Mendelev N, Chen S, Carr W, Kamimori GH, Ge Y, Dwork AJ, Haghighi F. Bisulfite Amplicon Sequencing Can Detect Glia and Neuron Cell-Free DNA in Blood Plasma. Front Mol Neurosci 2021; 14:672614. [PMID: 34276305 PMCID: PMC8283182 DOI: 10.3389/fnmol.2021.672614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Sampling the live brain is difficult and dangerous, and withdrawing cerebrospinal fluid is uncomfortable and frightening to the subject, so new sources of real-time analysis are constantly sought. Cell-free DNA (cfDNA) derived from glia and neurons offers the potential for wide-ranging neurological disease diagnosis and monitoring. However, new laboratory and bioinformatic strategies are needed. DNA methylation patterns on individual cfDNA fragments can be used to ascribe their cell-of-origin. Here we describe bisulfite sequencing assays and bioinformatic processing methods to identify cfDNA derived from glia and neurons. In proof-of-concept experiments, we describe the presence of both glia- and neuron-cfDNA in the blood plasma of human subjects following mild trauma. This detection of glia- and neuron-cfDNA represents a significant step forward in the translation of liquid biopsies for neurological diseases.
Collapse
Affiliation(s)
- Zac Chatterton
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Epigenetics, James J. Peters VA Medical Center, New York, NY, United States
- Brain and Mind Centre, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Natalia Mendelev
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Epigenetics, James J. Peters VA Medical Center, New York, NY, United States
| | - Sean Chen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Epigenetics, James J. Peters VA Medical Center, New York, NY, United States
| | - Walter Carr
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Gary H. Kamimori
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew J. Dwork
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, United States
| | - Fatemeh Haghighi
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Epigenetics, James J. Peters VA Medical Center, New York, NY, United States
| |
Collapse
|
140
|
Abstract
PURPOSE OF REVIEW Recovery after severe brain injury is variable and challenging to accurately predict at the individual patient level. This review highlights new developments in clinical prognostication with a special focus on the prediction of consciousness and increasing reliance on methods from data science. RECENT FINDINGS Recent research has leveraged serum biomarkers, quantitative electroencephalography, MRI, and physiological time-series to build models for recovery prediction. The analysis of high-resolution data and the integration of features from different modalities can be approached with efficient computational techniques. SUMMARY Advances in neurophysiology and neuroimaging, in combination with computational methods, represent a novel paradigm for prediction of consciousness and functional recovery after severe brain injury. Research is needed to produce reliable, patient-level predictions that could meaningfully impact clinical decision making.
Collapse
|
141
|
Kostelnik C, Lucki I, Choi KH, Browne CA. Translational relevance of fear conditioning in rodent models of mild traumatic brain injury. Neurosci Biobehav Rev 2021; 127:365-376. [PMID: 33961927 DOI: 10.1016/j.neubiorev.2021.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 01/19/2023]
Abstract
Mild traumatic brain injury (mTBI) increases the risk of posttraumatic stress disorder (PTSD) in military populations. Utilizing translationally relevant animal models is imperative for establishing a platform to delineate neurobehavioral deficits common to clinical PTSD that emerge in the months to years following mTBI. Such platforms are required to facilitate preclinical development of novel therapeutics. First, this mini review provides an overview of the incidence of PTSD following mTBI in military service members. Secondly, the translational relevance of fear conditioning paradigms used in conjunction with mTBI in preclinical studies is evaluated. Next, this review addresses an important gap in the current preclinical literature; while incubation of fear has been studied in other areas of research, there are relatively few studies pertaining to the enhancement of cued and contextual fear memory over time following mTBI. Incubation of fear paradigms in conjunction with mTBI are proposed as a novel behavioral approach to advance this critical area of research. Lastly, this review discusses potential neurobiological substrates implicated in altered fear memory post mTBI.
Collapse
Affiliation(s)
- Claire Kostelnik
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States
| | - Irwin Lucki
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda MD 20814, United States; Department of Psychiatry, Uniformed Services University, Bethesda MD 20814, United States
| | - Kwang H Choi
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States; Department of Psychiatry, Uniformed Services University, Bethesda MD 20814, United States.
| | - Caroline A Browne
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda MD 20814, United States.
| |
Collapse
|
142
|
Ge X, Zhu L, Li W, Sun J, Chen F, Li Y, Lei P, Zhang J. Red Cell Distribution Width to Platelet Count Ratio: A Promising Routinely Available Indicator of Mortality for Acute Traumatic Brain Injury. J Neurotrauma 2021; 39:159-171. [PMID: 33719580 DOI: 10.1089/neu.2020.7481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prognosis evaluation is crucial for the effective management of patients with acute traumatic brain injury (TBI). However, there is still a lack of routinely available blood indicators for mortality risk in clinical practice. To investigate whether blood red cell distribution width to platelet count ratio (RPR) correlates with hospital mortality of TBI, clinical data of 2220 patients with TBI were extracted from two large intensive care unit cohorts (MIMIC-III and eICU Database), and were integratively analyzed using our developed method named MeDICS. We found that higher RPR can be observed among non-survivors than survivors of TBI (p < 0.001). It had a moderately good prognostic performance for mortality with an area under receiver-operating characteristic curve (AUC) of 0.7367, which was greater than that of Glasgow Coma Scale (GCS; AUC = 0.6022). Besides, the nomogram consisting of RPR, GCS, and other risk factors was developed, where 10-fold cross-validation was performed to protect it against overfitting. A Harrell's C-index of 0.8523 was determined, suggesting an improved prognostic value based on RPR. The in vivo experiments further confirmed the association between RPR and neuro-outcome after TBI. It indicated that the continuous change in RPR post-injury is attributed to the development of inflammation, which emphasized the importance of controlling inflammatory response in clinical treatment. Taken together, RPR is a promising routinely available predictor of mortality for acute TBI. The nomogram generated from it can be used in resource-limited settings, thus be proposed as a prognosis evaluation aid for patients with TBI in all levels of medical system.
Collapse
Affiliation(s)
- Xintong Ge
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Luoyun Zhu
- Department of Medical Examination, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhu Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin, China
| | - Jian Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanglian Chen
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Yongmei Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Key Lab of Immune Microenvironment and Disease (Ministry of Education) Tianjin Medical University, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin, China
| | - Jianning Zhang
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin, China
| |
Collapse
|
143
|
Clarke GJB, Skandsen T, Zetterberg H, Einarsen CE, Feyling C, Follestad T, Vik A, Blennow K, Håberg AK. One-Year Prospective Study of Plasma Biomarkers From CNS in Patients With Mild Traumatic Brain Injury. Front Neurol 2021; 12:643743. [PMID: 33967940 PMCID: PMC8097004 DOI: 10.3389/fneur.2021.643743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Objective: To investigate the longitudinal evolution of three blood biomarkers: neurofilament light (NFL), glial fibrillary acidic protein (GFAP) and tau, in out-patients and hospitalized patients with mild traumatic brain injury (mTBI) compared to controls, along with their associations—in patients—with clinical injury characteristics and demographic variables, and ability to discriminate patients with mTBI from controls. Methods: A longitudinal observation study including 207 patients with mTBI, 84 age and sex-matched community controls (CCs) and 52 trauma controls (TCs). Blood samples were collected at 5 timepoints: acute (<24 h), 72 h (24–72 h post-injury), 2 weeks, 3 and 12 months. Injury-related, clinical and demographic variables were obtained at inclusion and brain MRI within 72 h. Results: Plasma GFAP and tau were most elevated acutely and NFL at 2 weeks and 3 months. The group of patients with mTBI and concurrent other somatic injuries (mTBI+) had the highest elevation in all biomarkers across time points, and were more likely to be victims of traffic accidents and violence. All biomarkers were positively associated with traumatic intracranial findings on MRI obtained within 72 h. Glial fibrillary acidic protein and NFL levels were associated with Glasgow Coma Scale (GCS) score and presence of other somatic injuries. Acute GFAP concentrations showed the highest discriminability between patients and controls with an Area Under the Curve (AUC) of 0.92. Acute tau and 2-week NFL concentrations showed moderate discriminability (AUC = 0.70 and AUC = 0.75, respectively). Tau showed high discriminability between mTBI+ and TCs (AUC = 0.80). Conclusions: The association of plasma NFL with traumatic intracranial MRI findings, together with its later peak, could reflect ongoing secondary injury or repair mechanisms, allowing for a protracted diagnostic time window. Patients experiencing both mTBI and other injuries appear to be a subgroup with greater neural injury, differing from both the mTBI without other injuries and from both control groups. Acute GFAP concentrations showed the highest discriminability between patients and controls, were highly associated with intracranial traumatic injury, and showed the largest elevations compared to controls at the acute timepoint, suggesting it to be the most clinically useful plasma biomarker of primary CNS injury in mTBI.
Collapse
Affiliation(s)
- Gerard Janez Brett Clarke
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at University College London, London, United Kingdom
| | - Cathrine Elisabeth Einarsen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Casper Feyling
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Turid Follestad
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Asta Kristine Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| |
Collapse
|
144
|
Shin MK, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón-Pérez CJ, Barker S, Miller E, Franke K, Noterman MF, Seth D, Allen RS, Motz CT, Rao SR, Skelton LA, Pardue MT, Fliesler SJ, Wang C, Tracy TE, Gan L, Liebl DJ, Savarraj JPJ, Torres GL, Ahnstedt H, McCullough LD, Kitagawa RS, Choi HA, Zhang P, Hou Y, Chiang CW, Li L, Ortiz F, Kilgore JA, Williams NS, Whitehair VC, Gefen T, Flanagan ME, Stamler JS, Jain MK, Kraus A, Cheng F, Reynolds JD, Pieper AA. Reducing acetylated tau is neuroprotective in brain injury. Cell 2021; 184:2715-2732.e23. [PMID: 33852912 PMCID: PMC8491234 DOI: 10.1016/j.cell.2021.03.032] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.
Collapse
Affiliation(s)
- Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yeojung Koh
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Matasha Dhar
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kalyani Chaubey
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Barker
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kathryn Franke
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Maria F Noterman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Divya Seth
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Cara T Motz
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Lara A Skelton
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jude P J Savarraj
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Glenda L Torres
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hilda Ahnstedt
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - H Alex Choi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pengyue Zhang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Francisco Ortiz
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jessica A Kilgore
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victoria C Whitehair
- MetroHealth Rehabilitation Institute, The MetroHealth System, Cleveland, OH; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, School of Medicine, Cleveland, OH USA
| | - Tamar Gefen
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Jonathan S Stamler
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mukesh K Jain
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - James D Reynolds
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Departments of Anesthesiology & Perioperative Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
145
|
Boutté AM, Thangavelu B, Nemes J, LaValle CR, Egnoto M, Carr W, Kamimori GH. Neurotrauma Biomarker Levels and Adverse Symptoms Among Military and Law Enforcement Personnel Exposed to Occupational Overpressure Without Diagnosed Traumatic Brain Injury. JAMA Netw Open 2021; 4:e216445. [PMID: 33861330 PMCID: PMC8052592 DOI: 10.1001/jamanetworkopen.2021.6445] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IMPORTANCE There is a scientific and operational need to define objective measures of exposure to low-level overpressure (LLOP) and concussion-like symptoms among persons with specialized occupations. OBJECTIVE To evaluate serum levels of neurotrauma biomarkers and their association with concussion-like symptoms reported by LLOP-exposed military and law enforcement personnel who are outwardly healthy and cleared to perform duties. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study, conducted from January 23, 2017, to October 21, 2019, used serum samples and survey data collected from healthy, male, active-duty military and law enforcement personnel assigned to operational training at 4 US Department of Defense and civilian law enforcement training sites. Personnel aged 18 years or older with prior LLOP exposure but no diagnosed traumatic brain injury or with acute blast exposure during sampling participated in the study. Serum samples from 30 control individuals were obtained from a commercial vendor. MAIN OUTCOMES AND MEASURES Serum levels of glial fibrillary acidic protein, ubiquitin carboxyl hydrolase (UCH)-L1, neurofilament light chain, tau, amyloid β (Aβ)-40, and Aβ-42 from a random sample (30 participants) of the LLOP-exposed cohort were compared with those of 30 age-matched controls. Associations between biomarker levels and self-reported symptoms or operational demographics in the remainder of the study cohort (76 participants) were assessed using generalized linear modeling or Spearman correlations with age as a covariate. RESULTS Among the 30 randomly sampled participants (mean [SD] age, 32 [7.75] years), serum levels of UCH-L1 (mean difference, 4.92; 95% CI, 0.71-9.14), tau (mean difference, 0.16; 95% CI, -0.06 to 0.39), Aβ-40 (mean difference, 138.44; 95% CI, 116.32-160.56), and Aβ-42 (mean difference, 4.97; 95% CI, 4.10-5.83) were elevated compared with those in controls. Among the remaining cohort of 76 participants (mean [SD] age, 34 [7.43] years), ear ringing was reported by 44 (58%) and memory or sleep problems were reported by 24 (32%) and 20 (26%), respectively. A total of 26 participants (34%) reported prior concussion. Amyloid β-42 levels were associated with ear ringing (F1,72 = 7.40; P = .008) and memory problems (F1,72 = 9.20; P = .003). CONCLUSIONS AND RELEVANCE The findings suggest that long-term LLOP exposure acquired during occupational training may be associated with serum levels of neurotrauma biomarkers. Assessment of biomarkers and concussion-like symptoms among personnel considered healthy at the time of sampling may be useful for military occupational medicine risk management.
Collapse
Affiliation(s)
- Angela M. Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jeffrey Nemes
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Christina R. LaValle
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Mike Egnoto
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Walter Carr
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Gary H. Kamimori
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
146
|
Tate DF, Dennis EL, Adams JT, Adamson MM, Belanger HG, Bigler ED, Bouchard HC, Clark AL, Delano-Wood LM, Disner SG, Eapen BC, Franz CE, Geuze E, Goodrich-Hunsaker NJ, Han K, Hayes JP, Hinds SR, Hodges CB, Hovenden ES, Irimia A, Kenney K, Koerte IK, Kremen WS, Levin HS, Lindsey HM, Morey RA, Newsome MR, Ollinger J, Pugh MJ, Scheibel RS, Shenton ME, Sullivan DR, Taylor BA, Troyanskaya M, Velez C, Wade BS, Wang X, Ware AL, Zafonte R, Thompson PM, Wilde EA. Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines. Brain Imaging Behav 2021; 15:585-613. [PMID: 33409819 PMCID: PMC8035292 DOI: 10.1007/s11682-020-00423-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.
Collapse
Affiliation(s)
- David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - John T Adams
- Western University of Health Sciences, Pomona, CA, USA
| | - Maheen M Adamson
- Defense and Veterans Brain Injury Center, VA Palo Alto, Palo Alto, CA, USA
- Neurosurgery, Stanford School of Medicine, Stanford, CA, USA
| | - Heather G Belanger
- United States Special Operations Command (USSOCOM), Tampa, FL, USA
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
- St Michaels Inc, Tampa, FL, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Heather C Bouchard
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Alexandra L Clark
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lisa M Delano-Wood
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Seth G Disner
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Blessen C Eapen
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Elbert Geuze
- University Medical Center Utrecht, Utrecht, Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Naomi J Goodrich-Hunsaker
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Kihwan Han
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jasmeet P Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Sidney R Hinds
- Department of Defense/United States Army Medical Research and Materiel Command, Fort Detrick, Frederick, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Elizabeth S Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Mary Jo Pugh
- Information Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Randall S Scheibel
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Brockton Division, VA Boston Healthcare System, Brockton, MA, USA
| | - Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Brian A Taylor
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Maya Troyanskaya
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Carmen Velez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Benjamin Sc Wade
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital/Brigham & Women's Hospital, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, USC, Los Angeles, CA, USA
- Department of Pediatrics, USC, Los Angeles, CA, USA
- Department of Psychiatry, USC, Los Angeles, CA, USA
- Department of Radiology, USC, Los Angeles, CA, USA
- Department of Engineering, USC, Los Angeles, CA, USA
- Department of Ophthalmology, USC, Los Angeles, CA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
147
|
Di Pietro V, O'Halloran P, Watson CN, Begum G, Acharjee A, Yakoub KM, Bentley C, Davies DJ, Iliceto P, Candilera G, Menon DK, Cross MJ, Stokes KA, Kemp SP, Belli A. Unique diagnostic signatures of concussion in the saliva of male athletes: the Study of Concussion in Rugby Union through MicroRNAs (SCRUM). Br J Sports Med 2021; 55:1395-1404. [PMID: 33757972 PMCID: PMC8639909 DOI: 10.1136/bjsports-2020-103274] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Objective To investigate the role of salivary small non-coding RNAs (sncRNAs) in the diagnosis of sport-related concussion. Methods Saliva was obtained from male professional players in the top two tiers of England’s elite rugby union competition across two seasons (2017–2019). Samples were collected preseason from 1028 players, and during standardised head injury assessments (HIAs) at three time points (in-game, post-game, and 36–48 hours post-game) from 156 of these. Samples were also collected from controls (102 uninjured players and 66 players sustaining a musculoskeletal injury). Diagnostic sncRNAs were identified with next generation sequencing and validated using quantitative PCR in 702 samples. A predictive logistic regression model was built on 2017–2018 data (training dataset) and prospectively validated the following season (test dataset). Results The HIA process confirmed concussion in 106 players (HIA+) and excluded this in 50 (HIA−). 32 sncRNAs were significantly differentially expressed across these two groups, with let-7f-5p showing the highest area under the curve (AUC) at 36–48 hours. Additionally, a combined panel of 14 sncRNAs (let-7a-5p, miR-143-3p, miR-103a-3p, miR-34b-3p, RNU6-7, RNU6-45, Snora57, snoU13.120, tRNA18Arg-CCT, U6-168, U6-428, U6-1249, Uco22cjg1, YRNA_255) could differentiate concussed subjects from all other groups, including players who were HIA− and controls, immediately after the game (AUC 0.91, 95% CI 0.81 to 1) and 36–48 hours later (AUC 0.94, 95% CI 0.86 to 1). When prospectively tested, the panel confirmed high predictive accuracy (AUC 0.96, 95% CI 0.92 to 1 post-game and AUC 0.93, 95% CI 0.86 to 1 at 36–48 hours). Conclusions SCRUM, a large prospective observational study of non-invasive concussion biomarkers, has identified unique signatures of concussion in saliva of male athletes diagnosed with concussion.
Collapse
Affiliation(s)
- Valentina Di Pietro
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK .,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Marker Diagnostics UK Limited, the BioHub, Birmingham research park, Birmingham, UK
| | - Patrick O'Halloran
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK.,Marker Diagnostics UK Limited, the BioHub, Birmingham research park, Birmingham, UK
| | - Callum N Watson
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK
| | - Ghazala Begum
- Marker Diagnostics UK Limited, the BioHub, Birmingham research park, Birmingham, UK
| | - Animesh Acharjee
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK.,Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham, UK
| | - Kamal M Yakoub
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Conor Bentley
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - David J Davies
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Matthew J Cross
- Department for Health, University of Bath, Bath, UK.,Premier Rugby Limited, Twickenham, London, UK
| | - Keith A Stokes
- Department for Health, University of Bath, Bath, UK.,Rugby Football Union, Twickenham, London, UK
| | - Simon Pt Kemp
- Rugby Football Union, Twickenham, London, UK.,Faculty of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Antonio Belli
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Marker Diagnostics UK Limited, the BioHub, Birmingham research park, Birmingham, UK
| |
Collapse
|
148
|
Time Course and Diagnostic Utility of Nfl, Tau, GFAP, and UCH-L1 in Subacute and Chronic TBI. Neurology 2021; 96:593. [PMID: 33753530 DOI: 10.1212/wnl.0000000000011717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
149
|
Development of a novel, sensitive translational immunoassay to detect plasma glial fibrillary acidic protein (GFAP) after murine traumatic brain injury. ALZHEIMERS RESEARCH & THERAPY 2021; 13:58. [PMID: 33678186 PMCID: PMC7938597 DOI: 10.1186/s13195-021-00793-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Background Glial fibrillary acidic protein (GFAP) has emerged as a promising fluid biomarker for several neurological indications including traumatic brain injury (TBI), a leading cause of death and disability worldwide. In humans, serum or plasma GFAP levels can predict brain abnormalities including hemorrhage on computed tomography (CT) scans and magnetic resonance imaging (MRI). However, assays to quantify plasma or serum GFAP in preclinical models are not yet available. Methods We developed and validated a novel sensitive GFAP immunoassay assay for mouse plasma on the Meso Scale Discovery immunoassay platform and validated assay performance for robustness, precision, limits of quantification, dilutional linearity, parallelism, recovery, stability, selectivity, and pre-analytical factors. To provide proof-of-concept data for this assay as a translational research tool for TBI and Alzheimer’s disease (AD), plasma GFAP was measured in mice exposed to TBI using the Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model and in APP/PS1 mice with normal or reduced levels of plasma high-density lipoprotein (HDL). Results We performed a partial validation of our novel assay and found its performance by the parameters studied was similar to assays used to quantify human GFAP in clinical neurotrauma blood specimens and to assays used to measure murine GFAP in tissues. Specifically, we demonstrated an intra-assay CV of 5.0%, an inter-assay CV of 7.2%, a lower limit of detection (LLOD) of 9.0 pg/mL, a lower limit of quantification (LLOQ) of 24.8 pg/mL, an upper limit of quantification (ULOQ) of at least 16,533.9 pg/mL, dilution linearity of calibrators from 20 to 200,000 pg/mL with 90–123% recovery, dilution linearity of plasma specimens up to 32-fold with 96–112% recovery, spike recovery of 67–100%, and excellent analyte stability in specimens exposed to up to 7 freeze-thaw cycles, 168 h at 4 °C, 24 h at room temperature (RT), or 30 days at − 20 °C. We also observed elevated plasma GFAP in mice 6 h after TBI and in aged APP/PS1 mice with plasma HDL deficiency. This assay also detects GFAP in serum. Conclusions This novel assay is a valuable translational tool that may help to provide insights into the mechanistic pathophysiology of TBI and AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00793-9.
Collapse
|
150
|
Flynn S, Leete J, Shahim P, Pattinson C, Guedes VA, Lai C, Devoto C, Qu BX, Greer K, Moore B, van der Merwe A, Ekanayake V, Gill J, Chan L. Extracellular vesicle concentrations of glial fibrillary acidic protein and neurofilament light measured 1 year after traumatic brain injury. Sci Rep 2021; 11:3896. [PMID: 33594224 PMCID: PMC7887207 DOI: 10.1038/s41598-021-82875-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to long-term symptoms in a sub-set of patients who sustain an injury, but this risk is not universal, leading us and others to question the nature of individual variability in recovery trajectories. Extracellular vesicles (EVs) are a promising, novel avenue to identify blood-based biomarkers for TBI. Here, our aim was to determine if glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) measured 1-year postinjury in EVs could distinguish patients from controls, and whether these biomarkers relate to TBI severity or recovery outcomes. EV GFAP and EV NfL were measured using an ultrasensitive assay in 72 TBI patients and 20 controls. EV GFAP concentrations were elevated in moderate and severe TBI compared to controls (p's < 0.001) and could distinguish controls from moderate (AUC = 0.86) or severe TBI (AUC = 0.88). Increased EV GFAP and EV NfL levels were associated with lower 1-year Glasgow Outcome Scale-Extended (GOS-E) score (p's < 0.05). These findings suggest that blood-derived EV concentrations of GFAP and NfL drawn even 1 year after injury are higher in TBI patients compared to controls, and are related to injury severity and poor recovery outcomes, suggesting that TBIs alter the activity of these biomarkers, likely contributing to individual variability in recovery.
Collapse
Affiliation(s)
- Spencer Flynn
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Jacqueline Leete
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Pashtun Shahim
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA.
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA.
| | - Cassandra Pattinson
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Vivian A Guedes
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Christina Devoto
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Bao-Xi Qu
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Kisha Greer
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Brian Moore
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Andre van der Merwe
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vindhya Ekanayake
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| | - Leighton Chan
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| |
Collapse
|