101
|
Zhao H, Anand AR, Ganju RK. Slit2-Robo4 pathway modulates lipopolysaccharide-induced endothelial inflammation and its expression is dysregulated during endotoxemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:385-93. [PMID: 24272999 PMCID: PMC3908786 DOI: 10.4049/jimmunol.1302021] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The secretory protein Slit2 and its receptors Robo1 and Robo4 are considered to regulate mobility and permeability of endothelial cells and other cell types. However, the roles of Slit2 and its two receptors in endothelial inflammatory responses remain to be clarified. In this study, we show that, in primary HUVECs, Slit2 represses LPS-induced secretion of certain inflammatory cytokines/chemokines, cell adhesion molecule ICAM-1 upregulation, and monocyte adhesion. Slit2's anti-inflammatory effect is mediated by its dominant endothelial-specific receptor Robo4. However, the minor receptor Robo1 has proinflammatory properties and is downregulated by Slit2 via targeting of miR-218. Elucidation of molecular mechanism reveals that Slit2 represses inflammatory responses by inhibiting the Pyk2-NF-κB pathway downstream of LPS-TLR4. Further studies reveal that LPS enhances endothelial inflammation by downregulating the anti-inflammatory Slit2 and Robo4 in HUVECs in vitro, as well as in arterial endothelial cells and liver in vivo during endotoxemia. These results suggest that Slit2-Robo4 signaling is important in regulating LPS-induced endothelial inflammation, and LPS, in turn, enhances inflammation by interfering with the expression of the anti-inflammatory Slit2-Robo4 during the disease state. This implies that Slit2-Robo4 is a key regulator of endothelial inflammation, and its dysregulation during endotoxemia is a novel mechanism for LPS-induced vascular pathogenesis.
Collapse
Affiliation(s)
- Helong Zhao
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | | | | |
Collapse
|
102
|
Dirkx E, Gladka MM, Philippen LE, Armand AS, Kinet V, Leptidis S, el Azzouzi H, Salic K, Bourajjaj M, da Silva GJJ, Olieslagers S, van der Nagel R, de Weger R, Bitsch N, Kisters N, Seyen S, Morikawa Y, Chanoine C, Heymans S, Volders PGA, Thum T, Dimmeler S, Cserjesi P, Eschenhagen T, da Costa Martins PA, De Windt LJ. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 2013; 15:1282-93. [DOI: 10.1038/ncb2866] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/24/2013] [Indexed: 01/05/2023]
|
103
|
Schumacher JA, Bloomekatz J, Garavito-Aguilar ZV, Yelon D. tal1 Regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Dev Biol 2013; 383:214-26. [PMID: 24075907 DOI: 10.1016/j.ydbio.2013.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/26/2022]
Abstract
The endocardium forms the inner lining of the heart tube, where it enables blood flow and also interacts with the myocardium during the formation of valves and trabeculae. Although a number of studies have identified regulators in the morphogenesis of the myocardium, relatively little is known about the molecules that control endocardial morphogenesis. Prior work has implicated the bHLH transcription factor Tal1 in endocardial tube formation: in zebrafish embryos lacking Tal1, endocardial cells form a disorganized mass within the ventricle and do not populate the atrium. Through blastomere transplantation, we find that tal1 plays a cell-autonomous role in regulating endocardial extension, suggesting that Tal1 activity influences the behavior of individual endocardial cells. The defects in endocardial behavior in tal1-deficient embryos originate during the earliest steps of endocardial morphogenesis: tal1-deficient endocardial cells fail to generate a cohesive monolayer at the midline and instead pack tightly together into a multi-layered aggregate. Moreover, the tight junction protein ZO-1 is mislocalized in the tal1-deficient endocardium, indicating a defect in intercellular junction formation. In addition, we find that the tal1-deficient endocardium fails to maintain its identity; over time, a progressively increasing number of tal1-deficient endocardial cells initiate myocardial gene expression. However, the onset of defects in intercellular junction formation precedes the onset of ectopic myocardial gene expression in the tal1-deficient endocardium. We therefore propose a model in which Tal1 has distinct roles in regulating the formation of endocardial intercellular junctions and maintaining endocardial identity.
Collapse
Affiliation(s)
- Jennifer A Schumacher
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
104
|
Wu TS, Yang JJ, Yu FY, Liu BH. Cardiotoxicity of mycotoxin citrinin and involvement of microRNA-138 in zebrafish embryos. Toxicol Sci 2013; 136:402-12. [PMID: 24052562 DOI: 10.1093/toxsci/kft206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Citrinin (CTN) is a fungal secondary metabolite that contaminates various foodstuffs and animal feeds; it also exhibits organotoxicity in several animal models. In this study, the zebrafish was used to elucidate the mechanism of CTN cardiotoxicity in developing embryos. Following CTN administration, the gross morphology of the embryonic heart was apparently altered, including heart malformation, pericardial edema, and red blood accumulation. Whole-mount immunostaining and histological analysis of ventricle and atrium indicated incorrect heart looping and reduced size of heart chambers. From the perspective of cardiac function, the heartbeat and blood flow rate of embryos were significantly decreased in the presence of CTN. CTN also modulated the expression of tbx2a and jun B genes, but not that of bmp4 and nkx2.5. Furthermore, the heart areas of CTN-exposed embryos demonstrated an elevated levels of aldh1a2 and cspg2 messenger RNA; these 2 cardiac-related genes are known to be involved in retinoic acid (RA) pathway as well as downstream targets of microRNA-138 (miR-138) in zebrafish. CTN treatment also downregulated the expression of miR-138. Moreover, overexpression of miR-138 was able to rescue the heart defects generated by CTN. These results support the notion that CTN exposure has a severe impact on heart development, affecting heart morphogenesis through the dysregulation of miR-138, RA signaling, and tbx2a.
Collapse
|
105
|
MicroRNAs in cardiac regeneration and cardiovascular disease. SCIENCE CHINA-LIFE SCIENCES 2013; 56:907-13. [PMID: 23974704 PMCID: PMC3972258 DOI: 10.1007/s11427-013-4534-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/18/2013] [Indexed: 12/26/2022]
Abstract
microRNAs (miRNAs) are a class of small non-coding RNAs, which have been shown important to a wide range of biological process by post-transcriptionally regulating the expression of protein-coding genes. miRNAs have been demonstrated essential to normal cardiac development and function. Recently, numerous studies indicate miRNAs are involved in cardiac regeneration and cardiac disease, including cardiac hypertrophy, myocardial infarction and cardiac arrhythmia. These observations suggest miRNAs play important roles in cardiology. In this review, we summarize the recent progress of studying miRNAs in cardiac regeneration and cardiac disease. We also discuss the diagnostic and therapeutic potential of miRNAs in heart disease.
Collapse
|
106
|
miR-218 is downregulated and directly targets SH3GL1 in childhood medulloblastoma. Mol Med Rep 2013; 8:1111-7. [DOI: 10.3892/mmr.2013.1639] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/08/2013] [Indexed: 11/05/2022] Open
|
107
|
Wythe JD, Dang LTH, Devine WP, Boudreau E, Artap ST, He D, Schachterle W, Stainier DYR, Oettgen P, Black BL, Bruneau BG, Fish JE. ETS factors regulate Vegf-dependent arterial specification. Dev Cell 2013; 26:45-58. [PMID: 23830865 DOI: 10.1016/j.devcel.2013.06.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/28/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
Vegf signaling specifies arterial fate during early vascular development by inducing the transcription of Delta-like 4 (Dll4), the earliest Notch ligand gene expressed in arterial precursor cells. Dll4 expression precedes that of Notch receptors in arteries, and factors that direct its arterial-specific expression are not known. To identify the transcriptional program that initiates arterial Dll4 expression, we characterized an arterial-specific and Vegf-responsive enhancer of Dll4. Our findings demonstrate that Notch signaling is not required for initiation of Dll4 expression in arteries and suggest that Notch instead functions as a maintenance factor. Importantly, we find that Vegf signaling activates MAP kinase (MAPK)-dependent E26 transformation-specific sequence (ETS) factors in the arterial endothelium to drive expression of Dll4 and Notch4. These findings identify a Vegf/MAPK-dependent transcriptional pathway that specifies arterial identity by activating Notch signaling components and illustrate how signaling cascades can modulate broadly expressed transcription factors to achieve tissue-specific transcriptional outputs.
Collapse
Affiliation(s)
- Joshua D Wythe
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
No association of functional variant in pri-miR-218 and risk of congenital heart disease in a Chinese population. Gene 2013; 523:173-7. [DOI: 10.1016/j.gene.2013.03.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/28/2013] [Indexed: 11/18/2022]
|
109
|
Abstract
PURPOSE OF REVIEW Vascular injury is a common contributor to, and complication of, kidney disease. Given the prevalence and importance of vascular injury in renal disease, interest has grown in a novel signaling pathway first identified in developing neurons that also has widespread effects on vascular structure and function, comprising the secreted ligand Slit2 and its cognate Roundabout (Robo) receptors. RECENT FINDINGS Although initially discovered as a modulator of neuronal migration during development, the Slit2-Robo signaling pathway has recently been found to regulate the structure and function of various subsets of vascular cells and circulating hematopoietic cells that interact with the vessel wall. Through the regulation of intermediate signaling enzymes that control the organization of the actin cytoskeleton, Slit2 and its Robo receptors regulate such diverse processes as angiogenesis, endothelial permeability, vascular smooth muscle cell migration, and thrombosis. SUMMARY Recent advances in our understanding of Slit2-Robo signaling have provided novel insights into the pathophysiology of vascular injury that is commonly associated with renal disease. These insights have created potential opportunities for the development of new therapies targeting vascular injury associated with renal disease.
Collapse
Affiliation(s)
- Darren A Yuen
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
110
|
Gays D, Santoro MM. The admiR-able advances in cardiovascular biology through the zebrafish model system. Cell Mol Life Sci 2013; 70:2489-503. [PMID: 23069988 PMCID: PMC11113687 DOI: 10.1007/s00018-012-1181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
MicroRNAs are small non-coding RNAs endogenously expressed by all tissues during development and adulthood. They regulate gene expression by controlling the stability of targeted messenger RNA. In cardiovascular tissues microRNAs play a role by modulating essential genes involved in heart and blood vessel development and homeostasis. The zebrafish (Danio rerio) system is a recognized vertebrate model system useful to study cardiovascular biology; recently, it has been used to investigate microRNA functions during natural and pathological states. In this review, we will illustrate the advantages of the zebrafish model in the study of microRNAs in heart and vascular cells, providing an update on recent discoveries using the zebrafish to identify new microRNAs and their targeted genes in cardiovascular tissues. Lastly, we will provide evidence that the zebrafish is an optimal model system to undercover new microRNA functions in vertebrates and to improve microRNA-based therapeutic approaches.
Collapse
Affiliation(s)
- Dafne Gays
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Massimo Mattia Santoro
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
111
|
Abstract
Heart development involves the precise orchestration of gene expression during cardiac differentiation and morphogenesis by evolutionarily conserved regulatory networks. miRNAs (microRNAs) play important roles in the post-transcriptional regulation of gene expression, and recent studies have established critical functions for these tiny RNAs in almost every facet of cardiac development and disease. The realization that miRNAs are amenable to therapeutic manipulation has also generated considerable interest in the potential of miRNA-based drugs for the treatment of a number of human diseases, including cardiovascular disease. In the present review, I discuss well-established and emerging roles of miRNAs in cardiac development, their relevance to congenital heart disease and unresolved questions in the field for future investigation, as well as emerging therapeutic possibilities for cardiac regeneration.
Collapse
|
112
|
Brás-Rosário L, Matsuda A, Pinheiro AI, Gardner R, Lopes T, Amaral A, Gama-Carvalho M. Expression profile of microRNAs regulating proliferation and differentiation in mouse adult cardiac stem cells. PLoS One 2013; 8:e63041. [PMID: 23690977 PMCID: PMC3656880 DOI: 10.1371/journal.pone.0063041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/27/2013] [Indexed: 01/07/2023] Open
Abstract
The identification of cardiac cells with stem cell properties changed the paradigm of the heart as a post mitotic organ. These cells proliferate and differentiate into cardiomyocytes, endothelial and vascular smooth muscle cells, providing for cardiac cell homeostasis and regeneration. microRNAs are master switches controlling proliferation and differentiation, in particular regulating stem cell biology and cardiac development. Modulation of microRNAs -regulated gene expression networks holds the potential to control cell fate and proliferation, with predictable biotechnologic and therapeutic applications. To obtain insights into the regulatory networks active in cardiac stem cells, we characterized the expression profile of 95 microRNAs with reported functions in stem cell and tissue differentiation in mouse cardiac stem cells, and compared it to that of mouse embryonic heart and mesenchymal stem cells. The most highly expressed microRNAs identified in cardiac stem cells are known to target key genes involved in the control of cell proliferation and adhesion, vascular function and cardiomyocyte differentiation. We report a subset of differentially expressed microRNAs that are proposed to act as regulators of differentiation and proliferation of adult cardiac stem cells, providing novel insights into active gene expression networks regulating their biological properties.
Collapse
|
113
|
MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacol Res 2013; 75:15-27. [PMID: 23603154 DOI: 10.1016/j.phrs.2013.04.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 12/11/2022]
Abstract
Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific microRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions.
Collapse
|
114
|
Dang LTH, Lawson ND, Fish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development. Arterioscler Thromb Vasc Biol 2013; 33:193-200. [PMID: 23325476 DOI: 10.1161/atvbaha.112.300142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The regulated response of endothelial cells to signals in their environment is not only critical for the de novo formation of primordial vascular networks during early development (ie, vasculogenesis), but is also required for the subsequent growth and remodeling of new blood vessels from preexisting ones (ie, angiogenesis). Vascular endothelial growth factors (Vegfs) and their endothelial cell-specific receptors play a crucial role in nearly all aspects of blood vessel growth. How the outputs from these pathways affect and coordinate endothelial behavior is an area of intense research. Recently, numerous studies have highlighted roles for microRNAs in modulating Vegf signaling output in several different contexts. In this review, we will provide an overview of how small RNAs regulate multiple aspects of the Vegf signaling pathway. In particular, we highlight areas where identification of microRNAs and their targets has provided new insight into the role of downstream effectors in modulating Vegf output during development. As Vegf plays a broad role in multiple aspects of endothelial biology and has become a target for therapeutic manipulation of pathological blood vessel growth, microRNAs that affect Vegf signaling output will undoubtedly be major targets of clinical value.
Collapse
Affiliation(s)
- Lan T H Dang
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
115
|
Mommersteeg MTM, Andrews WD, Ypsilanti AR, Zelina P, Yeh ML, Norden J, Kispert A, Chédotal A, Christoffels VM, Parnavelas JG. Slit-roundabout signaling regulates the development of the cardiac systemic venous return and pericardium. Circ Res 2013; 112:465-75. [PMID: 23255421 DOI: 10.1161/circresaha.112.277426] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The Slit-Roundabout (Robo) signaling pathway has pleiotropic functions during Drosophila heart development. However, its role in mammalian heart development is largely unknown. OBJECTIVE To analyze the role of Slit-Robo signaling in the formation of the pericardium and the systemic venous return in the murine heart. METHODS AND RESULTS Expression of genes encoding Robo1 and Robo2 receptors and their ligands Slit2 and Slit3 was found in or around the systemic venous return and pericardium during development. Analysis of embryos lacking Robo1 revealed partial absence of the pericardium, whereas Robo1/2 double mutants additionally showed severely reduced sinus horn myocardium, hypoplastic caval veins, and a persistent left inferior caval vein. Mice lacking Slit3 recapitulated the defects in the myocardialization, alignment, and morphology of the caval veins. Ligand binding assays confirmed Slit3 as the preferred ligand for the Robo1 receptor, whereas Slit2 showed preference for Robo2. Sinus node development was mostly unaffected in all mutants. In addition, we show absence of cross-regulation with previously identified regulators Tbx18 and Wt1. We provide evidence that pericardial defects are created by abnormal localization of the caval veins combined with ectopic pericardial cavity formation. Local increase in neural crest cell death and impaired neural crest adhesive and migratory properties underlie the ectopic pericardium formation. CONCLUSIONS A novel Slit-Robo signaling pathway is involved in the development of the pericardium, the sinus horn myocardium, and the alignment of the caval veins. Reduced Slit3 binding in the absence of Robo1, causing impaired cardiac neural crest survival, adhesion, and migration, underlies the pericardial defects.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Adhesion
- Cell Movement
- Gene Expression Regulation, Developmental
- Gestational Age
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Intercellular Signaling Peptides and Proteins/deficiency
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Crest/abnormalities
- Neural Crest/metabolism
- Pericardium/abnormalities
- Pericardium/metabolism
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Sinoatrial Node/abnormalities
- Sinoatrial Node/metabolism
- T-Box Domain Proteins/metabolism
- Tissue Culture Techniques
- Venae Cavae/abnormalities
- Venae Cavae/metabolism
- WT1 Proteins/metabolism
- Roundabout Proteins
Collapse
|
116
|
Chiavacci E, Dolfi L, Verduci L, Meghini F, Gestri G, Evangelista AMM, Wilson SW, Cremisi F, Pitto L. MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development. PLoS One 2012; 7:e50536. [PMID: 23226307 PMCID: PMC3511548 DOI: 10.1371/journal.pone.0050536] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/26/2012] [Indexed: 11/18/2022] Open
Abstract
tbx5, a member of the T-box gene family, encodes one of the key transcription factors mediating vertebrate heart development. Tbx5 function in heart development appears to be exquisitely sensitive to gene dosage, since both haploinsufficiency and gene duplication generate the cardiac abnormalities associated with Holt−Oram syndrome (HOS), a highly penetrant autosomal dominant disease characterized by congenital heart defects of varying severity and upper limb malformation. It is suggested that tight integration of microRNAs and transcription factors into the cardiac genetic circuitry provides a rich and robust array of regulatory interactions to control cardiac gene expression. Based on these considerations, we performed an in silico screening to identify microRNAs embedded in genes highly sensitive to Tbx5 dosage. Among the identified microRNAs, we focused our attention on miR-218-1 that, together with its host gene, slit2, is involved in heart development. We found correlated expression of tbx5 and miR-218 during cardiomyocyte differentiation of mouse P19CL6 cells. In zebrafish embryos, we show that both Tbx5 and miR-218 dysregulation have a severe impact on heart development, affecting early heart morphogenesis. Interestingly, down-regulation of miR-218 is able to rescue the heart defects generated by tbx5 over-expression supporting the notion that miR-218 is a crucial mediator of Tbx5 in heart development and suggesting its possible involvement in the onset of heart malformations.
Collapse
Affiliation(s)
| | - Luca Dolfi
- Institute of Clinical Physiology, CNR, Pisa, Italy
| | | | | | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | - Letizia Pitto
- Institute of Clinical Physiology, CNR, Pisa, Italy
- * E-mail:
| |
Collapse
|
117
|
Borrell V, Cárdenas A, Ciceri G, Galcerán J, Flames N, Pla R, Nóbrega-Pereira S, García-Frigola C, Peregrín S, Zhao Z, Ma L, Tessier-Lavigne M, Marín O. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 2012; 76:338-52. [PMID: 23083737 PMCID: PMC4443924 DOI: 10.1016/j.neuron.2012.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 11/23/2022]
Abstract
Neurogenesis relies on a delicate balance between progenitor maintenance and neuronal production. Progenitors divide symmetrically to increase the pool of dividing cells. Subsequently, they divide asymmetrically to self-renew and produce new neurons or, in some brain regions, intermediate progenitor cells (IPCs). Here we report that central nervous system progenitors express Robo1 and Robo2, receptors for Slit proteins that regulate axon guidance, and that absence of these receptors or their ligands leads to loss of ventricular mitoses. Conversely, production of IPCs is enhanced in Robo1/2 and Slit1/2 mutants, suggesting that Slit/Robo signaling modulates the transition between primary and intermediate progenitors. Unexpectedly, these defects do not lead to transient overproduction of neurons, probably because supernumerary IPCs fail to detach from the ventricular lining and cycle very slowly. At the molecular level, the role of Slit/Robo in progenitor cells involves transcriptional activation of the Notch effector Hes1. These findings demonstrate that Robo signaling modulates progenitor cell dynamics in the developing brain.
Collapse
Affiliation(s)
- Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Gabriele Ciceri
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Joan Galcerán
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Nuria Flames
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Ramón Pla
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandrina Nóbrega-Pereira
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Cristina García-Frigola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandra Peregrín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Zhen Zhao
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Le Ma
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| |
Collapse
|
118
|
Zhang Q, Kandic I, Faughnan ME, Kutryk MJ. Elevated circulating microRNA-210 levels in patients with hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations: a potential new biomarker. Biomarkers 2012; 18:23-9. [PMID: 23051042 DOI: 10.3109/1354750x.2012.728624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary arteriovenous malformations (PAVMs), which can lead to life-threatening bleeding and other complications, have been reported to occur in 30-50% of patients with hereditary hemorrhagic telangiectasia (HHT). Circulating microRNAs (miRNAs) have emerged as new biomarkers for human diseases. This study was conducted to explore circulating miRNAs as biomarkers for the screening of HHT patients with PAVMs. MicroRNA array analysis revealed eight altered circulating miRNAs in patients with PAVMs. Real time RT-PCR showed that the levels of circulating miR-210 were significantly elevated in HHT patients with PAVMs but not changed in patients without PAVMs as compared with healthy controls. Circulating miR-210 therefore may be used as a new and sensitive biomarker for the screening of patients with HHT for clinically significant PAVMs.
Collapse
Affiliation(s)
- Qiuwang Zhang
- Division of Cardiology, Keenan Research Center at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
119
|
Opitz R, Maquet E, Huisken J, Antonica F, Trubiroha A, Pottier G, Janssens V, Costagliola S. Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. Dev Biol 2012; 372:203-16. [PMID: 23022354 DOI: 10.1016/j.ydbio.2012.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 07/22/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022]
Abstract
Among the various organs derived from foregut endoderm, the thyroid gland is unique in that major morphogenic events such as budding from foregut endoderm, descent into subpharyngeal mesenchyme and growth expansion occur in close proximity to cardiovascular tissues. To date, research on thyroid organogenesis was missing one vital tool-a transgenic model that allows to track the dynamic changes in thyroid size, shape and location relative to adjacent cardiovascular tissues in live embryos. In this study, we generated a novel transgenic zebrafish line, tg(tg:mCherry), in which robust and thyroid-specific expression of a membrane version of mCherry enables live imaging of thyroid development in embryos from budding stage throughout formation of functional thyroid follicles. By using various double transgenic models in which EGFP expression additionally labels cardiovascular structures, a high coordination was revealed between thyroid organogenesis and cardiovascular development. Early thyroid development was found to proceed in intimate contact with the distal ventricular myocardium and live imaging confirmed that thyroid budding from the pharyngeal floor is tightly coordinated with the descent of the heart. Four-dimensional imaging of live embryos by selective plane illumination microscopy and 3D-reconstruction of confocal images of stained embryos yielded novel insights into the role of specific pharyngeal vessels, such as the hypobranchial artery (HA), in guiding late thyroid expansion along the pharyngeal midline. An important role of the HA was corroborated by the detailed examination of thyroid development in various zebrafish models showing defective cardiovascular development. In combination, our results from live imaging as well es from 3D-reconstruction of thyroid development in tg(tg:mCherry) embryos provided a first dynamic view of late thyroid organogenesis in zebrafish-a critical resource for the design of future studies addressing the molecular mechanisms of these thyroid-vasculature interactions.
Collapse
Affiliation(s)
- Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Endothelial cells are highly proliferative and motile during vascular development. However, as blood vessels mature and stabilize the endothelial lining becomes quiescent, and cell-cell interactions among endothelial cells generate a stable barrier between the blood and tissue. Rather than simply functioning as an inert barrier, endothelial cells constantly sense and respond to environmental cues. Activation of the endothelium can promote the loss of cell-cell adhesion and an increase in the motility and proliferation of the endothelium. This process is requisite for tissue repair, but also plays a role in vascular pathogenesis and is especially relevant to kidney injury. The molecular mechanisms that facilitate these phenotypic alterations are only partially understood. Recent work has shown that microRNAs can modulate endothelial phenotype. These new insights have shed light on the complex mechanisms that endothelial cells use to respond to environmental stimuli. This review addresses the known roles that microRNAs play in controlling angiogenic and inflammatory signals in endothelial cells, and illustrates that microRNAs are important modulators of endothelial function in vascular disease, and therefore represent promising therapeutic targets.
Collapse
Affiliation(s)
- Jason E Fish
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
121
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
122
|
Prudnikova TY, Mostovich LA, Kashuba VI, Ernberg I, Zabarovsky ER, Grigorieva EV. miRNA-218 contributes to the regulation of D-glucuronyl C5-epimerase expression in normal and tumor breast tissues. Epigenetics 2012; 7:1109-14. [PMID: 22968430 PMCID: PMC3469452 DOI: 10.4161/epi.22103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs) are key posttranscriptional regulators of gene expression. In the present study, regulation of tumor-suppressor gene D-glucuronyl C5-epimerase (GLCE) by miRNA-218 was investigated. Significant downregulation of miRNA-218 expression was shown in primary breast tumors. Exogenous miRNA-218/anti-miRNA-218 did not affect GLCE mRNA but regulated GLCE protein level in MCF7 breast carcinoma cells in vitro. Comparative analysis showed a positive correlation between miRNA-218 and GLCE mRNA, and negative correlation between miRNA-218 and GLCE protein levels in breast tissues and primary tumors in vivo, supporting a direct involvement of miRNA-218 in posttranscriptional regulation of GLCE in human breast tissue. A common scheme for the regulation of GLCE expression in normal and tumor breast tissues is suggested.
Collapse
Affiliation(s)
- Tatiana Y Prudnikova
- Institute of Molecular Biology and Biophysics, Siberian Department of Russian Academy of Medical Sciences, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
123
|
Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 2012; 46:397-418. [PMID: 22974299 DOI: 10.1146/annurev-genet-110711-155646] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, the zebrafish has emerged as a powerful model organism for studying cardiac development. Its ability to survive without an active circulation and amenability to forward genetics has led to the identification of numerous mutants whose study has helped elucidate new mechanisms in cardiac development. Furthermore, its transparent, externally developing embryos have allowed detailed cellular analyses of heart development. In this review, we discuss the molecular and cellular processes involved in zebrafish heart development from progenitor specification to development of the valve and the conduction system. We focus on imaging studies that have uncovered the cellular bases of heart development and on zebrafish mutants with cardiac abnormalities whose study has revealed novel molecular pathways in cardiac cell specification and tissue morphogenesis.
Collapse
Affiliation(s)
- David Staudt
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
124
|
Abstract
The discovery of the regulatory role of noncoding RNAs, and micro (mi)RNAs in particular, has added a new layer of complexity to our understanding of cardiovascular development. miRNAs regulate and modulate various steps of cardiovascular morphogenesis, cell proliferation, differentiation, and phenotype modulation. miRNAs simultaneously regulate multiple targets, and many miRNAs can bind to the same target, allowing for a complex pattern of regulation of gene expression. miRNA families are continuously added during evolution paralleling the increased complexity of the cardiovascular system in vertebrates compared with invertebrates. Several lines of evidence suggest that the appearance of miRNAs is at least in part responsible for the formation of complex organ systems and stable regulatory mechanisms in vertebrates. We review the current understanding of miRNAs during cardiovascular development. Further progress in this area will help to decipher quantitative changes in gene expression that provide robustness to cellular phenotypes and regulatory options to diseases processes. miRNAs might also provide clues to better understand congenital heart defects, which are the most common birth defects in human newborns.
Collapse
Affiliation(s)
- Thomas Boettger
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Thomas Braun
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| |
Collapse
|
125
|
Aleksandrova A, Czirók A, Szabó A, Filla MB, Hossain MJ, Whelan PF, Lansford R, Rongish BJ. Convective tissue movements play a major role in avian endocardial morphogenesis. Dev Biol 2012; 363:348-61. [PMID: 22280991 DOI: 10.1016/j.ydbio.2011.12.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022]
Abstract
Endocardial cells play a critical role in cardiac development and function, forming the innermost layer of the early (tubular) heart, separated from the myocardium by extracellular matrix (ECM). However, knowledge is limited regarding the interactions of cardiac progenitors and surrounding ECM during dramatic tissue rearrangements and concomitant cellular repositioning events that underlie endocardial morphogenesis. By analyzing the movements of immunolabeled ECM components (fibronectin, fibrillin-2) and TIE1 positive endocardial progenitors in time-lapse recordings of quail embryonic development, we demonstrate that the transformation of the primary heart field within the anterior lateral plate mesoderm (LPM) into a tubular heart involves the precise co-movement of primordial endocardial cells with the surrounding ECM. Thus, the ECM of the tubular heart contains filaments that were associated with the anterior LPM at earlier developmental stages. Moreover, endocardial cells exhibit surprisingly little directed active motility, that is, sustained directed movements relative to the surrounding ECM microenvironment. These findings point to the importance of large-scale tissue movements that convect cells to the appropriate positions during cardiac organogenesis.
Collapse
Affiliation(s)
- Anastasiia Aleksandrova
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs of ~22nt in length which are involved in the regulation of gene expression at the posttranscriptional level by degrading their target mRNAs and/or inhibiting their translation. Expressed ubiquitously or in a tissue-specific manner, miRNAs are involved in the regulation of many biological processes such as cell proliferation, differentiation, apoptosis, and the maintenance of normal cellular physiology. Many miRNAs are expressed in embryonic, postnatal, and adult hearts. Aberrant expression or genetic deletion of miRNAs is associated with abnormal cardiac cell differentiation, disruption of heart development, and cardiac dysfunction. This chapter will summarize the history, biogenesis, and processing of miRNAs as well as their function in heart development, remodeling, and disease.
Collapse
Affiliation(s)
- Ramón A Espinoza-Lewis
- Cardiovascular Research Division, Department of Cardiology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
127
|
Abstract
MicroRNAs (miRNAs) are highly conserved, tiny (∼22 nucleotides) non-coding RNAs that have emerged as potent regulators of mRNA translation. miRNAs exhibit fine-tuning of the control of proteins involved in cell signalling (AE) pathways and in vital cellular and developmental processes. miRNAs are expressed in cardiovascular tissues, and multiple functional aspects of miRNAs underscore their key role in cardiovascular (patho)physiology. The development and increasing use of novel molecular biology tools have contributed to the recent success in miRNA research. In the present review, we discuss current updates on important and novel miRNA techniques, including: (i) miRNA screening tools; (ii) bioanalytical target prediction tools; (iii) target validation tools; and (iv) manipulative miRNA expression tools. We also present an update about recently identified miRNA targets that play a key role in cardiovascular development and disorders.
Collapse
Affiliation(s)
- S Dangwal
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
128
|
“Fishing” for endothelial microRNA functions and dysfunction. Vascul Pharmacol 2011; 55:60-8. [DOI: 10.1016/j.vph.2011.08.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/19/2022]
|
129
|
Thum T. Serum CA 125 levels in early pregnancy and subsequent spontaneous abortion. Obstet Gynecol 1990; 4:3-14. [PMID: 22162462 PMCID: PMC3376835 DOI: 10.1002/emmm.201100191] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases are the most common causes of human morbidity and mortality despite significant therapeutic improvements by surgical, interventional and pharmacological approaches in the last decade. MicroRNAs (miRNAs) are important and powerful mediators in a wide range of diseases and thus emerged as interesting new drug targets. An array of animal and even human miRNA-based therapeutic studies has been performed, which validate miRNAs as being successfully targetable to treat a wide range of diseases. Here, the current knowledge about miRNAs therapeutics in cardiovascular diseases on their way to clinical use are reviewed and discussed.
Collapse
Affiliation(s)
- Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| |
Collapse
|