101
|
Liu Y, Dale S, Ball R, VanLeuven AJ, Sornborger A, Lauderdale JD, Kner P. Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy. NEUROPHOTONICS 2019; 6:015009. [PMID: 30854407 PMCID: PMC6400141 DOI: 10.1117/1.nph.6.1.015009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/13/2019] [Indexed: 05/02/2023]
Abstract
Light sheet fluorescence microscopy (LSFM) is a powerful tool for investigating model organisms including zebrafish. However, due to scattering and refractive index variations within the sample, the resulting image often suffers from low contrast. Structured illumination (SI) has been combined with scanned LSFM to remove out-of-focus and scattered light using square-law detection. Here, we demonstrate that the combination of LSFM with linear reconstruction SI can further increase resolution and contrast in the vertical and axial directions compared to the widely adopted root-mean square reconstruction method while using the same input images. We apply this approach to imaging neural activity in 7-day postfertilization zebrafish larvae. We imaged two-dimensional sections of the zebrafish central nervous system in two colors at an effective frame rate of 7 frames per second.
Collapse
Affiliation(s)
- Yang Liu
- University of Georgia, College of Engineering, Athens, Georgia, United States
| | - Savannah Dale
- Clemson University, Department of Bioengineering, Clemson, South Carolina, United States
| | - Rebecca Ball
- University of Georgia, Department of Cellular Biology, Athens, Georgia, United States
| | - Ariel J. VanLeuven
- University of Georgia, Department of Cellular Biology, Athens, Georgia, United States
| | - Andrew Sornborger
- Los Alamos National Laboratory, Information Sciences, CCS-3, Los Alamos, New Mexico, United States
| | - James D. Lauderdale
- University of Georgia, Department of Cellular Biology, Athens, Georgia, United States
- University of Georgia, Neuroscience Division of the Biomedical Health Sciences Institute, Athens, Georgia, United States
| | - Peter Kner
- University of Georgia, College of Engineering, Athens, Georgia, United States
- Address all correspondence to Peter Kner, E-mail:
| |
Collapse
|
102
|
Gerber V, Yang L, Takamiya M, Ribes V, Gourain V, Peravali R, Stegmaier J, Mikut R, Reischl M, Ferg M, Rastegar S, Strähle U. The HMG box transcription factors Sox1a and b specify a new class of glycinergic interneurons in the spinal cord of zebrafish embryos. Development 2019; 146:dev.172510. [DOI: 10.1242/dev.172510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Specification of neurons in the spinal cord relies on extrinsic and intrinsic signals, which in turn are interpreted by expression of transcription factors. V2 interneurons develop from the ventral aspects of the spinal cord. We report here a novel neuronal V2 subtype, named V2s, in zebrafish embryos. Formation of these neurons depends on the transcription factors sox1a and sox1b. They develop from common gata2a/gata3 dependent precursors co-expressing markers of V2b and V2s interneurons. Chemical blockage of Notch signaling causes a decrease of V2s and an increase of V2b cells. Our results are consistent with the existence of at least two types of precursors arranged in a hierarchical manner in the V2 domain. V2s neurons grow long ipsilateral descending axonal projections with a short branch at the ventral midline. They acquire a glycinergic neurotransmitter type during the second day of development. Unilateral ablation of V2s interneurons causes a delay in touch-provoked escape behavior suggesting that V2s interneurons are involved in fast motor responses.
Collapse
Affiliation(s)
- Vanessa Gerber
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Lixin Yang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Masanari Takamiya
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Vanessa Ribes
- Institute Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Ravindra Peravali
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
- Institute of Imaging & Computer Vision, RWTH Aachen University, 52074 Aachen, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| |
Collapse
|
103
|
Prenatal Neuropathologies in Autism Spectrum Disorder and Intellectual Disability: The Gestation of a Comprehensive Zebrafish Model. J Dev Biol 2018; 6:jdb6040029. [PMID: 30513623 PMCID: PMC6316217 DOI: 10.3390/jdb6040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with overlapping diagnostic behaviors and risk factors. These include embryonic exposure to teratogens and mutations in genes that have important functions prenatally. Animal models, including rodents and zebrafish, have been essential in delineating mechanisms of neuropathology and identifying developmental critical periods, when those mechanisms are most sensitive to disruption. This review focuses on how the developmentally accessible zebrafish is contributing to our understanding of prenatal pathologies that set the stage for later ASD-ID behavioral deficits. We discuss the known factors that contribute prenatally to ASD-ID and the recent use of zebrafish to model deficits in brain morphogenesis and circuit development. We conclude by suggesting that a future challenge in zebrafish ASD-ID modeling will be to bridge prenatal anatomical and physiological pathologies to behavioral deficits later in life.
Collapse
|
104
|
Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function. Nat Methods 2018; 15:1117-1125. [DOI: 10.1038/s41592-018-0221-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
|
105
|
Optogenetic precision toolkit to reveal form, function and connectivity of single neurons. Methods 2018; 150:42-48. [DOI: 10.1016/j.ymeth.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
|
106
|
Farrar MJ, Kolkman KE, Fetcho JR. Features of the structure, development, and activity of the zebrafish noradrenergic system explored in new CRISPR transgenic lines. J Comp Neurol 2018; 526:2493-2508. [PMID: 30070695 DOI: 10.1002/cne.24508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 11/11/2022]
Abstract
The noradrenergic (NA) system of vertebrates is implicated in learning, memory, arousal, and neuroinflammatory responses, but is difficult to access experimentally. Small and optically transparent, larval zebrafish offer the prospect of exploration of NA structure and function in an intact animal. We made multiple transgenic zebrafish lines using the CRISPR/Cas9 system to insert fluorescent reporters upstream of slc6a2, the norepinephrine transporter gene. These lines faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which contains only about 14 total neurons. We used the lines in combination with two-photon microscopy to explore the structure and projections of the NA system in the context of the columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting orderly relations to neuronal cell types early in life. We also quantified neurite density in the rostral spinal cord in individual larvae with as much as 100% difference in the number of LC neurons, and found no correlation between neuronal number in the LC and projection density in the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium imaging of the entire LC. We found that large-amplitude calcium responses were evident in all LC neurons and showed bilateral synchrony, whereas small-amplitude events were more likely to show interhemispheric asynchrony, supporting the potential for targeted LC neuromodulation. Our observations and new transgenic lines set the stage for a deeper understanding of the NA system.
Collapse
Affiliation(s)
- Matthew J Farrar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York.,Department of Math, Physics and Statistics, Messiah College, Mechanicsburg, Pennsylvania
| | - Kristine E Kolkman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Joseph R Fetcho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
107
|
Severi KE, Böhm UL, Wyart C. Investigation of hindbrain activity during active locomotion reveals inhibitory neurons involved in sensorimotor processing. Sci Rep 2018; 8:13615. [PMID: 30206288 PMCID: PMC6134141 DOI: 10.1038/s41598-018-31968-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 11/14/2022] Open
Abstract
Locomotion in vertebrates relies on motor circuits in the spinal cord receiving inputs from the hindbrain to execute motor commands while dynamically integrating proprioceptive sensory feedback. The spatial organization of the neuronal networks driving locomotion in the hindbrain and role of inhibition has not been extensively investigated. Here, we mapped neuronal activity with single-cell resolution in the hindbrain of restrained transgenic Tg(HuC:GCaMP5G) zebrafish larvae swimming in response to whole-field visual motion. We combined large-scale population calcium imaging in the hindbrain with simultaneous high-speed recording of the moving tail in animals where specific markers label glycinergic inhibitory neurons. We identified cells whose activity preferentially correlates with the visual stimulus or motor activity and used brain registration to compare data across individual larvae. We then morphed calcium imaging data onto the zebrafish brain atlas to compare with known transgenic markers. We report cells localized in the cerebellum whose activity is shut off by the onset of the visual stimulus, suggesting these cells may be constitutively active and silenced during sensorimotor processing. Finally, we discover that the activity of a medial stripe of glycinergic neurons in the domain of expression of the transcription factor engrailed1b is highly correlated with the onset of locomotion. Our efforts provide a high-resolution, open-access dataset for the community by comparing our functional map of the hindbrain to existing open-access atlases and enabling further investigation of this population's role in locomotion.
Collapse
Affiliation(s)
- Kristen E Severi
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Urs L Böhm
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France
- Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Université, Inserm, CNRS, AP-HP, F-75013, Paris, France.
| |
Collapse
|
108
|
V2a interneuron diversity tailors spinal circuit organization to control the vigor of locomotor movements. Nat Commun 2018; 9:3370. [PMID: 30135498 PMCID: PMC6105610 DOI: 10.1038/s41467-018-05827-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/31/2018] [Indexed: 01/12/2023] Open
Abstract
Locomotion is a complex motor task generated by spinal circuits driving motoneurons in a precise sequence to control the timing and vigor of movements, but the underlying circuit logic remains to be understood. Here we reveal, in adult zebrafish, how the diversity and selective distribution of two V2a interneuron types within the locomotor network transform commands into an appropriate, task-dependent circuit organization. Bursting-type V2a interneurons with unidirectional axons predominantly target distal dendrites of slow motoneurons to provide potent, non-linear excitation involving NMDA-dependent potentiation. A second type, non-bursting V2a interneurons with bidirectional axons, predominantly target somata of fast motoneurons, providing weaker, non-potentiating excitation. Together, this ensures the rapid, first-order recruitment of the slow circuit, while reserving the fast circuit for highly salient stimuli involving synchronous inputs. Our results thus identify how interneuron diversity is captured and transformed into a parsimonious task-specific circuit design controlling the vigor of locomotion.
Collapse
|
109
|
Tabor KM, Smith TS, Brown M, Bergeron SA, Briggman KL, Burgess HA. Presynaptic Inhibition Selectively Gates Auditory Transmission to the Brainstem Startle Circuit. Curr Biol 2018; 28:2527-2535.e8. [PMID: 30078569 DOI: 10.1016/j.cub.2018.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/25/2022]
Abstract
Filtering mechanisms prevent a continuous stream of sensory information from swamping perception, leading to diminished focal attention and cognitive processing. Mechanisms for sensory gating are commonly studied using prepulse inhibition, a paradigm that measures the regulated transmission of auditory information to the startle circuit; however, the underlying neuronal pathways are unresolved. Using large-scale calcium imaging, optogenetics, and laser ablations, we reveal a cluster of 30 morphologically identified neurons in zebrafish that suppress the transmission of auditory signals during prepulse inhibition. These neurons project to a key sensorimotor interface in the startle circuit-the termination zone of auditory afferents on the dendrite of a startle command neuron. Direct measurement of auditory nerve neurotransmitter release revealed selective presynaptic inhibition of sensory transmission to the startle circuit, sparing signaling to other brain regions. Our results provide the first cellular resolution circuit for prepulse inhibition in a vertebrate, revealing a central role for presynaptic gating of sensory information to a brainstem motor circuit.
Collapse
Affiliation(s)
- Kathryn M Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Trevor S Smith
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Mary Brown
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sadie A Bergeron
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
110
|
|
111
|
Miller GW, Chandrasekaran V, Yaghoobi B, Lein PJ. Opportunities and challenges for using the zebrafish to study neuronal connectivity as an endpoint of developmental neurotoxicity. Neurotoxicology 2018; 67:102-111. [PMID: 29704525 PMCID: PMC6177215 DOI: 10.1016/j.neuro.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/28/2023]
Abstract
Chemical exposures have been implicated as environmental risk factors that interact with genetic susceptibilities to influence individual risk for complex neurodevelopmental disorders, including autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder and intellectual disabilities. Altered patterns of neuronal connectivity represent a convergent mechanism of pathogenesis for these and other neurodevelopmental disorders, and growing evidence suggests that chemicals can interfere with specific signaling pathways that regulate the development of neuronal connections. There is, therefore, a growing interest in developing screening platforms to identify chemicals that alter neuronal connectivity. Cell-cell, cell-matrix interactions and systemic influences are known to be important in defining neuronal connectivity in the developing brain, thus, a systems-based model offers significant advantages over cell-based models for screening chemicals for effects on neuronal connectivity. The embryonic zebrafish represents a vertebrate model amenable to higher throughput chemical screening that has proven useful in characterizing conserved mechanisms of neurodevelopment. Moreover, the zebrafish is readily amenable to gene editing to integrate genetic susceptibilities. Although use of the zebrafish model in toxicity testing has increased in recent years, the diverse tools available for imaging structural differences in the developing zebrafish brain have not been widely applied to studies of the influence of gene by environment interactions on neuronal connectivity in the developing zebrafish brain. Here, we discuss tools available for imaging of neuronal connectivity in the developing zebrafish, review what has been published in this regard, and suggest a path forward for applying this information to developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Galen W. Miller
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
112
|
Morphometric analysis and neuroanatomical mapping of the zebrafish brain. Methods 2018; 150:49-62. [PMID: 29936090 DOI: 10.1016/j.ymeth.2018.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022] Open
Abstract
Large-scale genomic studies have recently identified genetic variants causative for major neurodevelopmental disorders, such as intellectual disability and autism. However, determining how underlying developmental processes are affected by these mutations remains a significant challenge in the field. Zebrafish is an established model system in developmental neurogenetics that may be useful in uncovering the mechanisms of these mutations. Here we describe the use of voxel-intensity, deformation field, and volume-based morphometric techniques for the systematic and unbiased analysis of gene knock-down and environmental exposure-induced phenotypes in zebrafish. We first present a computational method for brain segmentation based on transgene expression patterns to create a comprehensive neuroanatomical map. This map allowed us to disclose statistically significant changes in brain microstructure and composition in neurodevelopmental models. We demonstrate the effectiveness of morphometric techniques in measuring changes in the relative size of neuroanatomical subdivisions in atoh7 morphant larvae and in identifying phenotypes in larvae treated with valproic acid, a chemical demonstrated to increase the risk of autism in humans. These tools enable rigorous evaluation of the effects of gene mutations and environmental exposures on neural development, providing an entry point for cellular and molecular analysis of basic developmental processes as well as neurodevelopmental and neurodegenerative disorders.
Collapse
|
113
|
Haesemeyer M, Robson DN, Li JM, Schier AF, Engert F. A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish. Neuron 2018; 98:817-831.e6. [PMID: 29731253 PMCID: PMC5985529 DOI: 10.1016/j.neuron.2018.04.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/01/2018] [Accepted: 04/10/2018] [Indexed: 11/20/2022]
Abstract
Thermosensation provides crucial information, but how temperature representation is transformed from sensation to behavior is poorly understood. Here, we report a preparation that allows control of heat delivery to zebrafish larvae while monitoring motor output and imaging whole-brain calcium signals, thereby uncovering algorithmic and computational rules that couple dynamics of heat modulation, neural activity and swimming behavior. This approach identifies a critical step in the transformation of temperature representation between the sensory trigeminal ganglia and the hindbrain: A simple sustained trigeminal stimulus representation is transformed into a representation of absolute temperature as well as temperature changes in the hindbrain that explains the observed motor output. An activity constrained dynamic circuit model captures the most prominent aspects of these sensori-motor transformations and predicts both behavior and neural activity in response to novel heat stimuli. These findings provide the first algorithmic description of heat processing from sensory input to behavioral output.
Collapse
Affiliation(s)
- Martin Haesemeyer
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Drew N Robson
- The Rowland Institute at Harvard, Cambridge, MA 02142, USA
| | - Jennifer M Li
- The Rowland Institute at Harvard, Cambridge, MA 02142, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
114
|
Kumar M, Kishore S, Nasenbeny J, McLean DL, Kozorovitskiy Y. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging. OPTICS EXPRESS 2018; 26:13027-13041. [PMID: 29801336 PMCID: PMC6005676 DOI: 10.1364/oe.26.013027] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi, /sōpī/) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi's flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.
Collapse
|
115
|
Marquart GD, Tabor KM, Horstick EJ, Brown M, Geoca AK, Polys NF, Nogare DD, Burgess HA. High-precision registration between zebrafish brain atlases using symmetric diffeomorphic normalization. Gigascience 2018; 6:1-15. [PMID: 28873968 PMCID: PMC5597853 DOI: 10.1093/gigascience/gix056] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022] Open
Abstract
Atlases provide a framework for spatially mapping information from diverse sources into a common reference space. Specifically, brain atlases allow annotation of gene expression, cell morphology, connectivity, and activity. In larval zebrafish, advances in genetics, imaging, and computational methods now allow the collection of such information brain-wide. However, due to technical considerations, disparate datasets may use different references and may not be aligned to the same coordinate space. Two recent larval zebrafish atlases exemplify this problem: Z-Brain, containing gene expression, neural activity, and neuroanatomical segmentations, was acquired using immunohistochemical stains, while the Zebrafish Brain Browser (ZBB) was constructed from live scans of fluorescent reporters in transgenic larvae. Although different references were used, the atlases included several common transgenic patterns that provide potential “bridges” for transforming each into the other's coordinate space. We tested multiple bridging channels and registration algorithms and found that the symmetric diffeomorphic normalization algorithm improved live brain registration precision while better preserving cell morphology than B-spline-based registrations. Symmetric diffeomorphic normalization also corrected for tissue distortion introduced during fixation. Multi-reference channel optimization provided a transformation that enabled Z-Brain and ZBB to be co-aligned with precision of approximately a single cell diameter and minimal perturbation of cell and tissue morphology. Finally, we developed software to visualize brain regions in 3 dimensions, including a virtual reality neuroanatomy explorer. This study demonstrates the feasibility of integrating whole brain datasets, despite disparate reference templates and acquisition protocols, when sufficient information is present for bridging. Increased accuracy and interoperability of zebrafish digital brain atlases will facilitate neurobiological studies.
Collapse
Affiliation(s)
- Gregory D Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6B, Room: 3B-308, 6 Center Dr., Bethesda, MD 20892-0002.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742
| | - Kathryn M Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6B, Room: 3B-308, 6 Center Dr., Bethesda, MD 20892-0002
| | - Eric J Horstick
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6B, Room: 3B-308, 6 Center Dr., Bethesda, MD 20892-0002
| | - Mary Brown
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6B, Room: 3B-308, 6 Center Dr., Bethesda, MD 20892-0002
| | - Alexandra K Geoca
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6B, Room: 3B-308, 6 Center Dr., Bethesda, MD 20892-0002
| | - Nicholas F Polys
- Advanced Research Computing, Department of Computer Science, Virginia Polytechnic Institute and State University, 3050 Torgersen Hall, Blacksburg, VA 24061-0531
| | - Damian Dalle Nogare
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6B, Room: 3B-308, 6 Center Dr., Bethesda, MD 20892-0002
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6B, Room: 3B-308, 6 Center Dr., Bethesda, MD 20892-0002
| |
Collapse
|
116
|
Carney TJ, Mosimann C. Switch and Trace: Recombinase Genetics in Zebrafish. Trends Genet 2018; 34:362-378. [PMID: 29429760 DOI: 10.1016/j.tig.2018.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Transgenic approaches are instrumental for labeling and manipulating cells and cellular machineries in vivo. Transgenes have traditionally been static entities that remained unaltered following genome integration, limiting their versatility. The development of DNA recombinase-based methods to modify, excise, or rearrange transgene cassettes has introduced versatile control of transgene activity and function. In particular, recombinase-controlled transgenes enable regulation of exogenous gene expression, conditional mutagenesis, and genetic lineage tracing. In zebrafish, transgenesis-based recombinase genetics using Cre/lox, Flp/FRT, and ΦC31 are increasingly applied to study development and homeostasis, and to generate disease models. Intersected with the versatile imaging capacity of the zebrafish model and recent breakthroughs in genome editing, we review and discuss past, current, and potential future approaches and resources for recombinase-based techniques in zebrafish.
Collapse
Affiliation(s)
- Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore.
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
117
|
Shams S, Rihel J, Ortiz JG, Gerlai R. The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium. Neurosci Biobehav Rev 2018; 85:176-190. [DOI: 10.1016/j.neubiorev.2017.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/28/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
|
118
|
Jeong I, Kim E, Kim S, Kim HK, Lee DW, Seong JY, Park HC. mRNA expression and metabolic regulation of npy and agrp1/2 in the zebrafish brain. Neurosci Lett 2018; 668:73-79. [PMID: 29329911 DOI: 10.1016/j.neulet.2018.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/23/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) is an evolutionarily conserved neuropeptide implicated in feeding regulation in vertebrates. In mammals, NPY neurons coexpress Agouti-related protein (AgRP) in the arcuate nucleus of the hypothalamus, and NPY/AgRP neurons activate orexigenic signaling to increase food intake. Zebrafish express npy and two agrp genes, agrp1 and agrp2, in the brain. Similar to mammals, NPY and AgRP1 act as orexigenic factors in zebrafish, but the exact distribution of NPY and AgRP neurons in the zebrafish brain and the regulation of these genes by metabolic states remain unclear. In this study, we analyzed the tissue distribution of npy, agrp1, and agrp2 mRNA in the brain of larval and adult zebrafish. We detected the expression of agrp1, but not npy, in the hypothalamus of larval zebrafish. In the adult zebrafish brain, npy mRNA expression was detected in the dorsal area of the periventricular and lateral hypothalamus, but fasting induced upregulation of npy only in the lateral hypothalamus, indicating that NPY neurons in this area are implicated in feeding regulation. However, consistent with the findings in larval zebrafish, NPY neurons in the hypothalamus did not coexpress AgRP1. In contrast, fasting resulted in a dramatic increase in AgRP1 neurons in the ventral periventricular hypothalamus, which do not coexpress NPY. In addition, we found for the first time that npy- and agrp1-expressing neurons function as GABAergic inhibitory neurons in zebrafish, as they do in mammals. Taken together, our results show that the zebrafish NPY/AgRP system is involved in appetite regulation. In addition, our data suggest that although npy and agrp1 were initially expressed in distinct neurons, evolution has resulted in their coexpression in mammalian hypothalamic neurons.
Collapse
Affiliation(s)
- Inyoung Jeong
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Eunmi Kim
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Hwan-Ki Kim
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Dong-Won Lee
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, Korea University, Seoul, 136-705, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea.
| |
Collapse
|
119
|
Taniguchi A, Kimura Y, Mori I, Nonaka S, Higashijima S. Axially-confined in vivo single-cell labeling by primed conversion using blue and red lasers with conventional confocal microscopes. Dev Growth Differ 2017; 59:741-748. [PMID: 29238969 PMCID: PMC11520947 DOI: 10.1111/dgd.12412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins have been found to undergo efficient photoconversion by a new method termed primed conversion that uses dual wave-length illumination with blue and red/near-infrared light. By modifying a confocal laser-scanning microscope (CLSM) such that two laser beams only meet at the focal plane, confined photoconversion at the axial dimension has been achieved. The necessity of this custom modification to the CLSM, however, has precluded the wide-spread use of this method. Here, we investigated whether spatially-restricted primed conversion could be achieved with CLSM without any hardware modification. We found that the primed conversion of Dendra2 using a conventional CLSM with two visible lasers (473 nm and 635 nm) and a high NA objective lens (NA, 1.30) resulted in dramatic restriction of photoconversion volume: half-width half-maximum for the axial dimension was below 5 μm, which is comparable to the outcome of the original method that used the microscope modification. As a proof of this method's effectiveness, we used this technique in living zebrafish embryos and succeeded in revealing the complex anatomy of individual neurons packed between neighboring cells. Because unmodified CLSMs are widely available, this method can be widely applicable for labeling cells with single-cell resolution.
Collapse
Affiliation(s)
- Atsushi Taniguchi
- National Institutes of Natural SciencesNational Institute for Basic BiologyOkazaki444‐8585Japan
| | - Yukiko Kimura
- National Institutes of Natural SciencesOkazaki Institute for Integrative BioscienceNational Institute for Basic BiologyOkazaki444‐8787Japan
| | - Ikue Mori
- Neuroscience Institute of the Graduate School of ScienceNagoya UniversityNagoya464‐8602Japan
| | - Shigenori Nonaka
- National Institutes of Natural SciencesNational Institute for Basic BiologyOkazaki444‐8585Japan
| | - Shin‐ichi Higashijima
- National Institutes of Natural SciencesOkazaki Institute for Integrative BioscienceNational Institute for Basic BiologyOkazaki444‐8787Japan
| |
Collapse
|
120
|
Cheng RK, Krishnan S, Lin Q, Kibat C, Jesuthasan S. Characterization of a thalamic nucleus mediating habenula responses to changes in ambient illumination. BMC Biol 2017; 15:104. [PMID: 29100543 PMCID: PMC5670518 DOI: 10.1186/s12915-017-0431-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neural activity in the vertebrate habenula is affected by ambient illumination. The nucleus that links photoreceptor activity with the habenula is not well characterized. Here, we describe the location, inputs and potential function of this nucleus in larval zebrafish. RESULTS High-speed calcium imaging shows that light ON and OFF both evoke a rapid response in the dorsal left neuropil of the habenula, indicating preferential targeting of this neuropil by afferents conveying information about ambient illumination. Injection of a lipophilic dye into this neuropil led to bilateral labeling of a nucleus in the anterior thalamus that responds to light ON and OFF, and that receives innervation from the retina and pineal organ. Lesioning the neuropil of this thalamic nucleus reduced the habenula response to light ON and OFF. Optogenetic stimulation of the thalamus with channelrhodopsin-2 caused depolarization in the habenula, while manipulation with anion channelrhodopsins inhibited habenula response to light and disrupted climbing and diving evoked by illumination change. CONCLUSIONS A nucleus in the anterior thalamus of larval zebrafish innervates the dorsal left habenula. This nucleus receives input from the retina and pineal, responds to increase and decrease in ambient illumination, enables habenula responses to change in irradiance, and may function in light-evoked vertical migration.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Seetha Krishnan
- NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, National University of Singapore, Singapore, 117456, Singapore
| | - Qian Lin
- NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, National University of Singapore, Singapore, 117456, Singapore
| | - Caroline Kibat
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore.
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore.
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
121
|
Yan Q, Zhai L, Zhang B, Dallman JE. Spatial patterning of excitatory and inhibitory neuropil territories during spinal circuit development. J Comp Neurol 2017; 525:1649-1667. [PMID: 27997694 DOI: 10.1002/cne.24152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/13/2016] [Accepted: 11/14/2016] [Indexed: 01/04/2023]
Abstract
To generate rhythmic motor behaviors, both single neurons and neural circuits require a balance between excitatory inputs that trigger action potentials and inhibitory inputs that promote a stable resting potential (E/I balance). Previous studies have focused on individual neurons and have shown that, over a short spatial scale, excitatory and inhibitory (E/I) synapses tend to form structured territories with inhibitory inputs enriched on cell bodies and proximal dendrites and excitatory inputs on distal dendrites. However, systems-level E/I patterns, at spatial scales larger than single neurons, are largely uncharted. We used immunostaining for PSD-95 and gephyrin postsynaptic scaffolding proteins as proxies for excitatory and inhibitory synapses, respectively, to quantify the numbers and map the distributions of E/I synapses in zebrafish spinal cord at both an embryonic stage and a larval stage. At the embryonic stage, we found that PSD-95 puncta outnumber gephyrin puncta, with the number of gephyrin puncta increasing to match that of PSD-95 puncta at the larval stage. At both stages, PSD-95 puncta are enriched in the most lateral neuropil corresponding to distal dendrites while gephyrin puncta are enriched on neuronal somata and in the medial neuropil. Significantly, similar to synaptic puncta, neuronal processes also exhibit medial-lateral territories at both developmental stages with enrichment of glutamatergic (excitatory) processes laterally and glycinergic (inhibitory) processes medially. This establishment of neuropil excitatory-inhibitory structure largely precedes dendritic arborization of primary motor neurons, suggesting that the structured neuropil could provide a framework for the development of E/I balance at the cellular level. J. Comp. Neurol. 525:1649-1667, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qing Yan
- Department of Biology, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, Florida
| | - Lu Zhai
- Department of Biology, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, Florida
| | - Bo Zhang
- Department of Biology, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, Florida
| | - Julia E Dallman
- Department of Biology, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, Florida
| |
Collapse
|
122
|
Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters. Proc Natl Acad Sci U S A 2017; 114:9146-9151. [PMID: 28784804 DOI: 10.1073/pnas.1704457114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ParaHox genes (Gsx, Pdx, and Cdx) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and β-clusters) bearing five ParaHox genes (Gsxα, Pdxα, Cdxα, Gsxβ, and Cdxβ). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxβ in the β-cluster is inverted. Interestingly, Gsxβ is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.
Collapse
|
123
|
Förster D, Arnold-Ammer I, Laurell E, Barker AJ, Fernandes AM, Finger-Baier K, Filosa A, Helmbrecht TO, Kölsch Y, Kühn E, Robles E, Slanchev K, Thiele TR, Baier H, Kubo F. Genetic targeting and anatomical registration of neuronal populations in the zebrafish brain with a new set of BAC transgenic tools. Sci Rep 2017; 7:5230. [PMID: 28701772 PMCID: PMC5507991 DOI: 10.1038/s41598-017-04657-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/19/2017] [Indexed: 11/20/2022] Open
Abstract
Genetic access to small, reproducible sets of neurons is key to an understanding of the functional wiring of the brain. Here we report the generation of a new Gal4- and Cre-driver resource for zebrafish neurobiology. Candidate genes, including cell type-specific transcription factors, neurotransmitter-synthesizing enzymes and neuropeptides, were selected according to their expression patterns in small and unique subsets of neurons from diverse brain regions. BAC recombineering, followed by Tol2 transgenesis, was used to generate driver lines that label neuronal populations in patterns that, to a large but variable extent, recapitulate the endogenous gene expression. We used image registration to characterize, compare, and digitally superimpose the labeling patterns from our newly generated transgenic lines. This analysis revealed highly restricted and mutually exclusive tissue distributions, with striking resolution of layered brain regions such as the tectum or the rhombencephalon. We further show that a combination of Gal4 and Cre transgenes allows intersectional expression of a fluorescent reporter in regions where the expression of the two drivers overlaps. Taken together, our study offers new tools for functional studies of specific neural circuits in zebrafish.
Collapse
Affiliation(s)
- Dominique Förster
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Irene Arnold-Ammer
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Eva Laurell
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Alison J Barker
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany.,Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - António M Fernandes
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Karin Finger-Baier
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Alessandro Filosa
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany.,Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thomas O Helmbrecht
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Yvonne Kölsch
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Enrico Kühn
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Estuardo Robles
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany.,Department of Biological Sciences, Purdue University, West Lafayette, USA
| | - Krasimir Slanchev
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Tod R Thiele
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Fumi Kubo
- Max Planck Institute of Neurobiology, Department Genes - Circuits - Behavior, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
124
|
Boulanger-Weill J, Candat V, Jouary A, Romano SA, Pérez-Schuster V, Sumbre G. Functional Interactions between Newborn and Mature Neurons Leading to Integration into Established Neuronal Circuits. Curr Biol 2017; 27:1707-1720.e5. [PMID: 28578928 PMCID: PMC5483231 DOI: 10.1016/j.cub.2017.05.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/03/2017] [Accepted: 05/09/2017] [Indexed: 02/02/2023]
Abstract
From development up to adulthood, the vertebrate brain is continuously supplied with newborn neurons that integrate into established mature circuits. However, how this process is coordinated during development remains unclear. Using two-photon imaging, GCaMP5 transgenic zebrafish larvae, and sparse electroporation in the larva's optic tectum, we monitored spontaneous and induced activity of large neuronal populations containing newborn and functionally mature neurons. We observed that the maturation of newborn neurons is a 4-day process. Initially, newborn neurons showed undeveloped dendritic arbors, no neurotransmitter identity, and were unresponsive to visual stimulation, although they displayed spontaneous calcium transients. Later on, newborn-labeled neurons began to respond to visual stimuli but in a very variable manner. At the end of the maturation period, newborn-labeled neurons exhibited visual tuning curves (spatial receptive fields and direction selectivity) and spontaneous correlated activity with neighboring functionally mature neurons. At this developmental stage, newborn-labeled neurons presented complex dendritic arbors and neurotransmitter identity (excitatory or inhibitory). Removal of retinal inputs significantly perturbed the integration of newborn neurons into the functionally mature tectal network. Our results provide a comprehensive description of the maturation of newborn neurons during development and shed light on potential mechanisms underlying their integration into a functionally mature neuronal circuit.
Collapse
Affiliation(s)
- Jonathan Boulanger-Weill
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Virginie Candat
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Adrien Jouary
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Sebastián A Romano
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, 1428 Buenos Aires, Argentina
| | - Verónica Pérez-Schuster
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Laboratorio de Neurobiología de la Memoria, Departamento Fisiología, Biología Molecular y Celular, FCEyN, UBA and IFIBYNE-CONICET, Ciudad Universitaria, 1428 Buenos Aires, Argentina; Departamento de Física, FCEyN, UBA and IFIBA-CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Germán Sumbre
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France.
| |
Collapse
|
125
|
Moreno RL, Josey M, Ribera AB. Zebrafish In Situ Spinal Cord Preparation for Electrophysiological Recordings from Spinal Sensory and Motor Neurons. J Vis Exp 2017. [PMID: 28448016 DOI: 10.3791/55507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zebrafish, first introduced as a developmental model, have gained popularity in many other fields. The ease of rearing large numbers of rapidly developing organisms, combined with the embryonic optical clarity, served as initial compelling attributes of this model. Over the past two decades, the success of this model has been further propelled by its amenability to large-scale mutagenesis screens and by the ease of transgenesis. More recently, gene-editing approaches have extended the power of the model. For neurodevelopmental studies, the zebrafish embryo and larva provide a model to which multiple methods can be applied. Here, we focus on methods that allow the study of an essential property of neurons, electrical excitability. Our preparation for the electrophysiological study of zebrafish spinal neurons involves the use of veterinarian suture glue to secure the preparation to a recording chamber. Alternative methods for recording from zebrafish embryos and larvae involve the attachment of the preparation to the chamber using a fine tungsten pin1,2,3,4,5. A tungsten pin is most often used to mount the preparation in a lateral orientation, although it has been used to mount larvae dorsal-side up4. The suture glue has been used to mount embryos and larvae in both orientations. Using the glue, a minimal dissection can be performed, allowing access to spinal neurons without the use of an enzymatic treatment, thereby avoiding any resultant damage. However, for larvae, it is necessary to apply a brief enzyme treatment to remove the muscle tissue surrounding the spinal cord. The methods described here have been used to study the intrinsic electrical properties of motor neurons, interneurons, and sensory neurons at several developmental stages6,7,8,9.
Collapse
Affiliation(s)
- Rosa L Moreno
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus (UCAMC);
| | - Megan Josey
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus (UCAMC)
| | - Angeles B Ribera
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus (UCAMC); Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus (UCAMC)
| |
Collapse
|
126
|
Juárez-Morales JL, Martinez-De Luna RI, Zuber ME, Roberts A, Lewis KE. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons. Dev Neurobiol 2017; 77:1007-1020. [PMID: 28188691 DOI: 10.1002/dneu.22490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017.
Collapse
Affiliation(s)
- José L Juárez-Morales
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - Reyna I Martinez-De Luna
- The Center for Vision Research, Department of Ophthalmology, SUNY Upstate Medical University, Institute for Human Performance, 505 Irving Ave. Syracuse, New York, 13210
| | - Michael E Zuber
- The Center for Vision Research, Department of Ophthalmology, SUNY Upstate Medical University, Institute for Human Performance, 505 Irving Ave. Syracuse, New York, 13210
| | - Alan Roberts
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244
| |
Collapse
|
127
|
Kawashima T, Zwart MF, Yang CT, Mensh BD, Ahrens MB. The Serotonergic System Tracks the Outcomes of Actions to Mediate Short-Term Motor Learning. Cell 2016; 167:933-946.e20. [PMID: 27881303 DOI: 10.1016/j.cell.2016.09.055] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/21/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
To execute accurate movements, animals must continuously adapt their behavior to changes in their bodies and environments. Animals can learn changes in the relationship between their locomotor commands and the resulting distance moved, then adjust command strength to achieve a desired travel distance. It is largely unknown which circuits implement this form of motor learning, or how. Using whole-brain neuronal imaging and circuit manipulations in larval zebrafish, we discovered that the serotonergic dorsal raphe nucleus (DRN) mediates short-term locomotor learning. Serotonergic DRN neurons respond phasically to swim-induced visual motion, but little to motion that is not self-generated. During prolonged exposure to a given motosensory gain, persistent DRN activity emerges that stores the learned efficacy of motor commands and adapts future locomotor drive for tens of seconds. The DRN's ability to track the effectiveness of motor intent may constitute a computational building block for the broader functions of the serotonergic system. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Takashi Kawashima
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Maarten F Zwart
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Chao-Tsung Yang
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
128
|
Björnfors ER, El Manira A. Functional diversity of excitatory commissural interneurons in adult zebrafish. eLife 2016; 5. [PMID: 27559611 PMCID: PMC5039025 DOI: 10.7554/elife.18579] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/24/2016] [Indexed: 01/18/2023] Open
Abstract
Flexibility in the bilateral coordination of muscle contraction underpins variable locomotor movements or gaits. While the locomotor rhythm is generated by ipsilateral excitatory interneurons, less is known about the commissural excitatory interneurons. Here we examined how the activity of the V0v interneurons – an important commissural neuronal class – varies with the locomotor speed in adult zebrafish. Although V0v interneurons are molecularly homogenous, their activity pattern during locomotion is not uniform. They consist of two distinct types dependent on whether they display rhythmicity or not during locomotion. The rhythmic V0v interneurons were further subdivided into three sub-classes engaged sequentially, first at slow then intermediate and finally fast locomotor speeds. Their order of recruitment is defined by scaling their synaptic current with their input resistance. Thus we uncover, in an adult vertebrate, a novel organizational principle for a key class of commissural interneurons and their recruitment pattern as a function of locomotor speed. DOI:http://dx.doi.org/10.7554/eLife.18579.001 During movements such as swimming and walking, the left and right sides of the body are kept coordinated by specific neurons in the spinal cord. Some of these neurons – called V0 neurons – can either excite or inhibit neurons on the opposite side of the spinal cord. In mice, the inhibitory V0 neurons are responsible for left-right coordination when the mice are moving slowly, while the excitatory neurons operate when the animals are moving more quickly. However, in zebrafish larvae a group of excitatory V0 neurons are only active when the larvae are swimming slowly. Björnfors and El Manira investigated whether excitatory V0 neurons in adult zebrafish behave like those in the larvae, or whether they act more like those in mice. The experiments show that the excitatory V0 neurons in adult zebrafish can be separated into three groups that are activated either at slow, intermediate or fast speeds of movement. The activation of the excitatory V0 neurons depends on the properties of the neurons themselves in combination with signals they receive from other neurons in the spinal cord. Although the excitatory V0 neurons could be active across all speeds, Björnfors and El Manira found that more neurons were active at faster speeds. This suggests that, in the adult zebrafish, there are both similarities and differences in how the V0 neurons are organised compared to larval zebrafish and mice. The next step following on from this work would be to find out the specific roles of excitatory and inhibitory V0 neurons during movement. DOI:http://dx.doi.org/10.7554/eLife.18579.002
Collapse
|
129
|
Optimization of a Neurotoxin to Investigate the Contribution of Excitatory Interneurons to Speed Modulation In Vivo. Curr Biol 2016; 26:2319-28. [PMID: 27524486 DOI: 10.1016/j.cub.2016.06.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/24/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023]
Abstract
Precise control of speed during locomotion is essential for adaptation of behavior in different environmental contexts [1-4]. A central question in locomotion lies in understanding which neural populations set locomotor frequency during slow and fast regimes. Tackling this question in vivo requires additional non-invasive tools to silence large populations of neurons during active locomotion. Here we generated a stable transgenic line encoding a zebrafish-optimized botulinum neurotoxin light chain fused to GFP (BoTxBLC-GFP) to silence synaptic output over large populations of motor neurons or interneurons while monitoring active locomotion. By combining calcium imaging, electrophysiology, optogenetics, and behavior, we show that expression of BoTxBLC-GFP abolished synaptic release while maintaining characterized activity patterns and without triggering off-target effects. As chx10(+) V2a interneurons (V2as) are well characterized as the main population driving the frequency-dependent recruitment of motor neurons during fictive locomotion [5-14], we validated our silencing method by testing the effect of silencing chx10(+) V2as during active and fictive locomotion. Silencing of V2as selectively abolished fast locomotor frequencies during escape responses. In addition, spontaneous slow locomotion occurred less often and at frequencies lower than in controls. Overall, this silencing approach confirms that V2a excitation is critical for the production of fast stimulus-evoked swimming and also reveals a role for V2a excitation in the production of slower spontaneous locomotor behavior. Altogether, these results establish BoTxBLC-GFP as an ideal tool for in vivo silencing for probing the development and function of neural circuits from the synaptic to the behavioral level.
Collapse
|
130
|
Eisenhoffer GT, Slattum G, Ruiz OE, Otsuna H, Bryan CD, Lopez J, Wagner DS, Bonkowsky JL, Chien CB, Dorsky RI, Rosenblatt J. A toolbox to study epidermal cell types in zebrafish. J Cell Sci 2016; 130:269-277. [PMID: 27149923 DOI: 10.1242/jcs.184341] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/20/2016] [Indexed: 12/19/2022] Open
Abstract
Epithelia provide a crucial protective barrier for our organs and are also the sites where the majority of carcinomas form. Most studies on epithelia and carcinomas use cell culture or organisms where high-resolution live imaging is inaccessible without invasive techniques. Here, we introduce the developing zebrafish epidermis as an excellent in vivo model system for studying a living epithelium. We developed tools to fluorescently tag specific epithelial cell types and express genes in a mosaic fashion using five Gal4 lines identified from an enhancer trap screen. When crossed to a variety of UAS effector lines, we can now track, ablate or monitor single cells at sub-cellular resolution. Using photo-cleavable morpholino oligonucleotides that target gal4, we can also express genes in a mosaic fashion at specific times during development. Together, this system provides an excellent in vivo alternative to tissue culture cells, without the intrinsic concerns of culture conditions or transformation, and enables the investigation of distinct cell types within living epithelial tissues.
Collapse
Affiliation(s)
- George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Unit 1010, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | - Gloria Slattum
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Oscar E Ruiz
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Unit 1010, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | - Hideo Otsuna
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 320 BPRB, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Chase D Bryan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Justin Lopez
- Department of BioSciences, Rice University, W100 George R. Brown Hall, Houston, TX 77251-1892, USA
| | - Daniel S Wagner
- Department of BioSciences, Rice University, W100 George R. Brown Hall, Houston, TX 77251-1892, USA
| | - Joshua L Bonkowsky
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 320 BPRB, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 320 BPRB, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 320 BPRB, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Jody Rosenblatt
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| |
Collapse
|
131
|
Dunn TW, Mu Y, Narayan S, Randlett O, Naumann EA, Yang CT, Schier AF, Freeman J, Engert F, Ahrens MB. Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. eLife 2016; 5:e12741. [PMID: 27003593 PMCID: PMC4841782 DOI: 10.7554/elife.12741] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
In the absence of salient sensory cues to guide behavior, animals must still execute sequences of motor actions in order to forage and explore. How such successive motor actions are coordinated to form global locomotion trajectories is unknown. We mapped the structure of larval zebrafish swim trajectories in homogeneous environments and found that trajectories were characterized by alternating sequences of repeated turns to the left and to the right. Using whole-brain light-sheet imaging, we identified activity relating to the behavior in specific neural populations that we termed the anterior rhombencephalic turning region (ARTR). ARTR perturbations biased swim direction and reduced the dependence of turn direction on turn history, indicating that the ARTR is part of a network generating the temporal correlations in turn direction. We also find suggestive evidence for ARTR mutual inhibition and ARTR projections to premotor neurons. Finally, simulations suggest the observed turn sequences may underlie efficient exploration of local environments.
Collapse
Affiliation(s)
- Timothy W Dunn
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, United States.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yu Mu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Eva A Naumann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Chao-Tsung Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Jeremy Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
132
|
Juárez-Morales JL, Schulte CJ, Pezoa SA, Vallejo GK, Hilinski WC, England SJ, de Jager S, Lewis KE. Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism. Neural Dev 2016; 11:5. [PMID: 26896392 PMCID: PMC4759709 DOI: 10.1186/s13064-016-0059-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/04/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND For neurons to function correctly in neuronal circuitry they must utilize appropriate neurotransmitters. However, even though neurotransmitter specificity is one of the most important and defining properties of a neuron we still do not fully understand how neurotransmitter fates are specified during development. Most neuronal properties are determined by the transcription factors that neurons express as they start to differentiate. While we know a few transcription factors that specify the neurotransmitter fates of particular neurons, there are still many spinal neurons for which the transcription factors specifying this critical phenotype are unknown. Strikingly, all of the transcription factors that have been identified so far as specifying inhibitory fates in the spinal cord act through Pax2. Even Tlx1 and Tlx3, which specify the excitatory fates of dI3 and dI5 spinal neurons work at least in part by down-regulating Pax2. METHODS In this paper we use single and double mutant zebrafish embryos to identify the spinal cord functions of Evx1 and Evx2. RESULTS We demonstrate that Evx1 and Evx2 are expressed by spinal cord V0v cells and we show that these cells develop into excitatory (glutamatergic) Commissural Ascending (CoSA) interneurons. In the absence of both Evx1 and Evx2, V0v cells still form and develop a CoSA morphology. However, they lose their excitatory fate and instead express markers of a glycinergic fate. Interestingly, they do not express Pax2, suggesting that they are acquiring their inhibitory fate through a novel Pax2-independent mechanism. CONCLUSIONS Evx1 and Evx2 are required, partially redundantly, for spinal cord V0v cells to become excitatory (glutamatergic) interneurons. These results significantly increase our understanding of the mechanisms of neuronal specification and the genetic networks involved in these processes.
Collapse
Affiliation(s)
- José L Juárez-Morales
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Claus J Schulte
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Sofia A Pezoa
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Grace K Vallejo
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - William C Hilinski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY, 13210, USA
| | - Samantha J England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Sarah de Jager
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
133
|
Motor neurons control locomotor circuit function retrogradely via gap junctions. Nature 2016; 529:399-402. [DOI: 10.1038/nature16497] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/27/2015] [Indexed: 12/24/2022]
|
134
|
Mayrhofer M, Mione M. The Toolbox for Conditional Zebrafish Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:21-59. [PMID: 27165348 DOI: 10.1007/978-3-319-30654-4_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
135
|
Marquart GD, Tabor KM, Brown M, Strykowski JL, Varshney GK, LaFave MC, Mueller T, Burgess SM, Higashijima SI, Burgess HA. A 3D Searchable Database of Transgenic Zebrafish Gal4 and Cre Lines for Functional Neuroanatomy Studies. Front Neural Circuits 2015; 9:78. [PMID: 26635538 PMCID: PMC4656851 DOI: 10.3389/fncir.2015.00078] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023] Open
Abstract
Transgenic methods enable the selective manipulation of neurons for functional mapping of neuronal circuits. Using confocal microscopy, we have imaged the cellular-level expression of 109 transgenic lines in live 6 day post fertilization larvae, including 80 Gal4 enhancer trap lines, 9 Cre enhancer trap lines and 20 transgenic lines that express fluorescent proteins in defined gene-specific patterns. Image stacks were acquired at single micron resolution, together with a broadly expressed neural marker, which we used to align enhancer trap reporter patterns into a common 3-dimensional reference space. To facilitate use of this resource, we have written software that enables searching for transgenic lines that label cells within a selectable 3-dimensional region of interest (ROI) or neuroanatomical area. This software also enables the intersectional expression of transgenes to be predicted, a feature which we validated by detecting cells with co-expression of Cre and Gal4. Many of the imaged enhancer trap lines show intrinsic brain-specific expression. However, to increase the utility of lines that also drive expression in non-neuronal tissue we have designed a novel UAS reporter, that suppresses expression in heart, muscle, and skin through the incorporation of microRNA binding sites in a synthetic 3′ untranslated region. Finally, we mapped the site of transgene integration, thus providing molecular identification of the expression pattern for most lines. Cumulatively, this library of enhancer trap lines provides genetic access to 70% of the larval brain and is therefore a powerful and broadly accessible tool for the dissection of neural circuits in larval zebrafish.
Collapse
Affiliation(s)
- Gregory D Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Neuroscience and Cognitive Science Program, University of Maryland College Park, MD, USA
| | - Kathryn M Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Mary Brown
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Jennifer L Strykowski
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA
| | - Thomas Mueller
- Division of Biology, Kansas State University Manhattan, KS, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences Aichi, Japan
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Neuroscience and Cognitive Science Program, University of Maryland College Park, MD, USA
| |
Collapse
|
136
|
Randlett O, Wee CL, Naumann EA, Nnaemeka O, Schoppik D, Fitzgerald JE, Portugues R, Lacoste AM, Riegler C, Engert F, Schier AF. Whole-brain activity mapping onto a zebrafish brain atlas. Nat Methods 2015; 12:1039-46. [PMID: 26778924 PMCID: PMC4710481 DOI: 10.1038/nmeth.3581] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/03/2015] [Indexed: 02/08/2023]
Abstract
In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.
Collapse
Affiliation(s)
- Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Caroline L. Wee
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Eva A. Naumann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Onyeka Nnaemeka
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - David Schoppik
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Ruben Portugues
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alix M.B. Lacoste
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Clemens Riegler
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- FAS Center for Systems Biology, Harvard University, MA 02138, USA
| |
Collapse
|
137
|
Barker AJ, Baier H. Sensorimotor Decision Making in the Zebrafish Tectum. Curr Biol 2015; 25:2804-2814. [DOI: 10.1016/j.cub.2015.09.055] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/01/2015] [Accepted: 09/18/2015] [Indexed: 02/04/2023]
|
138
|
Nathan FM, Ogawa S, Parhar IS. Neuronal connectivity between habenular glutamate-kisspeptin1 co-expressing neurons and the raphe 5-HT system. J Neurochem 2015; 135:814-29. [PMID: 26250886 PMCID: PMC5049628 DOI: 10.1111/jnc.13273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 01/24/2023]
Abstract
The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5‐HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5‐HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss‐R1); using this primary antibody we found intense immunohistochemical labeling in the ventro‐anterior corner of the MR (vaMR) but not in 5‐HT neurons, suggesting the potential involvement of interneurons in 5‐HT modulation by Kiss1. Double‐fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5‐HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5‐HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons.
The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5‐HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5‐HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5‐HT system by the habenula‐raphe pathway.
Collapse
Affiliation(s)
- Fatima M Nathan
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
139
|
Abstract
The accumulation and storage of information over time, temporal integration, is key to numerous behaviors. Many oculomotor tasks depend on integration of eye-velocity signals to eye-position commands, a transformation achieved by a hindbrain cell group termed the velocity-to-position neural integrator (VPNI). Although the VPNI's coding properties have been well characterized, its mechanism of function remains poorly understood because few links exist between neuronal activity, structure, and genotypic identity. To fill this gap, we used calcium imaging and single-cell electroporation during oculomotor behaviors to map VPNI neural activity in zebrafish onto a hindbrain scaffold consisting of alternating excitatory and inhibitory parasagittal stripes. Three distinct classes of VPNI cells were identified. One glutamatergic class was medially located along a stripe associated with the alx transcription factor; these cells had ipsilateral projections terminating near abducens motoneurons and collateralized extensively within the ipsilateral VPNI in a manner consistent with integration through recurrent excitation. A second glutamatergic class was more laterally located along a stripe associated with transcription factor dbx1b; these glutamatergic cells had contralateral projections collateralizing near abducens motoneurons, consistent with a role in disconjugate eye movements. A third class, immunohistochemically suggested to be GABAergic, was located primarily in the dbx1b stripe and also had contralateral projections terminating near abducens motoneurons; these cells collateralized extensively in the dendritic field of contralateral VPNI neurons, consistent with a role in coordinating activity between functionally opposing populations. This mapping between VPNI activity, structure, and genotype may provide a blueprint for understanding the mechanisms governing temporal integration.
Collapse
|
140
|
Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 2015; 20:974-85. [PMID: 25224259 PMCID: PMC4362800 DOI: 10.1038/mp.2014.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
In schizophrenia, cognitive overload is thought to reflect an inability to suppress non-salient information, a process which is studied using prepulse inhibition (PPI) of the startle response. PPI is reduced in schizophrenia and routinely tested in animal models and preclinical trials of antipsychotic drugs. However, the underlying neuronal circuitry is not well understood. We used a novel genetic screen in larval zebrafish to reveal the molecular identity of neurons that are required for PPI in fish and mice. Ablation or optogenetic silencing of neurons with developmental expression of the transcription factor genomic screen homeobox 1 (gsx1) produced profound defects in PPI in zebrafish, and PPI was similarly impaired in Gsx1 knockout mice. Gsx1-expressing neurons reside in the dorsal brainstem and form synapses closely apposed to neurons that initiate the startle response. Surprisingly, brainstem Gsx1 neurons are primarily glutamatergic despite their role in a functionally inhibitory pathway. As Gsx1 has an important role in regulating interneuron development in the forebrain, these findings reveal a molecular link between control of interneuron specification and circuits that gate sensory information across brain regions.
Collapse
Affiliation(s)
- Sadie A. Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nicole Carrier
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Grace H. Li
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A. Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA,6 Center Drive, Building 6B, Rm 3B308, Bethesda, MD 20892, , tel: 301-402-6018; fax: 301-496-0243
| |
Collapse
|
141
|
Otsuna H, Hutcheson DA, Duncan RN, McPherson AD, Scoresby AN, Gaynes BF, Tong Z, Fujimoto E, Kwan KM, Chien CB, Dorsky RI. High-resolution analysis of central nervous system expression patterns in zebrafish Gal4 enhancer-trap lines. Dev Dyn 2015; 244:785-96. [PMID: 25694140 PMCID: PMC4449297 DOI: 10.1002/dvdy.24260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/26/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The application of the Gal4/UAS system to enhancer and gene trapping screens in zebrafish has greatly increased the ability to label and manipulate cell populations in multiple tissues, including the central nervous system (CNS). However the ability to select existing lines for specific applications has been limited by the lack of detailed expression analysis. RESULTS We describe a Gal4 enhancer trap screen in which we used advanced image analysis, including three-dimensional confocal reconstructions and documentation of expression patterns at multiple developmental time points. In all, we have created and annotated 98 lines exhibiting a wide range of expression patterns, most of which include CNS expression. Expression was also observed in nonneural tissues such as muscle, skin epithelium, vasculature, and neural crest derivatives. All lines and data are publicly available from the Zebrafish International Research Center (ZIRC) from the Zebrafish Model Organism Database (ZFIN). CONCLUSIONS Our detailed documentation of expression patterns, combined with the public availability of images and fish lines, provides a valuable resource for researchers wishing to study CNS development and function in zebrafish. Our data also suggest that many existing enhancer trap lines may have previously uncharacterized expression in multiple tissues and cell types.
Collapse
Affiliation(s)
- Hideo Otsuna
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - David A Hutcheson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Robert N Duncan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Adam D McPherson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Aaron N Scoresby
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Brooke F Gaynes
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Zongzong Tong
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Esther Fujimoto
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
142
|
Sato T, Sato F, Kamezaki A, Sakaguchi K, Tanigome R, Kawakami K, Sehara-Fujisawa A. Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain. PLoS One 2015; 10:e0127360. [PMID: 26001123 PMCID: PMC4441363 DOI: 10.1371/journal.pone.0127360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/14/2015] [Indexed: 02/03/2023] Open
Abstract
Post-mitotic neurons are generated from neural progenitor cells (NPCs) at the expense of their proliferation. Molecular and cellular mechanisms that regulate neuron production temporally and spatially should impact on the size and shape of the brain. While transcription factors such as neurogenin1 (neurog1) and neurod govern progression of neurogenesis as cell-intrinsic mechanisms, recent studies show regulatory roles of several cell-extrinsic or intercellular signaling molecules including Notch, FGF and Wnt in production of neurons/neural progenitor cells from neural stem cells/radial glial cells (NSCs/RGCs) in the ventricular zone (VZ). However, it remains elusive how production of post-mitotic neurons from neural progenitor cells is regulated in the sub-ventricular zone (SVZ). Here we show that newborn neurons accumulate in the basal-to-apical direction in the optic tectum (OT) of zebrafish embryos. While neural progenitor cells are amplified by mitoses in the apical ventricular zone, neurons are exclusively produced through mitoses of neural progenitor cells in the sub-basal zone, later in the sub-ventricular zone, and accumulate apically onto older neurons. This neurogenesis depends on Neuregulin 1 type II (NRG1-II)-ErbB signaling. Treatment with an ErbB inhibitor, AG1478 impairs mitoses in the sub-ventricular zone of the optic tectum. Removal of AG1478 resumes sub-ventricular mitoses without precedent mitoses in the apical ventricular zone prior to basal-to-apical accumulation of neurons, suggesting critical roles of ErbB signaling in mitoses for post-mitotic neuron production. Knockdown of NRG1-II impairs both mitoses in the sub-basal/sub-ventricular zone and the ventricular zone. Injection of soluble human NRG1 into the developing brain ameliorates neurogenesis of NRG1-II-knockdown embryos, suggesting a conserved role of NRG1 as a cell-extrinsic signal. From these results, we propose that NRG1-ErbB signaling stimulates cell divisions generating neurons from neural progenitor cells in the developing vertebrate brain.
Collapse
Affiliation(s)
- Tomomi Sato
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (TS); (ASF)
| | - Fuminori Sato
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Aosa Kamezaki
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuya Sakaguchi
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ryoma Tanigome
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima-shi, Shizuoka, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (TS); (ASF)
| |
Collapse
|
143
|
Wyart C, Knafo S. Sensorimotor Integration in the Spinal Cord, from Behaviors to Circuits: New Tools to Close the Loop? BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING 2015. [DOI: 10.1007/978-3-319-12913-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
144
|
Feierstein CE, Portugues R, Orger MB. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish. Neuroscience 2014; 296:26-38. [PMID: 25433239 DOI: 10.1016/j.neuroscience.2014.11.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 11/17/2022]
Abstract
In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal.
Collapse
Affiliation(s)
- C E Feierstein
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisbon 1400-038, Portugal
| | - R Portugues
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152, Germany
| | - M B Orger
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisbon 1400-038, Portugal.
| |
Collapse
|
145
|
Kimura Y, Hisano Y, Kawahara A, Higashijima SI. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 2014; 4:6545. [PMID: 25293390 PMCID: PMC4189020 DOI: 10.1038/srep06545] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023] Open
Abstract
The type II bacterial CRISPR/Cas9 system is rapidly becoming popular for genome-engineering due to its simplicity, flexibility, and high efficiency. Recently, targeted knock-in of a long DNA fragment via homology-independent DNA repair has been achieved in zebrafish using CRISPR/Cas9 system. This raised the possibility that knock-in transgenic zebrafish could be efficiently generated using CRISPR/Cas9. However, how widely this method can be applied for the targeting integration of foreign genes into endogenous genomic loci is unclear. Here, we report efficient generation of knock-in transgenic zebrafish that have cell-type specific Gal4 or reporter gene expression. A donor plasmid containing a heat-shock promoter was co-injected with a short guide RNA (sgRNA) targeted for genome digestion, a sgRNA targeted for donor plasmid digestion, and Cas9 mRNA. We have succeeded in establishing stable knock-in transgenic fish with several different constructs for 4 genetic loci at a frequency being exceeding 25%. Due to its simplicity, design flexibility, and high efficiency, we propose that CRISPR/Cas9-mediated knock-in will become a standard method for the generation transgenic zebrafish.
Collapse
Affiliation(s)
- Yukiko Kimura
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yu Hisano
- Laboratory for Cardiovascular Molecular Dynamics, RIKEN Quantitative Biology Center, Furuedai 6-2-3, Suita, Osaka, 565-0874, Japan
| | - Atsuo Kawahara
- Laboratory for Cardiovascular Molecular Dynamics, RIKEN Quantitative Biology Center, Furuedai 6-2-3, Suita, Osaka, 565-0874, Japan
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Simigatou 1110, Chuo, Yamanashi, 409-3862, Japan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
146
|
Moreno RL, Ribera AB. Spinal neurons require Islet1 for subtype-specific differentiation of electrical excitability. Neural Dev 2014; 9:19. [PMID: 25149090 PMCID: PMC4153448 DOI: 10.1186/1749-8104-9-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the spinal cord, stereotypic patterns of transcription factor expression uniquely identify neuronal subtypes. These transcription factors function combinatorially to regulate gene expression. Consequently, a single transcription factor may regulate divergent development programs by participation in different combinatorial codes. One such factor, the LIM-homeodomain transcription factor Islet1, is expressed in the vertebrate spinal cord. In mouse, chick and zebrafish, motor and sensory neurons require Islet1 for specification of biochemical and morphological signatures. Little is known, however, about the role that Islet1 might play for development of electrical membrane properties in vertebrates. Here we test for a role of Islet1 in differentiation of excitable membrane properties of zebrafish spinal neurons. RESULTS We focus our studies on the role of Islet1 in two populations of early born zebrafish spinal neurons: ventral caudal primary motor neurons (CaPs) and dorsal sensory Rohon-Beard cells (RBs). We take advantage of transgenic lines that express green fluorescent protein (GFP) to identify CaPs, RBs and several classes of interneurons for electrophysiological study. Upon knock-down of Islet1, cells occupying CaP-like and RB-like positions continue to express GFP. With respect to voltage-dependent currents, CaP-like and RB-like neurons have novel repertoires that distinguish them from control CaPs and RBs, and, in some respects, resemble those of neighboring interneurons. The action potentials fired by CaP-like and RB-like neurons also have significantly different properties compared to those elicited from control CaPs and RBs. CONCLUSIONS Overall, our findings suggest that, for both ventral motor and dorsal sensory neurons, Islet1 directs differentiation programs that ultimately specify electrical membrane as well as morphological properties that act together to sculpt neuron identity.
Collapse
Affiliation(s)
- Rosa L Moreno
- Department of Physiology, University of Colorado Anschutz Medical Campus, RC-1 North, 7403A, Mailstop 8307, 12800 E 19th Ave,, 80045 Aurora, CO, USA.
| | | |
Collapse
|
147
|
Wouterlood FG, Bloem B, Mansvelder HD, Luchicchi A, Deisseroth K. A fourth generation of neuroanatomical tracing techniques: exploiting the offspring of genetic engineering. J Neurosci Methods 2014; 235:331-48. [PMID: 25107853 DOI: 10.1016/j.jneumeth.2014.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022]
Abstract
The first three generations of neuroanatomical tract-tracing methods include, respectively, techniques exploiting degeneration, retrograde cellular transport and anterograde cellular transport. This paper reviews the most recent development in third-generation tracing, i.e., neurochemical fingerprinting based on BDA tracing, and continues with an emerging tracing technique called here 'selective fluorescent protein expression' that in our view belongs to an entirely new 'fourth-generation' class. Tracing techniques in this class lean on gene expression technology designed to 'label' projections exclusively originating from neurons expressing a very specific molecular phenotype. Genetically engineered mice that express cre-recombinase in a neurochemically specific neuronal population receive into a brain locus of interest an injection of an adeno-associated virus (AAV) carrying a double-floxed promoter-eYFP DNA sequence. After transfection this sequence is expressed only in neurons metabolizing recombinase protein. These particular neurons promptly start manufacturing the fluorescent protein which then accumulates and labels to full detail all the neuronal processes, including fibers and terminal arborizations. All other neurons remain optically 'dark'. The AAV is not replicated by the neurons, prohibiting intracerebral spread of 'infection'. The essence is that the fiber projections of discrete subpopulations of neurochemically specific neurons can be traced in full detail. One condition is that the transgenic mouse strain is recombinase-perfect. We illustrate selective fluorescent protein expression in parvalbumin-cre (PV-cre) mice and choline acetyltransferase-cre (ChAT-cre) mice. In addition we compare this novel tracing technique with observations in brains of native PV mice and ChAT-GFP mice. We include a note on tracing techniques using viruses.
Collapse
Affiliation(s)
- Floris G Wouterlood
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Vrije University Medical Center, Amsterdam, The Netherlands.
| | - Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Karl Deisseroth
- Bioengineering Department, James E. Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
148
|
Freeman J, Vladimirov N, Kawashima T, Mu Y, Sofroniew NJ, Bennett DV, Rosen J, Yang CT, Looger LL, Ahrens MB. Mapping brain activity at scale with cluster computing. Nat Methods 2014; 11:941-50. [DOI: 10.1038/nmeth.3041] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
|
149
|
Bruni G, Lakhani P, Kokel D. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front Pharmacol 2014; 5:153. [PMID: 25104936 PMCID: PMC4109429 DOI: 10.3389/fphar.2014.00153] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/11/2014] [Indexed: 01/11/2023] Open
Abstract
Most neuroactive drugs were discovered through unexpected behavioral observations. Systematic behavioral screening is inefficient in most model organisms. But, automated technologies are enabling a new phase of discovery-based research in central nervous system (CNS) pharmacology. Researchers are using large-scale behavior-based chemical screens in zebrafish to discover compounds with new structures, targets, and functions. These compounds are powerful tools for understanding CNS signaling pathways. Substantial differences between human and zebrafish biology will make it difficult to translate these discoveries to clinical medicine. However, given the molecular genetic similarities between humans and zebrafish, it is likely that some of these compounds will have translational utility. We predict that the greatest new successes in CNS drug discovery will leverage many model systems, including in vitro assays, cells, rodents, and zebrafish.
Collapse
Affiliation(s)
- Giancarlo Bruni
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Parth Lakhani
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - David Kokel
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
150
|
El Manira A. Dynamics and plasticity of spinal locomotor circuits. Curr Opin Neurobiol 2014; 29:133-41. [PMID: 25062504 DOI: 10.1016/j.conb.2014.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 12/22/2022]
Abstract
Spinal circuits generate coordinated locomotor movements. These hardwired circuits are supplemented with neuromodulation that provide the necessary flexibility for animals to move smoothly through their environment. This review will highlight some recent insights gained in understanding the functional dynamics and plasticity of the locomotor circuits. First the mechanisms governing the modulation of the speed of locomotion will be discussed. Second, advantages of the modular organization of the locomotor networks with multiple circuits engaged in a task-dependent manner will be examined. Finally, the neuromodulation and the resulting plasticity of the locomotor circuits will be summarized with an emphasis on endocannabinoids and nitric oxide. The intention is to extract general principles of organization and discuss some onto-genetic and phylogenetic divergences.
Collapse
|