101
|
Tsang KY, Tsang SW, Chan D, Cheah KSE. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. ACTA ACUST UNITED AC 2015; 102:52-73. [PMID: 24677723 DOI: 10.1002/bdrc.21060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/23/2014] [Indexed: 12/29/2022]
Abstract
The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
102
|
Function and developmental origin of a mesocortical inhibitory circuit. Nat Neurosci 2015; 18:872-82. [DOI: 10.1038/nn.4020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
|
103
|
Gregory LC, Gaston-Massuet C, Andoniadou CL, Carreno G, Webb EA, Kelberman D, McCabe MJ, Panagiotakopoulos L, Saldanha JW, Spoudeas HA, Torpiano J, Rossi M, Raine J, Canham N, Martinez-Barbera JP, Dattani MT. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism. Clin Endocrinol (Oxf) 2015; 82:728-38. [PMID: 25327282 DOI: 10.1111/cen.12637] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/22/2014] [Accepted: 10/13/2014] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The Gli family of zinc finger (GLI) transcription factors mediates the sonic hedgehog signalling pathway (HH) essential for CNS, early pituitary and ventral forebrain development in mice. Human mutations in this pathway have been described in patients with holoprosencephaly (HPE), isolated congenital hypopituitarism (CH) and cranial/midline facial abnormalities. Mutations in Sonic hedgehog (SHH) have been associated with HPE but not CH, despite murine studies indicating involvement in pituitary development. OBJECTIVES/METHODS We aimed to establish the role of the HH pathway in the aetiology of hypothalamo-pituitary disorders by screening our cohort of patients with midline defects and/or CH for mutations in SHH, GLI2, Shh brain enhancer 2 (SBE2) and growth-arrest specific 1 (GAS1). RESULTS Two variants and a deletion of GLI2 were identified in three patients. A novel variant at a highly conserved residue in the zinc finger DNA-binding domain, c.1552G > A [pE518K], was identified in a patient with growth hormone deficiency and low normal free T4. A nonsynonymous variant, c.2159G > A [p.R720H], was identified in a patient with a short neck, cleft palate and hypogonadotrophic hypogonadism. A 26·6 Mb deletion, 2q12·3-q21·3, encompassing GLI2 and 77 other genes, was identified in a patient with short stature and impaired growth. Human embryonic expression studies and molecular characterisation of the GLI2 mutant p.E518K support the potential pathogenicity of GLI2 mutations. No mutations were identified in GAS1 or SBE2. A novel SHH variant, c.1295T>A [p.I432N], was identified in two siblings with variable midline defects but normal pituitary function. CONCLUSIONS Our data suggest that mutations in SHH, GAS1 and SBE2 are not associated with hypopituitarism, although GLI2 is an important candidate for CH.
Collapse
Affiliation(s)
- L C Gregory
- Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Furmanski AL, Barbarulo A, Solanki A, Lau CI, Sahni H, Saldana JI, D'Acquisto F, Crompton T. The transcriptional activator Gli2 modulates T-cell receptor signalling through attenuation of AP-1 and NFκB activity. J Cell Sci 2015; 128:2085-95. [PMID: 25908851 PMCID: PMC4450292 DOI: 10.1242/jcs.165803] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/30/2015] [Indexed: 01/20/2023] Open
Abstract
Different tissues contain diverse and dynamic cellular niches, providing distinct signals to tissue-resident or migratory infiltrating immune cells. Hedgehog (Hh) proteins are secreted inter-cellular signalling molecules, which are essential during development and are important in cancer, post-natal tissue homeostasis and repair. Hh signalling mediated by the Hh-responsive transcription factor Gli2 also has multiple roles in T-lymphocyte development and differentiation. Here, we investigate the function of Gli2 in T-cell signalling and activation. Gene transcription driven by the Gli2 transcriptional activator isoform (Gli2A) attenuated T-cell activation and proliferation following T-cell receptor (TCR) stimulation. Expression of Gli2A in T-cells altered gene expression profiles, impaired the TCR-induced Ca2+ flux and nuclear expression of NFAT2, suppressed upregulation of molecules essential for activation, and attenuated signalling pathways upstream of the AP-1 and NFκB complexes, leading to reduced activation of these important transcription factors. Inhibition of physiological Hh-dependent transcription increased NFκB activity upon TCR ligation. These data are important for understanding the molecular mechanisms of immunomodulation, particularly in tissues where Hh proteins or other Gli-activating ligands such as TGFβ are upregulated, including during inflammation, tissue damage and repair, and in tumour microenvironments.
Collapse
Affiliation(s)
- Anna L Furmanski
- Immunobiology Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alessandro Barbarulo
- Immunobiology Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Anisha Solanki
- Immunobiology Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ching-In Lau
- Immunobiology Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Hemant Sahni
- Immunobiology Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jose Ignacio Saldana
- Immunobiology Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Fulvio D'Acquisto
- Centre for Biochemical Pharmacology, William Harvey Research Institute, QMUL, London EC1M 6BQ, UK
| | - Tessa Crompton
- Immunobiology Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
105
|
Minhas R, Pauls S, Ali S, Doglio L, Khan MR, Elgar G, Abbasi AA. Cis-regulatory control of human GLI2 expression in the developing neural tube and limb bud. Dev Dyn 2015; 244:681-92. [DOI: 10.1002/dvdy.24266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rashid Minhas
- National Center for Bioinformatics; Program of Comparative and Evolutionary Genomics; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Stefan Pauls
- Division of Systems Biology; MRC National Institute for Medical Research; The Ridgeway, Mill Hill London NW7 1AA United Kingdom
| | - Shahid Ali
- National Center for Bioinformatics; Program of Comparative and Evolutionary Genomics; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Laura Doglio
- Division of Systems Biology; MRC National Institute for Medical Research; The Ridgeway, Mill Hill London NW7 1AA United Kingdom
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology; National Agricultural Research Center; Park Road Islamabad Pakistan
| | - Greg Elgar
- Division of Systems Biology; MRC National Institute for Medical Research; The Ridgeway, Mill Hill London NW7 1AA United Kingdom
| | - Amir Ali Abbasi
- National Center for Bioinformatics; Program of Comparative and Evolutionary Genomics; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| |
Collapse
|
106
|
Paulo SS, Fernandes-Rosa FL, Turatti W, Coeli-Lacchini FB, Martinelli CE, Nakiri GS, Moreira AC, Santos AC, de Castro M, Antonini SR. Sonic Hedgehog mutations are not a common cause of congenital hypopituitarism in the absence of complex midline cerebral defects. Clin Endocrinol (Oxf) 2015; 82:562-9. [PMID: 25056824 DOI: 10.1111/cen.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 01/29/2023]
Abstract
CONTEXT AND OBJECTIVE Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. PATIENTS AND METHODS Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). RESULTS Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. CONCLUSION SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship.
Collapse
Affiliation(s)
- Sabrina Soares Paulo
- Department of Pediatrics, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A 2015; 112:4678-83. [PMID: 25825734 DOI: 10.1073/pnas.1502301112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hedgehog (Hh) signaling is essential for osteoblast differentiation in the endochondral skeleton during embryogenesis. However, the molecular mechanism underlying the osteoblastogenic role of Hh is not completely understood. Here, we report that Hh markedly induces the expression of insulin-like growth factor 2 (Igf2) that activates the mTORC2-Akt signaling cascade during osteoblast differentiation. Igf2-Akt signaling, in turn, stabilizes full-length Gli2 through Serine 230, thus enhancing the output of transcriptional activation by Hh. Importantly, genetic deletion of the Igf signaling receptor Igf1r specifically in Hh-responding cells diminishes bone formation in the mouse embryo. Thus, Hh engages Igf signaling in a positive feedback mechanism to activate the osteogenic program.
Collapse
|
108
|
Yoshida M, Hata K, Takashima R, Ono K, Nakamura E, Takahata Y, Murakami T, Iseki S, Takano-Yamamoto T, Nishimura R, Yoneda T. The transcription factor Foxc1 is necessary for Ihh–Gli2-regulated endochondral ossification. Nat Commun 2015; 6:6653. [DOI: 10.1038/ncomms7653] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
|
109
|
Haddad-Tóvolli R, Paul FA, Zhang Y, Zhou X, Theil T, Puelles L, Blaess S, Alvarez-Bolado G. Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus. Front Neuroanat 2015; 9:34. [PMID: 25859185 PMCID: PMC4373379 DOI: 10.3389/fnana.2015.00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/09/2015] [Indexed: 11/13/2022] Open
Abstract
Secreted protein Sonic hedgehog (Shh) ventralizes the neural tube by modulating the crucial balance between activating and repressing functions (GliA, GliR) of transcription factors Gli2 and Gli3. This balance—the Shh-Gli code—is species- and context-dependent and has been elucidated for the mouse spinal cord. The hypothalamus, a forebrain region regulating vital functions like homeostasis and hormone secretion, shows dynamic and intricate Shh expression as well as complex regional differentiation. Here we asked if particular combinations of Gli2 and Gli3 and of GliA and GliR functions contribute to the variety of hypothalamic regions, i.e., we wanted to approach the question of a possible hypothalamic version of the Shh-Gli code. Based on mouse mutant analysis, we show that: (1) hypothalamic regional heterogeneity is based in part on differentially stringent requirements for Gli2 or Gli3; (2) another source of diversity are differential requirements for Shh of neural vs. non-neural origin; (3) the medial progenitor domain known to depend on Gli2 for its development generates several essential hypothalamic nuclei plus the pituitary and median eminence; (4) the suppression of Gli3R by neural and non-neural Shh is essential for hypothalamic specification. Finally, we have mapped our results on a recent model which considers the hypothalamus as a transverse region with alar and basal portions. Our data confirm the model and are explained by it.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Department of Medical Cell Biology and Neuroanatomy, University of Heidelberg Heidelberg, Germany
| | - Fabian A Paul
- Laboratory of Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn Bonn, Germany
| | - Yuanfeng Zhang
- Department of Medical Cell Biology and Neuroanatomy, University of Heidelberg Heidelberg, Germany
| | - Xunlei Zhou
- Department of Medical Cell Biology and Neuroanatomy, University of Heidelberg Heidelberg, Germany
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh Edinburgh, UK
| | - Luis Puelles
- Department of Morphology, Instituto Murciano de Investigación Biosanitaria, School of Medicine, University of Murcia Murcia, Spain ; Facultad de Medicina, University of Murcia Murcia, Spain
| | - Sandra Blaess
- Laboratory of Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn Bonn, Germany
| | - Gonzalo Alvarez-Bolado
- Department of Medical Cell Biology and Neuroanatomy, University of Heidelberg Heidelberg, Germany
| |
Collapse
|
110
|
Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate. PLoS One 2015; 10:e0120517. [PMID: 25793997 PMCID: PMC4368540 DOI: 10.1371/journal.pone.0120517] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway mediates multiple spatiotemporally-specific aspects of brain and face development. Genetic and chemical disruptions of the pathway are known to result in an array of structural malformations, including holoprosencephaly (HPE), clefts of the lip with or without cleft palate (CL/P), and clefts of the secondary palate only (CPO). Here, we examined patterns of dysmorphology caused by acute, stage-specific Hh signaling inhibition. Timed-pregnant wildtype C57BL/6J mice were administered a single dose of the potent pathway antagonist vismodegib at discrete time points between gestational day (GD) 7.0 and 10.0, an interval approximately corresponding to the 15th to 24th days of human gestation. The resultant pattern of facial and brain dysmorphology was dependent upon stage of exposure. Insult between GD7.0 and GD8.25 resulted in HPE, with peak incidence following exposure at GD7.5. Unilateral clefts of the lip extending into the primary palate were also observed, with peak incidence following exposure at GD8.875. Insult between GD9.0 and GD10.0 resulted in CPO and forelimb abnormalities. We have previously demonstrated that Hh antagonist-induced cleft lip results from deficiency of the medial nasal process and show here that CPO is associated with reduced growth of the maxillary-derived palatal shelves. By defining the critical periods for the induction of HPE, CL/P, and CPO with fine temporal resolution, these results provide a mechanism by which Hh pathway disruption can result in “non-syndromic” orofacial clefting, or HPE with or without co-occurring clefts. This study also establishes a novel and tractable mouse model of human craniofacial malformations using a single dose of a commercially available and pathway-specific drug.
Collapse
|
111
|
Billmyre KK, Klingensmith J. Sonic hedgehog from pharyngeal arch 1 epithelium is necessary for early mandibular arch cell survival and later cartilage condensation differentiation. Dev Dyn 2015; 244:564-76. [PMID: 25626636 DOI: 10.1002/dvdy.24256] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Morphogenesis of vertebrate craniofacial skeletal elements is dependent on a key cell population, the cranial neural crest cells (NCC). Cranial NCC are formed dorsally in the cranial neural tube and migrate ventrally to form craniofacial skeletal elements as well as other tissues. Multiple extracellular signaling pathways regulate the migration, survival, proliferation, and differentiation of NCC. RESULTS In this study, we demonstrate that Shh expression in the oral ectoderm and pharyngeal endoderm is essential for mandibular development. We show that a loss of Shh in these domains results in increased mesenchymal cell death in pharyngeal arch 1 (PA1) after NCC migration. This increased cell death can be rescued in utero by pharmacological inhibition of p53. Furthermore, we show that epithelial SHH is necessary for the early differentiation of mandibular cartilage condensations and, therefore, the subsequent development of Meckel's cartilage, around which the dentary bone forms. Nonetheless, a rescue of the cell death phenotype does not rescue the defect in cartilage condensation formation. CONCLUSIONS Our results show that SHH produced by the PA1 epithelium is necessary for the survival of post-migratory NCC, and suggests a key role in the subsequent differentiation of chondrocytes to form Meckel's cartilage.
Collapse
|
112
|
Makino S, Zhulyn O, Mo R, Puviindran V, Zhang X, Murata T, Fukumura R, Ishitsuka Y, Kotaki H, Matsumaru D, Ishii S, Hui CC, Gondo Y. T396I mutation of mouse Sufu reduces the stability and activity of Gli3 repressor. PLoS One 2015; 10:e0119455. [PMID: 25760946 PMCID: PMC4356511 DOI: 10.1371/journal.pone.0119455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/22/2015] [Indexed: 01/20/2023] Open
Abstract
Hedgehog signaling is primarily transduced by two transcription factors: Gli2, which mainly acts as a full-length activator, and Gli3, which tends to be proteolytically processed from a full-length form (Gli3FL) to an N-terminal repressor (Gli3REP). Recent studies using a Sufu knockout mouse have indicated that Sufu is involved in regulating Gli2 and Gli3 activator and repressor activity at multiple steps of the signaling cascade; however, the mechanism of specific Gli2 and Gli3 regulation remains to be elucidated. In this study, we established an allelic series of ENU-induced mouse strains. Analysis of one of the missense alleles, SufuT396I, showed that Thr396 residue of Sufu played a key role in regulation of Gli3 activity. SufuT396I/T396I embryos exhibited severe polydactyly, which is indicative of compromised Gli3 activity. Concomitantly, significant quantitative reductions of unprocessed Gli3 (Gli3FL) and processed Gli3 (Gli3REP) were observed in vivo as well as in vitro. Genetic experiments showed that patterning defects in the limb buds of SufuT396I/T396I were rescued by a constitutive Gli3REP allele (Gli3∆699), strongly suggesting that SufuT396I reduced the truncated Gli3 repressor. In contrast, SufuT396I qualitatively exhibited no mutational effects on Gli2 regulation. Taken together, the results of this study show that the Thr396 residue of Sufu is specifically required for regulation of Gli3 but not Gli2. This implies a novel Sufu-mediated mechanism in which Gli2 activator and Gli3 repressor are differentially regulated.
Collapse
Affiliation(s)
- Shigeru Makino
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Olena Zhulyn
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rong Mo
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vijitha Puviindran
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaoyun Zhang
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Takuya Murata
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Ryutaro Fukumura
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yuichi Ishitsuka
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Hayato Kotaki
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Daisuke Matsumaru
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Ibaraki, Japan
| | - Chi-Chung Hui
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
113
|
Pan YB, Gong Y, Ruan HF, Pan LY, Wu XK, Tang C, Wang CJ, Zhu HB, Zhang ZM, Tang LF, Zou CC, Wang HB, Wu XM. Sonic hedgehog through Gli2 and Gli3 is required for the proper development of placental labyrinth. Cell Death Dis 2015; 6:e1653. [PMID: 25695606 PMCID: PMC4669788 DOI: 10.1038/cddis.2015.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/20/2023]
Abstract
Sonic hedgehog (Shh) functions as a conserved morphogen in the development of various organs in metazoans ranging from Drosophila to humans. Here, we have investigated the potential roles and underlying mechanisms of Shh signaling in murine placentation. Immunostaining revealed the abundant expression of the main components of Shh pathway in both the trophectoderm of blastocysts and developing placentas. Disruption of Shh led to impaired vascularogenesis of yolk sac, less branching and malformation of placental labyrinth, thereby leading to a robust decrease in capacity of transplacental passages. Moreover, placenta-specific gene incorporation by lentiviral transduction of mouse blastocysts and blastocyst transplantation robustly knocked down the expression of Gli3 and Gli2 in placenta but not in embryos. Finally, Gli3 knockdown in Shh−/− placentas partially rescued the defects of both yolk sac and placental labyrinth, and robustly restored the capacity of transplacental passages. Gli2 knockdown in Shh+/− placentas affected neither the capacity of tranplacental passages nor the vascularogenesis of yolk sac, however, it partially phenocopied the labyrinthine defects of Shh−/− placentas. Taken together, these results uncover that both Shh/Gli2 and Shh/Gli3 signals are required for proper development of murine placentas and are possibly essential for pregnant maintenance.
Collapse
Affiliation(s)
- Y B Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Y Gong
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - H F Ruan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - L Y Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - X K Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - C Tang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - C J Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H B Zhu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Z M Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - L F Tang
- Department of Internal Medicine, The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - C C Zou
- Department of Internal Medicine, The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H B Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X M Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
114
|
Zhulyn O, Hui CC. Sufu and Kif7 in limb patterning and development. Dev Dyn 2015; 244:468-78. [PMID: 25581370 DOI: 10.1002/dvdy.24249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The vertebrate digit pattern is defined by the morphogen Sonic hedgehog (Shh), which controls the activity of Gli transcription factors. Gli1, 2 and 3 are dynamically expressed during patterning. Downstream of Shh, their activity is regulated by Sufu and Kif7, core components of the Shh signaling cascade. The precise roles of these regulators during limb development have not been fully described. We analyze the role of Sufu and Kif7 in the limb and demonstrate that their loss has distinct and synergistic effects on Gli activity and digit pattern. RESULTS Using a series of mouse mutants, we show that Sufu and Kif7 are expressed throughout limb development and their deletion has distinct effects on Gli levels and limb formation. Concomitant deletion of Sufu and Kif7 results in constitutive pathway activity and severe limb truncation. This is consistent with the recently published two-population model, which suggests that precocious activation of Shh signaling inhibits organizing center formation and limb outgrowth. CONCLUSIONS Together, our findings demonstrate that perturbations of Sufu and Kif7 affect Gli activity and recapitulate the full spectrum of vertebrate limb defects, ranging from severe truncation to polydactyly.
Collapse
Affiliation(s)
- Olena Zhulyn
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
115
|
Biggs LC, Goudy SL, Dunnwald M. Palatogenesis and cutaneous repair: A two-headed coin. Dev Dyn 2014; 244:289-310. [PMID: 25370680 DOI: 10.1002/dvdy.24224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion. RESULTS These processes are similar to those occurring during embryogenesis and tissue morphogenesis. Palatogenesis, the formation of the palate from two independent palatal shelves growing towards each other and fusing, intuitively, shares many similarities with the closure of a cutaneous wound from the two migrating epithelial fronts. CONCLUSIONS In this review, we summarize the current information on cutaneous development, wound healing, palatogenesis and orofacial clefting and propose that orofacial clefting and wound healing are conserved processes that share common pathways and gene regulatory networks.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
116
|
Junker JP, Peterson KA, Nishi Y, Mao J, McMahon AP, van Oudenaarden A. A predictive model of bifunctional transcription factor signaling during embryonic tissue patterning. Dev Cell 2014; 31:448-60. [PMID: 25458012 DOI: 10.1016/j.devcel.2014.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/05/2014] [Accepted: 10/24/2014] [Indexed: 11/26/2022]
Abstract
Hedgehog signaling controls pattern formation in many vertebrate tissues. The downstream effectors of the pathway are the bifunctional Gli transcription factors, which, depending on hedgehog concentration, act as either transcriptional activators or repressors. Quantitatively understanding the interplay between Gli activator and repressor forms for patterning complex tissues is an open challenge. Here, we describe a reductionist mathematical model for how Gli activators and repressors are integrated in space and time to regulate transcriptional outputs of hedgehog signaling, using the pathway readouts Gli1 and Ptch1 as a model system. Spatially resolved measurements of absolute transcript numbers for these genes allow us to infer spatiotemporal variations of Gli activator and repressor levels. We validate our model by successfully predicting expression changes of Gli1 and Ptch1 in mutants at different developmental stages and in different tissues. Our results provide a starting point for understanding gene regulation by bifunctional transcription factors during mammalian development.
Collapse
Affiliation(s)
- Jan Philipp Junker
- Departments of Physics and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hubrecht Institute, KNAW, and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Kevin A Peterson
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Yuichi Nishi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Alexander van Oudenaarden
- Departments of Physics and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hubrecht Institute, KNAW, and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
117
|
Liu JT, Bain LJ. Arsenic inhibits hedgehog signaling during P19 cell differentiation. Toxicol Appl Pharmacol 2014; 281:243-53. [PMID: 25448440 DOI: 10.1016/j.taap.2014.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 11/30/2022]
Abstract
Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation.
Collapse
Affiliation(s)
- Jui Tung Liu
- Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Lisa J Bain
- Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
| |
Collapse
|
118
|
Zhou J, Wei X, Wei L. Indian Hedgehog, a critical modulator in osteoarthritis, could be a potential therapeutic target for attenuating cartilage degeneration disease. Connect Tissue Res 2014; 55:257-61. [PMID: 24844414 DOI: 10.3109/03008207.2014.925885] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Hedgehog (Hh) family of proteins consists of Indian hedgehog (Ihh), sonic hedgehog (Shh), and desert hedgehog (Dhh). These proteins serve as essential regulators in a variety of developmental events. Ihh is mainly produced and secreted by prehypertrophic chondrocytes and regulates chondrocyte hypertrophy and endochondral bone formation during growth plate development. Tissue-specific deletion of the Ihh gene (targeted by Col2a1-Cre) causes early lethality in mice. Transgenic mice with induced Ihh expression exhibit increased chondrocyte hypertrophy and cartilage damage resembling human osteoarthritis (OA). During OA development, chondrocytes recapitulate the differentiation process that happens during the fetal status and which does not occur to an appreciable degree in adult articular cartilage. Ihh expression is up-regulated in human OA cartilage, and this upregulation correlates with OA progression and changes in chondrocyte morphology. A genetic study in mice further showed that conditional deletion of Ihh in chondrocytes attenuates OA progression, suggesting the possibility that blocking Ihh signaling can be used as a therapeutic approach to prevent or delay cartilage degeneration. However, Ihh gene deletion is currently not a therapeutic option as it is lethal in animals. RNA interference (RNAi) provides a means to knockdown Ihh without the severe side effects caused by chemical inhibitors. The currently available delivery methods for RNAi are nanoparticles and liposomes. Both have problems that need to be addressed. In the future, it will be necessary to develop a safe and effective RNAi delivery system to target Ihh signaling for preventing and treating OA.
Collapse
Affiliation(s)
- Jingming Zhou
- Department of Orthopedics, Warren Alpert Medical School of Brown University , Providence, RI , USA , and
| | | | | |
Collapse
|
119
|
Amano K, Densmore M, Nishimura R, Lanske B. Indian hedgehog signaling regulates transcription and expression of collagen type X via Runx2/Smads interactions. J Biol Chem 2014; 289:24898-910. [PMID: 25028519 DOI: 10.1074/jbc.m114.570507] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Indian hedgehog (Ihh) is essential for chondrocyte differentiation and endochondral ossification and acts with parathyroid hormone-related peptide in a negative feedback loop to regulate early chondrocyte differentiation and entry to hypertrophic differentiation. Independent of this function, we and others recently reported independent Ihh functions to promote chondrocyte hypertrophy and matrix mineralization in vivo and in vitro. However, the molecular mechanisms for these actions and their functional significance are still unknown. We recently discovered that Ihh overexpression in chondrocytes stimulated the expression of late chondrocyte differentiation markers and induced matrix mineralization. Focusing on collagen type X (Col10α1) expression and transcription, we observed that hedgehog downstream transcription factors GLI-Krüppel family members (Gli) 1/2 increased COL10A1 promoter activity and identified a novel Gli1/2 response element in the 250-bp basic promoter. In addition, we found that Ihh induced Runx2 expression in chondrocytes without up-regulating other modulators of chondrocyte maturation such as Mef2c, Foxa2, and Foxa3. Runx2 promoted Col10α1 expression in cooperation with Ihh. Further analyses using promoter assays, immunofluorescence, and binding assays showed the interaction of Gli1/2 in a complex with Runx2/Smads induces chondrocyte differentiation. Finally, we could demonstrate that Ihh promotes in vitro matrix mineralization using similar molecular mechanisms. Our data provide an in vitro mechanism for Ihh signaling to positively regulate Col10α1 transcription. Thus, Ihh signaling could be an important player for not only early chondrocyte differentiation but maturation and calcification of chondrocytes.
Collapse
Affiliation(s)
- Katsuhiko Amano
- From the Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts 02115 and the Departments of Oral and Maxillofacial Surgery and
| | - Michael Densmore
- From the Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts 02115 and
| | - Riko Nishimura
- Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Beate Lanske
- From the Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts 02115 and
| |
Collapse
|
120
|
Kupfer P, Huber R, Weber M, Vlaic S, Häupl T, Koczan D, Guthke R, Kinne RW. Novel application of multi-stimuli network inference to synovial fibroblasts of rheumatoid arthritis patients. BMC Med Genomics 2014; 7:40. [PMID: 24989895 PMCID: PMC4099018 DOI: 10.1186/1755-8794-7-40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 06/25/2014] [Indexed: 11/19/2022] Open
Abstract
Background Network inference of gene expression data is an important challenge in systems biology. Novel algorithms may provide more detailed gene regulatory networks (GRN) for complex, chronic inflammatory diseases such as rheumatoid arthritis (RA), in which activated synovial fibroblasts (SFBs) play a major role. Since the detailed mechanisms underlying this activation are still unclear, simultaneous investigation of multi-stimuli activation of SFBs offers the possibility to elucidate the regulatory effects of multiple mediators and to gain new insights into disease pathogenesis. Methods A GRN was therefore inferred from RA-SFBs treated with 4 different stimuli (IL-1 β, TNF- α, TGF- β, and PDGF-D). Data from time series microarray experiments (0, 1, 2, 4, 12 h; Affymetrix HG-U133 Plus 2.0) were batch-corrected applying ‘ComBat’, analyzed for differentially expressed genes over time with ‘Limma’, and used for the inference of a robust GRN with NetGenerator V2.0, a heuristic ordinary differential equation-based method with soft integration of prior knowledge. Results Using all genes differentially expressed over time in RA-SFBs for any stimulus, and selecting the genes belonging to the most significant gene ontology (GO) term, i.e., ‘cartilage development’, a dynamic, robust, moderately complex multi-stimuli GRN was generated with 24 genes and 57 edges in total, 31 of which were gene-to-gene edges. Prior literature-based knowledge derived from Pathway Studio or manual searches was reflected in the final network by 25/57 confirmed edges (44%). The model contained known network motifs crucial for dynamic cellular behavior, e.g., cross-talk among pathways, positive feed-back loops, and positive feed-forward motifs (including suppression of the transcriptional repressor OSR2 by all 4 stimuli. Conclusion A multi-stimuli GRN highly concordant with literature data was successfully generated by network inference from the gene expression of stimulated RA-SFBs. The GRN showed high reliability, since 10 predicted edges were independently validated by literature findings post network inference. The selected GO term ‘cartilage development’ contained a number of differentiation markers, growth factors, and transcription factors with potential relevance for RA. Finally, the model provided new insight into the response of RA-SFBs to multiple stimuli implicated in the pathogenesis of RA, in particular to the ‘novel’ potent growth factor PDGF-D.
Collapse
Affiliation(s)
- Peter Kupfer
- Leibnitz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstr, 11a, 07745 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Liu Y, Wei Z, Huang Y, Bai C, Zan L, Li G. Cyclopamine did not affect mouse oocyte maturation in vitro but decreased early embryonic development. Anim Sci J 2014; 85:840-7. [PMID: 24889396 DOI: 10.1111/asj.12220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 01/30/2014] [Indexed: 12/31/2022]
Abstract
Hedgehog (Hh) pathway has been studied in various animal body life procedures and is suggested to be important for the development of multiple organs. The genes involved in the Hh signaling pathway were expressed in the ovary of mice, pigs and cattle. However, the function of Hh signaling pathway on oocyte maturation and early embryonic development is still controversial. We detected the effect of sonic hedgehog (Shh) and cyclopamine on the in vitro maturation of mouse oocytes and embryo development. The results showed that the presence of Shh or cyclopamine resulted in similar oocyte maturation to control groups. Shh did not improve early embryonic development. However, the supplement of cyclopamine depressed early embryo development. The mRNA of shh, ptch1, smo and gli1 were less detected in the denuded oocytes. The expression levels of ptch1 ascended from the uncleaved zygote to blastocyst stage. Smo or gli1 were expressed on a higher level at the two-cell or four-cell stage in early embryonic development separately. Therefore, Shh did not affect mouse oocyte maturation and early embryo development, but cyclopamine led to inhibited development of mouse early embryo. The effects of Hh signaling on the oocyte maturation and early embryo development might be species-specific.
Collapse
Affiliation(s)
- Yang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | | | | | | | | |
Collapse
|
122
|
Kietzman HW, Everson JL, Sulik KK, Lipinski RJ. The teratogenic effects of prenatal ethanol exposure are exacerbated by Sonic Hedgehog or GLI2 haploinsufficiency in the mouse. PLoS One 2014; 9:e89448. [PMID: 24586787 PMCID: PMC3929747 DOI: 10.1371/journal.pone.0089448] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/21/2014] [Indexed: 01/30/2023] Open
Abstract
Disruption of the Hedgehog signaling pathway has been implicated as an important molecular mechanism in the pathogenesis of fetal alcohol syndrome. In severe cases, the abnormalities of the face and brain that result from prenatal ethanol exposure fall within the spectrum of holoprosencephaly. Single allele mutations in the Hh pathway genes Sonic Hedgehog (SHH) and GLI2 cause holoprosencephaly with extremely variable phenotypic penetrance in humans. Here, we tested whether mutations in these genes alter the frequency or severity of ethanol-induced dysmorphology in a mouse model. Timed pregnancies were established by mating Shh+/− or Gli2+/− male mice backcrossed to C57BL/6J strain, with wildtype females. On gestational day 7, dams were treated with two ip doses of 2.9 g/kg ethanol (or vehicle alone), administered four hrs apart. Fetuses were then genotyped and imaged, and the severity of facial dysmorphology was assessed. Following ethanol exposure, mean dysmorphology scores were increased by 3.2- and 6.6-fold in Shh+/− and Gli2+/− groups, respectively, relative to their wildtype littermates. Importantly, a cohort of heterozygous fetuses exhibited phenotypes not typically produced in this model but associated with severe holoprosencephaly, including exencephaly, median cleft lip, otocephaly, and proboscis. As expected, a correlation between the severity of facial dysmorphology and medial forebrain deficiency was observed in affected animals. While Shh+/− and Gli2+/− mice have been described as phenotypically normal, these results illustrate a functional haploinsufficiency of both genes in combination with ethanol exposure. By demonstrating an interaction between specific genetic and environmental risk factors, this study provides important insights into the multifactorial etiology and complex pathogenesis of fetal alcohol syndrome and holoprosencephaly.
Collapse
Affiliation(s)
- Henry W Kietzman
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joshua L Everson
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kathleen K Sulik
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J Lipinski
- The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
123
|
Targeting stem cell behavior in desmoid tumors (aggressive fibromatosis) by inhibiting hedgehog signaling. Neoplasia 2014; 15:712-9. [PMID: 23814483 DOI: 10.1593/neo.13452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 12/28/2022] Open
Abstract
Desmoid tumor (also called aggressive fibromatosis) is a lesion of mesenchymal origin that can occur as a sporadic tumor or a manifestation of the preneoplastic syndrome, familial adenomatous polyposis caused by a mutation in adenomatous polyposis coli (APC). This tumor type is characterized by the stabilization of β-catenin and activation of Tcf-mediated transcription. Cell transplantation data suggest that desmoid tumors are derived from mesenchymal progenitor cells (MSCs). As such, modulating cell signaling pathways that regulate MSC differentiation or proliferation, such as hedgehog (Hh) signaling, could alter the tumor phenotype. Here, we found that Hh signaling is activated in human and murine desmoid tumors. Inhibiting Hh signaling in human cell cultures decreased cell proliferation and β-catenin protein levels. Apc(+)/Apc(1638N) mice, which develop desmoid tumors, develop smaller and fewer tumors when Hh signaling was inhibited either genetically (by crossing Apc(+)/Apc(1638N) mice with mice lacking one copy of a Hh-activated transcription factor, Gli2 (+/-) mice) or using a pharmacologic inhibitor. Both in mice and in human tumor cell cultures, β-catenin and Hh-mediated signaling positively regulate each other's activity. These data show that targeting a pathway that regulates MSC differentiation influences desmoid tumor behavior, providing functional evidence supporting the notion that these tumors are derived from mesenchymal progenitors. It also suggests Hh blockade as a therapeutic approach for this tumor type.
Collapse
|
124
|
Santos N, Reiter JF. A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity. J Cell Sci 2014; 127:1500-10. [PMID: 24463817 DOI: 10.1242/jcs.139253] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signaling through vertebrate Hedgehog (Hh) proteins depends on the primary cilium. In response to Hh signals, the transcriptional activator of the pathway, Gli2, accumulates at the ciliary tip, raising the possibility that ciliary localization is important for Gli2 activation. To test this hypothesis, we used the Floxin system to create knock-in Gli2 alleles in embryonic stem cells (ESCs) to allow methodical testing of which domains and residues are essential for the ciliary localization of Gli2. The Gli2 zinc fingers, transcriptional activation domain, repressor domain, phosphorylation cluster and a Sufu binding motif were each dispensable for ciliary localization. Mutating residues that are required for Gli2 sumoylation and nuclear trafficking also did not abrogate ciliary localization. By contrast, several other domains restricted Gli2 nuclear localization, and a central region, distinct from previously characterized domains, was required for ciliary localization. In addition to an inability to localize to cilia, Gli2 lacking this central domain was unable to activate target genes. Thus, our systematic analysis in ESCs reveals that distinct regions of Gli2 regulate its nuclear and ciliary localization. The identification of a domain essential for both ciliary localization and transcriptional activity suggests that ciliary localization of Gli2 is required for its activation.
Collapse
Affiliation(s)
- Nicole Santos
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | | |
Collapse
|
125
|
Piirsoo A, Kasak L, Kauts ML, Loog M, Tints K, Uusen P, Neuman T, Piirsoo M. Protein kinase inhibitor SU6668 attenuates positive regulation of Gli proteins in cancer and multipotent progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:703-14. [PMID: 24418624 PMCID: PMC3946003 DOI: 10.1016/j.bbamcr.2014.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 11/16/2022]
Abstract
Observations that Glioma-associated transcription factors Gli1 and Gli2 (Gli1/2), executers of the Sonic Hedgehog (Shh) signaling pathway and targets of the Transforming Growth Factor β (TGF-β) signaling axis, are involved in numerous developmental and pathological processes unveil them as attractive pharmaceutical targets. Unc-51-like serine/threonine kinase Ulk3 has been suggested to play kinase activity dependent and independent roles in the control of Gli proteins in the context of the Shh signaling pathway. This study aimed at investigating whether the mechanism of generation of Gli1/2 transcriptional activators has similarities regardless of the signaling cascade evoking their activation. We also elucidate further the role of Ulk3 kinase in regulation of Gli1/2 proteins and examine SU6668 as an inhibitor of Ulk3 catalytic activity and a compound targeting Gli1/2 proteins in different cell-based experimental models. Here we demonstrate that Ulk3 is required not only for maintenance of basal levels of Gli1/2 proteins but also for TGF-β or Shh dependent activation of endogenous Gli1/2 proteins in human adipose tissue derived multipotent stromal cells (ASCs) and mouse immortalized progenitor cells, respectively. We show that cultured ASCs possess the functional Shh signaling axis and differentiate towards osteoblasts in response to Shh. Also, we demonstrate that similarly to Ulk3 RNAi, SU6668 prevents de novo expression of Gli1/2 proteins and antagonizes the Gli-dependent activation of the gene expression programs induced by either Shh or TGF-β. Our data suggest SU6668 as an efficient inhibitor of Ulk3 kinase allowing manipulation of the Gli-dependent transcriptional outcome. Ulk3 is involved in the maintenance of Gli1/2 expression. SU6668 prevents de novo expression of Gli1/2 proteins induced by Shh or TGF-β. SU6668 inhibits up-regulation of Gli1/2 proteins via Ulk3. Human ASCs differentiate towards osteoblasts in response to Shh.
Collapse
Affiliation(s)
- Alla Piirsoo
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Cellin Technologies LLC, Mäealuse 4, Tallinn 12618, Estonia.
| | - Lagle Kasak
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | | | - Mart Loog
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Kairit Tints
- Cellin Technologies LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Piia Uusen
- Cellin Technologies LLC, Mäealuse 4, Tallinn 12618, Estonia
| | | | - Marko Piirsoo
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
126
|
Gellynck K, Shah R, Parkar M, Young A, Buxton P, Brett P. Small molecule stimulation enhances bone regeneration but not titanium implant osseointegration. Bone 2013; 57:405-12. [PMID: 24076022 DOI: 10.1016/j.bone.2013.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022]
Abstract
The osteogenic and osseointegrative potential of a small molecule was examined to assess its usefulness in regenerative procedures. Purmorphamine was used to stimulate bone growth and repair in an in vitro cell-based assay and an in vivo chick embryo CAM-assay with and without the presence of an implant. Purmorphamine adhered to precipitated hydroxyapatite coating, could activate the sonic hedgehog pathway and thereby stimulated osteodifferentiation. Porous calcium phosphate beads were used to deliver this small molecule in vivo and showed that purmorphamine increased the trabecular bone to bone area significantly. The assay showed purmorphamine failed to induce any significant difference in osseointegration on titanium coated PTFE implants. This suggests that, while a small molecule can enhance osteogenesis and might be useful in regenerative procedures, it failed to enhance the osseointegration of a Ti coated implant, suggesting that this sort of stimulation might be useful for enhancing bone regeneration where bone loss due to disease exists, but not for enhancing early stability of an implant.
Collapse
Affiliation(s)
- Kris Gellynck
- Biomaterials and Tissue engineering, Eastman Dental Institute, University College London, 256 Grays's Inn Road, London WC1X 8LD, UK
| | | | | | | | | | | |
Collapse
|
127
|
Chandramouli A, Hatsell SJ, Pinderhughes A, Koetz L, Cowin P. Gli activity is critical at multiple stages of embryonic mammary and nipple development. PLoS One 2013; 8:e79845. [PMID: 24260306 PMCID: PMC3832531 DOI: 10.1371/journal.pone.0079845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/24/2013] [Indexed: 01/12/2023] Open
Abstract
Gli3 is a transcriptional regulator of Hedgehog (Hh) signaling that functions as a repressor (Gli3R) or activator (Gli3A) depending upon cellular context. Previously, we have shown that Gli3R is required for the formation of mammary placodes #3 and #5. Here, we report that this early loss of Gli3 results in abnormal patterning of two critical regulators: Bmp4 and Tbx3, within the presumptive mammary rudiment (MR) #3 zone. We also show that Gli3 loss leads to failure to maintain mammary mesenchyme specification and loss of epithelial Wnt signaling, which impairs the later development of remaining MRs: MR#2 showed profound evagination and ectopic hairs formed within the presumptive areola; MR#4 showed mild invagination defects and males showed inappropriate retention of mammary buds in Gli3xt/xt mice. Importantly, mice genetically manipulated to misactivate Hh signaling displayed the same phenotypic spectrum demonstrating that the repressor function of Gli3R is essential during multiple stages of mammary development. In contrast, positive Hh signaling occurs during nipple development in a mesenchymal cuff around the lactiferous duct and in muscle cells of the nipple sphincter. Collectively, these data show that repression of Hh signaling by Gli3R is critical for early placodal patterning and later mammary mesenchyme specification whereas positive Hh signaling occurs during nipple development.
Collapse
Affiliation(s)
- Anupama Chandramouli
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah J. Hatsell
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
| | - Alicia Pinderhughes
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Lisa Koetz
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
128
|
Yannakoudakis BZ, Liu KJ. Common skeletal features in rare diseases: New links between ciliopathies and FGF-related syndromes. Rare Dis 2013; 1:e27109. [PMID: 25003013 PMCID: PMC3932950 DOI: 10.4161/rdis.27109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 12/26/2022] Open
Abstract
Congenital skeletal anomalies are rare disorders, with a subset affecting both the cranial and appendicular skeleton. Two categories, craniosynostosis syndromes and chondrodysplasias, frequently result from aberrant regulation of the fibroblast growth factor (FGF) signaling pathway. Our recent work has implicated FGF signaling in a third category: ciliopathic skeletal dysplasias. In this work, we have used mouse mutants in two ciliopathy genes, Fuzzy (Fuz) and orofacial digital syndrome-1 (Ofd-1), to demonstrate increase in Fgf8 gene expression during critical stages of embryogenesis. While the mechanisms underlying FGF dysregulation differ in the different syndromes, our data raise the possibility that convergence on FGF signal transduction may underlie a wide range of skeletal anomalies. Here, we provide additional evidence of the skeletal phenotypes from the Fuz mouse model and highlight similarities between human ciliopathies and FGF-related syndromes.
Collapse
Affiliation(s)
- Basil Z Yannakoudakis
- Department of Craniofacial Development and Stem Cell Biology; King's College London; London, UK
| | - Karen J Liu
- Department of Craniofacial Development and Stem Cell Biology; King's College London; London, UK
| |
Collapse
|
129
|
Li Y, Drnevich J, Akraiko T, Band M, Li D, Wang F, Matoba R, Tanaka TS. Gene expression profiling reveals the heterogeneous transcriptional activity of Oct3/4 and its possible interaction with Gli2 in mouse embryonic stem cells. Genomics 2013; 102:456-67. [PMID: 24121003 DOI: 10.1016/j.ygeno.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 01/19/2023]
Abstract
We examined the transcriptional activity of Oct3/4 (Pou5f1) in mouse embryonic stem cells (mESCs) maintained under standard culture conditions to gain a better understanding of self-renewal in mESCs. First, we built an expression vector in which the Oct3/4 promoter drives the monocistronic transcription of Venus and a puromycin-resistant gene via the foot-and-mouth disease virus self-cleaving peptide T2A. Then, a genetically-engineered mESC line with the stable integration of this vector was isolated and cultured in the presence or absence of puromycin. The cultures were subsequently subjected to Illumina expression microarray analysis. We identified approximately 4600 probes with statistically significant differential expression. The genes involved in nucleic acid synthesis were overrepresented in the probe set associated with mESCs maintained in the presence of puromycin. In contrast, the genes involved in cell differentiation were overrepresented in the probe set associated with mESCs maintained in the absence of puromycin. Therefore, it is suggested with these data that the transcriptional activity of Oct3/4 fluctuates in mESCs and that Oct3/4 plays an essential role in sustaining the basal transcriptional activities required for cell duplication in populations with equal differentiation potential. Heterogeneity in the transcriptional activity of Oct3/4 was dynamic. Interestingly, we found that genes involved in the hedgehog signaling pathway showed unique expression profiles in mESCs and validated this observation by RT-PCR analysis. The expression of Gli2, Ptch1 and Smo was consistently detected in other types of pluripotent stem cells examined in this study. Furthermore, the Gli2 protein was heterogeneously detected in mESC nuclei by immunofluorescence microscopy and this result correlated with the detection of the Oct3/4 protein. Finally, forced activation of Gli2 in mESCs increased their proliferation rate. Collectively, it is suggested with these results that Gli2 may play a novel role in the self-renewal of pluripotent stem cells.
Collapse
Affiliation(s)
- Yanzhen Li
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jenny Drnevich
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tatiana Akraiko
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark Band
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dong Li
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fei Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryo Matoba
- DNA Chip Research Inc., Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya S Tanaka
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
130
|
Abbasi AA, Minhas R, Schmidt A, Koch S, Grzeschik KH. Cis-regulatory underpinnings of human GLI3 expression in embryonic craniofacial structures and internal organs. Dev Growth Differ 2013; 55:699-709. [PMID: 24102645 DOI: 10.1111/dgd.12076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/24/2013] [Accepted: 08/06/2013] [Indexed: 12/16/2022]
Abstract
The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs.
Collapse
Affiliation(s)
- Amir A Abbasi
- Faculty of Biological Sciences, National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | | |
Collapse
|
131
|
Wang X, Zhao Z, Muller J, Iyu A, Khng AJ, Guccione E, Ruan Y, Ingham PW. Targeted inactivation and identification of targets of the Gli2a transcription factor in the zebrafish. Biol Open 2013; 2:1203-13. [PMID: 24244857 PMCID: PMC3828767 DOI: 10.1242/bio.20136262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 11/20/2022] Open
Abstract
Hedgehog (Hh) signaling is mediated by the Gli transcription factors and, in the zebrafish, plays an important role in patterning both the neural tube and myotome. Using a null allele of the gli2a gene induced by targeted mutagenesis, we show that Gli2a is completely dispensable in the fish but acts redundantly with Gli1 to regulate expression of known Hh targets, such as ptch2, prdm1a and eng2a, in the myotome and neural tube. To identify novel targets of Hh signaling, we performed chromatin immunoprecipitation sequencing (ChIP-seq) of whole embryo extracts. Samples were significantly enriched for 192 genomic regions, some of which are associated with four known Hh target genes, ptch1, ptch2, gli1 and olig2. Sequence analysis of these regions reveals a high level of conservation of Gli-binding sites from fish to mammals in some, but not all, cases. Expression analysis of other transcription units that are closely associated with peaks identified several putative targets not previously implicated as Hh targets, including myl10, hnmt, lrp4, efemp2, fras1, quo, and lamc1. Each of these genes shows loss of, or reduced expression in, embryos homozygous for an antimorphic allele of gli2a, you-too (yot), consistent with their being direct targets of Gli2a.
Collapse
Affiliation(s)
- Xingang Wang
- Institute of Molecular and Cell Biology , 61 Biopolis Drive , Singapore 138673 ; Present address: High Throughput Molecular Drug Discovery Center, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Tabler JM, Barrell WB, Szabo-Rogers HL, Healy C, Yeung Y, Perdiguero EG, Schulz C, Yannakoudakis BZ, Mesbahi A, Wlodarczyk B, Geissmann F, Finnell RH, Wallingford JB, Liu KJ. Fuz mutant mice reveal shared mechanisms between ciliopathies and FGF-related syndromes. Dev Cell 2013; 25:623-35. [PMID: 23806618 PMCID: PMC3697100 DOI: 10.1016/j.devcel.2013.05.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/29/2013] [Accepted: 05/23/2013] [Indexed: 12/25/2022]
Abstract
Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies. A genetic model for high arched palate, commonly seen in human craniofacial syndromes In ciliopathic mice, Fgf8 overexpression leads to cranial neural crest hyperplasia Enlargement of the maxillary primordia underlies high arched palate in Fuz mutants An etiological link between ciliopathies and FGF-hyperactivation syndromes
Collapse
Affiliation(s)
- Jacqueline M Tabler
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Ma L, Shi B, Zheng Q. Targeted mutations of genes reveal important roles in palatal development in mice. Ann Plast Surg 2013; 74:263-8. [PMID: 23851369 DOI: 10.1097/sap.0b013e318295dcb8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The process of palatal development is regulated by growth factors, extracellular matrix (ECM) protein, and cell adhesion molecules, of which disturbance may result in cleft palate. Knockout mice are important animal models for studying the role of genes during palatal development. Therefore, in this review, we will describe genes knockout in mice to reveal the biological mechanisms of these genes in the formation of the cleft palate.
Collapse
Affiliation(s)
- Li Ma
- From the *Department of Cleft Lip and Palate Surgery, West China Stomatological Hospital, Sichuan University; †State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | |
Collapse
|
134
|
Probst S, Zeller R, Zuniga A. The hedgehog target Vlk genetically interacts with Gli3 to regulate chondrocyte differentiation during mouse long bone development. Differentiation 2013; 85:121-30. [PMID: 23792766 DOI: 10.1016/j.diff.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/08/2013] [Accepted: 03/05/2013] [Indexed: 10/26/2022]
Abstract
Endochondral bone development is orchestrated by the spatially and temporally coordinated differentiation of chondrocytes along the longitudinal axis of the cartilage anlage. Initially, the slowly proliferating, periarticular chondrocytes give rise to the pool of rapidly dividing columnar chondrocytes, whose expansion determines the length of the long bones. The Indian hedgehog (IHH) ligand regulates both the proliferation of columnar chondrocytes and their differentiation into post-mitotic hypertrophic chondrocytes in concert with GLI3, one of the main transcriptional effectors of HH signal transduction. In the absence of Hh signalling, the expression of Vlk (vertebrate lonesome kinase, also called Pkdcc) is increased. We now show that the shortening of limb long bones in Vlk-deficient mouse embryos is aggravated by additional inactivation of Gli3. Our analysis establishes that Vlk and Gli3 synergize to control the temporal kinetics of chondrocyte differentiation during long bone development. Whereas differentiation of limb mesenchymal progenitors into chondrocytes and the initial formation of the cartilage anlagen of the limb skeleton are not altered, Vlk and Gli3 are required for the temporally coordinated differentiation of periarticular into columnar and ultimately hypertrophic chondrocytes in long bones. In limbs lacking both Vlk and Gli3, the appearance of columnar and hypertrophic chondrocytes is severely delayed and zones of morphologically distinct chondrocytes are not established until E16.5. At the molecular level, these morphological alterations are reflected by delayed activation and lowered expression of Ihh, Pth1r and Col10a1 in long bone rudiments of double mutant limbs. In summary, our genetic analysis establishes that VLK plays a role in the IHH/GLI3 interactions and that Vlk and Gli3 cooperate to regulate long bone development by modulating the temporal kinetics of establishing columnar and hypertrophic chondrocyte domains.
Collapse
Affiliation(s)
- Simone Probst
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
135
|
Dayem-Quere M, Giuliano F, Wagner-Mahler K, Massol C, Crouzet-Ozenda L, Lambert JC, Karmous-Benailly H. Delineation of a region responsible for panhypopituitarism in 20p11.2. Am J Med Genet A 2013; 161A:1547-54. [PMID: 23657910 DOI: 10.1002/ajmg.a.35921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/18/2012] [Indexed: 12/14/2022]
Abstract
We report on the case of a young woman with a de novo 20p11.21p11.23 deletion, discovered by array-CGH. She has behavioral troubles with autistic traits, intellectual disability, panhypopituitarism, severe hypoglycemia, epilepsy, and scoliosis. The majority of the reported 20p deletions are located on the 20p12 region, covering the JAG1 gene responsible for the Alagille syndrome. More proximal deletions are even rarer, with very few cases described in the literature to date. The deletion carried by our patient is, to our knowledge, the smallest described de novo proximal 20p11.2 deletion. It was first discovered by 0.5 Mb BAC array-CGH, further delineated using an oligonucleotide array, and finally confirmed by fluorescence in situ hybridization. The deletion is 4.22 Mb in size, with the exact location on chr20: 19.810.034-24.031.344 (Feb. 2009, GRCh37/hg19). In light of the other reported cases that display genomic and phenotypic overlap with our patient, we discuss the phenotype of our patient, in order to further delineate the 20p proximal deletion phenotype. We propose a minimal critical region responsible for panhypopituitarism with global developmental delay, intellectual disability, scoliosis and facial dysmorphism. Moreover, considering the deleted genes, we highlight the impact of the deletion of this minimal critical region on the Shh signaling pathway.
Collapse
Affiliation(s)
- Manal Dayem-Quere
- Service de Génétique Médicale, Hôpital de l'Archet II, CHU Nice, Nice Cedex 3, France.
| | | | | | | | | | | | | |
Collapse
|
136
|
Cao T, Wang C, Yang M, Wu C, Wang B. Mouse limbs expressing only the Gli3 repressor resemble those of Sonic hedgehog mutants. Dev Biol 2013; 379:221-8. [PMID: 23644062 DOI: 10.1016/j.ydbio.2013.04.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/29/2022]
Abstract
Anterioposterior vertebrate limb patterning is controlled by opposing action between Sonic Hedgehog (Shh) and the Gli3 transcriptional repressor. Unexpectedly, Gli3(Δ699) mutant mice, which are thought to express only a Gli3 repressor and not the full-length activator, exhibit limb phenotypes inconsistent with those of Shh mutant mice. Therefore, it remains debatable whether Shh patterns the anterioposterior limb primarily by inhibiting generation of the Gli3 repressor. However, one caveat is that Gli3(Δ699) may not be as potent as the natural form of Gli3 repressor because of the nature of the mutant allele. In the present study, we created a conditional Gli3 mutant allele that exclusively expresses Gli3 repressor in the presence of Cre recombinase. Using this mutant, we show that the phenotypes of mouse limbs expressing only the Gli3 repressor exhibit no or single digit, resembling those of Shh mutant limbs. Consistent with the limb phenotypes, the expression of genes dependent on Shh signaling is also inhibited in both mutants. This inhibition by the Gli3 repressor is independent of Shh. Thus, our study clarifies the current controversy and provides important genetic evidence to support the hypothesis that Shh patterns the anterioposterior limb primarily through the inhibition of Gli3 repressor formation.
Collapse
Affiliation(s)
- Ting Cao
- Institute of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
137
|
A review of the embryological development and associated developmental abnormalities of the sternum in the light of a rare palaeopathological case of sternal clefting. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2013; 64:129-41. [DOI: 10.1016/j.jchb.2013.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/04/2012] [Indexed: 12/21/2022]
|
138
|
Kasaai B, Gaumond MH, Moffatt P. Regulation of the bone-restricted IFITM-like (Bril) gene transcription by Sp and Gli family members and CpG methylation. J Biol Chem 2013; 288:13278-94. [PMID: 23530031 DOI: 10.1074/jbc.m113.457010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND BRIL is a bone-specific membrane protein that is involved in osteogenesis imperfecta type V. RESULTS Bril transcription is activated by Sp1, Sp3, OSX, and GLI2 and by CpG demethylation. CONCLUSION Regulation of Bril involves trans-acting factors integrating at conserved promoter elements and epigenetic modifications. SIGNIFICANCE Identification of the mechanisms governing Bril transcription is important to understand its role in skeletal biology. Bril encodes a small membrane protein present in osteoblasts. In humans, a single recurrent mutation in the 5'-UTR of BRIL causes osteogenesis imperfecta type V. The exact function of BRIL and the mechanism by which it contributes to disease are still unknown. The goal of the current study was to characterize the mechanisms governing Bril transcription in humans, rats, and mice. In the three species, as detected by luciferase reporter assays in UMR106 cells, we found that most of the base-line regulatory activity was localized within ∼250 bp upstream of the coding ATG. Co-transfection experiments indicated that Sp1 and Sp3 were potent inducers of the promoter activity, through the binding of several GC-rich boxes. Osterix was a weak activator but acted cooperatively with Sp1 and GLI2 to synergistically induce the BRIL promoter. GLI2, a mediator of hedgehog signaling pathway, was also a potent activator of BRIL through a single GLI binding site. Correspondingly, agonists of the hedgehog pathway (purmorphamine and Indian hedgehog) in MC3T3 osteoblasts led to increased BRIL levels. The BRIL promoter activity was also found to be negatively modulated through two different mechanisms. First, the ZFP354C zinc finger protein repressed basal and Sp1-induced activity. Second, CpG methylation of the promoter region correlated with an inactive state and prevented Sp1 activation. The data provide the very first analyses of the cis- and trans-acting factors regulating Bril transcription. They revealed key roles for the Sp members and GLI2 that possibly cooperate to activate Bril when the promoter becomes demethylated.
Collapse
Affiliation(s)
- Bahar Kasaai
- Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada
| | | | | |
Collapse
|
139
|
Gallinari P, Filocamo G, Jones P, Pazzaglia S, Steinkühler C. Smoothened antagonists: a promising new class of antitumor agents. Expert Opin Drug Discov 2013; 4:525-44. [PMID: 23485085 DOI: 10.1517/17460440902852686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hedgehog signaling is essential for the development of most metazoans. In recent years, evidence has accumulated showing that many human tumors aberrantly re-activate this developmental signaling pathway and that interfering with it may provide a new strategy for the development of novel anti-cancer therapeutics. Smoothened is a G-protein coupled receptor-like protein that is essentially involved in hedgehog signal transduction and small molecule antagonists of Smoothened have started to show antitumor activity in preclinical models and in clinical trials. OBJECTIVE We critically review the role of hedgehog signaling in normal development and in human malignancies, the available drug discovery tools and the classes of small molecule inhibitors that are in development. We further aim to address the potential impact that pathway antagonists may have on the treatment options of cancer patients. METHODS Literature, patents and clinical trial results from the past 5 years were analyzed. CONCLUSIONS 1) A large body of evidence suggests a frequent reactivation of hedgehog signaling in human cancer. 2) Smoothened is an attractive, highly druggable target with extensive preclinical and initial clinical validation in basal cell carcinoma. Several promising novel classes of Smoothened antagonists have been discovered and are being developed as anticancer agents. 3) Our knowledge of the biology of hedgehog signaling in cancer is still very incomplete and significant efforts will be required to understand how to use the emerging novel agents in the clinic.
Collapse
Affiliation(s)
- Paola Gallinari
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Department of Oncology, IRBM- Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040 Pomezia, Italy +39 06 91093232 ; +39 06 91093549 ;
| | | | | | | | | |
Collapse
|
140
|
Flemming GMC, Klammt J, Ambler G, Bao Y, Blum WF, Cowell C, Donaghue K, Howard N, Kumar A, Sanchez J, Stobbe H, Pfäffle RW. Functional characterization of a heterozygous GLI2 missense mutation in patients with multiple pituitary hormone deficiency. J Clin Endocrinol Metab 2013; 98:E567-75. [PMID: 23408573 PMCID: PMC3590478 DOI: 10.1210/jc.2012-3224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The GLI2 transcription factor is a major effector protein of the sonic hedgehog pathway and suggested to play a key role in pituitary development. Genomic GLI2 aberrations that mainly result in truncated proteins have been reported to cause holoprosencephaly or holoprosencephaly-like features, sometimes associated with hypopituitarism. OBJECTIVE Our objective was to determine the frequency of GLI2 mutations in patients with multiple pituitary hormone deficiency (MPHD). DESIGN Patients were selected from participants in the Genetics and Neuroendocrinology of Short Stature International Study (GeNeSIS) program. Patients with mutations within established candidate genes were excluded. PATIENTS A total of 165 patients with MPHD defined as GH deficiency and at least 1 additional pituitary hormone deficiency were studied regardless of the presence of extrapituitary clinical manifestations. MAIN OUTCOME MEASURES Prevalence of GLI2 variations in MPHD patients was assessed and detailed phenotypic characterization is given. Transcriptional activity of identified GLI2 variants was evaluated by functional reporter assays. RESULTS In 5 subjects, 4 heterozygous missense variants were identified, of which 2 are unpublished so far. One variant, p.R516P, results in vitro in a complete loss of protein function. In addition to GH deficiency, the carrier of the mutation demonstrates deficiency of thyrotrope and gonadotrope function, a maldescended posterior pituitary lobe, and polydactyly, but no midline defects. CONCLUSIONS For the first time, we show that heterozygous amino acid substitutions within GLI2 may lead to MPHD with mild extrapituitary findings. The phenotype of GLI2 mutations is variable, and penetrance is incomplete. GLI2 mutations are associated with anterior pituitary hypoplasia, and frequently, ectopy of the posterior lobe occurs.
Collapse
Affiliation(s)
- G M C Flemming
- Hospital for Children and Adolescents, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Hojo H, Ohba S, Taniguchi K, Shirai M, Yano F, Saito T, Ikeda T, Nakajima K, Komiyama Y, Nakagata N, Suzuki K, Mishina Y, Yamada M, Konno T, Takato T, Kawaguchi H, Kambara H, Chung UI. Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem 2013; 288:9924-9932. [PMID: 23423383 DOI: 10.1074/jbc.m112.409342] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Specification of progenitors into the osteoblast lineage is an essential event for skeletogenesis. During endochondral ossification, cells in the perichondrium give rise to osteoblast precursors. Hedgehog (Hh) and bone morphogenetic protein (BMP) are suggested to regulate the commitment of these cells. However, properties of perichondrial cells and regulatory mechanisms of the specification process are still poorly understood. Here, we investigated the machineries by combining a novel organ culture system and single-cell expression analysis with mouse genetics and biochemical analyses. In a metatarsal organ culture reproducing bone collar formation, activation of BMP signaling enhanced the bone collar formation cooperatively with Hh input, whereas the signaling induced ectopic chondrocyte formation in the perichondrium without Hh input. Similar phenotypes were also observed in compound mutant mice, where signaling activities of Hh and BMP were genetically manipulated. Single-cell quantitative RT-PCR analyses showed heterogeneity of perichondrial cells in terms of natural characteristics and responsiveness to Hh input. In vitro analyses revealed that Hh signaling suppressed BMP-induced chondrogenic differentiation; Gli1 inhibited the expression of Sox5, Sox6, and Sox9 (SRY box-containing gene 9) as well as transactivation by Sox9. Indeed, ectopic expression of chondrocyte maker genes were observed in the perichondrium of metatarsals in Gli1(-/-) fetuses, and the phenotype was more severe in Gli1(-/-);Gli2(-/-) newborns. These data suggest that Hh-Gli activators alter the function of BMP to specify perichondrial cells into osteoblasts; the timing of Hh input and its target populations are critical for BMP function.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | - Fumiko Yano
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Saito
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Ikeda
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keiji Nakajima
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuske Komiyama
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Masahisa Yamada
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Common Resources Group, Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - Tomohiro Konno
- Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Kawaguchi
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Kambara
- Hitachi Central Research Laboratory, Tokyo 185-8601, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
142
|
Voronova A, Coyne E, Al Madhoun A, Fair JV, Bosiljcic N, St-Louis C, Li G, Thurig S, Wallace VA, Wiper-Bergeron N, Skerjanc IS. Hedgehog signaling regulates MyoD expression and activity. J Biol Chem 2013; 288:4389-4404. [PMID: 23266826 PMCID: PMC3567689 DOI: 10.1074/jbc.m112.400184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/12/2012] [Indexed: 11/06/2022] Open
Abstract
The inhibition of MyoD expression is important for obtaining muscle progenitors that can replenish the satellite cell niche during muscle repair. Progenitors could be derived from either embryonic stem cells or satellite cells. Hedgehog (Hh) signaling is important for MyoD expression during embryogenesis and adult muscle regeneration. To date, the mechanistic understanding of MyoD regulation by Hh signaling is unclear. Here, we demonstrate that the Hh effector, Gli2, regulates MyoD expression and associates with MyoD gene elements. Gain- and loss-of-function experiments in pluripotent P19 cells show that Gli2 activity is sufficient and required for efficient MyoD expression during skeletal myogenesis. Inhibition of Hh signaling reduces MyoD expression during satellite cell activation in vitro. In addition to regulating MyoD expression, Hh signaling regulates MyoD transcriptional activity, and MyoD activates Hh signaling in myogenic conversion assays. Finally, Gli2, MyoD, and MEF2C form a protein complex, which enhances MyoD activity on skeletal muscle-related promoters. We therefore link Hh signaling to the function and expression of MyoD protein during myogenesis in stem cells.
Collapse
Affiliation(s)
| | - Erin Coyne
- From the Department of Biochemistry, Microbiology, and Immunology and
| | - Ashraf Al Madhoun
- From the Department of Biochemistry, Microbiology, and Immunology and
- Pancreatic Islet Biology and Transplantation Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait and
| | - Joel V. Fair
- From the Department of Biochemistry, Microbiology, and Immunology and
| | - Neven Bosiljcic
- From the Department of Biochemistry, Microbiology, and Immunology and
| | - Catherine St-Louis
- the Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and
| | - Grace Li
- the Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and
| | - Sherry Thurig
- From the Department of Biochemistry, Microbiology, and Immunology and
- Ottawa Hospital Research Institute, Ottawa K1H 8M5, Canada
| | - Valerie A. Wallace
- From the Department of Biochemistry, Microbiology, and Immunology and
- Ottawa Hospital Research Institute, Ottawa K1H 8M5, Canada
| | - Nadine Wiper-Bergeron
- the Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and
| | - Ilona S. Skerjanc
- From the Department of Biochemistry, Microbiology, and Immunology and
| |
Collapse
|
143
|
Barakat MT, Humke EW, Scott MP. Kif3a is necessary for initiation and maintenance of medulloblastoma. Carcinogenesis 2013; 34:1382-92. [PMID: 23389290 DOI: 10.1093/carcin/bgt041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Medulloblastoma (MB) cells arise from granule neuron precursors (GNPs) that have lost growth control. During normal development, GNPs divide in response to Sonic hedgehog (SHH), a ligand that binds to the patched (PTCH) receptor on GNPs. If one copy of the Ptch gene is lost, as in human Gorlin's syndrome and in Ptch(+/-) mice, MBs may form. Proper transduction of the SHH signal critically depends on primary cilia. Loss of primary cilia results in improper signal reception and failure to properly activate SHH target genes. KIF3a, part of a kinesin motor, is required for formation of primary cilia. Here, we use tamoxifen-induced ablation of Kif3a in GNPs of postnatal Ptch(+/-) mouse cerebella to show that KIF3a is necessary for MB formation. To investigate the importance of primary cilia in established tumors, we deleted Kif3a from cultured cells and from tumor cell grafts. The loss of Kif3a from established tumors led to their growth arrest and regression. MBs behave as if they are addicted to the presence of primary cilia. These results underscore the potential utility of agents that disrupt cilia for the treatment of Hh pathway-related MBs.
Collapse
Affiliation(s)
- Monique T Barakat
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Clark Center West W252, 318 Campus Drive, Stanford, CA 94305-5439, USA
| | | | | |
Collapse
|
144
|
Wenger AM, Clarke SL, Guturu H, Chen J, Schaar BT, McLean CY, Bejerano G. PRISM offers a comprehensive genomic approach to transcription factor function prediction. Genome Res 2013; 23:889-904. [PMID: 23382538 PMCID: PMC3638144 DOI: 10.1101/gr.139071.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human genome encodes 1500–2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.
Collapse
Affiliation(s)
- Aaron M Wenger
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Gastric cancer (GC) patients with hedgehog pathway activation: PTCH1 and GLI2 as independent prognostic factors. Target Oncol 2013; 8:271-80. [PMID: 23371028 DOI: 10.1007/s11523-013-0253-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022]
Abstract
Activation of sonic hedgehog (HH) signaling pathway has been implicated in aggressiveness and progression of gastrointestinal tumors. We planned this study to identify a subgroup of gastric cancer (GC) patients with HH activation and to assess the effect of a HH inhibitor in HH activated GC in vitro. We surveyed HH pathway activation among 512 GC specimens for protein expression of various target genes involved in HH pathway: Indian hedgehog (IHH), patched-1 (PTCH1), smoothened (SMO), GLI2, and FOXA2. We analyzed the correlations between the expression of these factors and clinicopathological features and prognosis. In vitro, ten gastric cancer cell lines were screened for anti-tumoractivity of an HH inhibitor, GDC-0449. Among the 512 specimens, 105 (20.0 %), 83 (16.3 %), 130 (25.5 %), 61 (12.0 %), and 206 (40.8 %) were positive for IHH, PTCH1, GLI2, SMO, and FOXA2 expression, respectively. PTCH1 expression was more frequently observed in well- or moderately differentiated tubular adenocarcinoma, intestinal type and low stage GC. GLI2 was correlated with lymphovascular invasion and intestinal type GC. A high-stage and negative PTCH1 staining were identified as unfavorable independent risk factors for overall survival in multivariate analysis (P < 0.001, 0.045, respectively). For IHH, SMO, and FOXA2, there was no statistical difference in clinicopathologic variables and survival outcome. An HH inhibitor had particularly potent effects on GC cell lines with SMO mRNA overexpression. This is the largest report to analyze the hedgehog pathway in GC. PTCH1 overexpression was an independent prognostic factor for survival and SMO overexpression which was found in 12.0 % of GC patients might be the potential predictive marker of HH inhibitor.
Collapse
|
146
|
Haplotype distribution in the GLI3 gene and their associations with growth traits in cattle. Gene 2013; 513:141-6. [DOI: 10.1016/j.gene.2012.10.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/08/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022]
|
147
|
Vaze D, Mahalik S, Rao KLN. Novel association of VACTERL, neural tube defect and crossed renal ectopia: sonic hedgehog signaling: a point of coherence? Congenit Anom (Kyoto) 2012. [PMID: 23181497 DOI: 10.1111/j.1741-4520.2011.00354.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present case report describes two patients with a novel combination of VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb), neural tube defect and crossed renal ectopia. Though cases of VACTERL associated with crossed renal ectopia have been described, the present case report is the first to describe its combination with neural tube defect. The cases reported here are significant because central nervous system manifestations are scarce in VACTERL syndrome. The role of sonic hedgehog pathway has been proposed in VACTERL association and neural tube defects. Axial Sonic hedgehog signaling has also been implicated in the mediolateral positioning of the renal parenchyma. With this knowledge, the etiopathogenesis of this novel combination is discussed to highlight the role of sonic hedgehog signaling as a point of coherence.
Collapse
Affiliation(s)
- Dhananjay Vaze
- Department of Pediatric Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | | | | |
Collapse
|
148
|
McNeill B, Mazerolle C, Bassett EA, Mears AJ, Ringuette R, Lagali P, Picketts DJ, Paes K, Rice D, Wallace VA. Hedgehog regulates Norrie disease protein to drive neural progenitor self-renewal. Hum Mol Genet 2012. [PMID: 23201751 DOI: 10.1093/hmg/dds505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Norrie disease (ND) is a congenital disorder characterized by retinal hypovascularization and cognitive delay. ND has been linked to mutations in 'Norrie Disease Protein' (Ndp), which encodes the secreted protein Norrin. Norrin functions as a secreted angiogenic factor, although its role in neural development has not been assessed. Here, we show that Ndp expression is initiated in retinal progenitors in response to Hedgehog (Hh) signaling, which induces Gli2 binding to the Ndp promoter. Using a combination of genetic epistasis and acute RNAi-knockdown approaches, we show that Ndp is required downstream of Hh activation to induce retinal progenitor proliferation in the retina. Strikingly, Ndp regulates the rate of cell-cycle re-entry and not cell-cycle kinetics, thereby uncoupling the self-renewal and cell-cycle progression functions of Hh. Taken together, we have uncovered a cell autonomous function for Ndp in retinal progenitor proliferation that is independent of its function in the retinal vasculature, which could explain the neural defects associated with ND.
Collapse
Affiliation(s)
- Brian McNeill
- Vision Program, Ottawa Hospital Research Institute, Ottawa, Ont. K1H 8L6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Law KKL, Makino S, Mo R, Zhang X, Puviindran V, Hui CC. Antagonistic and cooperative actions of Kif7 and Sufu define graded intracellular Gli activities in Hedgehog signaling. PLoS One 2012; 7:e50193. [PMID: 23166838 PMCID: PMC3500354 DOI: 10.1371/journal.pone.0050193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/22/2012] [Indexed: 01/18/2023] Open
Abstract
Graded Hedgehog (Hh) signaling governs the balance of Gli transcriptional activators and repressors to specify diverse ventral cell fates in the spinal cord. It remains unclear how distinct intracellular Gli activity is generated. Here, we demonstrate that Sufu acts universally as a negative regulator of Hh signaling, whereas Kif7 inhibits Gli activity in cooperation with, and independent of, Sufu. Together, they deter naïve precursors from acquiring increasingly ventral identity. We show that Kif7 is also required to establish high intracellular Gli activity by antagonizing the Sufu-inhibition of Gli2. Strikingly, by abolishing the negative regulatory action of Sufu, diverse ventral cell fates can be specified in the absence of extracellular Hh signaling. These data suggest that Sufu is the primary regulator of graded Hh signaling and establish that the antagonistic and cooperative actions of Kif7 and Sufu are responsible for setting up distinct Gli activity in ventral cell fate specification.
Collapse
Affiliation(s)
- Kelvin King Lo Law
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shigeru Makino
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Koyadai, Tsukuba, Ibaraki, Japan
| | - Rong Mo
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Xiaoyun Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Vijitha Puviindran
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Chi-chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
150
|
Abstract
Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called "canonical" Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as "noncanonical" signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network.
Collapse
Affiliation(s)
- David J Robbins
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | |
Collapse
|