101
|
Nikovics K, Favier AL. Macrophage Identification In Situ. Biomedicines 2021; 9:1393. [PMID: 34680510 PMCID: PMC8533306 DOI: 10.3390/biomedicines9101393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding the processes of inflammation and tissue regeneration after injury is of great importance. For a long time, macrophages have been known to play a central role during different stages of inflammation and tissue regeneration. However, the molecular and cellular mechanisms by which they exert their effects are as yet mostly unknown. While in vitro macrophages have been characterized, recent progress in macrophage biology studies revealed that macrophages in vivo exhibited distinctive features. Actually, the precise characterization of the macrophages in vivo is essential to develop new healing treatments and can be approached via in situ analyses. Nowadays, the characterization of macrophages in situ has improved significantly using antigen surface markers and cytokine secretion identification resulting in specific patterns. This review aims for a comprehensive overview of different tools used for in situ macrophage identification, reporter genes, immunolabeling and in situ hybridization, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Krisztina Nikovics
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France;
| | | |
Collapse
|
102
|
Ka C, Gautam S, Marshall SR, Tice LP, Martinez-Bartolome M, Fenner JL, Range RC. Receptor Tyrosine Kinases ror1/2 and ryk Are Co-expressed with Multiple Wnt Signaling Components During Early Development of Sea Urchin Embryos. THE BIOLOGICAL BULLETIN 2021; 241:140-157. [PMID: 34706206 PMCID: PMC11257382 DOI: 10.1086/715237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractA combination of receptors, co-receptors, and secreted Wnt modulators form protein complexes at the cell surface that activate one or more of the three different Wnt signaling pathways (Wnt/β-catenin, Wnt/JNK, and Wnt/Ca2+). Two or more of these pathways are often active in the same cellular territories, forming Wnt signaling networks; however, the molecular mechanisms necessary to integrate information from these pathways in these situations are unclear in any in vivo model system. Recent studies have implicated two Wnt binding receptor tyrosine kinases, receptor tyrosine kinase-like orphan receptor (Ror) and related-to-receptor tyrosine kinase (Ryk), in the regulation of canonical and non-canonical Wnt signaling pathways, depending on the context; however, the spatiotemporal expression of these genes in relation to Wnt signaling components has not been well characterized in most deuterostome model systems. Here we use a combination of phylogenetic and spatiotemporal gene expression analyses to characterize Ror and Ryk orthologs in sea urchin embryos. Our phylogenetic analysis indicates that both ror1/2 and ryk originated as single genes from the metazoan ancestor. Expression analyses indicate that ror1/2 and ryk are expressed in the same domains of many Wnt ligands and Frizzled receptors essential for the specification and patterning of germ layers along the early anterior-posterior axis. In addition, both genes are co-expressed with Wnt signaling components in the gut, ventral ectoderm, and anterior neuroectoderm territories later in development. Together, our results indicate that Ror and Ryk have a complex evolutionary history and that their spatiotemporal expression suggests that they could contribute to the complexity of Wnt signaling in early sea urchin embryogenesis.
Collapse
Affiliation(s)
- C Ka
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - S Gautam
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - SR Marshall
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | - LP Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | | | - JL Fenner
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - RC Range
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
103
|
Ibarra-García-Padilla R, Howard AGA, Singleton EW, Uribe RA. A protocol for whole-mount immuno-coupled hybridization chain reaction (WICHCR) in zebrafish embryos and larvae. STAR Protoc 2021; 2:100709. [PMID: 34401776 PMCID: PMC8348268 DOI: 10.1016/j.xpro.2021.100709] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Characterizing mRNA and protein expression with temporal and spatial resolution is a valuable component of nearly every developmental study. Here, we describe a protocol that combines in situ hybridization chain reaction (HCR) and immunofluorescence, allowing for the detection of mRNAs and proteins simultaneously, in zebrafish embryos and larvae. This protocol expands the flexibility of multiplexed HCR by coupling it with traditional immunofluorescence detection. For complete details on the use and execution of this protocol, please refer to Choi et al. (2010, 2016, 2018) and Howard et al. (2021). Combined in situ HCR and immunofluorescence for a modular and flexible procedure Simultaneous detection of mRNA and protein in zebrafish embryos and larvae Highly customizable protocol with a broad variety of targets and applications Use of commercially available antibodies in a simple and streamlined protocol
Collapse
Affiliation(s)
| | | | | | - Rosa Anna Uribe
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
104
|
Rubin S, Agrawal A, Stegmaier J, Krief S, Felsenthal N, Svorai J, Addadi Y, Villoutreix P, Stern T, Zelzer E. Application of 3D MAPs pipeline identifies the morphological sequence chondrocytes undergo and the regulatory role of GDF5 in this process. Nat Commun 2021; 12:5363. [PMID: 34508093 PMCID: PMC8433335 DOI: 10.1038/s41467-021-25714-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
The activity of epiphyseal growth plates, which drives long bone elongation, depends on extensive changes in chondrocyte size and shape during differentiation. Here, we develop a pipeline called 3D Morphometric Analysis for Phenotypic significance (3D MAPs), which combines light-sheet microscopy, segmentation algorithms and 3D morphometric analysis to characterize morphogenetic cellular behaviors while maintaining the spatial context of the growth plate. Using 3D MAPs, we create a 3D image database of hundreds of thousands of chondrocytes. Analysis reveals broad repertoire of morphological changes, growth strategies and cell organizations during differentiation. Moreover, identifying a reduction in Smad 1/5/9 activity together with multiple abnormalities in cell growth, shape and organization provides an explanation for the shortening of Gdf5 KO tibias. Overall, our findings provide insight into the morphological sequence that chondrocytes undergo during differentiation and highlight the ability of 3D MAPs to uncover cellular mechanisms that may regulate this process.
Collapse
Affiliation(s)
- Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ankit Agrawal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Svorai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Villoutreix
- LIS (UMR 7020), IBDM (UMR 7288), Turing Center For Living Systems, Aix-Marseille University, Marseille, France.
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
105
|
Van houcke J, Mariën V, Zandecki C, Vanhunsel S, Moons L, Ayana R, Seuntjens E, Arckens L. Aging impairs the essential contributions of non-glial progenitors to neurorepair in the dorsal telencephalon of the Killifish Nothobranchius furzeri. Aging Cell 2021; 20:e13464. [PMID: 34428340 PMCID: PMC8441397 DOI: 10.1111/acel.13464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
The aging central nervous system (CNS) of mammals displays progressive limited regenerative abilities. Recovery after loss of neurons is extremely restricted in the aged brain. Many research models fall short in recapitulating mammalian aging hallmarks or have an impractically long lifespan. We established a traumatic brain injury model in the African turquoise killifish (Nothobranchius furzeri), a regeneration‐competent vertebrate that evolved to naturally age extremely fast. Stab‐wound injury of the aged killifish dorsal telencephalon unveils an impaired and incomplete regeneration response when compared to young individuals. In the young adult killifish, brain regeneration is mainly supported by atypical non‐glial progenitors, yet their proliferation capacity clearly declines with age. We identified a high inflammatory response and glial scarring to also underlie the hampered generation of new neurons in aged fish. These primary results will pave the way to unravel the factor age in relation to neurorepair, and to improve therapeutic strategies to restore the injured and/or diseased aged mammalian CNS.
Collapse
Affiliation(s)
- Jolien Van houcke
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
| | - Valerie Mariën
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
| | - Caroline Zandecki
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
- Department of Biology Laboratory of Developmental Neurobiology KU Leuven Leuven Belgium
| | - Sophie Vanhunsel
- Department of Biology Laboratory of Neural Circuit Development and Regeneration KU Leuven Leuven Belgium
| | - Lieve Moons
- Department of Biology Laboratory of Neural Circuit Development and Regeneration KU Leuven Leuven Belgium
- KU Leuven Brain Institute Leuven Belgium
| | - Rajagopal Ayana
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
- Department of Biology Laboratory of Developmental Neurobiology KU Leuven Leuven Belgium
| | - Eve Seuntjens
- Department of Biology Laboratory of Developmental Neurobiology KU Leuven Leuven Belgium
- KU Leuven Brain Institute Leuven Belgium
| | - Lutgarde Arckens
- Department of Biology Laboratory of Neuroplasticity and Neuroproteomics KU Leuven Leuven Belgium
- KU Leuven Brain Institute Leuven Belgium
| |
Collapse
|
106
|
Moreno-Velásquez SD, Pérez JC. Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans. mSphere 2021; 6:e0041121. [PMID: 34232078 PMCID: PMC8386430 DOI: 10.1128/msphere.00411-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
The study of gene expression in fungi has typically relied on measuring transcripts in populations of cells. A major disadvantage of this approach is that the transcripts' spatial distribution and stochastic variation among individual cells within a clonal population is lost. Traditional fluorescence in situ hybridization techniques have been of limited use in fungi due to poor specificity and high background signal. Here, we report that in situ hybridization chain reaction (HCR), a method that employs split-initiator probes to trigger signal amplification upon mRNA-probe hybridization, is ideally suited for the imaging and quantification of low-abundance transcripts at single-cell resolution in the fungus Candida albicans. We show that HCR allows the absolute quantification of transcripts within a cell by microscopy as well as their relative quantification by flow cytometry. mRNA imaging also revealed the subcellular localization of specific transcripts. Furthermore, we establish that HCR is amenable to multiplexing by visualizing different transcripts in the same cell. Finally, we combine HCR with immunostaining to image specific mRNAs and proteins simultaneously within a single C. albicans cell. The fungus is a major pathogen in humans where it can colonize and invade mucosal surfaces and most internal organs. The technical development that we introduce, therefore, paves the way to study the patterns of expression of pathogenesis-associated C. albicans genes in infected organs at single-cell resolution. IMPORTANCE Tools to visualize and quantify transcripts at single-cell resolution have enabled the dissection of spatiotemporal patterns of gene expression in animal cells and tissues. Yet the accurate quantification of transcripts at single-cell resolution remains challenging for the much smaller microbial cells. Widespread phenomena such as stochastic variation in transcript levels among cells-even within a clonal population-seem to play important roles in the biology of many microorganisms. Investigating this process requires microbial cell-optimized procedures to image and measure mRNAs at single-molecule resolution. In this report, we adapt and expand in situ hybridization chain reaction (HCR) combined with split-initiator probes to visualize transcripts in the human-pathogenic fungus Candida albicans at high resolution.
Collapse
Affiliation(s)
- Sergio D. Moreno-Velásquez
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology, University Würzburg, Würzburg, Germany
| | - J. Christian Pérez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
107
|
Deryckere A, Styfhals R, Elagoz AM, Maes GE, Seuntjens E. Identification of neural progenitor cells and their progeny reveals long distance migration in the developing octopus brain. eLife 2021; 10:e69161. [PMID: 34425939 PMCID: PMC8384421 DOI: 10.7554/elife.69161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cephalopods have evolved nervous systems that parallel the complexity of mammalian brains in terms of neuronal numbers and richness in behavioral output. How the cephalopod brain develops has only been described at the morphological level, and it remains unclear where the progenitor cells are located and what molecular factors drive neurogenesis. Using histological techniques, we located dividing cells, neural progenitors and postmitotic neurons in Octopus vulgaris embryos. Our results indicate that an important pool of progenitors, expressing the conserved bHLH transcription factors achaete-scute or neurogenin, is located outside the central brain cords in the lateral lips adjacent to the eyes, suggesting that newly formed neurons migrate into the cords. Lineage-tracing experiments then showed that progenitors, depending on their location in the lateral lips, generate neurons for the different lobes, similar to the squid Doryteuthis pealeii. The finding that octopus newborn neurons migrate over long distances is reminiscent of vertebrate neurogenesis and suggests it might be a fundamental strategy for large brain development.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaplesItaly
| | - Ali Murat Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Gregory E Maes
- Center for Human Genetics, Genomics Core, UZ-KU LeuvenLeuvenBelgium
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook UniversityTownsvilleAustralia
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU LeuvenLeuvenBelgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| |
Collapse
|
108
|
Jimenez E, Slevin CC, Colón-Cruz L, Burgess SM. Vestibular and Auditory Hair Cell Regeneration Following Targeted Ablation of Hair Cells With Diphtheria Toxin in Zebrafish. Front Cell Neurosci 2021; 15:721950. [PMID: 34489643 PMCID: PMC8416761 DOI: 10.3389/fncel.2021.721950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turnover during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure. However, in mammals, destroying or damaging hair cells results in permanent impairments to hearing or balance. We sought an improved method for studying hair cell damage and regeneration in adult aquatic vertebrates by generating a transgenic zebrafish with the capacity for targeted and inducible hair cell ablation in vivo. This model expresses the human diphtheria toxin receptor (hDTR) gene under the control of the myo6b promoter, resulting in hDTR expressed only in hair cells. Cell ablation is achieved by an intraperitoneal injection of diphtheria toxin (DT) in adult zebrafish or DT dissolved in the water for larvae. In the lateral line of 5 days post fertilization (dpf) zebrafish, ablation of hair cells by DT treatment occurred within 2 days in a dose-dependent manner. Similarly, in adult utricles and saccules, a single intraperitoneal injection of 0.05 ng DT caused complete loss of hair cells in the utricle and saccule by 5 days post-injection. Full hair cell regeneration was observed for the lateral line and the inner ear tissues. This study introduces a new method for efficient conditional hair cell ablation in adult zebrafish inner ear sensory epithelia (utricles and saccules) and demonstrates that zebrafish hair cells will regenerate in vivo after this treatment.
Collapse
Affiliation(s)
| | | | | | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
109
|
Fetter-Pruneda I, Hart T, Ulrich Y, Gal A, Oxley PR, Olivos-Cisneros L, Ebert MS, Kazmi MA, Garrison JL, Bargmann CI, Kronauer DJC. An oxytocin/vasopressin-related neuropeptide modulates social foraging behavior in the clonal raider ant. PLoS Biol 2021; 19:e3001305. [PMID: 34191794 PMCID: PMC8244912 DOI: 10.1371/journal.pbio.3001305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies. The neuropeptides oxytocin and vasopressin modulate social behavior in vertebrates, but their function in invertebrates is not well understood. Using brain staining and pharmacological manipulations, this study shows that a related neuropeptide, inotocin, affects how ants respond to larvae.
Collapse
Affiliation(s)
- Ingrid Fetter-Pruneda
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- * E-mail: (IFP); (DJCK)
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Yuko Ulrich
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Asaf Gal
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Peter R. Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- Samuel J. Wood Library, Weill Cornell Medicine, New York, New York, United States of America
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Margaret S. Ebert
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
| | - Manija A. Kazmi
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, United States of America
| | - Jennifer L. Garrison
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Cornelia I. Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, United States of America
- Chan Zuckerberg Initiative, Redwood City, California, United States of America
| | - Daniel J. C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, United States of America
- * E-mail: (IFP); (DJCK)
| |
Collapse
|
110
|
Belew MD, Chien E, Wong M, Michael WM. A global chromatin compaction pathway that represses germline gene expression during starvation. J Cell Biol 2021; 220:212349. [PMID: 34128967 PMCID: PMC8210574 DOI: 10.1083/jcb.202009197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
While much is known about how transcription is controlled at individual genes, comparatively little is known about how cells regulate gene expression on a genome-wide level. Here, we identify a molecular pathway in the C. elegans germline that controls transcription globally in response to nutritional stress. We report that when embryos hatch into L1 larvae, they sense the nutritional status of their environment, and if food is unavailable, they repress gene expression via a global chromatin compaction (GCC) pathway. GCC is triggered by the energy-sensing kinase AMPK and is mediated by a novel mechanism that involves the topoisomerase II/condensin II axis acting upstream of heterochromatin assembly. When the GCC pathway is inactivated, then transcription persists during starvation. These results define a new mode of whole-genome control of transcription.
Collapse
Affiliation(s)
- Mezmur D Belew
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Emilie Chien
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Matthew Wong
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - W Matthew Michael
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
111
|
Sicherre E, Favier AL, Riccobono D, Nikovics K. Non-Specific Binding, a Limitation of the Immunofluorescence Method to Study Macrophages In Situ. Genes (Basel) 2021; 12:649. [PMID: 33925331 PMCID: PMC8145419 DOI: 10.3390/genes12050649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in understanding tissue regenerative mechanisms require the characterization of in vivo macrophages as those play a fundamental role in this process. This characterization can be approached using the immuno-fluorescence method with widely studied and used pan-markers such as CD206 protein. This work investigated CD206 expression in an irradiated-muscle pig model using three different antibodies. Surprisingly, the expression pattern during immunodetection differed depending on the antibody origin and could give some false results. False results are rarely described in the literature, but this information is essential for scientists who need to characterize macrophages. In this context, we showed that in situ hybridization coupled with hybridization-chain-reaction detection (HCR) is an excellent alternative method to detect macrophages in situ.
Collapse
Affiliation(s)
- Emma Sicherre
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (E.S.); (A.-L.F.)
| | - Anne-Laure Favier
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (E.S.); (A.-L.F.)
| | - Diane Riccobono
- Radiobiology Unit, Department of NRBC Defence, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France;
| | - Krisztina Nikovics
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (E.S.); (A.-L.F.)
| |
Collapse
|
112
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
113
|
Kachwala MJ, Smith CW, Nandu N, Yigit MV. Reprogrammable Gel Electrophoresis Detection Assay Using CRISPR-Cas12a and Hybridization Chain Reaction. Anal Chem 2021; 93:1934-1938. [PMID: 33404234 PMCID: PMC8177748 DOI: 10.1021/acs.analchem.0c04949] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybridization chain reaction (HCR) is a DNA-based target-induced cascade reaction. Due to its unique enzyme-free amplification feature, HCR is often employed for sensing applications. Much like DNA nanostructures that have been designed to respond to a specific stimulus, HCR employs nucleic acids that reconfigure and assemble in the presence of a specific trigger. Despite its standalone capabilities, HCR is highly modular; therefore, it can be advanced and repurposed when coupled with latest discoveries. To this effect, we have developed a gel electrophoresis-based detection approach which combines the signal amplification feature of HCR with the programmability and sensitivity of the CRISPR-Cas12a system. By incorporating CRISPR-Cas12a, we have achieved greater sensitivity and reversed the signal output from TURN OFF to TURN ON. CRISPR-Cas12a also enabled us to rapidly reprogram the assay for the detection of both ssDNA and dsDNA target sequences by replacing a single reaction component in the detection kit. Detection of conserved, both ssDNA and dsDNA, regions of tobacco curly shoot virus (TCSV) and hepatitis B virus (HepBV) genomes is demonstrated with this methodology. This low-cost gel electrophoresis assay can detect as little as 1.5 fmol of the target without any additional target amplification steps and is about 100-fold more sensitive than HCR-alone approach.
Collapse
Affiliation(s)
- Mahera J Kachwala
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Christopher W Smith
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Nidhi Nandu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
114
|
Ruby E. Getting to know our microbial friends by dropping into their neighbourhood. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:27-30. [PMID: 33047473 DOI: 10.1111/1758-2229.12895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Edward Ruby
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| |
Collapse
|
115
|
Wells AI, Grimes KA, Kim K, Branche E, Bakkenist CJ, DePas WH, Shresta S, Coyne CB. Human FcRn expression and Type I Interferon signaling control Echovirus 11 pathogenesis in mice. PLoS Pathog 2021; 17:e1009252. [PMID: 33513208 PMCID: PMC7875378 DOI: 10.1371/journal.ppat.1009252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/10/2021] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Neonatal echovirus infections are characterized by severe hepatitis and neurological complications that can be fatal. Here, we show that expression of the human homologue of the neonatal Fc receptor (hFcRn), the primary receptor for echoviruses, and ablation of type I interferon (IFN) signaling are key host determinants involved in echovirus pathogenesis. We show that expression of hFcRn alone is insufficient to confer susceptibility to echovirus infections in mice. However, expression of hFcRn in mice deficient in type I interferon (IFN) signaling, hFcRn-IFNAR-/-, recapitulate the echovirus pathogenesis observed in humans. Luminex-based multianalyte profiling from E11 infected hFcRn-IFNAR-/- mice revealed a robust systemic immune response to infection, including the induction of type I IFNs. Furthermore, similar to the severe hepatitis observed in humans, E11 infection in hFcRn-IFNAR-/- mice caused profound liver damage. Our findings define the host factors involved in echovirus pathogenesis and establish in vivo models that recapitulate echovirus disease in humans.
Collapse
Affiliation(s)
- Alexandra I. Wells
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kalena A. Grimes
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kenneth Kim
- Kord Animal Health Diagnostic Laboratory, Nashville, Tennessee, United States of America
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology La Jolla, California, United States of America
| | - Emilie Branche
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology La Jolla, California, United States of America
| | - Christopher J. Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - William H. DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology La Jolla, California, United States of America
| | - Carolyn B. Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
116
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
117
|
SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biol 2020; 18:e3000675. [PMID: 33216742 PMCID: PMC7717588 DOI: 10.1371/journal.pbio.3000675] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/04/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Changes in cell identities and positions underlie tissue development and disease progression. Although single-cell mRNA sequencing (scRNA-Seq) methods rapidly generate extensive lists of cell states, spatially resolved single-cell mapping presents a challenging task. We developed SCRINSHOT (Single-Cell Resolution IN Situ Hybridization On Tissues), a sensitive, multiplex RNA mapping approach. Direct hybridization of padlock probes on mRNA is followed by circularization with SplintR ligase and rolling circle amplification (RCA) of the hybridized padlock probes. Sequential detection of RCA-products using fluorophore-labeled oligonucleotides profiles thousands of cells in tissue sections. We evaluated SCRINSHOT specificity and sensitivity on murine and human organs. SCRINSHOT quantification of marker gene expression shows high correlation with published scRNA-Seq data over a broad range of gene expression levels. We demonstrate the utility of SCRINSHOT by mapping the locations of abundant and rare cell types along the murine airways. The amenability, multiplexity, and quantitative qualities of SCRINSHOT facilitate single-cell mRNA profiling of cell-state alterations in tissues under a variety of native and experimental conditions. This study presents SCRINSHOT, an amenable, multiplex RNA-mapping method, applicable to a wide variety of tissue types and conditions. It can function quantitatively across a broad range of expression levels and detect even rare cell types, facilitating the creation of digital tissue maps with single-cell resolution.
Collapse
|
118
|
Perillo M, Paganos P, Spurrell M, Arnone MI, Wessel GM. Methodology for Whole Mount and Fluorescent RNA In Situ Hybridization in Echinoderms: Single, Double, and Beyond. Methods Mol Biol 2020; 2219:195-216. [PMID: 33074542 DOI: 10.1007/978-1-0716-0974-3_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Identifying the location of a specific RNA in a cell, tissue, or embryo is essential to understand its function. Here we use echinoderm embryos to demonstrate the power of fluorescence in situ RNA hybridizations to localize sites of specific RNA accumulation in whole mount embryo applications. We add to this technology the use of various probe-labeling technologies to colabel multiple RNAs in one application and we describe protocols for incorporating immunofluorescence approaches to maximize the information obtained in situ. We offer alternatives for these protocols and troubleshooting advice to identify steps in which the procedure may have failed. Overall, echinoderms are wonderfully suited for these technologies, and these protocols are applicable to a wide range of cells, tissues, and embryos.
Collapse
Affiliation(s)
- Margherita Perillo
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Periklis Paganos
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxwell Spurrell
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Maria I Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Gary M Wessel
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
119
|
Nikovics K, Morin H, Riccobono D, Bendahmane A, Favier AL. Hybridization-chain-reaction is a relevant method for in situ detection of M2d-like macrophages in a mini-pig model. FASEB J 2020; 34:15675-15686. [PMID: 33078886 DOI: 10.1096/fj.202001496r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Macrophages are a heterogeneous population of cells with an important role in innate immunity and tissue regeneration. Based on in vitro experiments, macrophages have been subdivided into five distinct subtypes named M1, M2a, M2b, M2c, and M2d, depending on the means of their activation and the cell surface markers they display. Whether all subtypes can be detected in vivo is still unclear. The identification of macrophages in vivo in the regenerating muscle could be used as a new diagnostic tool to monitor therapeutic strategies for tissue repair. The use of classical immunolabeling techniques is unable to discriminate between different M2 macrophages and a functional characterization of these macrophages is lacking. Using in situ hybridization coupled with hybridization-chain-reaction detection (HCR), we achieved the identification of M2d-like macrophages within regenerating muscle and applied this technique to understand the role of M2 macrophages in the regeneration of irradiated pig-muscle after adipose tissue stem cell treatment. Our work highlights the limits of immunolabeling and the usefulness of HCR analysis to provide valuable information for macrophage characterization.
Collapse
Affiliation(s)
- Krisztina Nikovics
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France
| | - Halima Morin
- Institute of Plant Sciences Paris-Saclay (IPS2), University Paris-Saclay, INRAE, CNRS, Univ Evry, Orsay, France
| | - Diane Riccobono
- Radiobiology Unit, Department of NRBC Defens, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), University Paris-Saclay, INRAE, CNRS, Univ Evry, Orsay, France
| | - Anne-Laure Favier
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge Cedex, France
| |
Collapse
|
120
|
Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat Commun 2020; 11:4413. [PMID: 32887883 PMCID: PMC7474063 DOI: 10.1038/s41467-020-18249-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovascular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation-dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which prominently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed transcriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. Blood–brain barrier dysfunction occurs in ageing and in neurodegenerative diseases. Here, the authors use scRNA-seq to identify transcriptomic changes in endothelial cell subtypes in the aged mouse brain, some of which may generalize to human and can be reversed by treatment with a GLP-1R agonist.
Collapse
|
121
|
Bennett BD, Essock-Burns T, Ruby EG. HbtR, a Heterofunctional Homolog of the Virulence Regulator TcpP, Facilitates the Transition between Symbiotic and Planktonic Lifestyles in Vibrio fischeri. mBio 2020; 11:e01624-20. [PMID: 32873761 PMCID: PMC7468203 DOI: 10.1128/mbio.01624-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
The bioluminescent bacterium Vibrio fischeri forms a mutually beneficial symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, in which the bacteria, housed inside a specialized light organ, produce light used by the squid in its nocturnal activities. Upon hatching, E. scolopes juveniles acquire V. fischeri from the seawater through a complex process that requires, among other factors, chemotaxis by the bacteria along a gradient of N-acetylated sugars into the crypts of the light organ, the niche in which the bacteria reside. Once inside the light organ, V. fischeri transitions into a symbiotic, sessile state in which the quorum-signaling regulator LitR induces luminescence. In this work we show that expression of litR and luminescence are repressed by a homolog of the Vibrio cholerae virulence factor TcpP, which we have named HbtR. Further, we demonstrate that LitR represses genes involved in motility and chemotaxis into the light organ and activates genes required for exopolysaccharide production.IMPORTANCE TcpP homologs are widespread throughout the Vibrio genus; however, the only protein in this family described thus far is a V. cholerae virulence regulator. Here, we show that HbtR, the TcpP homolog in V. fischeri, has both a biological role and regulatory pathway completely unlike those in V. cholerae Through its repression of the quorum-signaling regulator LitR, HbtR affects the expression of genes important for colonization of the E. scolopes light organ. While LitR becomes activated within the crypts and upregulates luminescence and exopolysaccharide genes and downregulates chemotaxis and motility genes, it appears that HbtR, upon expulsion of V. fischeri cells into seawater, reverses this process to aid the switch from a symbiotic to a planktonic state. The possible importance of HbtR to the survival of V. fischeri outside its animal host may have broader implications for the ways in which bacteria transition between often vastly different environmental niches.
Collapse
Affiliation(s)
- Brittany D Bennett
- Pacific Biosciences Research Center, University of Hawai'i-Manoa, Honolulu, Hawaii, USA
| | - Tara Essock-Burns
- Pacific Biosciences Research Center, University of Hawai'i-Manoa, Honolulu, Hawaii, USA
| | - Edward G Ruby
- Pacific Biosciences Research Center, University of Hawai'i-Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
122
|
Three-dimensional single-cell imaging for the analysis of RNA and protein expression in intact tumour biopsies. Nat Biomed Eng 2020; 4:875-888. [PMID: 32601394 DOI: 10.1038/s41551-020-0576-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Abstract
Microscopy analysis of tumour samples is commonly performed on fixed, thinly sectioned and protein-labelled tissues. However, these examinations do not reveal the intricate three-dimensional structures of tumours, nor enable the detection of aberrant transcripts. Here, we report a method, which we name DIIFCO (for diagnosing in situ immunofluorescence-labelled cleared oncosamples), for the multimodal volumetric imaging of RNAs and proteins in intact tumour volumes and organoids. We used DIIFCO to spatially profile the expression of diverse coding RNAs and non-coding RNAs at the single-cell resolution in a variety of cancer tissues. Quantitative single-cell analysis revealed spatial niches of cancer stem-like cells, and showed that the niches were present at a higher density in triple-negative breast cancer tissue. The improved molecular phenotyping and histopathological diagnosis of cancers may lead to new insights into the biology of tumours of patients.
Collapse
|
123
|
Takahashi H, Horio K, Kato S, Kobori T, Watanabe K, Aki T, Nakashimada Y, Okamura Y. Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification. Sci Rep 2020; 10:9588. [PMID: 32541674 PMCID: PMC7295810 DOI: 10.1038/s41598-020-65864-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/04/2020] [Indexed: 11/11/2022] Open
Abstract
Meta-analyses using next generation sequencing is a powerful strategy for studying microbiota; however, it cannot clarify the role of individual microbes within microbiota. To know which cell expresses what gene is important for elucidation of the individual cell’s function in microbiota. In this report, we developed novel fluorescence in situ hybridization (FISH) procedure using RNase-H-assisted rolling circle amplification to visualize mRNA of interest in microbial cells without reverse transcription. Our results show that this method is applicable to both Gram-negative and Gram-positive microbes without any noise from DNA, and it is possible to visualize the target mRNA expression directly at the single-cell level. Therefore, our procedure, when combined with data of meta-analyses, can help to understand the role of individual microbes in the microbiota.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.
| | - Kyohei Horio
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Toshiro Kobori
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Kenshi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tsunehiro Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan. .,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
124
|
Romanov RA, Tretiakov EO, Kastriti ME, Zupancic M, Häring M, Korchynska S, Popadin K, Benevento M, Rebernik P, Lallemend F, Nishimori K, Clotman F, Andrews WD, Parnavelas JG, Farlik M, Bock C, Adameyko I, Hökfelt T, Keimpema E, Harkany T. Molecular design of hypothalamus development. Nature 2020; 582:246-252. [PMID: 32499648 PMCID: PMC7292733 DOI: 10.1038/s41586-020-2266-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates1,2. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In particular, loss of SLIT-ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.
Collapse
Affiliation(s)
- Roman A. Romanov
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Evgenii O. Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Biomedicum D6, Karolinska
Institutet, Solna, Sweden
| | - Maja Zupancic
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Martin Häring
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Solomiia Korchynska
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Konstantin Popadin
- Human Genomics of Infection and Immunity, School of Life Sciences,
Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Patrick Rebernik
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Francois Lallemend
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Katsuhiko Nishimori
- Deptartment of Obesity and Internal Inflammation, Fukushima Medical
University, Fukushima City, Japan
| | - Frédéric Clotman
- Laboratory of Neural Differentiation, Institute of Neuroscience,
Université Catholique de Louvain, Brussels, Belgium
| | - William D. Andrews
- Department of Cell and Developmental Biology, University College
London, London, United Kingdom
| | - John G. Parnavelas
- Department of Cell and Developmental Biology, University College
London, London, United Kingdom
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna,
Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna,
Vienna, Austria
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Biomedicum D6, Karolinska
Institutet, Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| |
Collapse
|
125
|
Tsuneoka Y, Funato H. Modified in situ Hybridization Chain Reaction Using Short Hairpin DNAs. Front Mol Neurosci 2020; 13:75. [PMID: 32477063 PMCID: PMC7235299 DOI: 10.3389/fnmol.2020.00075] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
The visualization of multiple gene expressions in well-preserved tissues is crucial for the elucidation of physiological and pathological processes. In situ hybridization chain reaction (HCR) is a method to visualize specific mRNAs in diverse organisms by applying a HCR that is an isothermal enzyme-free nucleotide polymerization method using hairpin DNAs. Although in situ HCR is a versatile method, this method is not widely used by researchers because of their higher cost than conventional in situ hybridization (ISH). Here, we redesigned hairpin DNAs so that their lengths were half the length of commonly used hairpin DNAs. We also optimized the conjugated fluorophores and linkers. Modified in situ HCR showed sufficient fluorescent signals to detect various mRNAs such as Penk, Oxtr, Vglut2, Drd1, Drd2, and Moxd1 in mouse neural tissues with a high signal-to-noise ratio. The sensitivity of modified in situ HCR in detecting the Oxtr mRNA was better than that of fluorescent ISH using tyramide signal amplification. Notably, the modified in situ HCR does not require proteinase K treatment so that it enables the preservation of morphological structures and antigenicity. The modified in situ HCR simultaneously detected the distributions of c-Fos immunoreactivity and Vglut2 mRNA, and detected multiple mRNAs with a high signal-noise ratio at subcellular resolution in mouse brains. These results suggest that the modified in situ HCR using short hairpin DNAs is cost-effective and useful for the visualization of multiple mRNAs and proteins.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
126
|
Li Y, Yang H, Zhang H, Liu Y, Shang H, Zhao H, Zhang T, Tu Q. Decode-seq: a practical approach to improve differential gene expression analysis. Genome Biol 2020; 21:66. [PMID: 32200760 PMCID: PMC7087377 DOI: 10.1186/s13059-020-01966-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Many differential gene expression analyses are conducted with an inadequate number of biological replicates. We describe an easy and effective RNA-seq approach using molecular barcoding to enable profiling of a large number of replicates simultaneously. This approach significantly improves the performance of differential gene expression analysis. Using this approach in medaka (Oryzias latipes), we discover novel genes with sexually dimorphic expression and genes necessary for germ cell development. Our results also demonstrate why the common practice of using only three replicates in differential gene expression analysis should be abandoned.
Collapse
Affiliation(s)
- Yingshu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hujun Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanqiao Shang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Herong Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
127
|
Young AP, Jackson DJ, Wyeth RC. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ 2020; 8:e8806. [PMID: 32219032 PMCID: PMC7085896 DOI: 10.7717/peerj.8806] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
RNA-fluorescence in situ hybridization (FISH) is a powerful tool to visualize target messenger RNA transcripts in cultured cells, tissue sections or whole-mount preparations. As the technique has been developed over time, an ever-increasing number of divergent protocols have been published. There is now a broad selection of options available to facilitate proper tissue preparation, hybridization, and post-hybridization background removal to achieve optimal results. Here we review the technical aspects of RNA-FISH, examining the most common methods associated with different sample types including cytological preparations and whole-mounts. We discuss the application of commonly used reagents for tissue preparation, hybridization, and post-hybridization washing and provide explanations of the functional roles for each reagent. We also discuss the available probe types and necessary controls to accurately visualize gene expression. Finally, we review the most recent advances in FISH technology that facilitate both highly multiplexed experiments and signal amplification for individual targets. Taken together, this information will guide the methods development process for investigators that seek to perform FISH in organisms that lack documented or optimized protocols.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Daniel J Jackson
- Department of Geobiology, Georg-August Universität Göttingen, Göttingen, Germany
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| |
Collapse
|
128
|
Leigh ND, Sessa S, Dragalzew AC, Payzin-Dogru D, Sousa JF, Aggouras AN, Johnson K, Dunlap GS, Haas BJ, Levin M, Schneider I, Whited JL. von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evol Dev 2020; 22:297-311. [PMID: 32163674 PMCID: PMC7390686 DOI: 10.1111/ede.12332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regenerative ability varies tremendously across species. A common feature of regeneration of appendages such as limbs, fins, antlers, and tails is the formation of a blastema—a transient structure that houses a pool of progenitor cells that can regenerate the missing tissue. We have identified the expression of von Willebrand factor D and EGF domains (vwde) as a common feature of blastemas capable of regenerating limbs and fins in a variety of highly regenerative species, including axolotl (Ambystoma mexicanum), lungfish (Lepidosiren paradoxa), and Polpyterus (Polypterus senegalus). Further, vwde expression is tightly linked to the ability to regenerate appendages in Xenopus laevis. Functional experiments demonstrate a requirement for vwde in regeneration and indicate that Vwde is a potent growth factor in the blastema. These data identify a key role for vwde in regenerating blastemas and underscore the power of an evolutionarily informed approach for identifying conserved genetic components of regeneration. vwde expression is a common feature of blastemas capable of fin and limb regeneration. vwde expression is tightly tied to regeneration‐competency. vwde is required for axolotl limb regeneration, with transient knockdown resulting in severe endpoint phenotypes.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sofia Sessa
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Aline C Dragalzew
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Duygu Payzin-Dogru
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Josane F Sousa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Anthony N Aggouras
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Kimberly Johnson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Garrett S Dunlap
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Brian J Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Tufts University, Medford, Massachusetts.,Department of Biology, Tufts University, Medford, Massachusetts
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Allen Discovery Center at Tufts University, Tufts University, Medford, Massachusetts
| |
Collapse
|
129
|
Rodriguez CM, Wright SE, Kearse MG, Haenfler JM, Flores BN, Liu Y, Ifrim MF, Glineburg MR, Krans A, Jafar-Nejad P, Sutton MA, Bassell GJ, Parent JM, Rigo F, Barmada SJ, Todd PK. A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis. Nat Neurosci 2020; 23:386-397. [PMID: 32066985 PMCID: PMC7668390 DOI: 10.1038/s41593-020-0590-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5'-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.
Collapse
Affiliation(s)
- Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Michael G Kearse
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Jill M Haenfler
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Brittany N Flores
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Yu Liu
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Marius F Ifrim
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mary R Glineburg
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | | | - Michael A Sutton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
130
|
Simões FC, Cahill TJ, Kenyon A, Gavriouchkina D, Vieira JM, Sun X, Pezzolla D, Ravaud C, Masmanian E, Weinberger M, Mayes S, Lemieux ME, Barnette DN, Gunadasa-Rohling M, Williams RM, Greaves DR, Trinh LA, Fraser SE, Dallas SL, Choudhury RP, Sauka-Spengler T, Riley PR. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat Commun 2020; 11:600. [PMID: 32001677 PMCID: PMC6992796 DOI: 10.1038/s41467-019-14263-2] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Canonical roles for macrophages in mediating the fibrotic response after a heart attack include extracellular matrix turnover and activation of cardiac fibroblasts to initiate collagen deposition. Here we reveal that macrophages directly contribute collagen to the forming post-injury scar. Unbiased transcriptomics shows an upregulation of collagens in both zebrafish and mouse macrophages following heart injury. Adoptive transfer of macrophages, from either collagen-tagged zebrafish or adult mouse GFPtpz-collagen donors, enhances scar formation via cell autonomous production of collagen. In zebrafish, the majority of tagged collagen localises proximal to the injury, within the overlying epicardial region, suggesting a possible distinction between macrophage-deposited collagen and that predominantly laid-down by myofibroblasts. Macrophage-specific targeting of col4a3bpa and cognate col4a1 in zebrafish significantly reduces scarring in cryoinjured hosts. Our findings contrast with the current model of scarring, whereby collagen deposition is exclusively attributed to myofibroblasts, and implicate macrophages as direct contributors to fibrosis during heart repair. Macrophages mediate the fibrotic response after a heart attack by extracellular matrix turnover and cardiac fibroblasts activation. Here the authors identify an evolutionarily-conserved function of macrophages that contributes directly to the forming post-injury scar through cell-autonomous deposition of collagen.
Collapse
Affiliation(s)
- Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Thomas J Cahill
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amy Kenyon
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Daria Gavriouchkina
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.,Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1 Tancha, Onna, 904-0495, Japan
| | - Joaquim M Vieira
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Xin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Daniela Pezzolla
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christophe Ravaud
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK
| | - Eva Masmanian
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael Weinberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sarah Mayes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | | | - Damien N Barnette
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Ruth M Williams
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Le A Trinh
- Translational Imaging Centre, University of Southern California, Los Angeles, CA, USA
| | - Scott E Fraser
- Translational Imaging Centre, University of Southern California, Los Angeles, CA, USA
| | - Sarah L Dallas
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK. .,BHF Oxbridge Centre of Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
131
|
Combined microRNA and mRNA detection in mammalian retinas by in situ hybridization chain reaction. Sci Rep 2020; 10:351. [PMID: 31942002 PMCID: PMC6962165 DOI: 10.1038/s41598-019-57194-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/21/2019] [Indexed: 11/08/2022] Open
Abstract
Improved in situ hybridization methods for mRNA detection in tissues have been developed based on the hybridization chain reaction (HCR). We show that in situ HCR methods can be used for the detection of microRNAs in tissue sections from mouse retinas. In situ HCR can be used for the detection of two microRNAs simultaneously or for the combined detection of microRNA and mRNA. In addition, miRNA in situ HCR can be combined with immunodetection of proteins. We use these methods to characterize cells expressing specific microRNAs in the mouse retina. We find that miR-181a is expressed in amacrine cells during development and in adult retinas, and it is present in both GABAergic and glycinergic amacrine cells. The detection of microRNAs with in situ HCR should facilitate studies of microRNA function and gene regulation in the retina and other tissues.
Collapse
|
132
|
Andrews TGR, Gattoni G, Busby L, Schwimmer MA, Benito-Gutiérrez È. Hybridization Chain Reaction for Quantitative and Multiplex Imaging of Gene Expression in Amphioxus Embryos and Adult Tissues. Methods Mol Biol 2020; 2148:179-194. [PMID: 32394382 PMCID: PMC7612682 DOI: 10.1007/978-1-0716-0623-0_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In situ hybridization (ISH) methods remain the most popular approach for profiling the expression of a gene at high spatial resolution and have been broadly used to address many biological questions. One compelling application is in the field of evo-devo, where comparing gene expression patterns has offered insight into how vertebrate development has evolved. Gene expression profiling in the invertebrate chordate amphioxus (cephalochordate) has been particularly instrumental in this context: its key phylogenetic position as sister group to all other chordates makes it an ideal model system to compare with vertebrates and for reconstructing the ancestral condition of our phylum. However, while ISH methods have been developed extensively in vertebrate model systems to fluorescently detect the expression of multiple genes simultaneously at a cellular and subcellular resolution, amphioxus gene expression profiling is still based on single-gene nonfluorescent chromogenic methods, whose spatial resolution is often compromised by diffusion of the chromogenic product. This represents a serious limitation for reconciling gene expression dynamics between amphioxus and vertebrates and for molecularly identifying cell types, defined by their combinatorial code of gene expression, that may have played pivotal roles in evolutionary innovation. Herein we overcome these problems by describing a new protocol for application of the third-generation hybridization chain reaction (HCR) to the amphioxus, which permits fluorescent, multiplex, and quantitative detection of gene expression in situ, within the changing morphology of the developing embryo, and in adult tissues. A detailed protocol is herein provided for whole-mount preparations of embryos and vibratome sections of adult tissues.
Collapse
Affiliation(s)
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lara Busby
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
133
|
Choi HMT, Schwarzkopf M, Pierce NA. Multiplexed Quantitative In Situ Hybridization with Subcellular or Single-Molecule Resolution Within Whole-Mount Vertebrate Embryos: qHCR and dHCR Imaging (v3.0). Methods Mol Biol 2020; 2148:159-178. [PMID: 32394381 DOI: 10.1007/978-1-0716-0623-0_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In situ hybridization based on the mechanism of hybridization chain reaction (HCR) enables multiplexed quantitative mRNA imaging in the anatomical context of whole-mount vertebrate embryos. Third-generation in situ HCR (v3.0) provides automatic background suppression throughout the protocol, dramatically enhancing performance and ease of use. In situ HCR v3.0 supports two quantitative imaging modes: (1) qHCR imaging for analog mRNA relative quantitation with subcellular resolution in an anatomical context and (2) dHCR imaging for digital mRNA absolute quantitation with single-molecule resolution in an anatomical context. Here, we provide protocols for qHCR and dHCR imaging in whole-mount zebrafish, chicken, and mouse embryos.
Collapse
Affiliation(s)
- Harry M T Choi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Maayan Schwarzkopf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA, USA.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
134
|
Askary A, Sanchez-Guardado L, Linton JM, Chadly DM, Budde MW, Cai L, Lois C, Elowitz MB. In situ readout of DNA barcodes and single base edits facilitated by in vitro transcription. Nat Biotechnol 2020; 38:66-75. [PMID: 31740838 PMCID: PMC6954335 DOI: 10.1038/s41587-019-0299-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Molecular barcoding technologies that uniquely identify single cells are hampered by limitations in barcode measurement. Readout by sequencing does not preserve the spatial organization of cells in tissues, whereas imaging methods preserve spatial structure but are less sensitive to barcode sequence. Here we introduce a system for image-based readout of short (20-base-pair) DNA barcodes. In this system, called Zombie, phage RNA polymerases transcribe engineered barcodes in fixed cells. The resulting RNA is subsequently detected by fluorescent in situ hybridization. Using competing match and mismatch probes, Zombie can accurately discriminate single-nucleotide differences in the barcodes. This method allows in situ readout of dense combinatorial barcode libraries and single-base mutations produced by CRISPR base editors without requiring barcode expression in live cells. Zombie functions across diverse contexts, including cell culture, chick embryos and adult mouse brain tissue. The ability to sensitively read out compact and diverse DNA barcodes by imaging will facilitate a broad range of barcoding and genomic recording strategies.
Collapse
Affiliation(s)
- Amjad Askary
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Luis Sanchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Duncan M Chadly
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mark W Budde
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
135
|
Schwarzkopf M, Choi HMT, Pierce NA. Multiplexed Quantitative In Situ Hybridization for Mammalian or Bacterial Cells in Suspension: qHCR Flow Cytometry (v3.0). Methods Mol Biol 2020; 2148:127-141. [PMID: 32394379 DOI: 10.1007/978-1-0716-0623-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In situ hybridization based on the mechanism of hybridization chain reaction (HCR) enables high-throughput expression profiling of mammalian or bacterial cells via flow cytometry. Third-generation in situ HCR (v3.0) provides automatic background suppression throughout the protocol, dramatically enhancing performance and ease of use. In situ HCR v3.0 supports analog mRNA relative quantitation via qHCR flow cytometry. Here, we provide protocols for multiplexed qHCR flow cytometry for mammalian or bacterial cells in suspension.
Collapse
Affiliation(s)
- Maayan Schwarzkopf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Harry M T Choi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA, USA.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
136
|
Schwarzkopf M, Choi HMT, Pierce NA. Multiplexed Quantitative In Situ Hybridization for Mammalian Cells on a Slide: qHCR and dHCR Imaging (v3.0). Methods Mol Biol 2020; 2148:143-156. [PMID: 32394380 DOI: 10.1007/978-1-0716-0623-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In situ hybridization based on the mechanism of hybridization chain reaction (HCR) enables multiplexed quantitative mRNA imaging in diverse sample types. Third-generation in situ HCR (v3.0) provides automatic background suppression throughout the protocol, dramatically enhancing performance and ease of use. In situ HCR v3.0 supports two quantitative imaging modes: (1) qHCR imaging for analog mRNA relative quantitation with subcellular resolution and (2) dHCR imaging for digital mRNA absolute quantitation with single-molecule resolution. Here, we provide protocols for qHCR and dHCR imaging in mammalian cells on a slide.
Collapse
Affiliation(s)
- Maayan Schwarzkopf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Harry M T Choi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA, USA.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
137
|
Quantitative Visualization of Gene Expression in Mucoid and Nonmucoid Pseudomonas aeruginosa Aggregates Reveals Localized Peak Expression of Alginate in the Hypoxic Zone. mBio 2019; 10:mBio.02622-19. [PMID: 31848278 PMCID: PMC6918079 DOI: 10.1128/mbio.02622-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well appreciated that oxygen- and other nutrient-limiting gradients characterize microenvironments within chronic infections that foster bacterial tolerance to treatment and the immune response. However, determining how bacteria respond to these microenvironments has been limited by a lack of tools to study bacterial functions at the relevant spatial scales in situ Here, we report the application of the hybridization chain reaction (HCR) v3.0 to provide analog mRNA relative quantitation of Pseudomonas aeruginosa single cells as a step toward this end. To assess the potential for this method to be applied to bacterial populations, we visualized the expression of genes needed for the production of alginate (algD) and the dissimilatory nitrate reductase (narG) at single-cell resolution within laboratory-grown aggregates. After validating new HCR probes, we quantified algD and narG expression across microenvironmental gradients within both single aggregates and aggregate populations using the agar block biofilm assay (ABBA). For mucoid and nonmucoid ABBA populations, narG was expressed in hypoxic and anoxic regions, while alginate expression was restricted to the hypoxic zone (∼40 to 200 μM O2). Within individual aggregates, surface-adjacent cells expressed alginate genes at higher levels than interior cells, revealing that alginate expression is not constitutive in mucoid P. aeruginosa but instead varies with oxygen availability. These results establish HCR v3.0 as a versatile and robust tool to resolve subtle differences in gene expression at spatial scales relevant to microbial assemblages. This advance has the potential to enable quantitative studies of microbial gene expression in diverse contexts, including pathogen activities during infections.IMPORTANCE A goal for microbial ecophysiological research is to reveal microbial activities in natural environments, including sediments, soils, or infected human tissues. Here, we report the application of the hybridization chain reaction (HCR) v3.0 to quantitatively measure microbial gene expression in situ at single-cell resolution in bacterial aggregates. Using quantitative image analysis of thousands of Pseudomonas aeruginosa cells, we validated new P. aeruginosa HCR probes. Within in vitro P. aeruginosa aggregates, we found that bacteria just below the aggregate surface are the primary cells expressing genes that protect the population against antibiotics and the immune system. This observation suggests that therapies targeting bacteria growing with small amounts of oxygen may be most effective against these hard-to-treat infections. More generally, this proof-of-concept study demonstrates that HCR v3.0 has the potential to identify microbial activities in situ at small spatial scales in diverse contexts.
Collapse
|
138
|
Hu Y, Linz DM, Moczek AP. Beetle horns evolved from wing serial homologs. Science 2019; 366:1004-1007. [DOI: 10.1126/science.aaw2980] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Understanding how novel complex traits originate is a foundational challenge in evolutionary biology. We investigated the origin of prothoracic horns in scarabaeine beetles, one of the most pronounced examples of secondary sexual traits in the animal kingdom. We show that prothoracic horns derive from bilateral source tissues; that diverse wing genes are functionally required for instructing this process; and that, in the absence of Hox input, prothoracic horn primordia transform to contribute to ectopic wings. Once induced, however, the transcriptional profile of prothoracic horns diverges markedly from that of wings and other wing serial homologs. Our results substantiate the serial homology between prothoracic horns and insects wings and suggest that other insect innovations may derive similarly from wing serial homologs and the concomitant establishment of structure-specific transcriptional landscapes.
Collapse
|
139
|
Wu H, Chen TT, Wang XN, Ke Y, Jiang JH. RNA imaging in living mice enabled by an in vivo hybridization chain reaction circuit with a tripartite DNA probe. Chem Sci 2019; 11:62-69. [PMID: 32110357 PMCID: PMC7012062 DOI: 10.1039/c9sc03469b] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
RNA imaging in living animals helps decipher biology and creates new theranostics for disease treatment. Due to their low delivery efficiency and high background, however, fluorescence probes for in situ RNA imaging in living mice have not been reported. We develop a new cell-targeting fluorescent probe that enables RNA imaging in living mice via an in vivo hybridization chain reaction (HCR). The minimalistic Y-shaped design of the tripartite DNA probe improves its performance in live animal studies and serves as a modular scaffold for three DNA motifs for cell-targeting and the HCR circuit. The tripartite DNA probe allows facile synthesis with a high yield and demonstrates ultrasensitive RNA detection in vitro. The probe also exhibits selective and efficient internalization into folate (FA) receptor-overexpressed cells via a caveolar-mediated endocytosis mechanism and produces fluorescence signals dynamically correlated with intracellular target expressions. Furthermore, the probe exhibits specific delivery into tumor cells and allows high-contrast imaging of miR-21 in living mice. The tripartite DNA design may open the door for intracellular RNA imaging in living animals using DNA-minimal structures and its design strategy can help future development of DNA-based multi-functional molecular probes.
Collapse
Affiliation(s)
- Han Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China . .,Wallace H. Coulter Department of Biomedical Engineering , Emory University School of Medicine , Emory University , Atlanta , Georgia 30322 , USA .
| | - Ting-Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Xiang-Nan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering , Emory University School of Medicine , Emory University , Atlanta , Georgia 30322 , USA .
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| |
Collapse
|
140
|
Kamermans A, Verhoeven T, van Het Hof B, Koning JJ, Borghuis L, Witte M, van Horssen J, de Vries HE, Rijnsburger M. Setmelanotide, a Novel, Selective Melanocortin Receptor-4 Agonist Exerts Anti-inflammatory Actions in Astrocytes and Promotes an Anti-inflammatory Macrophage Phenotype. Front Immunol 2019; 10:2312. [PMID: 31636637 PMCID: PMC6788433 DOI: 10.3389/fimmu.2019.02312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
To date, available treatment strategies for multiple sclerosis (MS) are ineffective in preventing or reversing progressive neurologic deterioration, creating a high, and unmet medical need. One potential way to fight MS may be by limiting the detrimental effects of reactive astrocytes, a key pathological hallmark for disease progression. One class of compounds that may exert beneficial effects via astrocytes are melanocortin receptor (MCR) agonists. Among the MCR, MC4R is most abundantly expressed in the CNS and several rodent studies have described that MC4R is—besides neurons—expressed by astrocytes. Activation of MC4R in astrocytes has shown to have potent anti-inflammatory as well as neuroprotective effects in vitro, suggesting that this could be a potential target to ameliorate ongoing inflammation, and neurodegeneration in MS. In this study, we set out to investigate human MC4R expression and analyze its downstream effects. We identified MC4R mRNA and protein to be expressed on astrocytes and observed increased astrocytic MC4R expression in active MS lesions. Furthermore, we show that the novel, highly selective MC4R agonist setmelanotide ameliorates the reactive phenotype in astrocytes in vitro and markedly induced interleukin−6 and −11 production, possibly through enhanced cAMP response element-binding protein (CREB) phosphorylation. Notably, stimulation of human macrophages with medium from astrocytes that were exposed to setmelanotide, skewed macrophages toward an anti-inflammatory phenotype. Taken together, these findings suggest that targeting MC4R on astrocytes might be a novel therapeutic strategy to halt inflammation-associated neurodegeneration in MS.
Collapse
Affiliation(s)
- Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tom Verhoeven
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lauri Borghuis
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maarten Witte
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
141
|
Kim HS, Neugebauer J, McKnite A, Tilak A, Christian JL. BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. eLife 2019; 8:48872. [PMID: 31566563 PMCID: PMC6785266 DOI: 10.7554/elife.48872] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/28/2019] [Indexed: 12/15/2022] Open
Abstract
BMP7/BMP2 or BMP7/BMP4 heterodimers are more active than homodimers in vitro, but it is not known whether these heterodimers signal in vivo. To test this, we generated knock in mice carrying a mutation (Bmp7R-GFlag) that prevents proteolytic activation of the dimerized BMP7 precursor protein. This mutation eliminates the function of BMP7 homodimers and all other BMPs that normally heterodimerize with BMP7. While Bmp7 null homozygotes are live born, Bmp7R-GFlag homozygotes are embryonic lethal and have broadly reduced BMP activity. Furthermore, compound heterozygotes carrying the Bmp7R-G allele together with a null allele of Bmp2 or Bmp4 die during embryogenesis with defects in ventral body wall closure and/or the heart. Co-immunoprecipitation assays confirm that endogenous BMP4/7 heterodimers exist. Thus, BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian development, which may explain why mutations in either Bmp4 or Bmp7 lead to a similar spectrum of congenital defects in humans.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| | - Judith Neugebauer
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| | - Autumn McKnite
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| | - Anup Tilak
- Department of Cell and Developmental Biology, School of Medicine, Oregon Health and Sciences University, Portland, United States
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, School of Medicine, University of Utah, Salt Lake City, United States
| |
Collapse
|
142
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
143
|
Cayuso J, Xu Q, Addison M, Wilkinson DG. Actomyosin regulation by Eph receptor signaling couples boundary cell formation to border sharpness. eLife 2019; 8:49696. [PMID: 31502954 PMCID: PMC6739871 DOI: 10.7554/elife.49696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
The segregation of cells with distinct regional identity underlies formation of a sharp border, which in some tissues serves to organise a boundary signaling centre. It is unclear whether or how border sharpness is coordinated with induction of boundary-specific gene expression. We show that forward signaling of EphA4 is required for border sharpening and induction of boundary cells in the zebrafish hindbrain, which we find both require kinase-dependent signaling, with a lesser input of PDZ domain-dependent signaling. We find that boundary-specific gene expression is regulated by myosin II phosphorylation, which increases actomyosin contraction downstream of EphA4 signaling. Myosin phosphorylation leads to nuclear translocation of Taz, which together with Tead1a is required for boundary marker expression. Since actomyosin contraction maintains sharp borders, there is direct coupling of border sharpness to boundary cell induction that ensures correct organisation of signaling centres.
Collapse
Affiliation(s)
- Jordi Cayuso
- The Francis Crick Institute, London, United Kingdom
| | - Qiling Xu
- The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
144
|
Zheng X, Wang Y, Bu S, Chen Z, Wan J. Point-of-care detection of 16S rRNA of Staphylococcus aureus based on multiple biotin-labeled DNA probes. Mol Cell Probes 2019; 47:101427. [PMID: 31369831 DOI: 10.1016/j.mcp.2019.101427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023]
Abstract
A visual method that combines multiple biotin-labeled DNA probes and lateral-flow nucleic acid biosensor was developed to detect Staphylococcus aureus. The 16S rRNA from Staphyloccocus aureus (S. aureus), coupled with multiple biotin-labeled DNA probes, was functionalized in a signal structure for lateral-flow point-of-care detection. The secondary structure of the 16S rRNA was unwound by two specific capture probes modified by Fam and multiple bridge probes, which extended additional sequences for use as initiators. By utilizing the initiators, each target 16S rRNA with multiple DNA probes could tether a number of biotin molecules, so that a large number of streptavidin-labeled gold nanoparticles could be introduced in the lateral flow assay. The images of the lateral flow detection results obtained using a smartphone were transmitted to a computer via Wi-Fi or Bluetooth connection for quantitative processing by ImageJ. The limit of detection was 103 cfu/mL without sample enrichment, and decreased to 0.12 cfu/mL following a 3-h enrichment of samples in growth medium. Notably, this method presented high specificity and applicability for the detection of S. aureus in food samples. In short, the developed visual non-specific operation method is very suitable for point-of-care diagnosis of pathogens in resource-limited countries.
Collapse
Affiliation(s)
- Xiaoliang Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Zhibao Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.
| |
Collapse
|
145
|
Wunderlich Z, Fowlkes CC, Eckenrode KB, Bragdon MDJ, Abiri A, DePace AH. Quantitative Comparison of the Anterior-Posterior Patterning System in the Embryos of Five Drosophila Species. G3 (BETHESDA, MD.) 2019; 9:2171-2182. [PMID: 31048401 PMCID: PMC6643877 DOI: 10.1534/g3.118.200953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/01/2019] [Indexed: 11/18/2022]
Abstract
Complex spatiotemporal gene expression patterns direct the development of the fertilized egg into an adult animal. Comparisons across species show that, in spite of changes in the underlying regulatory DNA sequence, developmental programs can be maintained across millions of years of evolution. Reciprocally, changes in gene expression can be used to generate morphological novelty. Distinguishing between changes in regulatory DNA that lead to changes in gene expression and those that do not is therefore a central goal of evolutionary developmental biology. Quantitative, spatially-resolved measurements of developmental gene expression patterns play a crucial role in this goal, enabling the detection of subtle phenotypic differences between species and the development of computations models that link the sequence of regulatory DNA to expression patterns. Here we report the generation of two atlases of cellular resolution gene expression measurements for the primary anterior-posterior patterning genes in Drosophila simulans and Drosophila virilis By combining these data sets with existing atlases for three other Drosophila species, we detect subtle differences in the gene expression patterns and dynamics driving the highly conserved axis patterning system and delineate inter-species differences in the embryonic morphology. These data sets will be a resource for future modeling studies of the evolution of developmental gene regulatory networks.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697
| | - Charless C Fowlkes
- Department of Computer Science, University of California, Irvine, CA, 92697
| | - Kelly B Eckenrode
- Department of Systems Biology, Harvard Medical School, Boston, MA, 20115
| | - Meghan D J Bragdon
- Department of Systems Biology, Harvard Medical School, Boston, MA, 20115
| | - Arash Abiri
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA, 20115
| |
Collapse
|
146
|
Wang H, Holland PWH, Takahashi T. Gene profiling of head mesoderm in early zebrafish development: insights into the evolution of cranial mesoderm. EvoDevo 2019; 10:14. [PMID: 31312422 PMCID: PMC6612195 DOI: 10.1186/s13227-019-0128-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background The evolution of the head was one of the key events that marked the transition from invertebrates to vertebrates. With the emergence of structures such as eyes and jaws, vertebrates evolved an active and predatory life style and radiated into diversity of large-bodied animals. These organs are moved by cranial muscles that derive embryologically from head mesoderm. Compared with other embryonic components of the head, such as placodes and cranial neural crest cells, our understanding of cranial mesoderm is limited and is restricted to few species. Results Here, we report the expression patterns of key genes in zebrafish head mesoderm at very early developmental stages. Apart from a basic anterior–posterior axis marked by a combination of pitx2 and tbx1 expression, we find that most gene expression patterns are poorly conserved between zebrafish and chick, suggesting fewer developmental constraints imposed than in trunk mesoderm. Interestingly, the gene expression patterns clearly show the early establishment of medial–lateral compartmentalisation in zebrafish head mesoderm, comprising a wide medial zone flanked by two narrower strips. Conclusions In zebrafish head mesoderm, there is no clear molecular regionalisation along the anteroposterior axis as previously reported in chick embryos. In contrast, the medial–lateral regionalisation is formed at early developmental stages. These patterns correspond to the distinction between paraxial mesoderm and lateral plate mesoderm in the trunk, suggesting a common groundplan for patterning head and trunk mesoderm. By comparison of these expression patterns to that of amphioxus homologues, we argue for an evolutionary link between zebrafish head mesoderm and amphioxus anteriormost somites. Electronic supplementary material The online version of this article (10.1186/s13227-019-0128-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijia Wang
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Peter W H Holland
- 2Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Tokiharu Takahashi
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
147
|
Huss DJ, Saias S, Hamamah S, Singh JM, Wang J, Dave M, Kim J, Eberwine J, Lansford R. Avian Primordial Germ Cells Contribute to and Interact With the Extracellular Matrix During Early Migration. Front Cell Dev Biol 2019; 7:35. [PMID: 30984757 PMCID: PMC6447691 DOI: 10.3389/fcell.2019.00035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
During early avian development, primordial germ cells (PGC) are highly migratory, moving from the central area pellucida of the blastoderm to the anterior extra-embryonic germinal crescent. The PGCs soon move into the forming blood vessels by intravasation and travel in the circulatory system to the genital ridges where they participate in the organogenesis of the gonads. This complex cellular migration takes place in close association with a nascent extracellular matrix that matures in a precise spatio-temporal pattern. We first compiled a list of quail matrisome genes by bioinformatic screening of human matrisome orthologs. Next, we used single cell RNA-seq analysis (scRNAseq) to determine that PGCs express numerous ECM and ECM-associated genes in early embryos. The expression of select ECM transcripts and proteins in PGCs were verified by fluorescent in situ hybridization (FISH) and immunofluorescence (IF). Live imaging of transgenic quail embryos injected with fluorescent antibodies against fibronectin and laminin, showed that germinal crescent PGCs display rapid shape changes and morphological properties such as blebbing and filopodia while surrounded by, or in close contact with, an ECM fibril meshwork that is itself in constant motion. Injection of anti-β1 integrin CSAT antibodies resulted in a reduction of mature fibronectin and laminin fibril meshwork in the germinal crescent at HH4-5 but did not alter the active motility of the PGCs or their ability to populate the germinal crescent. These results suggest that integrin β1 receptors are important, but not required, for PGCs to successfully migrate during embryonic development, but instead play a vital role in ECM fibrillogenesis and assembly.
Collapse
Affiliation(s)
- David J. Huss
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Translational Imaging Center, University of Southern California, Los Angeles, CA, United States
| | - Sasha Saias
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Sevag Hamamah
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Jennifer M. Singh
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Jinhui Wang
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Mohit Dave
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Junhyong Kim
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Eberwine
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Rusty Lansford
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Translational Imaging Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
148
|
Investigating Nrg1 Signaling in the Regenerating Axolotl Spinal Cord Using Multiplexed FISH. Dev Neurobiol 2019; 79:453-467. [DOI: 10.1002/dneu.22670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/24/2019] [Accepted: 02/16/2019] [Indexed: 02/02/2023]
|
149
|
Guo J, Mingoes C, Qiu X, Hildebrandt N. Simple, Amplified, and Multiplexed Detection of MicroRNAs Using Time-Gated FRET and Hybridization Chain Reaction. Anal Chem 2019; 91:3101-3109. [DOI: 10.1021/acs.analchem.8b05600] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiajia Guo
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91400 Orsay, France
| | - Carlos Mingoes
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91400 Orsay, France
| | - Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91400 Orsay, France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91400 Orsay, France
| |
Collapse
|
150
|
Blice-Baum AC, Vogler G, Viswanathan MC, Trinh B, Limpitikul WB, Cammarato A. Quantifying Tissue-Specific Overexpression of FOXO in Drosophila via mRNA Fluorescence In Situ Hybridization Using Branched DNA Probe Technology. Methods Mol Biol 2019; 1890:171-190. [PMID: 30414154 PMCID: PMC7906431 DOI: 10.1007/978-1-4939-8900-3_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the highly conserved FOXO transcription factors have been studied in Drosophila melanogaster for decades, the ability to accurately control and measure their tissue-specific expression is often cumbersome due to a lack of reagents and to limited, nonhomogeneous samples. The need for quantitation within a distinct cell type is particularly important because transcription factors must be expressed in specific amounts to perform their functions properly. However, the inherent heterogeneity of many samples can make evaluating cell-specific FOXO and/or FOXO load difficult. Here, we describe an extremely sensitive fluorescence in situ hybridization (FISH) approach for visualizing and quantifying multiple mRNAs with single-cell resolution in adult Drosophila cardiomyocytes. The procedure relies upon branched DNA technology, which allows several fluorescent molecules to label an individual transcript, drastically increasing the signal-to-noise ratio compared to other FISH assays. This protocol can be modified for use in various small animal models, tissue types, and for assorted nucleic acids.
Collapse
Affiliation(s)
- Anna C Blice-Baum
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Science Department, Iadarola Center for Science, Education and Technology, Cabrini University, Radnor, PA, USA.
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Meera C Viswanathan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bosco Trinh
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Worawan B Limpitikul
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|